1 /*
2  * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include "freertos/FreeRTOS.h"
8 #include "freertos/semphr.h"
9 #include <stdatomic.h>
10 #include "sdkconfig.h"
11 #include "spi_common_internal.h"
12 #include "esp_intr_alloc.h"
13 #include "soc/soc_caps.h"
14 #include "stdatomic.h"
15 #include "esp_log.h"
16 #include <strings.h>
17 #include "esp_heap_caps.h"
18 
19 
20 /*
21  * This lock is designed to solve the conflicts between SPI devices (used in tasks) and
22  * the background operations (ISR or cache access).
23  *
24  * There are N (device/task) + 1 (BG) acquiring processer candidates that may touch the bus.
25  *
26  * The core of the lock is a `status` atomic variable, which is always available. No intermediate
27  * status is allowed. The atomic operations (mainly `atomic_fetch_and`, `atomic_fetch_or`)
28  * atomically read the status, and bitwisely write status value ORed / ANDed with given masks.
29  *
30  * Definitions of the status:
31  * - [30]    WEAK_BG_FLAG, active when the BG is the cache
32  * - [29:20] LOCK bits, active when corresponding device is asking for acquiring
33  * - [19:10] PENDING bits, active when the BG acknowledges the REQ bits, but hasn't fully handled them.
34  * - [ 9: 0] REQ bits, active when corresponding device is requesting for BG operations.
35  *
36  *   The REQ bits together PENDING bits are called BG bits, which represent the actual BG request
37  *   state of devices. Either one of REQ or PENDING being active indicates the device has pending BG
38  *   requests. Reason of having two bits instead of one is in the appendix below.
39  *
40  * Acquiring processer means the current processor (task or ISR) allowed to touch the critical
41  * resources, or the SPI bus.
42  *
43  * States of the lock:
44  * - STATE_IDLE: There's no acquiring processor. No device is acquiring the bus, and no BG
45  *   operation is in progress.
46  *
47  * - STATE_ACQ: The acquiring processor is a device task. This means one of the devices is
48  *   acquiring the bus.
49  *
50  * - STATE_BG: The acquiring processor is the ISR, and there is no acquiring device.
51  *
52  * - STATE_BG_ACQ: The acquiring processor is the ISR, and there is an acquiring device.
53  *
54  *
55  * Whenever a bit is written to the status, it means the a device on a task is trying to acquire
56  * the lock (either for the task, or the ISR). When there is no LOCK bits or BG bits active, the
57  * caller immediately become the acquiring processor. Otherwise, the task has to block, and the ISR
58  * will not be invoked until scheduled by the current acquiring processor.
59  *
60  * The acquiring processor is responsible to assign the next acquiring processor by calling the
61  * scheduler, usually after it finishes some requests, and cleared the corresponding status bit.
62  * But there is one exception, when the last bit is cleared from the status, after which there is
63  * no other LOCK bits or BG bits active, the acquiring processor lost its role immediately, and
64  * don't need to call the scheduler to assign the next acquiring processor.
65  *
66  * The acquiring processor may also choose to assign a new acquiring device when there is no, by
67  * calling `spi_bus_lock_bg_rotate_acq_dev` in the ISR. But the acquiring processor, in this case,
68  * is still the ISR, until it calls the scheduler.
69  *
70  *
71  * Transition of the FSM:
72  *
73  * - STATE_IDLE: no acquiring device, nor acquiring processor, no LOCK or BG bits active
74  *   -> STATE_BG: by `req_core`
75  *   -> STATE_ACQ: by `acquire_core`
76  *
77  * - STATE_BG:
78  *      * No acquiring device, the ISR is the acquiring processor, there is BG bits active, but no LOCK
79  *        bits
80  *      * The BG operation should be enabled while turning into this state.
81  *
82  *   -> STATE_IDLE: by `bg_exit_core` after `clear_pend_core` for all BG bits
83  *   -> STATE_BG_ACQ: by `schedule_core`, when there is new LOCK bit set (by `acquire_core`)
84  *
85  * - STATE_BG_ACQ:
86  *      * There is acquiring device, the ISR is the acquiring processor, there may be BG bits active for
87  *        the acquiring device.
88  *      * The BG operation should be enabled while turning into this state.
89  *
90  *   -> STATE_ACQ: by `bg_exit_core` after `clear_pend_core` for all BG bits for the acquiring
91  *                 device.
92  *
93  *                 Should not go to the STATE_ACQ (unblock the acquiring task) until all requests of the
94  *                 acquiring device are finished. This is to preserve the sequence of foreground (polling) and
95  *                 background operations of the device. The background operations queued before the acquiring
96  *                 should be completed first.
97  *
98  * - STATE_ACQ:
99  *      * There is acquiring device, the task is the acquiring processor, there is no BG bits active for
100  *        the acquiring device.
101  *      * The acquiring task (if blocked at `spi_bus_lock_acquire_start` or `spi_bus_lock_wait_bg_done`)
102  *        should be resumed while turning into this state.
