1 // Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "freertos/FreeRTOS.h"
16 #include "freertos/semphr.h"
17 #include <stdatomic.h>
18 #include "sdkconfig.h"
19 #include "spi_common_internal.h"
20 #include "esp_intr_alloc.h"
21 #include "soc/soc_caps.h"
22 #include "stdatomic.h"
23 #include "esp_log.h"
24 #include <strings.h>
25 #include "esp_heap_caps.h"
26
27
28 /*
29 * This lock is designed to solve the conflicts between SPI devices (used in tasks) and
30 * the background operations (ISR or cache access).
31 *
32 * There are N (device/task) + 1 (BG) acquiring processer candidates that may touch the bus.
33 *
34 * The core of the lock is a `status` atomic variable, which is always available. No intermediate
35 * status is allowed. The atomic operations (mainly `atomic_fetch_and`, `atomic_fetch_or`)
36 * atomically read the status, and bitwisely write status value ORed / ANDed with given masks.
37 *
38 * Definitions of the status:
39 * - [30] WEAK_BG_FLAG, active when the BG is the cache
40 * - [29:20] LOCK bits, active when corresponding device is asking for acquiring
41 * - [19:10] PENDING bits, active when the BG acknowledges the REQ bits, but hasn't fully handled them.
42 * - [ 9: 0] REQ bits, active when corresponding device is requesting for BG operations.
43 *
44 * The REQ bits together PENDING bits are called BG bits, which represent the actual BG request
45 * state of devices. Either one of REQ or PENDING being active indicates the device has pending BG
46 * requests. Reason of having two bits instead of one is in the appendix below.
47 *
48 * Acquiring processer means the current processor (task or ISR) allowed to touch the critical
49 * resources, or the SPI bus.
50 *
51 * States of the lock:
52 * - STATE_IDLE: There's no acquiring processor. No device is acquiring the bus, and no BG
53 * operation is in progress.
54 *
55 * - STATE_ACQ: The acquiring processor is a device task. This means one of the devices is
56 * acquiring the bus.
57 *
58 * - STATE_BG: The acquiring processor is the ISR, and there is no acquiring device.
59 *
60 * - STATE_BG_ACQ: The acquiring processor is the ISR, and there is an acquiring device.
61 *
62 *
63 * Whenever a bit is written to the status, it means the a device on a task is trying to acquire
64 * the lock (either for the task, or the ISR). When there is no LOCK bits or BG bits active, the
65 * caller immediately become the acquiring processor. Otherwise, the task has to block, and the ISR
66 * will not be invoked until scheduled by the current acquiring processor.
67 *
68 * The acquiring processor is responsible to assign the next acquiring processor by calling the
69 * scheduler, usually after it finishes some requests, and cleared the corresponding status bit.
70 * But there is one exception, when the last bit is cleared from the status, after which there is
71 * no other LOCK bits or BG bits active, the acquiring processor lost its role immediately, and
72 * don't need to call the scheduler to assign the next acquiring processor.
73 *
74 * The acquiring processor may also choose to assign a new acquiring device when there is no, by
75 * calling `spi_bus_lock_bg_rotate_acq_dev` in the ISR. But the acquiring processor, in this case,
76 * is still the ISR, until it calls the scheduler.
77 *
78 *
79 * Transition of the FSM:
80 *
81 * - STATE_IDLE: no acquiring device, nor acquiring processor, no LOCK or BG bits active
82 * -> STATE_BG: by `req_core`
83 * -> STATE_ACQ: by `acquire_core`
84 *
85 * - STATE_BG:
86 * * No acquiring device, the ISR is the acquiring processor, there is BG bits active, but no LOCK
87 * bits
88 * * The BG operation should be enabled while turning into this state.
89 *
90 * -> STATE_IDLE: by `bg_exit_core` after `clear_pend_core` for all BG bits
91 * -> STATE_BG_ACQ: by `schedule_core`, when there is new LOCK bit set (by `acquire_core`)
92 *
93 * - STATE_BG_ACQ:
94 * * There is acquiring device, the ISR is the acquiring processor, there may be BG bits active for
95 * the acquiring device.
96 * * The BG operation should be enabled while turning into this state.
97 *
98 * -> STATE_ACQ: by `bg_exit_core` after `clear_pend_core` for all BG bits for the acquiring
99 * device.
100 *
101 * Should not go to the STATE_ACQ (unblock the acquiring task) until all requests of the
102 * acquiring device are finished. This is to preserve the sequence of foreground (polling) and
103 * background operations of the device. The background operations queued before the acquiring
104 * should be completed first.
105 *
106 * - STATE_ACQ:
107 * * There is acquiring device, the task is the acquiring processor, there is no BG bits active for
108 * the acquiring device.
109 * * The acquiring task (if blocked at `spi_bus_lock_acquire_start` or `spi_bus_lock_wait_bg_done`)
110 * should be resumed while turning into this state.
