1 /*
2  * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include "freertos/FreeRTOS.h"
8 #include "freertos/semphr.h"
9 #include <stdatomic.h>
10 #include "sdkconfig.h"
11 #include "esp_private/spi_common_internal.h"
12 #include "esp_intr_alloc.h"
13 #include "soc/soc_caps.h"
14 #include "stdatomic.h"
15 #include "esp_log.h"
16 #include "esp_check.h"
17 #include <strings.h>
18 #include "esp_heap_caps.h"
19 
20 
21 /*
22  * This lock is designed to solve the conflicts between SPI devices (used in tasks) and
23  * the background operations (ISR or cache access).
24  *
25  * There are N (device/task) + 1 (BG) acquiring processer candidates that may touch the bus.
26  *
27  * The core of the lock is a `status` atomic variable, which is always available. No intermediate
28  * status is allowed. The atomic operations (mainly `atomic_fetch_and`, `atomic_fetch_or`)
29  * atomically read the status, and bitwisely write status value ORed / ANDed with given masks.
30  *
31  * Definitions of the status:
32  * - [30]    WEAK_BG_FLAG, active when the BG is the cache
33  * - [29:20] LOCK bits, active when corresponding device is asking for acquiring
34  * - [19:10] PENDING bits, active when the BG acknowledges the REQ bits, but hasn't fully handled them.
35  * - [ 9: 0] REQ bits, active when corresponding device is requesting for BG operations.
36  *
37  *   The REQ bits together PENDING bits are called BG bits, which represent the actual BG request
38  *   state of devices. Either one of REQ or PENDING being active indicates the device has pending BG
39  *   requests. Reason of having two bits instead of one is in the appendix below.
40  *
41  * Acquiring processer means the current processor (task or ISR) allowed to touch the critical
42  * resources, or the SPI bus.
43  *
44  * States of the lock:
45  * - STATE_IDLE: There's no acquiring processor. No device is acquiring the bus, and no BG
46  *   operation is in progress.
47  *
48  * - STATE_ACQ: The acquiring processor is a device task. This means one of the devices is
49  *   acquiring the bus.
50  *
51  * - STATE_BG: The acquiring processor is the ISR, and there is no acquiring device.
52  *
53  * - STATE_BG_ACQ: The acquiring processor is the ISR, and there is an acquiring device.
54  *
55  *
56  * Whenever a bit is written to the status, it means the a device on a task is trying to acquire
57  * the lock (either for the task, or the ISR). When there is no LOCK bits or BG bits active, the
58  * caller immediately become the acquiring processor. Otherwise, the task has to block, and the ISR
59  * will not be invoked until scheduled by the current acquiring processor.
60  *
61  * The acquiring processor is responsible to assign the next acquiring processor by calling the
62  * scheduler, usually after it finishes some requests, and cleared the corresponding status bit.
63  * But there is one exception, when the last bit is cleared from the status, after which there is
64  * no other LOCK bits or BG bits active, the acquiring processor lost its role immediately, and
65  * don't need to call the scheduler to assign the next acquiring processor.
66  *
67  * The acquiring processor may also choose to assign a new acquiring device when there is no, by
68  * calling `spi_bus_lock_bg_rotate_acq_dev` in the ISR. But the acquiring processor, in this case,
69  * is still the ISR, until it calls the scheduler.
70  *
71  *
72  * Transition of the FSM:
73  *
74  * - STATE_IDLE: no acquiring device, nor acquiring processor, no LOCK or BG bits active
75  *   -> STATE_BG: by `req_core`
76  *   -> STATE_ACQ: by `acquire_core`
77  *
78  * - STATE_BG:
79  *      * No acquiring device, the ISR is the acquiring processor, there is BG bits active, but no LOCK
80  *        bits
81  *      * The BG operation should be enabled while turning into this state.
82  *
83  *   -> STATE_IDLE: by `bg_exit_core` after `clear_pend_core` for all BG bits
84  *   -> STATE_BG_ACQ: by `schedule_core`, when there is new LOCK bit set (by `acquire_core`)
85  *
86  * - STATE_BG_ACQ:
87  *      * There is acquiring device, the ISR is the acquiring processor, there may be BG bits active for
88  *        the acquiring device.
89  *      * The BG operation should be enabled while turning into this state.
90  *
91  *   -> STATE_ACQ: by `bg_exit_core` after `clear_pend_core` for all BG bits for the acquiring
92  *                 device.
93  *
94  *                 Should not go to the STATE_ACQ (unblock the acquiring task) until all requests of the
95  *                 acquiring device are finished. This is to preserve the sequence of foreground (polling) and
96  *                 background operations of the device. The background operations queued before the acquiring
97  *                 should be completed first.
98  *
99  * - STATE_ACQ:
100  *      * There is acquiring device, the task is the acquiring processor, there is no BG bits active for
101  *        the acquiring device.
102  *      * The acquiring task (if blocked at `spi_bus_lock_acquire_start` or `spi_bus_lock_wait_bg_done`)
103  *        should be resumed while turning into this state.
104  *
105  *   -> STATE_BG_ACQ: by `req_core`
106  *   -> STATE_BG_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another
107  *                    device, and the new acquiring device has active BG bits.
108  *   -> STATE_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another devices,
109  *                    but the new acquiring device has no active BG bits.