103  *
104  *   -> STATE_BG_ACQ: by `req_core`
105  *   -> STATE_BG_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another
106  *                    device, and the new acquiring device has active BG bits.
107  *   -> STATE_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another devices,
108  *                    but the new acquiring device has no active BG bits.
109  *   -> STATE_BG: by `acquire_end_core` when there is no LOCK bit active, but there are active BG
110  *                bits.
111  *   -> STATE_IDLE: by `acquire_end_core` when there is no LOCK bit, nor BG bit active.
112  *
113  * The `req_core` used in the task is a little special. It asks for acquiring processor for the
114  * ISR. When it succeed for the first time, it will invoke the ISR (hence passing the acquiring
115  * role to the BG). Otherwise it will not block, the ISR will be automatically be invoked by other
116  * acquiring processor. The caller of `req_core` will never become acquiring processor by this
117  * function.
118  *
119  *
120  * Appendix: The design, that having both request bit and pending bit, is to solve the
121  * concurrency issue between tasks and the bg, when the task can queue several requests,
122  * however the request bit cannot represent the number of requests queued.
123  *
124  * Here's the workflow of task and ISR work concurrently:
125  * - Task: (a) Write to Queue -> (b) Write request bit
126  *   The Task have to write request bit (b) after the data is prepared in the queue (a),
127  *   otherwise the BG may fail to read from the queue when it sees the request bit set.
128  *
129  * - BG: (c) Read queue -> (d) Clear request bit
130  *   Since the BG cannot know the number of requests queued, it have to repeatedly check the
131  *   queue (c), until it find the data is empty, and then clear the request bit (d).
132  *
133  * The events are possible to happen in the order: (c) -> (a) -> (b) -> (d). This may cause a false
134  * clear of the request bit. And there will be data prepared in the queue, but the request bit is
135  * inactive.
136  *
137  * (e) move REQ bits to PEND bits, happen before (c) is introduced to solve this problem. In this
138  * case (d) is changed to clear the PEND bit. Even if (e) -> (c) -> (a) -> (b) -> (d), only PEND
139  * bit is cleared, while the REQ bit is still active.
140  */
141 
142 struct spi_bus_lock_dev_t;
143 typedef struct spi_bus_lock_dev_t spi_bus_lock_dev_t;
144 
145 typedef struct spi_bus_lock_t spi_bus_lock_t;
146 
147 
148 #define MAX_DEV_NUM     10
149 
150 // Bit 29-20: lock bits, Bit 19-10: pending bits
151 // Bit 9-0: request bits, Bit 30:
152 #define LOCK_SHIFT      20
153 #define PENDING_SHIFT   10
154 #define REQ_SHIFT       0
155 
156 #define WEAK_BG_FLAG    BIT(30)    /**< The bus is permanently requested by background operations.
157                                      * This flag is weak, will not prevent acquiring of devices. But will help the BG to be re-enabled again after the bus is release.
158                                      */
159 
160 // get the bit mask wher bit [high-1, low] are all 1'b1 s.
161 #define BIT1_MASK(high, low)   ((UINT32_MAX << (high)) ^ (UINT32_MAX << (low)))
162 
163 #define LOCK_BIT(mask)      ((mask) << LOCK_SHIFT)
164 #define REQUEST_BIT(mask)   ((mask) << REQ_SHIFT)
165 #define PENDING_BIT(mask)   ((mask) << PENDING_SHIFT)
166 #define DEV_MASK(id)        (LOCK_BIT(1<<id) | PENDING_BIT(1<<id) | REQUEST_BIT(1<<id))
167 #define ID_DEV_MASK(mask)   (__builtin_ffs(mask) - 1)
168 
169 #define REQ_MASK            BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM, REQ_SHIFT)
170 #define PEND_MASK           BIT1_MASK(PENDING_SHIFT+MAX_DEV_NUM, PENDING_SHIFT)
171 #define BG_MASK             BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM*2, REQ_SHIFT)
172 #define LOCK_MASK           BIT1_MASK(LOCK_SHIFT+MAX_DEV_NUM, LOCK_SHIFT)
173 
174 #define DEV_REQ_MASK(dev)   ((dev)->mask & REQ_MASK)
175 #define DEV_PEND_MASK(dev)  ((dev)->mask & PEND_MASK)
176 #define DEV_BG_MASK(dev)    ((dev)->mask & BG_MASK)
177 
178 struct spi_bus_lock_t {
179     /**
180      * The core of the lock. These bits are status of the lock, which should be always available.
181      * No intermediate status is allowed. This is realized by atomic operations, mainly
182      * `atomic_fetch_and`, `atomic_fetch_or`, which atomically read the status, and bitwise write
183      * status value ORed / ANDed with given masks.
184      *
185      * The request bits together pending bits represent the actual bg request state of one device.
186      * Either one of them being active indicates the device has pending bg requests.
187      *
188      * Whenever a bit is written to the status, it means the a device on a task is trying to
189      * acquire the lock. But this will succeed only when no LOCK or BG bits active.