111 *
112 * -> STATE_BG_ACQ: by `req_core`
113 * -> STATE_BG_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another
114 * device, and the new acquiring device has active BG bits.
115 * -> STATE_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another devices,
116 * but the new acquiring device has no active BG bits.
117 * -> STATE_BG: by `acquire_end_core` when there is no LOCK bit active, but there are active BG
118 * bits.
119 * -> STATE_IDLE: by `acquire_end_core` when there is no LOCK bit, nor BG bit active.
120 *
121 * The `req_core` used in the task is a little special. It asks for acquiring processor for the
122 * ISR. When it succeed for the first time, it will invoke the ISR (hence passing the acquiring
123 * role to the BG). Otherwise it will not block, the ISR will be automatically be invoked by other
124 * acquiring processor. The caller of `req_core` will never become acquiring processor by this
125 * function.
126 *
127 *
128 * Appendix: The design, that having both request bit and pending bit, is to solve the
129 * concurrency issue between tasks and the bg, when the task can queue several requests,
130 * however the request bit cannot represent the number of requests queued.
131 *
132 * Here's the workflow of task and ISR work concurrently:
133 * - Task: (a) Write to Queue -> (b) Write request bit
134 * The Task have to write request bit (b) after the data is prepared in the queue (a),
135 * otherwise the BG may fail to read from the queue when it sees the request bit set.
136 *
137 * - BG: (c) Read queue -> (d) Clear request bit
138 * Since the BG cannot know the number of requests queued, it have to repeatedly check the
139 * queue (c), until it find the data is empty, and then clear the request bit (d).
140 *
141 * The events are possible to happen in the order: (c) -> (a) -> (b) -> (d). This may cause a false
142 * clear of the request bit. And there will be data prepared in the queue, but the request bit is
143 * inactive.
144 *
145 * (e) move REQ bits to PEND bits, happen before (c) is introduced to solve this problem. In this
146 * case (d) is changed to clear the PEND bit. Even if (e) -> (c) -> (a) -> (b) -> (d), only PEND
147 * bit is cleared, while the REQ bit is still active.
148 */
149
150 struct spi_bus_lock_dev_t;
151 typedef struct spi_bus_lock_dev_t spi_bus_lock_dev_t;
152
153 typedef struct spi_bus_lock_t spi_bus_lock_t;
154
155
156 #define MAX_DEV_NUM 10
157
158 // Bit 29-20: lock bits, Bit 19-10: pending bits
159 // Bit 9-0: request bits, Bit 30:
160 #define LOCK_SHIFT 20
161 #define PENDING_SHIFT 10
162 #define REQ_SHIFT 0
163
164 #define WEAK_BG_FLAG BIT(30) /**< The bus is permanently requested by background operations.
165 * This flag is weak, will not prevent acquiring of devices. But will help the BG to be re-enabled again after the bus is release.
166 */
167
168 // get the bit mask wher bit [high-1, low] are all 1'b1 s.
169 #define BIT1_MASK(high, low) ((UINT32_MAX << (high)) ^ (UINT32_MAX << (low)))
170
171 #define LOCK_BIT(mask) ((mask) << LOCK_SHIFT)
172 #define REQUEST_BIT(mask) ((mask) << REQ_SHIFT)
173 #define PENDING_BIT(mask) ((mask) << PENDING_SHIFT)
174 #define DEV_MASK(id) (LOCK_BIT(1<<id) | PENDING_BIT(1<<id) | REQUEST_BIT(1<<id))
175 #define ID_DEV_MASK(mask) (ffs(mask) - 1)
176
177 #define REQ_MASK BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM, REQ_SHIFT)
178 #define PEND_MASK BIT1_MASK(PENDING_SHIFT+MAX_DEV_NUM, PENDING_SHIFT)
179 #define BG_MASK BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM*2, REQ_SHIFT)
180 #define LOCK_MASK BIT1_MASK(LOCK_SHIFT+MAX_DEV_NUM, LOCK_SHIFT)
181
182 #define DEV_REQ_MASK(dev) ((dev)->mask & REQ_MASK)
183 #define DEV_PEND_MASK(dev) ((dev)->mask & PEND_MASK)
184 #define DEV_BG_MASK(dev) ((dev)->mask & BG_MASK)
185
186 struct spi_bus_lock_t {
187 /**
188 * The core of the lock. These bits are status of the lock, which should be always available.
189 * No intermediate status is allowed. This is realized by atomic operations, mainly
190 * `atomic_fetch_and`, `atomic_fetch_or`, which atomically read the status, and bitwise write
191 * status value ORed / ANDed with given masks.
192 *
193 * The request bits together pending bits represent the actual bg request state of one device.
194 * Either one of them being active indicates the device has pending bg requests.
195 *
196 * Whenever a bit is written to the status, it means the a device on a task is trying to
197 * acquire the lock. But this will succeed only when no LOCK or BG bits active.
