1 /*
2 * Copyright (c) 2017 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * @brief Private API for SPI drivers
10 */
11
12 #ifndef ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_
13 #define ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_
14
15 #include <zephyr/drivers/gpio.h>
16 #include <zephyr/drivers/spi.h>
17 #include <zephyr/kernel.h>
18
19 #ifdef __cplusplus
20 extern "C" {
21 #endif
22
23 enum spi_ctx_runtime_op_mode {
24 SPI_CTX_RUNTIME_OP_MODE_MASTER = BIT(0),
25 SPI_CTX_RUNTIME_OP_MODE_SLAVE = BIT(1),
26 };
27
28 struct spi_context {
29 const struct spi_config *config;
30 const struct spi_config *owner;
31 const struct gpio_dt_spec *cs_gpios;
32 size_t num_cs_gpios;
33
34 struct k_sem lock;
35 struct k_sem sync;
36 int sync_status;
37
38 #ifdef CONFIG_SPI_ASYNC
39 spi_callback_t callback;
40 void *callback_data;
41 bool asynchronous;
42 #endif /* CONFIG_SPI_ASYNC */
43 const struct spi_buf *current_tx;
44 size_t tx_count;
45 const struct spi_buf *current_rx;
46 size_t rx_count;
47
48 const uint8_t *tx_buf;
49 size_t tx_len;
50 uint8_t *rx_buf;
51 size_t rx_len;
52
53 #ifdef CONFIG_SPI_SLAVE
54 int recv_frames;
55 #endif /* CONFIG_SPI_SLAVE */
56 };
57
58 #define SPI_CONTEXT_INIT_LOCK(_data, _ctx_name) \
59 ._ctx_name.lock = Z_SEM_INITIALIZER(_data._ctx_name.lock, 0, 1)
60
61 #define SPI_CONTEXT_INIT_SYNC(_data, _ctx_name) \
62 ._ctx_name.sync = Z_SEM_INITIALIZER(_data._ctx_name.sync, 0, 1)
63
64 #define SPI_CONTEXT_CS_GPIO_SPEC_ELEM(_node_id, _prop, _idx) \
65 GPIO_DT_SPEC_GET_BY_IDX(_node_id, _prop, _idx),
66
67 #define SPI_CONTEXT_CS_GPIOS_FOREACH_ELEM(_node_id) \
68 DT_FOREACH_PROP_ELEM(_node_id, cs_gpios, \
69 SPI_CONTEXT_CS_GPIO_SPEC_ELEM)
70
71 #define SPI_CONTEXT_CS_GPIOS_INITIALIZE(_node_id, _ctx_name) \
72 ._ctx_name.cs_gpios = (const struct gpio_dt_spec []) { \
73 COND_CODE_1(DT_SPI_HAS_CS_GPIOS(_node_id), \
74 (SPI_CONTEXT_CS_GPIOS_FOREACH_ELEM(_node_id)), ({0})) \
75 }, \
76 ._ctx_name.num_cs_gpios = DT_PROP_LEN_OR(_node_id, cs_gpios, 0),
77
spi_context_configured(struct spi_context * ctx,const struct spi_config * config)78 static inline bool spi_context_configured(struct spi_context *ctx,
79 const struct spi_config *config)
80 {
81 return !!(ctx->config == config);
82 }
83
spi_context_is_slave(struct spi_context * ctx)84 static inline bool spi_context_is_slave(struct spi_context *ctx)
85 {
86 return (ctx->config->operation & SPI_OP_MODE_SLAVE);
87 }
88
spi_context_lock(struct spi_context * ctx,bool asynchronous,spi_callback_t callback,void * callback_data,const struct spi_config * spi_cfg)89 static inline void spi_context_lock(struct spi_context *ctx,
90 bool asynchronous,
91 spi_callback_t callback,
92 void *callback_data,
93 const struct spi_config *spi_cfg)
94 {
95 if ((spi_cfg->operation & SPI_LOCK_ON) &&
96 (k_sem_count_get(&ctx->lock) == 0) &&
97 (ctx->owner == spi_cfg)) {
98 return;
99 }
100
101 k_sem_take(&ctx->lock, K_FOREVER);
102 ctx->owner = spi_cfg;
103
104 #ifdef CONFIG_SPI_ASYNC
105 ctx->asynchronous = asynchronous;
106 ctx->callback = callback;
107 ctx->callback_data = callback_data;
108 #endif /* CONFIG_SPI_ASYNC */
109 }
110
spi_context_release(struct spi_context * ctx,int status)111 static inline void spi_context_release(struct spi_context *ctx, int status)
112 {
113 #ifdef CONFIG_SPI_SLAVE