190      *
191      * The acquiring processor is responsible to call the scheduler to pass its role to other tasks
192      * or the BG, unless it clear the last bit in the status register.
193      */
194     //// Critical resources, they are only writable by acquiring processor, and stable only when read by the acquiring processor.
195     atomic_uint_fast32_t    status;
196     spi_bus_lock_dev_t* volatile acquiring_dev;   ///< The acquiring device
197     bool                volatile acq_dev_bg_active;    ///< BG is the acquiring processor serving the acquiring device, used for the wait_bg to skip waiting quickly.
198     bool                volatile in_isr;         ///< ISR is touching HW
199     //// End of critical resources
200 
201     atomic_intptr_t     dev[DEV_NUM_MAX];     ///< Child locks.
202     bg_ctrl_func_t      bg_enable;      ///< Function to enable background operations.
203     bg_ctrl_func_t      bg_disable;     ///< Function to disable background operations
204     void*               bg_arg;            ///< Argument for `bg_enable` and `bg_disable` functions.
205 
206     spi_bus_lock_dev_t* last_dev;       ///< Last used device, to decide whether to refresh all registers.
207     int                 periph_cs_num;  ///< Number of the CS pins the HW has.
208 
209     //debug information
210     int                 host_id;        ///< Host ID, for debug information printing
211     uint32_t            new_req;        ///< Last int_req when `spi_bus_lock_bg_start` is called. Debug use.
212 };
213 
214 struct spi_bus_lock_dev_t {
215     SemaphoreHandle_t   semphr;     ///< Binray semaphore to notify the device it claimed the bus
216     spi_bus_lock_t*     parent;     ///< Pointer to parent spi_bus_lock_t
217     uint32_t            mask;       ///< Bitwise OR-ed mask of the REQ, PEND, LOCK bits of this device
218 };
219 
220 DRAM_ATTR static const char TAG[] = "bus_lock";
221 
222 #define LOCK_CHECK(a, str, ret_val, ...) \
223     if (!(a)) { \
224         ESP_LOGE(TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
225         return (ret_val); \
226     }
227 
228 static inline int mask_get_id(uint32_t mask);
229 static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock);
230 
231 /*******************************************************************************
232  * atomic operations to the status
233  ******************************************************************************/
lock_status_fetch_set(spi_bus_lock_t * lock,uint32_t set)234 SPI_MASTER_ISR_ATTR static inline uint32_t lock_status_fetch_set(spi_bus_lock_t *lock, uint32_t set)
235 {
236     return atomic_fetch_or(&lock->status, set);
237 }
238 
lock_status_fetch_clear(spi_bus_lock_t * lock,uint32_t clear)239 IRAM_ATTR static inline uint32_t lock_status_fetch_clear(spi_bus_lock_t *lock, uint32_t clear)
240 {
241     return atomic_fetch_and(&lock->status, ~clear);
242 }
243 
lock_status_fetch(spi_bus_lock_t * lock)244 IRAM_ATTR static inline uint32_t lock_status_fetch(spi_bus_lock_t *lock)
245 {
246     return atomic_load(&lock->status);
247 }
248 
lock_status_init(spi_bus_lock_t * lock)249 SPI_MASTER_ISR_ATTR static inline void lock_status_init(spi_bus_lock_t *lock)
250 {
251     atomic_store(&lock->status, 0);
252 }
253 
254 // return the remaining status bits
lock_status_clear(spi_bus_lock_t * lock,uint32_t clear)255 IRAM_ATTR static inline uint32_t lock_status_clear(spi_bus_lock_t* lock, uint32_t clear)
256 {
257     //the fetch and clear should be atomic, avoid missing the all '0' status when all bits are clear.
258     uint32_t state = lock_status_fetch_clear(lock, clear);
259     return state & (~clear);
260 }
261 
262 /*******************************************************************************
263  * Schedule service
264  *
265  * The modification to the status bits may cause rotating of the acquiring processor. It also have
266  * effects to `acquired_dev` (the acquiring device), `in_isr` (HW used in BG), and
267  * `acq_dev_bg_active` (wait_bg_end can be skipped) members of the lock structure.
268  *
269  * Most of them should be atomic, and special attention should be paid to the operation
270  * sequence.
271  ******************************************************************************/
resume_dev_in_isr(spi_bus_lock_dev_t * dev_lock,BaseType_t * do_yield)272 SPI_MASTER_ISR_ATTR static inline void resume_dev_in_isr(spi_bus_lock_dev_t *dev_lock, BaseType_t *do_yield)
273 {
274     xSemaphoreGiveFromISR(dev_lock->semphr, do_yield);
275 }
276 
resume_dev(const spi_bus_lock_dev_t * dev_lock)277 IRAM_ATTR static inline void resume_dev(const spi_bus_lock_dev_t *dev_lock)
278 {
279     xSemaphoreGive(dev_lock->semphr);
280 }
281 
bg_disable(spi_bus_lock_t * lock)282 SPI_MASTER_ISR_ATTR static inline void bg_disable(spi_bus_lock_t *lock)
283 {
284     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_disable);
285     lock->bg_disable(lock->bg_arg);
286 }
287 
bg_enable(spi_bus_lock_t * lock)288 IRAM_ATTR static inline void bg_enable(spi_bus_lock_t* lock)
289 {
290     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_enable);
291     lock->bg_enable(lock->bg_arg);
292 }
293 
294 // Set the REQ bit. If we become the acquiring processor, invoke the ISR and pass that to it.