198 *
199 * The acquiring processor is responsible to call the scheduler to pass its role to other tasks
200 * or the BG, unless it clear the last bit in the status register.
201 */
202 //// Critical resources, they are only writable by acquiring processor, and stable only when read by the acquiring processor.
203 atomic_uint_fast32_t status;
204 spi_bus_lock_dev_t* volatile acquiring_dev; ///< The acquiring device
205 bool volatile acq_dev_bg_active; ///< BG is the acquiring processor serving the acquiring device, used for the wait_bg to skip waiting quickly.
206 bool volatile in_isr; ///< ISR is touching HW
207 //// End of critical resources
208
209 atomic_intptr_t dev[DEV_NUM_MAX]; ///< Child locks.
210 bg_ctrl_func_t bg_enable; ///< Function to enable background operations.
211 bg_ctrl_func_t bg_disable; ///< Function to disable background operations
212 void* bg_arg; ///< Argument for `bg_enable` and `bg_disable` functions.
213
214 spi_bus_lock_dev_t* last_dev; ///< Last used device, to decide whether to refresh all registers.
215 int periph_cs_num; ///< Number of the CS pins the HW has.
216
217 //debug information
218 int host_id; ///< Host ID, for debug information printing
219 uint32_t new_req; ///< Last int_req when `spi_bus_lock_bg_start` is called. Debug use.
220 };
221
222 struct spi_bus_lock_dev_t {
223 SemaphoreHandle_t semphr; ///< Binray semaphore to notify the device it claimed the bus
224 spi_bus_lock_t* parent; ///< Pointer to parent spi_bus_lock_t
225 uint32_t mask; ///< Bitwise OR-ed mask of the REQ, PEND, LOCK bits of this device
226 };
227
228 DRAM_ATTR static const char TAG[] = "bus_lock";
229
230 #define LOCK_CHECK(a, str, ret_val, ...) \
231 if (!(a)) { \
232 ESP_LOGE(TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
233 return (ret_val); \
234 }
235
236 static inline int mask_get_id(uint32_t mask);
237 static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock);
238
239 /*******************************************************************************
240 * atomic operations to the status
241 ******************************************************************************/
lock_status_fetch_set(spi_bus_lock_t * lock,uint32_t set)242 SPI_MASTER_ISR_ATTR static inline uint32_t lock_status_fetch_set(spi_bus_lock_t *lock, uint32_t set)
243 {
244 return atomic_fetch_or(&lock->status, set);
245 }
246
lock_status_fetch_clear(spi_bus_lock_t * lock,uint32_t clear)247 IRAM_ATTR static inline uint32_t lock_status_fetch_clear(spi_bus_lock_t *lock, uint32_t clear)
248 {
249 return atomic_fetch_and(&lock->status, ~clear);
250 }
251
lock_status_fetch(spi_bus_lock_t * lock)252 IRAM_ATTR static inline uint32_t lock_status_fetch(spi_bus_lock_t *lock)
253 {
254 return atomic_load(&lock->status);
255 }
256
lock_status_init(spi_bus_lock_t * lock)257 SPI_MASTER_ISR_ATTR static inline void lock_status_init(spi_bus_lock_t *lock)
258 {
259 atomic_store(&lock->status, 0);
260 }
261
262 // return the remaining status bits
lock_status_clear(spi_bus_lock_t * lock,uint32_t clear)263 IRAM_ATTR static inline uint32_t lock_status_clear(spi_bus_lock_t* lock, uint32_t clear)
264 {
265 //the fetch and clear should be atomic, avoid missing the all '0' status when all bits are clear.
266 uint32_t state = lock_status_fetch_clear(lock, clear);
267 return state & (~clear);
268 }
269
270 /*******************************************************************************
271 * Schedule service
272 *
273 * The modification to the status bits may cause rotating of the acquiring processor. It also have
274 * effects to `acquired_dev` (the acquiring device), `in_isr` (HW used in BG), and
275 * `acq_dev_bg_active` (wait_bg_end can be skipped) members of the lock structure.
276 *
277 * Most of them should be atomic, and special attention should be paid to the operation
278 * sequence.
279 ******************************************************************************/
resume_dev_in_isr(spi_bus_lock_dev_t * dev_lock,BaseType_t * do_yield)280 SPI_MASTER_ISR_ATTR static inline void resume_dev_in_isr(spi_bus_lock_dev_t *dev_lock, BaseType_t *do_yield)
281 {
282 xSemaphoreGiveFromISR(dev_lock->semphr, do_yield);
283 }
284
resume_dev(const spi_bus_lock_dev_t * dev_lock)285 IRAM_ATTR static inline void resume_dev(const spi_bus_lock_dev_t *dev_lock)
286 {
287 xSemaphoreGive(dev_lock->semphr);
288 }
289
bg_disable(spi_bus_lock_t * lock)290 SPI_MASTER_ISR_ATTR static inline void bg_disable(spi_bus_lock_t *lock)
291 {
292 BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_disable);
293 lock->bg_disable(lock->bg_arg);
294 }
295
bg_enable(spi_bus_lock_t * lock)296 IRAM_ATTR static inline void bg_enable(spi_bus_lock_t* lock)
297 {
298 BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_enable);
299 lock->bg_enable(lock->bg_arg);
300 }
301
302 // Set the REQ bit. If we become the acquiring processor, invoke the ISR and pass that to it.