110  *   -> STATE_BG: by `acquire_end_core` when there is no LOCK bit active, but there are active BG
111  *                bits.
112  *   -> STATE_IDLE: by `acquire_end_core` when there is no LOCK bit, nor BG bit active.
113  *
114  * The `req_core` used in the task is a little special. It asks for acquiring processor for the
115  * ISR. When it succeed for the first time, it will invoke the ISR (hence passing the acquiring
116  * role to the BG). Otherwise it will not block, the ISR will be automatically be invoked by other
117  * acquiring processor. The caller of `req_core` will never become acquiring processor by this
118  * function.
119  *
120  *
121  * Appendix: The design, that having both request bit and pending bit, is to solve the
122  * concurrency issue between tasks and the bg, when the task can queue several requests,
123  * however the request bit cannot represent the number of requests queued.
124  *
125  * Here's the workflow of task and ISR work concurrently:
126  * - Task: (a) Write to Queue -> (b) Write request bit
127  *   The Task have to write request bit (b) after the data is prepared in the queue (a),
128  *   otherwise the BG may fail to read from the queue when it sees the request bit set.
129  *
130  * - BG: (c) Read queue -> (d) Clear request bit
131  *   Since the BG cannot know the number of requests queued, it have to repeatedly check the
132  *   queue (c), until it find the data is empty, and then clear the request bit (d).
133  *
134  * The events are possible to happen in the order: (c) -> (a) -> (b) -> (d). This may cause a false
135  * clear of the request bit. And there will be data prepared in the queue, but the request bit is
136  * inactive.
137  *
138  * (e) move REQ bits to PEND bits, happen before (c) is introduced to solve this problem. In this
139  * case (d) is changed to clear the PEND bit. Even if (e) -> (c) -> (a) -> (b) -> (d), only PEND
140  * bit is cleared, while the REQ bit is still active.
141  */
142 
143 struct spi_bus_lock_dev_t;
144 typedef struct spi_bus_lock_dev_t spi_bus_lock_dev_t;
145 
146 typedef struct spi_bus_lock_t spi_bus_lock_t;
147 
148 
149 #define MAX_DEV_NUM     10
150 
151 // Bit 29-20: lock bits, Bit 19-10: pending bits
152 // Bit 9-0: request bits, Bit 30:
153 #define LOCK_SHIFT      20
154 #define PENDING_SHIFT   10
155 #define REQ_SHIFT       0
156 
157 #define WEAK_BG_FLAG    BIT(30)    /**< The bus is permanently requested by background operations.
158                                      * This flag is weak, will not prevent acquiring of devices. But will help the BG to be re-enabled again after the bus is release.
159                                      */
160 
161 // get the bit mask wher bit [high-1, low] are all 1'b1 s.
162 #define BIT1_MASK(high, low)   ((UINT32_MAX << (high)) ^ (UINT32_MAX << (low)))
163 
164 #define LOCK_BIT(mask)      ((mask) << LOCK_SHIFT)
165 #define REQUEST_BIT(mask)   ((mask) << REQ_SHIFT)
166 #define PENDING_BIT(mask)   ((mask) << PENDING_SHIFT)
167 #define DEV_MASK(id)        (LOCK_BIT(1<<id) | PENDING_BIT(1<<id) | REQUEST_BIT(1<<id))
168 #define ID_DEV_MASK(mask)   (__builtin_ffs(mask) - 1)
169 
170 #define REQ_MASK            BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM, REQ_SHIFT)
171 #define PEND_MASK           BIT1_MASK(PENDING_SHIFT+MAX_DEV_NUM, PENDING_SHIFT)
172 #define BG_MASK             BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM*2, REQ_SHIFT)
173 #define LOCK_MASK           BIT1_MASK(LOCK_SHIFT+MAX_DEV_NUM, LOCK_SHIFT)
174 
175 #define DEV_REQ_MASK(dev)   ((dev)->mask & REQ_MASK)
176 #define DEV_PEND_MASK(dev)  ((dev)->mask & PEND_MASK)
177 #define DEV_BG_MASK(dev)    ((dev)->mask & BG_MASK)
178 
179 struct spi_bus_lock_t {
180     /**
181      * The core of the lock. These bits are status of the lock, which should be always available.
182      * No intermediate status is allowed. This is realized by atomic operations, mainly
183      * `atomic_fetch_and`, `atomic_fetch_or`, which atomically read the status, and bitwise write
184      * status value ORed / ANDed with given masks.
185      *
186      * The request bits together pending bits represent the actual bg request state of one device.
187      * Either one of them being active indicates the device has pending bg requests.
188      *
189      * Whenever a bit is written to the status, it means the a device on a task is trying to
190      * acquire the lock. But this will succeed only when no LOCK or BG bits active.
191      *
192      * The acquiring processor is responsible to call the scheduler to pass its role to other tasks
193      * or the BG, unless it clear the last bit in the status register.
194      */
195     //// Critical resources, they are only writable by acquiring processor, and stable only when read by the acquiring processor.
196     atomic_uint_fast32_t    status;
197     spi_bus_lock_dev_t* volatile acquiring_dev;   ///< The acquiring device
198     bool                volatile acq_dev_bg_active;    ///< BG is the acquiring processor serving the acquiring device, used for the wait_bg to skip waiting quickly.