295 // The caller will never become the acquiring processor after this function returns.
req_core(spi_bus_lock_dev_t * dev_handle)296 SPI_MASTER_ATTR static inline void req_core(spi_bus_lock_dev_t *dev_handle)
297 {
298     spi_bus_lock_t *lock = dev_handle->parent;
299 
300     // Though `acquired_dev` is critical resource, `dev_handle == lock->acquired_dev`
301     // is a stable statement unless `acquire_start` or `acquire_end` is called by current
302     // device.
303     if (dev_handle == lock->acquiring_dev){
304         // Set the REQ bit and check BG bits if we are the acquiring processor.
305         // If the BG bits were not active before, invoke the BG again.
306 
307         // Avoid competitive risk against the `clear_pend_core`, `acq_dev_bg_active` should be set before
308         // setting REQ bit.
309         lock->acq_dev_bg_active = true;
310         uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
311         if ((status & DEV_BG_MASK(dev_handle)) == 0) {
312             bg_enable(lock); //acquiring processor passed to BG
313         }
314     } else {
315         uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
316         if (status == 0) {
317             bg_enable(lock); //acquiring processor passed to BG
318         }
319     }
320 }
321 
322 //Set the LOCK bit. Handle related stuff and return true if we become the acquiring processor.
acquire_core(spi_bus_lock_dev_t * dev_handle)323 SPI_MASTER_ISR_ATTR static inline bool acquire_core(spi_bus_lock_dev_t *dev_handle)
324 {
325     spi_bus_lock_t* lock = dev_handle->parent;
326     uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK);
327 
328     // Check all bits except WEAK_BG
329     if ((status & (BG_MASK | LOCK_MASK)) == 0) {
330         //succeed at once
331         lock->acquiring_dev = dev_handle;
332         BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
333         if (status & WEAK_BG_FLAG) {
334             //Mainly to disable the cache (Weak_BG), that is not able to disable itself
335             bg_disable(lock);
336         }
337         return true;
338     }
339     return false;
340 }
341 
342 /**
343  * Find the next acquiring processor according to the status. Will directly change
344  * the acquiring device if new one found.
345  *
346  * Cases:
347  * - BG should still be the acquiring processor (Return false):
348  *     1. Acquiring device has active BG bits: out_desired_dev = new acquiring device
349  *     2. No acquiring device, but BG active: out_desired_dev = randomly pick one device with active BG bits
350  * - BG should yield to the task (Return true):
351  *     3. Acquiring device has no active BG bits: out_desired_dev = new acquiring device
352  *     4. No acquiring device while no active BG bits: out_desired_dev=NULL
353  *
354  * Acquiring device task need to be resumed only when case 3.
355  *
356  * This scheduling can happen in either task or ISR, so `in_isr` or `bg_active` not touched.
357  *
358  * @param lock
359  * @param status Current status
360  * @param out_desired_dev Desired device to work next, see above.
361  *
362  * @return False if BG should still be the acquiring processor, otherwise True (yield to task).
363  */
364 IRAM_ATTR static inline bool
schedule_core(spi_bus_lock_t * lock,uint32_t status,spi_bus_lock_dev_t ** out_desired_dev)365 schedule_core(spi_bus_lock_t *lock, uint32_t status, spi_bus_lock_dev_t **out_desired_dev)
366 {
367     spi_bus_lock_dev_t* desired_dev = NULL;
368     uint32_t lock_bits = (status & LOCK_MASK) >> LOCK_SHIFT;
369     uint32_t bg_bits = status & BG_MASK;
370     bg_bits = ((bg_bits >> REQ_SHIFT) | (bg_bits >> PENDING_SHIFT)) & REQ_MASK;
371 
372     bool bg_yield;
373     if (lock_bits) {
374         int dev_id = mask_get_id(lock_bits);
375         desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
376         BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
377 
378         lock->acquiring_dev = desired_dev;
379         bg_yield = ((bg_bits & desired_dev->mask) == 0);
380         lock->acq_dev_bg_active = !bg_yield;
381     } else {
382         lock->acq_dev_bg_active = false;
383         if (bg_bits) {
384             int dev_id = mask_get_id(bg_bits);
385             desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
386             BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
387 
388             lock->acquiring_dev = NULL;
389             bg_yield = false;
390         } else {
391             desired_dev = NULL;
392             lock->acquiring_dev = NULL;
393             bg_yield = true;
394         }
395     }
396     *out_desired_dev = desired_dev;
397     return bg_yield;
398 }
399 
400 //Clear the LOCK bit and trigger a rescheduling.