303 // The caller will never become the acquiring processor after this function returns.
req_core(spi_bus_lock_dev_t * dev_handle)304 SPI_MASTER_ATTR static inline void req_core(spi_bus_lock_dev_t *dev_handle)
305 {
306 spi_bus_lock_t *lock = dev_handle->parent;
307
308 // Though `acquired_dev` is critical resource, `dev_handle == lock->acquired_dev`
309 // is a stable statement unless `acquire_start` or `acquire_end` is called by current
310 // device.
311 if (dev_handle == lock->acquiring_dev){
312 // Set the REQ bit and check BG bits if we are the acquiring processor.
313 // If the BG bits were not active before, invoke the BG again.
314
315 // Avoid competitive risk against the `clear_pend_core`, `acq_dev_bg_active` should be set before
316 // setting REQ bit.
317 lock->acq_dev_bg_active = true;
318 uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
319 if ((status & DEV_BG_MASK(dev_handle)) == 0) {
320 bg_enable(lock); //acquiring processor passed to BG
321 }
322 } else {
323 uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
324 if (status == 0) {
325 bg_enable(lock); //acquiring processor passed to BG
326 }
327 }
328 }
329
330 //Set the LOCK bit. Handle related stuff and return true if we become the acquiring processor.
acquire_core(spi_bus_lock_dev_t * dev_handle)331 SPI_MASTER_ISR_ATTR static inline bool acquire_core(spi_bus_lock_dev_t *dev_handle)
332 {
333 spi_bus_lock_t* lock = dev_handle->parent;
334 uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK);
335
336 // Check all bits except WEAK_BG
337 if ((status & (BG_MASK | LOCK_MASK)) == 0) {
338 //succeed at once
339 lock->acquiring_dev = dev_handle;
340 BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
341 if (status & WEAK_BG_FLAG) {
342 //Mainly to disable the cache (Weak_BG), that is not able to disable itself
343 bg_disable(lock);
344 }
345 return true;
346 }
347 return false;
348 }
349
350 /**
351 * Find the next acquiring processor according to the status. Will directly change
352 * the acquiring device if new one found.
353 *
354 * Cases:
355 * - BG should still be the acquiring processor (Return false):
356 * 1. Acquiring device has active BG bits: out_desired_dev = new acquiring device
357 * 2. No acquiring device, but BG active: out_desired_dev = randomly pick one device with active BG bits
358 * - BG should yield to the task (Return true):
359 * 3. Acquiring device has no active BG bits: out_desired_dev = new acquiring device
360 * 4. No acquiring device while no active BG bits: out_desired_dev=NULL
361 *
362 * Acquiring device task need to be resumed only when case 3.
363 *
364 * This scheduling can happen in either task or ISR, so `in_isr` or `bg_active` not touched.
365 *
366 * @param lock
367 * @param status Current status
368 * @param out_desired_dev Desired device to work next, see above.
369 *
370 * @return False if BG should still be the acquiring processor, otherwise True (yield to task).
371 */
372 IRAM_ATTR static inline bool
schedule_core(spi_bus_lock_t * lock,uint32_t status,spi_bus_lock_dev_t ** out_desired_dev)373 schedule_core(spi_bus_lock_t *lock, uint32_t status, spi_bus_lock_dev_t **out_desired_dev)
374 {
375 spi_bus_lock_dev_t* desired_dev = NULL;
376 uint32_t lock_bits = (status & LOCK_MASK) >> LOCK_SHIFT;
377 uint32_t bg_bits = status & BG_MASK;
378 bg_bits = ((bg_bits >> REQ_SHIFT) | (bg_bits >> PENDING_SHIFT)) & REQ_MASK;
379
380 bool bg_yield;
381 if (lock_bits) {
382 int dev_id = mask_get_id(lock_bits);
383 desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
384 BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
385
386 lock->acquiring_dev = desired_dev;
387 bg_yield = ((bg_bits & desired_dev->mask) == 0);
388 lock->acq_dev_bg_active = !bg_yield;
389 } else {
390 lock->acq_dev_bg_active = false;
391 if (bg_bits) {
392 int dev_id = mask_get_id(bg_bits);
393 desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
394 BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
395
396 lock->acquiring_dev = NULL;
397 bg_yield = false;
398 } else {
399 desired_dev = NULL;
400 lock->acquiring_dev = NULL;
401 bg_yield = true;
402 }
403 }
404 *out_desired_dev = desired_dev;
405 return bg_yield;
406 }
407
408 //Clear the LOCK bit and trigger a rescheduling.
acquire_end_core(spi_bus_lock_dev_t * dev_handle)409 IRAM_ATTR static inline void acquire_end_core(spi_bus_lock_dev_t *dev_handle)
410 {
411 spi_bus_lock_t* lock = dev_handle->parent;
412 uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
413 spi_bus_lock_dev_t* desired_dev = NULL;
414
415 bool invoke_bg = !schedule_core(lock, status, &desired_dev);
416 if (invoke_bg) {
417 bg_enable(lock);
418 } else if (desired_dev) {
419 resume_dev(desired_dev);
420 } else if (status & WEAK_BG_FLAG) {
421 bg_enable(lock);
422 }
423 }
424
425 // Move the REQ bits to corresponding PEND bits. Must be called by acquiring processor.