114 if (status >= 0 && (ctx->config->operation & SPI_LOCK_ON)) {
115 return;
116 }
117 #endif /* CONFIG_SPI_SLAVE */
118
119 #ifdef CONFIG_SPI_ASYNC
120 if (!ctx->asynchronous || (status < 0)) {
121 ctx->owner = NULL;
122 k_sem_give(&ctx->lock);
123 }
124 #else
125 if (!(ctx->config->operation & SPI_LOCK_ON)) {
126 ctx->owner = NULL;
127 k_sem_give(&ctx->lock);
128 }
129 #endif /* CONFIG_SPI_ASYNC */
130 }
131
132 static inline size_t spi_context_total_tx_len(struct spi_context *ctx);
133 static inline size_t spi_context_total_rx_len(struct spi_context *ctx);
134
spi_context_wait_for_completion(struct spi_context * ctx)135 static inline int spi_context_wait_for_completion(struct spi_context *ctx)
136 {
137 int status = 0;
138 bool wait;
139
140 #ifdef CONFIG_SPI_ASYNC
141 wait = !ctx->asynchronous;
142 #else
143 wait = true;
144 #endif
145
146 if (wait) {
147 k_timeout_t timeout;
148
149 /* Do not use any timeout in the slave mode, as in this case
150 * it is not known when the transfer will actually start and
151 * what the frequency will be.
152 */
153 if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(ctx)) {
154 timeout = K_FOREVER;
155 } else {
156 uint32_t tx_len = spi_context_total_tx_len(ctx);
157 uint32_t rx_len = spi_context_total_rx_len(ctx);
158 uint32_t timeout_ms;
159
160 timeout_ms = MAX(tx_len, rx_len) * 8 * 1000 /
161 ctx->config->frequency;
162 timeout_ms += CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE;
163
164 timeout = K_MSEC(timeout_ms);
165 }
166
167 if (k_sem_take(&ctx->sync, timeout)) {
168 LOG_ERR("Timeout waiting for transfer complete");
169 return -ETIMEDOUT;
170 }
171 status = ctx->sync_status;
172 }
173
174 #ifdef CONFIG_SPI_SLAVE
175 if (spi_context_is_slave(ctx) && !status) {
176 return ctx->recv_frames;
177 }
178 #endif /* CONFIG_SPI_SLAVE */
179
180 return status;
181 }
182
spi_context_complete(struct spi_context * ctx,const struct device * dev,int status)183 static inline void spi_context_complete(struct spi_context *ctx,
184 const struct device *dev,
185 int status)
186 {
187 #ifdef CONFIG_SPI_ASYNC
188 if (!ctx->asynchronous) {
189 ctx->sync_status = status;
190 k_sem_give(&ctx->sync);
191 } else {
192 if (ctx->callback) {
193 #ifdef CONFIG_SPI_SLAVE
194 if (spi_context_is_slave(ctx) && !status) {
195 /* Let's update the status so it tells
196 * about number of received frames.
197 */
198 status = ctx->recv_frames;
199 }
200 #endif /* CONFIG_SPI_SLAVE */
201 ctx->callback(dev, status, ctx->callback_data);
202 }
203
204 if (!(ctx->config->operation & SPI_LOCK_ON)) {
205 ctx->owner = NULL;
206 k_sem_give(&ctx->lock);
207 }
208 }
209 #else
210 ctx->sync_status = status;
211 k_sem_give(&ctx->sync);
212 #endif /* CONFIG_SPI_ASYNC */
213 }
214
spi_context_cs_configure_all(struct spi_context * ctx)215 static inline int spi_context_cs_configure_all(struct spi_context *ctx)
216 {
217 int ret;
218 const struct gpio_dt_spec *cs_gpio;
219
220 for (cs_gpio = ctx->cs_gpios; cs_gpio < &ctx->cs_gpios[ctx->num_cs_gpios]; cs_gpio++) {
221 if (!device_is_ready(cs_gpio->port)) {
222 LOG_ERR("CS GPIO port %s pin %d is not ready",
223 cs_gpio->port->name, cs_gpio->pin);
224 return -ENODEV;
225 }
226
227 ret = gpio_pin_configure_dt(cs_gpio, GPIO_OUTPUT_INACTIVE);
228 if (ret < 0) {
229 return ret;
230 }
231 }
232
233 return 0;
234 }
235