acquire_end_core(spi_bus_lock_dev_t * dev_handle)401 IRAM_ATTR static inline void acquire_end_core(spi_bus_lock_dev_t *dev_handle)
402 {
403     spi_bus_lock_t* lock = dev_handle->parent;
404     uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
405     spi_bus_lock_dev_t* desired_dev = NULL;
406 
407     bool invoke_bg = !schedule_core(lock, status, &desired_dev);
408     if (invoke_bg) {
409         bg_enable(lock);
410     } else if (desired_dev) {
411         resume_dev(desired_dev);
412     } else if (status & WEAK_BG_FLAG) {
413         bg_enable(lock);
414     }
415 }
416 
417 // Move the REQ bits to corresponding PEND bits. Must be called by acquiring processor.
418 // Have no side effects on the acquiring device/processor.
update_pend_core(spi_bus_lock_t * lock,uint32_t status)419 SPI_MASTER_ISR_ATTR static inline void update_pend_core(spi_bus_lock_t *lock, uint32_t status)
420 {
421     uint32_t active_req_bits = status & REQ_MASK;
422 #if PENDING_SHIFT > REQ_SHIFT
423     uint32_t pending_mask = active_req_bits << (PENDING_SHIFT - REQ_SHIFT);
424 #else
425     uint32_t pending_mask = active_req_bits >> (REQ_SHIFT - PENDING_SHIFT);
426 #endif
427     // We have to set the PEND bits and then clear the REQ bits, since BG bits are using bitwise OR logic,
428     // this will not influence the effectiveness of the BG bits of every device.
429     lock_status_fetch_set(lock, pending_mask);
430     lock_status_fetch_clear(lock, active_req_bits);
431 }
432 
433 // Clear the PEND bit (not REQ bit!) of a device, return the suggestion whether we can try to quit the ISR.
434 // Lost the acquiring processor immediately when the BG bits for active device are inactive, indiciating by the return value.
435 // Can be called only when ISR is acting as the acquiring processor.
clear_pend_core(spi_bus_lock_dev_t * dev_handle)436 SPI_MASTER_ISR_ATTR static inline bool clear_pend_core(spi_bus_lock_dev_t *dev_handle)
437 {
438     bool finished;
439     spi_bus_lock_t *lock = dev_handle->parent;
440     uint32_t pend_mask = DEV_PEND_MASK(dev_handle);
441     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock_status_fetch(lock) & pend_mask);
442 
443     uint32_t status = lock_status_clear(lock, pend_mask);
444 
445     if (lock->acquiring_dev == dev_handle) {
446         finished = ((status & DEV_REQ_MASK(dev_handle)) == 0);
447         if (finished) {
448             lock->acq_dev_bg_active = false;
449         }
450     } else {
451         finished = (status == 0);
452     }
453     return finished;
454 }
455 
456 // Return true if the ISR has already touched the HW, which means previous operations should
457 // be terminated first, before we use the HW again. Otherwise return false.
458 // In either case `in_isr` will be marked as true, until call to `bg_exit_core` with `wip=false` successfully.
bg_entry_core(spi_bus_lock_t * lock)459 SPI_MASTER_ISR_ATTR static inline bool bg_entry_core(spi_bus_lock_t *lock)
460 {
461     BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
462     /*
463      * The interrupt is disabled at the entry of ISR to avoid competitive risk as below:
464      *
465      * The `esp_intr_enable` will be called (b) after new BG request is queued (a) in the task;
466      * while `esp_intr_disable` should be called (c) if we check and found the sending queue is empty (d).
467      * If (c) happens after (d), if things happens in this sequence:
468      * (d) -> (a) -> (b) -> (c), the interrupt will be disabled while there's pending BG request in the queue.
469      *
470      * To avoid this, interrupt is disabled here, and re-enabled later if required. (c) -> (d) -> (a) -> (b) -> revert (c) if !d
471      */
472     bg_disable(lock);
473     if (lock->in_isr) {
474         return false;
475     } else {
476         lock->in_isr = true;
477         return true;
478     }
479 }
480 
481 // Handle the conditions of status and interrupt, avoiding the ISR being disabled when there is any new coming BG requests.
482 // When called with `wip=true`, means the ISR is performing some operations. Will enable the interrupt again and exit unconditionally.
483 // When called with `wip=false`, will only return `true` when there is no coming BG request. If return value is `false`, the ISR should try again.
484 // Will not change acquiring device.
bg_exit_core(spi_bus_lock_t * lock,bool wip,BaseType_t * do_yield)485 SPI_MASTER_ISR_ATTR static inline bool bg_exit_core(spi_bus_lock_t *lock, bool wip, BaseType_t *do_yield)
486 {
487     //See comments in `bg_entry_core`, re-enable interrupt disabled in entry if we do need the interrupt
488     if (wip) {
489         bg_enable(lock);
490         BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
491         return true;
492     }
493 
494     bool ret;
495     uint32_t status = lock_status_fetch(lock);
496     if (lock->acquiring_dev) {
497         if (status & DEV_BG_MASK(lock->acquiring_dev)) {
498             BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acq_dev_bg_active);
499             ret = false;
500         } else {
501             // The request may happen any time, even after we fetched the status.