426 // Have no side effects on the acquiring device/processor.
update_pend_core(spi_bus_lock_t * lock,uint32_t status)427 SPI_MASTER_ISR_ATTR static inline void update_pend_core(spi_bus_lock_t *lock, uint32_t status)
428 {
429 uint32_t active_req_bits = status & REQ_MASK;
430 #if PENDING_SHIFT > REQ_SHIFT
431 uint32_t pending_mask = active_req_bits << (PENDING_SHIFT - REQ_SHIFT);
432 #else
433 uint32_t pending_mask = active_req_bits >> (REQ_SHIFT - PENDING_SHIFT);
434 #endif
435 // We have to set the PEND bits and then clear the REQ bits, since BG bits are using bitwise OR logic,
436 // this will not influence the effectiveness of the BG bits of every device.
437 lock_status_fetch_set(lock, pending_mask);
438 lock_status_fetch_clear(lock, active_req_bits);
439 }
440
441 // Clear the PEND bit (not REQ bit!) of a device, return the suggestion whether we can try to quit the ISR.
442 // Lost the acquiring processor immediately when the BG bits for active device are inactive, indiciating by the return value.
443 // Can be called only when ISR is acting as the acquiring processor.
clear_pend_core(spi_bus_lock_dev_t * dev_handle)444 SPI_MASTER_ISR_ATTR static inline bool clear_pend_core(spi_bus_lock_dev_t *dev_handle)
445 {
446 bool finished;
447 spi_bus_lock_t *lock = dev_handle->parent;
448 uint32_t pend_mask = DEV_PEND_MASK(dev_handle);
449 BUS_LOCK_DEBUG_EXECUTE_CHECK(lock_status_fetch(lock) & pend_mask);
450
451 uint32_t status = lock_status_clear(lock, pend_mask);
452
453 if (lock->acquiring_dev == dev_handle) {
454 finished = ((status & DEV_REQ_MASK(dev_handle)) == 0);
455 if (finished) {
456 lock->acq_dev_bg_active = false;
457 }
458 } else {
459 finished = (status == 0);
460 }
461 return finished;
462 }
463
464 // Return true if the ISR has already touched the HW, which means previous operations should
465 // be terminated first, before we use the HW again. Otherwise return false.
466 // In either case `in_isr` will be marked as true, until call to `bg_exit_core` with `wip=false` successfully.
bg_entry_core(spi_bus_lock_t * lock)467 SPI_MASTER_ISR_ATTR static inline bool bg_entry_core(spi_bus_lock_t *lock)
468 {
469 BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
470 /*
471 * The interrupt is disabled at the entry of ISR to avoid competitive risk as below:
472 *
473 * The `esp_intr_enable` will be called (b) after new BG request is queued (a) in the task;
474 * while `esp_intr_disable` should be called (c) if we check and found the sending queue is empty (d).
475 * If (c) happens after (d), if things happens in this sequence:
476 * (d) -> (a) -> (b) -> (c), the interrupt will be disabled while there's pending BG request in the queue.
477 *
478 * To avoid this, interrupt is disabled here, and re-enabled later if required. (c) -> (d) -> (a) -> (b) -> revert (c) if !d
479 */
480 bg_disable(lock);
481 if (lock->in_isr) {
482 return false;
483 } else {
484 lock->in_isr = true;
485 return true;
486 }
487 }
488
489 // Handle the conditions of status and interrupt, avoiding the ISR being disabled when there is any new coming BG requests.
490 // When called with `wip=true`, means the ISR is performing some operations. Will enable the interrupt again and exit unconditionally.
491 // When called with `wip=false`, will only return `true` when there is no coming BG request. If return value is `false`, the ISR should try again.
492 // Will not change acquiring device.
bg_exit_core(spi_bus_lock_t * lock,bool wip,BaseType_t * do_yield)493 SPI_MASTER_ISR_ATTR static inline bool bg_exit_core(spi_bus_lock_t *lock, bool wip, BaseType_t *do_yield)
494 {
495 //See comments in `bg_entry_core`, re-enable interrupt disabled in entry if we do need the interrupt
496 if (wip) {
497 bg_enable(lock);
498 BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
499 return true;
500 }
501
502 bool ret;
503 uint32_t status = lock_status_fetch(lock);
504 if (lock->acquiring_dev) {
505 if (status & DEV_BG_MASK(lock->acquiring_dev)) {
506 BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acq_dev_bg_active);
507 ret = false;
508 } else {
509 // The request may happen any time, even after we fetched the status.