_spi_context_cs_control(struct spi_context * ctx,bool on,bool force_off)236 static inline void _spi_context_cs_control(struct spi_context *ctx,
237 bool on, bool force_off)
238 {
239 if (ctx->config && spi_cs_is_gpio(ctx->config)) {
240 if (on) {
241 gpio_pin_set_dt(&ctx->config->cs.gpio, 1);
242 k_busy_wait(ctx->config->cs.delay);
243 } else {
244 if (!force_off &&
245 ctx->config->operation & SPI_HOLD_ON_CS) {
246 return;
247 }
248
249 k_busy_wait(ctx->config->cs.delay);
250 gpio_pin_set_dt(&ctx->config->cs.gpio, 0);
251 }
252 }
253 }
254
spi_context_cs_control(struct spi_context * ctx,bool on)255 static inline void spi_context_cs_control(struct spi_context *ctx, bool on)
256 {
257 _spi_context_cs_control(ctx, on, false);
258 }
259
spi_context_unlock_unconditionally(struct spi_context * ctx)260 static inline void spi_context_unlock_unconditionally(struct spi_context *ctx)
261 {
262 /* Forcing CS to go to inactive status */
263 _spi_context_cs_control(ctx, false, true);
264
265 if (!k_sem_count_get(&ctx->lock)) {
266 ctx->owner = NULL;
267 k_sem_give(&ctx->lock);
268 }
269 }
270
spi_context_get_next_buf(const struct spi_buf ** current,size_t * count,size_t * buf_len,uint8_t dfs)271 static inline void *spi_context_get_next_buf(const struct spi_buf **current,
272 size_t *count,
273 size_t *buf_len,
274 uint8_t dfs)
275 {
276 /* This loop skips zero-length buffers in the set, if any. */
277 while (*count) {
278 if (((*current)->len / dfs) != 0) {
279 *buf_len = (*current)->len / dfs;
280 return (*current)->buf;
281 }
282 ++(*current);
283 --(*count);
284 }
285
286 *buf_len = 0;
287 return NULL;
288 }
289
290 static inline
spi_context_buffers_setup(struct spi_context * ctx,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,uint8_t dfs)291 void spi_context_buffers_setup(struct spi_context *ctx,
292 const struct spi_buf_set *tx_bufs,
293 const struct spi_buf_set *rx_bufs,
294 uint8_t dfs)
295 {
296 LOG_DBG("tx_bufs %p - rx_bufs %p - %u", tx_bufs, rx_bufs, dfs);
297
298 ctx->current_tx = tx_bufs ? tx_bufs->buffers : NULL;
299 ctx->tx_count = ctx->current_tx ? tx_bufs->count : 0;
300 ctx->tx_buf = (const uint8_t *)
301 spi_context_get_next_buf(&ctx->current_tx, &ctx->tx_count,
302 &ctx->tx_len, dfs);
303
304 ctx->current_rx = rx_bufs ? rx_bufs->buffers : NULL;
305 ctx->rx_count = ctx->current_rx ? rx_bufs->count : 0;
306 ctx->rx_buf = (uint8_t *)
307 spi_context_get_next_buf(&ctx->current_rx, &ctx->rx_count,
308 &ctx->rx_len, dfs);
309
310 ctx->sync_status = 0;
311
312 #ifdef CONFIG_SPI_SLAVE
313 ctx->recv_frames = 0;
314 #endif /* CONFIG_SPI_SLAVE */
315
316 LOG_DBG("current_tx %p (%zu), current_rx %p (%zu),"
317 " tx buf/len %p/%zu, rx buf/len %p/%zu",
318 ctx->current_tx, ctx->tx_count,
319 ctx->current_rx, ctx->rx_count,
320 (void *)ctx->tx_buf, ctx->tx_len,
321 (void *)ctx->rx_buf, ctx->rx_len);
322 }
323
324 static ALWAYS_INLINE
spi_context_update_tx(struct spi_context * ctx,uint8_t dfs,uint32_t len)325 void spi_context_update_tx(struct spi_context *ctx, uint8_t dfs, uint32_t len)
326 {
327 if (!ctx->tx_len) {
328 return;
329 }
330
331 if (len > ctx->tx_len) {
332 LOG_ERR("Update exceeds current buffer");
333 return;
334 }
335
336 ctx->tx_len -= len;
337 if (!ctx->tx_len) {
338 /* Current buffer is done. Get the next one to be processed. */
339 ++ctx->current_tx;
340 --ctx->tx_count;
341 ctx->tx_buf = (const uint8_t *)