502             // The value of `acq_dev_bg_active` is random.
503             resume_dev_in_isr(lock->acquiring_dev, do_yield);
504             ret = true;
505         }
506     } else {
507         BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
508         ret = !(status & BG_MASK);
509     }
510     if (ret) {
511         //when successfully exit, but no transaction done, mark BG as inactive
512         lock->in_isr = false;
513     }
514     return ret;
515 }
516 
dev_wait_prepare(spi_bus_lock_dev_t * dev_handle)517 IRAM_ATTR static inline void dev_wait_prepare(spi_bus_lock_dev_t *dev_handle)
518 {
519     xSemaphoreTake(dev_handle->semphr, 0);
520 }
521 
dev_wait(spi_bus_lock_dev_t * dev_handle,TickType_t wait)522 SPI_MASTER_ISR_ATTR static inline esp_err_t dev_wait(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
523 {
524     BaseType_t ret = xSemaphoreTake(dev_handle->semphr, wait);
525 
526     if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
527     return ESP_OK;
528 }
529 
530 /*******************************************************************************
531  * Initialization & Deinitialization
532  ******************************************************************************/
spi_bus_init_lock(spi_bus_lock_handle_t * out_lock,const spi_bus_lock_config_t * config)533 esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config)
534 {
535     spi_bus_lock_t* lock = (spi_bus_lock_t*)calloc(sizeof(spi_bus_lock_t), 1);
536     if (lock == NULL) {
537         return ESP_ERR_NO_MEM;
538     }
539 
540     lock_status_init(lock);
541     lock->acquiring_dev = NULL;
542     lock->last_dev = NULL;
543     lock->periph_cs_num = config->cs_num;
544     lock->host_id = config->host_id;
545 
546     *out_lock = lock;
547     return ESP_OK;
548 }
549 
spi_bus_deinit_lock(spi_bus_lock_handle_t lock)550 void spi_bus_deinit_lock(spi_bus_lock_handle_t lock)
551 {
552     for (int i = 0; i < DEV_NUM_MAX; i++) {
553         assert(atomic_load(&lock->dev[i]) == (intptr_t)NULL);
554     }
555     free(lock);
556 }
557 
try_acquire_free_dev(spi_bus_lock_t * lock,bool cs_required)558 static int try_acquire_free_dev(spi_bus_lock_t *lock, bool cs_required)
559 {
560     if (cs_required) {
561         int i;
562         for (i = 0; i < lock->periph_cs_num; i++) {
563             intptr_t null = (intptr_t) NULL;
564             //use 1 to occupy the slot, actual setup comes later
565             if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
566                 break;
567             }
568         }
569         return ((i == lock->periph_cs_num)? -1: i);
570     } else {
571         int i;
572         for (i = DEV_NUM_MAX - 1; i >= 0; i--) {
573             intptr_t null = (intptr_t) NULL;
574             //use 1 to occupy the slot, actual setup comes later
575             if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
576                 break;
577             }
578         }
579         return i;
580     }
581 }
582 
spi_bus_lock_register_dev(spi_bus_lock_handle_t lock,spi_bus_lock_dev_config_t * config,spi_bus_lock_dev_handle_t * out_dev_handle)583 esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock, spi_bus_lock_dev_config_t *config,
584                                     spi_bus_lock_dev_handle_t *out_dev_handle)
585 {
586     if (lock == NULL) return ESP_ERR_INVALID_ARG;
587     int id = try_acquire_free_dev(lock, config->flags & SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED);
588     if (id == -1) return ESP_ERR_NOT_SUPPORTED;
589 
590     spi_bus_lock_dev_t* dev_lock = (spi_bus_lock_dev_t*)heap_caps_calloc(sizeof(spi_bus_lock_dev_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
591     if (dev_lock == NULL) {
592         return ESP_ERR_NO_MEM;
593     }
594     dev_lock->semphr = xSemaphoreCreateBinary();
595     if (dev_lock->semphr == NULL) {
596         free(dev_lock);
597         atomic_store(&lock->dev[id], (intptr_t)NULL);
598         return ESP_ERR_NO_MEM;
599     }
600     dev_lock->parent = lock;
601     dev_lock->mask = DEV_MASK(id);
602 
603     ESP_LOGV(TAG, "device registered on bus %d slot %d.", lock->host_id, id);
604     atomic_store(&lock->dev[id], (intptr_t)dev_lock);
605     *out_dev_handle = dev_lock;
606     return ESP_OK;
607 }
608 
spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)609 void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)
610 {
611     int id = dev_lock_get_id(dev_handle);
612 
613     spi_bus_lock_t* lock = dev_handle->parent;
614     BUS_LOCK_DEBUG_EXECUTE_CHECK(atomic_load(&lock->dev[id]) == (intptr_t)dev_handle);
615 
616     if (lock->last_dev == dev_handle) lock->last_dev = NULL;
617 
618     atomic_store(&lock->dev[id], (intptr_t)NULL);
619     if (dev_handle->semphr) {
620         vSemaphoreDelete(dev_handle->semphr);
621     }
622 
623     free(dev_handle);
624 }
625 
mask_get_id(uint32_t mask)626 IRAM_ATTR static inline int mask_get_id(uint32_t mask)
627 {
628     return ID_DEV_MASK(mask);