510 // The value of `acq_dev_bg_active` is random.
511 resume_dev_in_isr(lock->acquiring_dev, do_yield);
512 ret = true;
513 }
514 } else {
515 BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
516 ret = !(status & BG_MASK);
517 }
518 if (ret) {
519 //when successfully exit, but no transaction done, mark BG as inactive
520 lock->in_isr = false;
521 }
522 return ret;
523 }
524
dev_wait_prepare(spi_bus_lock_dev_t * dev_handle)525 IRAM_ATTR static inline void dev_wait_prepare(spi_bus_lock_dev_t *dev_handle)
526 {
527 xSemaphoreTake(dev_handle->semphr, 0);
528 }
529
dev_wait(spi_bus_lock_dev_t * dev_handle,TickType_t wait)530 SPI_MASTER_ISR_ATTR static inline esp_err_t dev_wait(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
531 {
532 BaseType_t ret = xSemaphoreTake(dev_handle->semphr, wait);
533
534 if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
535 return ESP_OK;
536 }
537
538 /*******************************************************************************
539 * Initialization & Deinitialization
540 ******************************************************************************/
spi_bus_init_lock(spi_bus_lock_handle_t * out_lock,const spi_bus_lock_config_t * config)541 esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config)
542 {
543 spi_bus_lock_t* lock = (spi_bus_lock_t*)calloc(sizeof(spi_bus_lock_t), 1);
544 if (lock == NULL) {
545 return ESP_ERR_NO_MEM;
546 }
547
548 lock_status_init(lock);
549 lock->acquiring_dev = NULL;
550 lock->last_dev = NULL;
551 lock->periph_cs_num = config->cs_num;
552 lock->host_id = config->host_id;
553
554 *out_lock = lock;
555 return ESP_OK;
556 }
557
spi_bus_deinit_lock(spi_bus_lock_handle_t lock)558 void spi_bus_deinit_lock(spi_bus_lock_handle_t lock)
559 {
560 for (int i = 0; i < DEV_NUM_MAX; i++) {
561 assert(atomic_load(&lock->dev[i]) == (intptr_t)NULL);
562 }
563 free(lock);
564 }
565
try_acquire_free_dev(spi_bus_lock_t * lock,bool cs_required)566 static int try_acquire_free_dev(spi_bus_lock_t *lock, bool cs_required)
567 {
568 if (cs_required) {
569 int i;
570 for (i = 0; i < lock->periph_cs_num; i++) {
571 intptr_t null = (intptr_t) NULL;
572 //use 1 to occupy the slot, actual setup comes later
573 if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
574 break;
575 }
576 }
577 return ((i == lock->periph_cs_num)? -1: i);
578 } else {
579 int i;
580 for (i = DEV_NUM_MAX - 1; i >= 0; i--) {
581 intptr_t null = (intptr_t) NULL;
582 //use 1 to occupy the slot, actual setup comes later
583 if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
584 break;
585 }
586 }
587 return i;
588 }
589 }
590
spi_bus_lock_register_dev(spi_bus_lock_handle_t lock,spi_bus_lock_dev_config_t * config,spi_bus_lock_dev_handle_t * out_dev_handle)591 esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock, spi_bus_lock_dev_config_t *config,
592 spi_bus_lock_dev_handle_t *out_dev_handle)
593 {
594 if (lock == NULL) return ESP_ERR_INVALID_ARG;
595 int id = try_acquire_free_dev(lock, config->flags & SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED);
596 if (id == -1) return ESP_ERR_NOT_SUPPORTED;
597
598 spi_bus_lock_dev_t* dev_lock = (spi_bus_lock_dev_t*)heap_caps_calloc(sizeof(spi_bus_lock_dev_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
599 if (dev_lock == NULL) {
600 return ESP_ERR_NO_MEM;
601 }
602 dev_lock->semphr = xSemaphoreCreateBinary();
603 if (dev_lock->semphr == NULL) {
604 free(dev_lock);
605 atomic_store(&lock->dev[id], (intptr_t)NULL);
606 return ESP_ERR_NO_MEM;
607 }
608 dev_lock->parent = lock;
609 dev_lock->mask = DEV_MASK(id);
610
611 ESP_LOGV(TAG, "device registered on bus %d slot %d.", lock->host_id, id);
612 atomic_store(&lock->dev[id], (intptr_t)dev_lock);
613 *out_dev_handle = dev_lock;
614 return ESP_OK;
615 }
616
spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)617 void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)
618 {
619 int id = dev_lock_get_id(dev_handle);
620
621 spi_bus_lock_t* lock = dev_handle->parent;
622 BUS_LOCK_DEBUG_EXECUTE_CHECK(atomic_load(&lock->dev[id]) == (intptr_t)dev_handle);
623
624 if (lock->last_dev == dev_handle) lock->last_dev = NULL;
625
626 atomic_store(&lock->dev[id], (intptr_t)NULL);
627 if (dev_handle->semphr) {
628 vSemaphoreDelete(dev_handle->semphr);
629 }
630
631 free(dev_handle);
632 }
633
mask_get_id(uint32_t mask)634 IRAM_ATTR static inline int mask_get_id(uint32_t mask)
635 {
636 return ID_DEV_MASK(mask);
637 }
638
dev_lock_get_id(spi_bus_lock_dev_t * dev_lock)639 IRAM_ATTR static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock)
640 {