199     bool                volatile in_isr;         ///< ISR is touching HW
200     //// End of critical resources
201 
202     atomic_intptr_t     dev[DEV_NUM_MAX];     ///< Child locks.
203     bg_ctrl_func_t      bg_enable;      ///< Function to enable background operations.
204     bg_ctrl_func_t      bg_disable;     ///< Function to disable background operations
205     void*               bg_arg;            ///< Argument for `bg_enable` and `bg_disable` functions.
206 
207     spi_bus_lock_dev_t* last_dev;       ///< Last used device, to decide whether to refresh all registers.
208     int                 periph_cs_num;  ///< Number of the CS pins the HW has.
209 
210     //debug information
211     int                 host_id;        ///< Host ID, for debug information printing
212     uint32_t            new_req;        ///< Last int_req when `spi_bus_lock_bg_start` is called. Debug use.
213 };
214 
215 struct spi_bus_lock_dev_t {
216     SemaphoreHandle_t   semphr;     ///< Binary semaphore to notify the device it claimed the bus
217     spi_bus_lock_t*     parent;     ///< Pointer to parent spi_bus_lock_t
218     uint32_t            mask;       ///< Bitwise OR-ed mask of the REQ, PEND, LOCK bits of this device
219 };
220 
221 /**
222  * @note 1
223  * This critical section is only used to fix such condition:
224  *
225  * define: lock_bits = (lock->status & LOCK_MASK) >> LOCK_SHIFT;  This `lock_bits` is the Bit 29-20 of the lock->status
226  *
227  * 1. spi_hdl_1:
228  *    acquire_end_core():
229  *    uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
230  *
231  *    Becuase this is the first `spi_hdl_1`, so after this , lock_bits == 0`b0. status == 0
232  *
233  * 2. spi_hdl_2:
234  *    acquire_core:
235  *    uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK);
236  *
237  *    Then here status is 0`b0, but lock_bits == 0`b10. Because this is the `spi_hdl_2`
238  *
239  * 3. spi_hdl_2:
240  *    `acquire_core` return true, because status == 0. `spi_bus_lock_acquire_start(spi_hdl_2)` then won't block.
241  *
242  * 4. spi_hdl_2:
243  *    spi_device_polling_end(spi_hdl_2).
244  *
245  * 5. spi_hdl_1:
246  *    acquire_end_core:
247  *    status is 0, so it cleas the lock->acquiring_dev
248  *
249  * 6. spi_hdl_2:
250  *    spi_device_polling_end:
251  *    assert(handle == get_acquiring_dev(host)); Fail
252  *
253  * @note 2
254  * Only use this critical section in this condition. The critical section scope is limited to the smallest.
255  * As `spi_bus_lock` influences the all the SPIs (including MSPI) a lot!
256  */
257 portMUX_TYPE s_spinlock = portMUX_INITIALIZER_UNLOCKED;
258 
259 DRAM_ATTR static const char TAG[] = "bus_lock";
260 
261 static inline int mask_get_id(uint32_t mask);
262 static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock);
263 
264 /*******************************************************************************
265  * atomic operations to the status
266  ******************************************************************************/
lock_status_fetch_set(spi_bus_lock_t * lock,uint32_t set)267 SPI_MASTER_ISR_ATTR static inline uint32_t lock_status_fetch_set(spi_bus_lock_t *lock, uint32_t set)
268 {
269     return atomic_fetch_or(&lock->status, set);
270 }
271 
lock_status_fetch_clear(spi_bus_lock_t * lock,uint32_t clear)272 IRAM_ATTR static inline uint32_t lock_status_fetch_clear(spi_bus_lock_t *lock, uint32_t clear)
273 {
274     return atomic_fetch_and(&lock->status, ~clear);
275 }
276 
lock_status_fetch(spi_bus_lock_t * lock)277 IRAM_ATTR static inline uint32_t lock_status_fetch(spi_bus_lock_t *lock)
278 {
279     return atomic_load(&lock->status);
280 }
281 
lock_status_init(spi_bus_lock_t * lock)282 SPI_MASTER_ISR_ATTR static inline void lock_status_init(spi_bus_lock_t *lock)
283 {
284     atomic_store(&lock->status, 0);
285 }
286 
287 // return the remaining status bits
lock_status_clear(spi_bus_lock_t * lock,uint32_t clear)288 IRAM_ATTR static inline uint32_t lock_status_clear(spi_bus_lock_t* lock, uint32_t clear)
289 {
290     //the fetch and clear should be atomic, avoid missing the all '0' status when all bits are clear.
291     uint32_t state = lock_status_fetch_clear(lock, clear);
292     return state & (~clear);
293 }
294 
295 /*******************************************************************************
296  * Schedule service
297  *
298  * The modification to the status bits may cause rotating of the acquiring processor. It also have
299  * effects to `acquired_dev` (the acquiring device), `in_isr` (HW used in BG), and
300  * `acq_dev_bg_active` (wait_bg_end can be skipped) members of the lock structure.
301  *
302  * Most of them should be atomic, and special attention should be paid to the operation
303  * sequence.