629 }
630 
dev_lock_get_id(spi_bus_lock_dev_t * dev_lock)631 IRAM_ATTR static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock)
632 {
633     return mask_get_id(dev_lock->mask);
634 }
635 
spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock,bg_ctrl_func_t bg_enable,bg_ctrl_func_t bg_disable,void * arg)636 void spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock, bg_ctrl_func_t bg_enable, bg_ctrl_func_t bg_disable, void *arg)
637 {
638     lock->bg_enable = bg_enable;
639     lock->bg_disable = bg_disable;
640     lock->bg_arg = arg;
641 }
642 
spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)643 IRAM_ATTR int spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)
644 {
645     return (dev_handle? dev_lock_get_id(dev_handle): -1);
646 }
647 
648 //will be called when cache disabled
spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)649 IRAM_ATTR bool spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)
650 {
651     spi_bus_lock_dev_t* last_dev = dev_handle->parent->last_dev;
652     dev_handle->parent->last_dev = dev_handle;
653     if (last_dev != dev_handle) {
654         int last_dev_id = (last_dev? dev_lock_get_id(last_dev): -1);
655         ESP_DRAM_LOGV(TAG, "SPI dev changed from %d to %d",
656                     last_dev_id, dev_lock_get_id(dev_handle));
657     }
658     return (dev_handle != last_dev);
659 }
660 
661 /*******************************************************************************
662  * Acquiring service
663  ******************************************************************************/
spi_bus_lock_acquire_start(spi_bus_lock_dev_t * dev_handle,TickType_t wait)664 IRAM_ATTR esp_err_t spi_bus_lock_acquire_start(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
665 {
666     LOCK_CHECK(wait == portMAX_DELAY, "timeout other than portMAX_DELAY not supported", ESP_ERR_INVALID_ARG);
667 
668     spi_bus_lock_t* lock = dev_handle->parent;
669 
670     // Clear the semaphore before checking
671     dev_wait_prepare(dev_handle);
672     if (!acquire_core(dev_handle)) {
673         //block until becoming the acquiring processor (help by previous acquiring processor)
674         esp_err_t err = dev_wait(dev_handle, wait);
675         //TODO: add timeout handling here.
676         if (err != ESP_OK) return err;
677     }
678 
679     ESP_DRAM_LOGV(TAG, "dev %d acquired.", dev_lock_get_id(dev_handle));
680     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acquiring_dev == dev_handle);
681 
682     //When arrives at here, requests of this device should already be handled
683     uint32_t status = lock_status_fetch(lock);
684     (void) status;
685     BUS_LOCK_DEBUG_EXECUTE_CHECK((status & DEV_BG_MASK(dev_handle)) == 0);
686 
687     return ESP_OK;
688 }
689 
spi_bus_lock_acquire_end(spi_bus_lock_dev_t * dev_handle)690 IRAM_ATTR esp_err_t spi_bus_lock_acquire_end(spi_bus_lock_dev_t *dev_handle)
691 {
692     //release the bus
693     spi_bus_lock_t* lock = dev_handle->parent;
694     LOCK_CHECK(lock->acquiring_dev == dev_handle, "Cannot release a lock that hasn't been acquired.", ESP_ERR_INVALID_STATE);
695 
696     acquire_end_core(dev_handle);
697 
698     ESP_LOGV(TAG, "dev %d released.", dev_lock_get_id(dev_handle));
699     return ESP_OK;
700 }
701 
spi_bus_lock_get_acquiring_dev(spi_bus_lock_t * lock)702 SPI_MASTER_ISR_ATTR spi_bus_lock_dev_handle_t spi_bus_lock_get_acquiring_dev(spi_bus_lock_t *lock)
703 {
704     return lock->acquiring_dev;
705 }
706 
707 /*******************************************************************************
708  * BG (background operation) service
709  ******************************************************************************/
spi_bus_lock_bg_entry(spi_bus_lock_t * lock)710 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_entry(spi_bus_lock_t* lock)
711 {
712     return bg_entry_core(lock);
713 }
714 
spi_bus_lock_bg_exit(spi_bus_lock_t * lock,bool wip,BaseType_t * do_yield)715 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_exit(spi_bus_lock_t* lock, bool wip, BaseType_t* do_yield)
716 {
717     return bg_exit_core(lock, wip, do_yield);
718 }
719 
spi_bus_lock_bg_request(spi_bus_lock_dev_t * dev_handle)720 SPI_MASTER_ATTR esp_err_t spi_bus_lock_bg_request(spi_bus_lock_dev_t *dev_handle)
721 {
722     req_core(dev_handle);
723     return ESP_OK;
724 }
725 
spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle,TickType_t wait)726 IRAM_ATTR esp_err_t spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait)
727 {
728     spi_bus_lock_t *lock = dev_handle->parent;
729     LOCK_CHECK(lock->acquiring_dev == dev_handle, "Cannot wait for a device that is not acquired", ESP_ERR_INVALID_STATE);
730     LOCK_CHECK(wait == portMAX_DELAY, "timeout other than portMAX_DELAY not supported", ESP_ERR_INVALID_ARG);
731 
732     // If no BG bits active, skip quickly. This is ensured by `spi_bus_lock_wait_bg_done`
733     // cannot be executed with `bg_request` on the same device concurrently.