641 return mask_get_id(dev_lock->mask);
642 }
643
spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock,bg_ctrl_func_t bg_enable,bg_ctrl_func_t bg_disable,void * arg)644 void spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock, bg_ctrl_func_t bg_enable, bg_ctrl_func_t bg_disable, void *arg)
645 {
646 lock->bg_enable = bg_enable;
647 lock->bg_disable = bg_disable;
648 lock->bg_arg = arg;
649 }
650
spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)651 IRAM_ATTR int spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)
652 {
653 return (dev_handle? dev_lock_get_id(dev_handle): -1);
654 }
655
656 //will be called when cache disabled
spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)657 IRAM_ATTR bool spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)
658 {
659 spi_bus_lock_dev_t* last_dev = dev_handle->parent->last_dev;
660 dev_handle->parent->last_dev = dev_handle;
661 if (last_dev != dev_handle) {
662 int last_dev_id = (last_dev? dev_lock_get_id(last_dev): -1);
663 ESP_DRAM_LOGV(TAG, "SPI dev changed from %d to %d",
664 last_dev_id, dev_lock_get_id(dev_handle));
665 }
666 return (dev_handle != last_dev);
667 }
668
669 /*******************************************************************************
670 * Acquiring service
671 ******************************************************************************/
spi_bus_lock_acquire_start(spi_bus_lock_dev_t * dev_handle,TickType_t wait)672 IRAM_ATTR esp_err_t spi_bus_lock_acquire_start(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
673 {
674 LOCK_CHECK(wait == portMAX_DELAY, "timeout other than portMAX_DELAY not supported", ESP_ERR_INVALID_ARG);
675
676 spi_bus_lock_t* lock = dev_handle->parent;
677
678 // Clear the semaphore before checking
679 dev_wait_prepare(dev_handle);
680 if (!acquire_core(dev_handle)) {
681 //block until becoming the acquiring processor (help by previous acquiring processor)
682 esp_err_t err = dev_wait(dev_handle, wait);
683 //TODO: add timeout handling here.
684 if (err != ESP_OK) return err;
685 }
686
687 ESP_DRAM_LOGV(TAG, "dev %d acquired.", dev_lock_get_id(dev_handle));
688 BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acquiring_dev == dev_handle);
689
690 //When arrives at here, requests of this device should already be handled
691 uint32_t status = lock_status_fetch(lock);
692 (void) status;
693 BUS_LOCK_DEBUG_EXECUTE_CHECK((status & DEV_BG_MASK(dev_handle)) == 0);
694
695 return ESP_OK;
696 }
697
spi_bus_lock_acquire_end(spi_bus_lock_dev_t * dev_handle)698 IRAM_ATTR esp_err_t spi_bus_lock_acquire_end(spi_bus_lock_dev_t *dev_handle)
699 {
700 //release the bus
701 spi_bus_lock_t* lock = dev_handle->parent;
702 LOCK_CHECK(lock->acquiring_dev == dev_handle, "Cannot release a lock that hasn't been acquired.", ESP_ERR_INVALID_STATE);
703
704 acquire_end_core(dev_handle);
705
706 ESP_LOGV(TAG, "dev %d released.", dev_lock_get_id(dev_handle));
707 return ESP_OK;
708 }
709
spi_bus_lock_get_acquiring_dev(spi_bus_lock_t * lock)710 SPI_MASTER_ISR_ATTR spi_bus_lock_dev_handle_t spi_bus_lock_get_acquiring_dev(spi_bus_lock_t *lock)
711 {
712 return lock->acquiring_dev;
713 }
714
715 /*******************************************************************************
716 * BG (background operation) service
717 ******************************************************************************/
spi_bus_lock_bg_entry(spi_bus_lock_t * lock)718 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_entry(spi_bus_lock_t* lock)
719 {
720 return bg_entry_core(lock);
721 }
722
spi_bus_lock_bg_exit(spi_bus_lock_t * lock,bool wip,BaseType_t * do_yield)723 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_exit(spi_bus_lock_t* lock, bool wip, BaseType_t* do_yield)
724 {
725 return bg_exit_core(lock, wip, do_yield);
726 }
727
spi_bus_lock_bg_request(spi_bus_lock_dev_t * dev_handle)728 SPI_MASTER_ATTR esp_err_t spi_bus_lock_bg_request(spi_bus_lock_dev_t *dev_handle)
729 {
730 req_core(dev_handle);
731 return ESP_OK;
732 }
733
spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle,TickType_t wait)734 IRAM_ATTR esp_err_t spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait)
735 {
736 spi_bus_lock_t *lock = dev_handle->parent;
737 LOCK_CHECK(lock->acquiring_dev == dev_handle, "Cannot wait for a device that is not acquired", ESP_ERR_INVALID_STATE);
738 LOCK_CHECK(wait == portMAX_DELAY, "timeout other than portMAX_DELAY not supported", ESP_ERR_INVALID_ARG);
739
740 // If no BG bits active, skip quickly. This is ensured by `spi_bus_lock_wait_bg_done`
741 // cannot be executed with `bg_request` on the same device concurrently.