342 spi_context_get_next_buf(&ctx->current_tx,
343 &ctx->tx_count,
344 &ctx->tx_len, dfs);
345 } else if (ctx->tx_buf) {
346 ctx->tx_buf += dfs * len;
347 }
348
349 LOG_DBG("tx buf/len %p/%zu", (void *)ctx->tx_buf, ctx->tx_len);
350 }
351
352 static ALWAYS_INLINE
spi_context_tx_on(struct spi_context * ctx)353 bool spi_context_tx_on(struct spi_context *ctx)
354 {
355 return !!(ctx->tx_len);
356 }
357
358 static ALWAYS_INLINE
spi_context_tx_buf_on(struct spi_context * ctx)359 bool spi_context_tx_buf_on(struct spi_context *ctx)
360 {
361 return !!(ctx->tx_buf && ctx->tx_len);
362 }
363
364 static ALWAYS_INLINE
spi_context_update_rx(struct spi_context * ctx,uint8_t dfs,uint32_t len)365 void spi_context_update_rx(struct spi_context *ctx, uint8_t dfs, uint32_t len)
366 {
367 #ifdef CONFIG_SPI_SLAVE
368 if (spi_context_is_slave(ctx)) {
369 ctx->recv_frames += len;
370 }
371
372 #endif /* CONFIG_SPI_SLAVE */
373
374 if (!ctx->rx_len) {
375 return;
376 }
377
378 if (len > ctx->rx_len) {
379 LOG_ERR("Update exceeds current buffer");
380 return;
381 }
382
383 ctx->rx_len -= len;
384 if (!ctx->rx_len) {
385 /* Current buffer is done. Get the next one to be processed. */
386 ++ctx->current_rx;
387 --ctx->rx_count;
388 ctx->rx_buf = (uint8_t *)
389 spi_context_get_next_buf(&ctx->current_rx,
390 &ctx->rx_count,
391 &ctx->rx_len, dfs);
392 } else if (ctx->rx_buf) {
393 ctx->rx_buf += dfs * len;
394 }
395
396 LOG_DBG("rx buf/len %p/%zu", (void *)ctx->rx_buf, ctx->rx_len);
397 }
398
399 static ALWAYS_INLINE
spi_context_rx_on(struct spi_context * ctx)400 bool spi_context_rx_on(struct spi_context *ctx)
401 {
402 return !!(ctx->rx_len);
403 }
404
405 static ALWAYS_INLINE
spi_context_rx_buf_on(struct spi_context * ctx)406 bool spi_context_rx_buf_on(struct spi_context *ctx)
407 {
408 return !!(ctx->rx_buf && ctx->rx_len);
409 }
410
411 /*
412 * Returns the maximum length of a transfer for which all currently active
413 * directions have a continuous buffer, i.e. the maximum SPI transfer that
414 * can be done with DMA that handles only non-scattered buffers.
415 */
spi_context_max_continuous_chunk(struct spi_context * ctx)416 static inline size_t spi_context_max_continuous_chunk(struct spi_context *ctx)
417 {
418 if (!ctx->tx_len) {
419 return ctx->rx_len;
420 } else if (!ctx->rx_len) {
421 return ctx->tx_len;
422 }
423
424 return MIN(ctx->tx_len, ctx->rx_len);
425 }
426
spi_context_longest_current_buf(struct spi_context * ctx)427 static inline size_t spi_context_longest_current_buf(struct spi_context *ctx)
428 {
429 return ctx->tx_len > ctx->rx_len ? ctx->tx_len : ctx->rx_len;
430 }
431
spi_context_total_tx_len(struct spi_context * ctx)432 static inline size_t spi_context_total_tx_len(struct spi_context *ctx)
433 {
434 size_t n;
435 size_t total_len = 0;
436
437 for (n = 0; n < ctx->tx_count; ++n) {
438 total_len += ctx->current_tx[n].len;
439 }
440
441 return total_len;
442 }
443
spi_context_total_rx_len(struct spi_context * ctx)444 static inline size_t spi_context_total_rx_len(struct spi_context *ctx)
445 {
446 size_t n;
447 size_t total_len = 0;
448
449 for (n = 0; n < ctx->rx_count; ++n) {
450 total_len += ctx->current_rx[n].len;
451 }
452
453 return total_len;
454 }
455
456 #ifdef __cplusplus
457 }
458 #endif
459
460 #endif /* ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_ */
461