734     if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
735         // Clear the semaphore before checking
736         dev_wait_prepare(dev_handle);
737         if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
738             //block until becoming the acquiring processor (help by previous acquiring processor)
739             esp_err_t err = dev_wait(dev_handle, wait);
740             //TODO: add timeout handling here.
741             if (err != ESP_OK) return err;
742         }
743     }
744 
745     BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
746     BUS_LOCK_DEBUG_EXECUTE_CHECK((lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) == 0);
747     return ESP_OK;
748 }
749 
spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t * dev_handle)750 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t *dev_handle)
751 {
752     bool finished = clear_pend_core(dev_handle);
753     ESP_EARLY_LOGV(TAG, "dev %d served from bg.", dev_lock_get_id(dev_handle));
754     return finished;
755 }
756 
spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t * lock,spi_bus_lock_dev_handle_t * out_dev_lock)757 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t *lock,
758                                                        spi_bus_lock_dev_handle_t *out_dev_lock)
759 {
760     BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev);
761     uint32_t status = lock_status_fetch(lock);
762     return schedule_core(lock, status, out_dev_lock);
763 }
764 
spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t * dev_lock)765 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t *dev_lock)
766 {
767     spi_bus_lock_t* lock = dev_lock->parent;
768     uint32_t status = lock_status_fetch(lock);
769     uint32_t dev_status = status & dev_lock->mask;
770 
771     // move REQ bits of all device to corresponding PEND bits.
772     // To reduce executing time, only done when the REQ bit of the calling device is set.
773     if (dev_status & REQ_MASK) {
774         update_pend_core(lock, status);
775         return true;
776     } else {
777         return dev_status & PEND_MASK;
778     }
779 }
780 
spi_bus_lock_bg_req_exist(spi_bus_lock_t * lock)781 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_req_exist(spi_bus_lock_t *lock)
782 {
783     uint32_t status = lock_status_fetch(lock);
784     return status & BG_MASK;
785 }
786 
787 /*******************************************************************************
788  * Static variables of the locks of the main flash
789  ******************************************************************************/
790 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
791 static spi_bus_lock_dev_t lock_main_flash_dev;
792 
793 static spi_bus_lock_t main_spi_bus_lock = {
794     /*
795      * the main bus cache is permanently required, this flag is set here and never clear so that the
796      * cache will always be enabled if acquiring devices yield.
797      */
798     .status = ATOMIC_VAR_INIT(WEAK_BG_FLAG),
799     .acquiring_dev = NULL,
800     .dev = {ATOMIC_VAR_INIT((intptr_t)&lock_main_flash_dev)},
801     .new_req = 0,
802     .periph_cs_num = SOC_SPI_PERIPH_CS_NUM(0),
803 };
804 const spi_bus_lock_handle_t g_main_spi_bus_lock = &main_spi_bus_lock;
805 
spi_bus_lock_init_main_bus(void)806 esp_err_t spi_bus_lock_init_main_bus(void)
807 {
808     spi_bus_main_set_lock(g_main_spi_bus_lock);
809     return ESP_OK;
810 }
811 
812 static StaticSemaphore_t main_flash_semphr;
813 
814 static spi_bus_lock_dev_t lock_main_flash_dev = {
815     .semphr = NULL,
816     .parent = &main_spi_bus_lock,
817     .mask = DEV_MASK(0),
818 };
819 const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = &lock_main_flash_dev;
820 
spi_bus_lock_init_main_dev(void)821 esp_err_t spi_bus_lock_init_main_dev(void)
822 {
823     g_spi_lock_main_flash_dev->semphr = xSemaphoreCreateBinaryStatic(&main_flash_semphr);
824     if (g_spi_lock_main_flash_dev->semphr == NULL) {
825         return ESP_ERR_NO_MEM;
826     }
827     return ESP_OK;
828 }
829 #else //CONFIG_SPI_FLASH_SHARE_SPI1_BUS
830 
831 //when the dev lock is not initialized, point to NULL
832 const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = NULL;
833 
834 #endif
835