742 if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
743 // Clear the semaphore before checking
744 dev_wait_prepare(dev_handle);
745 if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
746 //block until becoming the acquiring processor (help by previous acquiring processor)
747 esp_err_t err = dev_wait(dev_handle, wait);
748 //TODO: add timeout handling here.
749 if (err != ESP_OK) return err;
750 }
751 }
752
753 BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
754 BUS_LOCK_DEBUG_EXECUTE_CHECK((lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) == 0);
755 return ESP_OK;
756 }
757
spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t * dev_handle)758 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t *dev_handle)
759 {
760 bool finished = clear_pend_core(dev_handle);
761 ESP_EARLY_LOGV(TAG, "dev %d served from bg.", dev_lock_get_id(dev_handle));
762 return finished;
763 }
764
spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t * lock,spi_bus_lock_dev_handle_t * out_dev_lock)765 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t *lock,
766 spi_bus_lock_dev_handle_t *out_dev_lock)
767 {
768 BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev);
769 uint32_t status = lock_status_fetch(lock);
770 return schedule_core(lock, status, out_dev_lock);
771 }
772
spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t * dev_lock)773 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t *dev_lock)
774 {
775 spi_bus_lock_t* lock = dev_lock->parent;
776 uint32_t status = lock_status_fetch(lock);
777 uint32_t dev_status = status & dev_lock->mask;
778
779 // move REQ bits of all device to corresponding PEND bits.
780 // To reduce executing time, only done when the REQ bit of the calling device is set.
781 if (dev_status & REQ_MASK) {
782 update_pend_core(lock, status);
783 return true;
784 } else {
785 return dev_status & PEND_MASK;
786 }
787 }
788
spi_bus_lock_bg_req_exist(spi_bus_lock_t * lock)789 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_req_exist(spi_bus_lock_t *lock)
790 {
791 uint32_t status = lock_status_fetch(lock);
792 return status & BG_MASK;
793 }
794
795 /*******************************************************************************
796 * Static variables of the locks of the main flash
797 ******************************************************************************/
798 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
799 static spi_bus_lock_dev_t lock_main_flash_dev;
800
801 static spi_bus_lock_t main_spi_bus_lock = {
802 /*
803 * the main bus cache is permanently required, this flag is set here and never clear so that the
804 * cache will always be enabled if acquiring devices yield.
805 */
806 .status = ATOMIC_VAR_INIT(WEAK_BG_FLAG),
807 .acquiring_dev = NULL,
808 .dev = {ATOMIC_VAR_INIT((intptr_t)&lock_main_flash_dev)},
809 .new_req = 0,
810 .periph_cs_num = SOC_SPI_PERIPH_CS_NUM(0),
811 };
812 const spi_bus_lock_handle_t g_main_spi_bus_lock = &main_spi_bus_lock;
813
spi_bus_lock_init_main_bus(void)814 esp_err_t spi_bus_lock_init_main_bus(void)
815 {
816 spi_bus_main_set_lock(g_main_spi_bus_lock);
817 return ESP_OK;
818 }
819
820 static StaticSemaphore_t main_flash_semphr;
821
822 static spi_bus_lock_dev_t lock_main_flash_dev = {
823 .semphr = NULL,
824 .parent = &main_spi_bus_lock,
825 .mask = DEV_MASK(0),
826 };
827 const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = &lock_main_flash_dev;
828
spi_bus_lock_init_main_dev(void)829 esp_err_t spi_bus_lock_init_main_dev(void)
830 {
831 g_spi_lock_main_flash_dev->semphr = xSemaphoreCreateBinaryStatic(&main_flash_semphr);
832 if (g_spi_lock_main_flash_dev->semphr == NULL) {
833 return ESP_ERR_NO_MEM;
834 }
835 return ESP_OK;
836 }
837 #else //CONFIG_SPI_FLASH_SHARE_SPI1_BUS
838
839 //when the dev lock is not initialized, point to NULL
840 const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = NULL;
841
842 #endif
843