304  ******************************************************************************/
resume_dev_in_isr(spi_bus_lock_dev_t * dev_lock,BaseType_t * do_yield)305 SPI_MASTER_ISR_ATTR static inline void resume_dev_in_isr(spi_bus_lock_dev_t *dev_lock, BaseType_t *do_yield)
306 {
307     xSemaphoreGiveFromISR(dev_lock->semphr, do_yield);
308 }
309 
resume_dev(const spi_bus_lock_dev_t * dev_lock)310 IRAM_ATTR static inline void resume_dev(const spi_bus_lock_dev_t *dev_lock)
311 {
312     xSemaphoreGive(dev_lock->semphr);
313 }
314 
bg_disable(spi_bus_lock_t * lock)315 SPI_MASTER_ISR_ATTR static inline void bg_disable(spi_bus_lock_t *lock)
316 {
317     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_disable);
318     lock->bg_disable(lock->bg_arg);
319 }
320 
bg_enable(spi_bus_lock_t * lock)321 IRAM_ATTR static inline void bg_enable(spi_bus_lock_t* lock)
322 {
323     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_enable);
324     lock->bg_enable(lock->bg_arg);
325 }
326 
327 // Set the REQ bit. If we become the acquiring processor, invoke the ISR and pass that to it.
328 // The caller will never become the acquiring processor after this function returns.
req_core(spi_bus_lock_dev_t * dev_handle)329 SPI_MASTER_ATTR static inline void req_core(spi_bus_lock_dev_t *dev_handle)
330 {
331     spi_bus_lock_t *lock = dev_handle->parent;
332 
333     // Though `acquired_dev` is critical resource, `dev_handle == lock->acquired_dev`
334     // is a stable statement unless `acquire_start` or `acquire_end` is called by current
335     // device.
336     if (dev_handle == lock->acquiring_dev){
337         // Set the REQ bit and check BG bits if we are the acquiring processor.
338         // If the BG bits were not active before, invoke the BG again.
339 
340         // Avoid competitive risk against the `clear_pend_core`, `acq_dev_bg_active` should be set before
341         // setting REQ bit.
342         lock->acq_dev_bg_active = true;
343         uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
344         if ((status & DEV_BG_MASK(dev_handle)) == 0) {
345             bg_enable(lock); //acquiring processor passed to BG
346         }
347     } else {
348         uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle));
349         if (status == 0) {
350             bg_enable(lock); //acquiring processor passed to BG
351         }
352     }
353 }
354 
355 //Set the LOCK bit. Handle related stuff and return true if we become the acquiring processor.
acquire_core(spi_bus_lock_dev_t * dev_handle)356 SPI_MASTER_ISR_ATTR static inline bool acquire_core(spi_bus_lock_dev_t *dev_handle)
357 {
358     spi_bus_lock_t* lock = dev_handle->parent;
359 
360     //For this critical section, search `@note 1` in this file, to know details
361     portENTER_CRITICAL_SAFE(&s_spinlock);
362     uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK);
363     portEXIT_CRITICAL_SAFE(&s_spinlock);
364 
365     // Check all bits except WEAK_BG
366     if ((status & (BG_MASK | LOCK_MASK)) == 0) {
367         //succeed at once
368         lock->acquiring_dev = dev_handle;
369         BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
370         if (status & WEAK_BG_FLAG) {
371             //Mainly to disable the cache (Weak_BG), that is not able to disable itself
372             bg_disable(lock);
373         }
374         return true;
375     }
376     return false;
377 }
378 
379 /**
380  * Find the next acquiring processor according to the status. Will directly change
381  * the acquiring device if new one found.
382  *
383  * Cases:
384  * - BG should still be the acquiring processor (Return false):
385  *     1. Acquiring device has active BG bits: out_desired_dev = new acquiring device
386  *     2. No acquiring device, but BG active: out_desired_dev = randomly pick one device with active BG bits
387  * - BG should yield to the task (Return true):
388  *     3. Acquiring device has no active BG bits: out_desired_dev = new acquiring device
389  *     4. No acquiring device while no active BG bits: out_desired_dev=NULL
390  *
391  * Acquiring device task need to be resumed only when case 3.
392  *
393  * This scheduling can happen in either task or ISR, so `in_isr` or `bg_active` not touched.
394  *
395  * @param lock
396  * @param status Current status
397  * @param out_desired_dev Desired device to work next, see above.
398  *
399  * @return False if BG should still be the acquiring processor, otherwise True (yield to task).
400  */
401 IRAM_ATTR static inline bool
schedule_core(spi_bus_lock_t * lock,uint32_t status,spi_bus_lock_dev_t ** out_desired_dev)402 schedule_core(spi_bus_lock_t *lock, uint32_t status, spi_bus_lock_dev_t **out_desired_dev)
403 {
404     spi_bus_lock_dev_t* desired_dev = NULL;
405     uint32_t lock_bits = (status & LOCK_MASK) >> LOCK_SHIFT;
406     uint32_t bg_bits = status & BG_MASK;
407     bg_bits = ((bg_bits >> REQ_SHIFT) | (bg_bits >> PENDING_SHIFT)) & REQ_MASK;
408 
409     bool bg_yield;
410     if (lock_bits) {
411         int dev_id = mask_get_id(lock_bits);
412         desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
413         BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
414 
415         lock->acquiring_dev = desired_dev;
416         bg_yield = ((bg_bits & desired_dev->mask) == 0);
417         lock->acq_dev_bg_active = !bg_yield;
418     } else {
419         lock->acq_dev_bg_active = false;
420         if (bg_bits) {
421             int dev_id = mask_get_id(bg_bits);
422             desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]);
423             BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev);
424 
425             lock->acquiring_dev = NULL;
426             bg_yield = false;
427         } else {
428             desired_dev = NULL;
429             lock->acquiring_dev = NULL;
430             bg_yield = true;
431         }
432     }
433     *out_desired_dev = desired_dev;
434     return bg_yield;
435 }
436 
437 //Clear the LOCK bit and trigger a rescheduling.
acquire_end_core(spi_bus_lock_dev_t * dev_handle)438 IRAM_ATTR static inline void acquire_end_core(spi_bus_lock_dev_t *dev_handle)
439 {
440     spi_bus_lock_t* lock = dev_handle->parent;
441     spi_bus_lock_dev_t* desired_dev = NULL;
442 
443     //For this critical section, search `@note 1` in this file, to know details
444     portENTER_CRITICAL_SAFE(&s_spinlock);
445     uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
446     bool invoke_bg = !schedule_core(lock, status, &desired_dev);
447     portEXIT_CRITICAL_SAFE(&s_spinlock);
448 
449     if (invoke_bg) {
450         bg_enable(lock);
451     } else if (desired_dev) {
452         resume_dev(desired_dev);
453     } else if (status & WEAK_BG_FLAG) {
454         bg_enable(lock);
455     }
456 }
457 
458 // Move the REQ bits to corresponding PEND bits. Must be called by acquiring processor.
459 // Have no side effects on the acquiring device/processor.
update_pend_core(spi_bus_lock_t * lock,uint32_t status)460 SPI_MASTER_ISR_ATTR static inline void update_pend_core(spi_bus_lock_t *lock, uint32_t status)
461 {
462     uint32_t active_req_bits = status & REQ_MASK;
463 #if PENDING_SHIFT > REQ_SHIFT
464     uint32_t pending_mask = active_req_bits << (PENDING_SHIFT - REQ_SHIFT);
465 #else
466     uint32_t pending_mask = active_req_bits >> (REQ_SHIFT - PENDING_SHIFT);
467 #endif
468     // We have to set the PEND bits and then clear the REQ bits, since BG bits are using bitwise OR logic,
469     // this will not influence the effectiveness of the BG bits of every device.
470     lock_status_fetch_set(lock, pending_mask);
471     lock_status_fetch_clear(lock, active_req_bits);
472 }
473 
474 // Clear the PEND bit (not REQ bit!) of a device, return the suggestion whether we can try to quit the ISR.
475 // Lost the acquiring processor immediately when the BG bits for active device are inactive, indiciating by the return value.
476 // Can be called only when ISR is acting as the acquiring processor.
clear_pend_core(spi_bus_lock_dev_t * dev_handle)477 SPI_MASTER_ISR_ATTR static inline bool clear_pend_core(spi_bus_lock_dev_t *dev_handle)
478 {
479     bool finished;
480     spi_bus_lock_t *lock = dev_handle->parent;
481     uint32_t pend_mask = DEV_PEND_MASK(dev_handle);
482     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock_status_fetch(lock) & pend_mask);
483 
484     uint32_t status = lock_status_clear(lock, pend_mask);
485 
486     if (lock->acquiring_dev == dev_handle) {
487         finished = ((status & DEV_REQ_MASK(dev_handle)) == 0);
488         if (finished) {
489             lock->acq_dev_bg_active = false;
490         }
491     } else {
492         finished = (status == 0);
493     }
494     return finished;
495 }
496 
497 // Return true if the ISR has already touched the HW, which means previous operations should
498 // be terminated first, before we use the HW again. Otherwise return false.
499 // In either case `in_isr` will be marked as true, until call to `bg_exit_core` with `wip=false` successfully.
bg_entry_core(spi_bus_lock_t * lock)500 SPI_MASTER_ISR_ATTR static inline bool bg_entry_core(spi_bus_lock_t *lock)
501 {
502     BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
503     /*
504      * The interrupt is disabled at the entry of ISR to avoid competitive risk as below:
505      *
506      * The `esp_intr_enable` will be called (b) after new BG request is queued (a) in the task;
507      * while `esp_intr_disable` should be called (c) if we check and found the sending queue is empty (d).
508      * If (c) happens after (d), if things happens in this sequence:
509      * (d) -> (a) -> (b) -> (c), the interrupt will be disabled while there's pending BG request in the queue.
510      *
511      * To avoid this, interrupt is disabled here, and re-enabled later if required. (c) -> (d) -> (a) -> (b) -> revert (c) if !d
512      */
513     bg_disable(lock);
514     if (lock->in_isr) {
515         return false;
516     } else {
517         lock->in_isr = true;
518         return true;
519     }
520 }
521 
522 // Handle the conditions of status and interrupt, avoiding the ISR being disabled when there is any new coming BG requests.
523 // When called with `wip=true`, means the ISR is performing some operations. Will enable the interrupt again and exit unconditionally.
524 // When called with `wip=false`, will only return `true` when there is no coming BG request. If return value is `false`, the ISR should try again.
525 // Will not change acquiring device.
bg_exit_core(spi_bus_lock_t * lock,bool wip,BaseType_t * do_yield)526 SPI_MASTER_ISR_ATTR static inline bool bg_exit_core(spi_bus_lock_t *lock, bool wip, BaseType_t *do_yield)
527 {
528     //See comments in `bg_entry_core`, re-enable interrupt disabled in entry if we do need the interrupt
529     if (wip) {
530         bg_enable(lock);
531         BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active);
532         return true;
533     }
534 
535     bool ret;
536     uint32_t status = lock_status_fetch(lock);
537     if (lock->acquiring_dev) {
538         if (status & DEV_BG_MASK(lock->acquiring_dev)) {
539             BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acq_dev_bg_active);
540             ret = false;
541         } else {
542             // The request may happen any time, even after we fetched the status.
543             // The value of `acq_dev_bg_active` is random.
544             resume_dev_in_isr(lock->acquiring_dev, do_yield);
545             ret = true;
546         }
547     } else {
548         BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
549         ret = !(status & BG_MASK);
550     }
551     if (ret) {
552         //when successfully exit, but no transaction done, mark BG as inactive
553         lock->in_isr = false;
554     }
555     return ret;
556 }
557 
dev_wait_prepare(spi_bus_lock_dev_t * dev_handle)558 IRAM_ATTR static inline void dev_wait_prepare(spi_bus_lock_dev_t *dev_handle)
559 {
560     xSemaphoreTake(dev_handle->semphr, 0);
561 }
562 
dev_wait(spi_bus_lock_dev_t * dev_handle,TickType_t wait)563 SPI_MASTER_ISR_ATTR static inline esp_err_t dev_wait(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
564 {
565     BaseType_t ret = xSemaphoreTake(dev_handle->semphr, wait);
566 
567     if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
568     return ESP_OK;
569 }
570 
571 /*******************************************************************************
572  * Initialization & Deinitialization
573  ******************************************************************************/
spi_bus_init_lock(spi_bus_lock_handle_t * out_lock,const spi_bus_lock_config_t * config)574 esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config)
575 {
576     spi_bus_lock_t* lock = (spi_bus_lock_t*)calloc(sizeof(spi_bus_lock_t), 1);
577     if (lock == NULL) {
578         return ESP_ERR_NO_MEM;
579     }
580 
581     lock_status_init(lock);
582     lock->acquiring_dev = NULL;
583     lock->last_dev = NULL;
584     lock->periph_cs_num = config->cs_num;
585     lock->host_id = config->host_id;
586 
587     *out_lock = lock;
588     return ESP_OK;
589 }
590 
spi_bus_deinit_lock(spi_bus_lock_handle_t lock)591 void spi_bus_deinit_lock(spi_bus_lock_handle_t lock)
592 {
593     for (int i = 0; i < DEV_NUM_MAX; i++) {
594         assert(atomic_load(&lock->dev[i]) == (intptr_t)NULL);
595     }
596     free(lock);
597 }
598 
try_acquire_free_dev(spi_bus_lock_t * lock,bool cs_required)599 static int try_acquire_free_dev(spi_bus_lock_t *lock, bool cs_required)
600 {
601     if (cs_required) {
602         int i;
603         for (i = 0; i < lock->periph_cs_num; i++) {
604             intptr_t null = (intptr_t) NULL;
605             //use 1 to occupy the slot, actual setup comes later
606             if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
607                 break;
608             }
609         }
610         return ((i == lock->periph_cs_num)? -1: i);
611     } else {
612         int i;
613         for (i = DEV_NUM_MAX - 1; i >= 0; i--) {
614             intptr_t null = (intptr_t) NULL;
615             //use 1 to occupy the slot, actual setup comes later
616             if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) {
617                 break;
618             }
619         }
620         return i;
621     }
622 }
623 
spi_bus_lock_register_dev(spi_bus_lock_handle_t lock,spi_bus_lock_dev_config_t * config,spi_bus_lock_dev_handle_t * out_dev_handle)624 esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock, spi_bus_lock_dev_config_t *config,
625                                     spi_bus_lock_dev_handle_t *out_dev_handle)
626 {
627     if (lock == NULL) return ESP_ERR_INVALID_ARG;
628     int id = try_acquire_free_dev(lock, config->flags & SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED);
629     if (id == -1) return ESP_ERR_NOT_SUPPORTED;
630 
631     spi_bus_lock_dev_t* dev_lock = (spi_bus_lock_dev_t*)heap_caps_calloc(sizeof(spi_bus_lock_dev_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
632     if (dev_lock == NULL) {
633         return ESP_ERR_NO_MEM;
634     }
635     dev_lock->semphr = xSemaphoreCreateBinary();
636     if (dev_lock->semphr == NULL) {
637         free(dev_lock);
638         atomic_store(&lock->dev[id], (intptr_t)NULL);
639         return ESP_ERR_NO_MEM;
640     }
641     dev_lock->parent = lock;
642     dev_lock->mask = DEV_MASK(id);
643 
644     ESP_LOGV(TAG, "device registered on bus %d slot %d.", lock->host_id, id);
645     atomic_store(&lock->dev[id], (intptr_t)dev_lock);
646     *out_dev_handle = dev_lock;
647     return ESP_OK;
648 }
649 
spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)650 void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)
651 {
652     int id = dev_lock_get_id(dev_handle);
653 
654     spi_bus_lock_t* lock = dev_handle->parent;
655     BUS_LOCK_DEBUG_EXECUTE_CHECK(atomic_load(&lock->dev[id]) == (intptr_t)dev_handle);
656 
657     if (lock->last_dev == dev_handle) lock->last_dev = NULL;
658 
659     atomic_store(&lock->dev[id], (intptr_t)NULL);
660     if (dev_handle->semphr) {
661         vSemaphoreDelete(dev_handle->semphr);
662     }
663 
664     free(dev_handle);
665 }
666 
mask_get_id(uint32_t mask)667 IRAM_ATTR static inline int mask_get_id(uint32_t mask)
668 {
669     return ID_DEV_MASK(mask);
670 }
671 
dev_lock_get_id(spi_bus_lock_dev_t * dev_lock)672 IRAM_ATTR static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock)
673 {
674     return mask_get_id(dev_lock->mask);
675 }
676 
spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock,bg_ctrl_func_t bg_enable,bg_ctrl_func_t bg_disable,void * arg)677 void spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock, bg_ctrl_func_t bg_enable, bg_ctrl_func_t bg_disable, void *arg)
678 {
679     lock->bg_enable = bg_enable;
680     lock->bg_disable = bg_disable;
681     lock->bg_arg = arg;
682 }
683 
spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)684 IRAM_ATTR int spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle)
685 {
686     return (dev_handle? dev_lock_get_id(dev_handle): -1);
687 }
688 
689 //will be called when cache disabled
spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)690 IRAM_ATTR bool spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle)
691 {
692     spi_bus_lock_dev_t* last_dev = dev_handle->parent->last_dev;
693     dev_handle->parent->last_dev = dev_handle;
694     if (last_dev != dev_handle) {
695         int last_dev_id = (last_dev? dev_lock_get_id(last_dev): -1);
696         ESP_DRAM_LOGV(TAG, "SPI dev changed from %d to %d",
697                     last_dev_id, dev_lock_get_id(dev_handle));
698     }
699     return (dev_handle != last_dev);
700 }
701 
702 /*******************************************************************************
703  * Acquiring service
704  ******************************************************************************/
spi_bus_lock_acquire_start(spi_bus_lock_dev_t * dev_handle,TickType_t wait)705 IRAM_ATTR esp_err_t spi_bus_lock_acquire_start(spi_bus_lock_dev_t *dev_handle, TickType_t wait)
706 {
707     ESP_RETURN_ON_FALSE_ISR(wait == portMAX_DELAY, ESP_ERR_INVALID_ARG, TAG, "timeout other than portMAX_DELAY not supported");
708 
709     spi_bus_lock_t* lock = dev_handle->parent;
710 
711     // Clear the semaphore before checking
712     dev_wait_prepare(dev_handle);
713     if (!acquire_core(dev_handle)) {
714         //block until becoming the acquiring processor (help by previous acquiring processor)
715         esp_err_t err = dev_wait(dev_handle, wait);
716         //TODO: add timeout handling here.
717         if (err != ESP_OK) return err;
718     }
719 
720     ESP_DRAM_LOGV(TAG, "dev %d acquired.", dev_lock_get_id(dev_handle));
721     BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acquiring_dev == dev_handle);
722 
723     //When arrives at here, requests of this device should already be handled
724     uint32_t status = lock_status_fetch(lock);
725     (void) status;
726     BUS_LOCK_DEBUG_EXECUTE_CHECK((status & DEV_BG_MASK(dev_handle)) == 0);
727 
728     return ESP_OK;
729 }
730 
spi_bus_lock_acquire_end(spi_bus_lock_dev_t * dev_handle)731 IRAM_ATTR esp_err_t spi_bus_lock_acquire_end(spi_bus_lock_dev_t *dev_handle)
732 {
733     //release the bus
734     spi_bus_lock_t* lock = dev_handle->parent;
735     ESP_RETURN_ON_FALSE_ISR(lock->acquiring_dev == dev_handle, ESP_ERR_INVALID_STATE, TAG, "Cannot release a lock that hasn't been acquired.");
736 
737     acquire_end_core(dev_handle);
738 
739     ESP_LOGV(TAG, "dev %d released.", dev_lock_get_id(dev_handle));
740     return ESP_OK;
741 }
742 
spi_bus_lock_get_acquiring_dev(spi_bus_lock_t * lock)743 SPI_MASTER_ISR_ATTR spi_bus_lock_dev_handle_t spi_bus_lock_get_acquiring_dev(spi_bus_lock_t *lock)
744 {
745     return lock->acquiring_dev;
746 }
747 
748 /*******************************************************************************
749  * BG (background operation) service
750  ******************************************************************************/
spi_bus_lock_bg_entry(spi_bus_lock_t * lock)751 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_entry(spi_bus_lock_t* lock)
752 {
753     return bg_entry_core(lock);
754 }
755 
spi_bus_lock_bg_exit(spi_bus_lock_t * lock,bool wip,BaseType_t * do_yield)756 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_exit(spi_bus_lock_t* lock, bool wip, BaseType_t* do_yield)
757 {
758     return bg_exit_core(lock, wip, do_yield);
759 }
760 
spi_bus_lock_bg_request(spi_bus_lock_dev_t * dev_handle)761 SPI_MASTER_ATTR esp_err_t spi_bus_lock_bg_request(spi_bus_lock_dev_t *dev_handle)
762 {
763     req_core(dev_handle);
764     return ESP_OK;
765 }
766 
spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle,TickType_t wait)767 IRAM_ATTR esp_err_t spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait)
768 {
769     spi_bus_lock_t *lock = dev_handle->parent;
770 
771     ESP_RETURN_ON_FALSE_ISR(lock->acquiring_dev == dev_handle, ESP_ERR_INVALID_STATE, TAG, "Cannot wait for a device that is not acquired");
772     ESP_RETURN_ON_FALSE_ISR(wait == portMAX_DELAY, ESP_ERR_INVALID_ARG, TAG, "timeout other than portMAX_DELAY not supported");
773 
774     // If no BG bits active, skip quickly. This is ensured by `spi_bus_lock_wait_bg_done`
775     // cannot be executed with `bg_request` on the same device concurrently.
776     if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
777         // Clear the semaphore before checking
778         dev_wait_prepare(dev_handle);
779         if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) {
780             //block until becoming the acquiring processor (help by previous acquiring processor)
781             esp_err_t err = dev_wait(dev_handle, wait);
782             //TODO: add timeout handling here.
783             if (err != ESP_OK) return err;
784         }
785     }
786 
787     BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active);
788     BUS_LOCK_DEBUG_EXECUTE_CHECK((lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) == 0);
789     return ESP_OK;
790 }
791 
spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t * dev_handle)792 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t *dev_handle)
793 {
794     bool finished = clear_pend_core(dev_handle);
795     ESP_EARLY_LOGV(TAG, "dev %d served from bg.", dev_lock_get_id(dev_handle));
796     return finished;
797 }
798 
spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t * lock,spi_bus_lock_dev_handle_t * out_dev_lock)799 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t *lock,
800                                                        spi_bus_lock_dev_handle_t *out_dev_lock)
801 {
802     BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev);
803     uint32_t status = lock_status_fetch(lock);
804     return schedule_core(lock, status, out_dev_lock);
805 }
806 
spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t * dev_lock)807 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t *dev_lock)
808 {
809     spi_bus_lock_t* lock = dev_lock->parent;
810     uint32_t status = lock_status_fetch(lock);
811     uint32_t dev_status = status & dev_lock->mask;
812 
813     // move REQ bits of all device to corresponding PEND bits.
814     // To reduce executing time, only done when the REQ bit of the calling device is set.
815     if (dev_status & REQ_MASK) {
816         update_pend_core(lock, status);
817         return true;
818     } else {
819         return dev_status & PEND_MASK;
820     }
821 }
822 
spi_bus_lock_bg_req_exist(spi_bus_lock_t * lock)823 SPI_MASTER_ISR_ATTR bool spi_bus_lock_bg_req_exist(spi_bus_lock_t *lock)
824 {
825     uint32_t status = lock_status_fetch(lock);
826     return status & BG_MASK;
827 }
828 
829 /*******************************************************************************
830  * Static variables of the locks of the main flash
831  ******************************************************************************/
832 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
833 static spi_bus_lock_dev_t lock_main_flash_dev;
834 
835 static spi_bus_lock_t main_spi_bus_lock = {
836     /*
837      * the main bus cache is permanently required, this flag is set here and never clear so that the
838      * cache will always be enabled if acquiring devices yield.
839      */
840     .status = ATOMIC_VAR_INIT(WEAK_BG_FLAG),
841     .acquiring_dev = NULL,
842     .dev = {ATOMIC_VAR_INIT((intptr_t)&lock_main_flash_dev)},
843     .new_req = 0,
844     .periph_cs_num = SOC_SPI_PERIPH_CS_NUM(0),
845 };
846 const spi_bus_lock_handle_t g_main_spi_bus_lock = &main_spi_bus_lock;
847 
spi_bus_lock_init_main_bus(void)848 esp_err_t spi_bus_lock_init_main_bus(void)
849 {
850     spi_bus_main_set_lock(g_main_spi_bus_lock);
851     return ESP_OK;
852 }
853 
854 static StaticSemaphore_t main_flash_semphr;
855 
856 static spi_bus_lock_dev_t lock_main_flash_dev = {
857     .semphr = NULL,
858     .parent = &main_spi_bus_lock,
859     .mask = DEV_MASK(0),
860 };
861 const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = &lock_main_flash_dev;
862 
spi_bus_lock_init_main_dev(void)863 esp_err_t spi_bus_lock_init_main_dev(void)
864 {
865     g_spi_lock_main_flash_dev->semphr = xSemaphoreCreateBinaryStatic(&main_flash_semphr);
866     if (g_spi_lock_main_flash_dev->semphr == NULL) {
867         return ESP_ERR_NO_MEM;
868     }
869     return ESP_OK;
870 }
871 #else //CONFIG_SPI_FLASH_SHARE_SPI1_BUS
872 
873 //when the dev lock is not initialized, point to NULL
874 const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = NULL;
875 
876 #endif
877