1 /******************************************************************************
2 *
3 * Copyright (C) 1999-2012 Broadcom Corporation
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 /******************************************************************************
20 *
21 * This file contains security manager protocol utility functions
22 *
23 ******************************************************************************/
24 #include "common/bt_target.h"
25
26 #if (BLE_INCLUDED == TRUE && SMP_INCLUDED == TRUE)
27 #if SMP_DEBUG == TRUE
28 #include <stdio.h>
29 #endif
30 #include <string.h>
31 //#include "bt_utils.h"
32 #include "stack/btm_ble_api.h"
33 #include "smp_int.h"
34 #include "btm_int.h"
35 #include "btm_ble_int.h"
36 #include "stack/hcimsgs.h"
37 #include "aes.h"
38 #include "p_256_ecc_pp.h"
39 #include "device/controller.h"
40
41 #ifndef SMP_MAX_ENC_REPEAT
42 #define SMP_MAX_ENC_REPEAT 3
43 #endif
44
45 static void smp_rand_back(tBTM_RAND_ENC *p);
46 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
47 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
48 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p);
49 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p);
50 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p);
51 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p);
52 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p);
53 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p);
54 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p);
55 static BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output);
56 static void smp_continue_private_key_creation(tSMP_CB *p_cb, tBTM_RAND_ENC *p);
57 static void smp_process_private_key(tSMP_CB *p_cb);
58 static void smp_finish_nonce_generation(tSMP_CB *p_cb);
59 static void smp_process_new_nonce(tSMP_CB *p_cb);
60
61 static const tSMP_ACT smp_encrypt_action[] = {
62 smp_generate_compare, /* SMP_GEN_COMPARE */
63 smp_generate_confirm, /* SMP_GEN_CONFIRM*/
64 smp_generate_stk, /* SMP_GEN_STK*/
65 smp_generate_ltk_cont, /* SMP_GEN_LTK */
66 smp_generate_ltk, /* SMP_GEN_DIV_LTK */
67 smp_generate_rand_vector, /* SMP_GEN_RAND_V */
68 smp_generate_y, /* SMP_GEN_EDIV */
69 smp_generate_passkey, /* SMP_GEN_TK */
70 smp_generate_srand_mrand_confirm, /* SMP_GEN_SRAND_MRAND */
71 smp_generate_rand_cont /* SMP_GEN_SRAND_MRAND_CONT */
72 };
73
74 /* If there is data saved here, then use its info instead
75 * This needs to be cleared on a successful pairing using the oob data
76 */
77 static tSMP_LOC_OOB_DATA saved_local_oob_data = {};
78
smp_save_local_oob_data(tSMP_CB * p_cb)79 void smp_save_local_oob_data(tSMP_CB *p_cb)
80 {
81 memcpy(&saved_local_oob_data, &p_cb->sc_oob_data.loc_oob_data, sizeof(tSMP_LOC_OOB_DATA));
82 }
83
smp_clear_local_oob_data(void)84 void smp_clear_local_oob_data(void)
85 {
86 memset(&saved_local_oob_data, 0, sizeof(tSMP_LOC_OOB_DATA));
87 }
88
oob_data_is_empty(tSMP_LOC_OOB_DATA * data)89 static BOOLEAN oob_data_is_empty(tSMP_LOC_OOB_DATA *data)
90 {
91 tSMP_LOC_OOB_DATA empty_data = {0};
92 return (memcmp(data, &empty_data, sizeof(tSMP_LOC_OOB_DATA)) == 0);
93 }
94
smp_get_local_oob_data(void)95 tSMP_LOC_OOB_DATA *smp_get_local_oob_data(void)
96 {
97 return &saved_local_oob_data;
98 }
99
smp_debug_print_nbyte_little_endian(UINT8 * p,const UINT8 * key_name,UINT8 len)100 void smp_debug_print_nbyte_little_endian(UINT8 *p, const UINT8 *key_name, UINT8 len)
101 {
102 #if SMP_DEBUG == TRUE
103 int ind, x;
104 int col_count = 32;
105 int row_count;
106 UINT8 p_buf[512];
107
108 SMP_TRACE_WARNING("%s(LSB ~ MSB):\n", key_name);
109 memset(p_buf, 0, sizeof(p_buf));
110 row_count = len % col_count ? len / col_count + 1 : len / col_count;
111
112 ind = 0;
113 for (int row = 0; row < row_count; row++) {
114 for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++) {
115 x += sprintf((char *)&p_buf[x], "%02x ", p[ind]);
116 }
117 SMP_TRACE_WARNING(" [%03d]: %s", row * col_count, p_buf);
118 }
119 #endif
120 }
121
122 #if 0 //Unused
123 void smp_debug_print_nbyte_big_endian (UINT8 *p, const UINT8 *key_name, UINT8 len)
124 {
125 #if SMP_DEBUG == TRUE
126 UINT8 p_buf[512];
127
128 SMP_TRACE_WARNING("%s(MSB ~ LSB):", key_name);
129 memset(p_buf, 0, sizeof(p_buf));
130 nrows = len % ncols ? len / ncols + 1 : len / ncols;
131
132 int ind = 0;
133 int ncols = 32; /* num entries in one line */
134 int nrows; /* num lines */
135 int x;
136
137 for (int row = 0; row < nrows; row++) {
138 for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++) {
139 x += sprintf ((char *)&p_buf[len - x - 1], "%02x ", p[ind]);
140 }
141 SMP_TRACE_WARNING("[%03d]: %s", row * ncols, p_buf);
142 }
143 #endif
144 }
145 #endif
146
147 /*******************************************************************************
148 **
149 ** Function smp_encrypt_data
150 **
151 ** Description This function is called to encrypt data.
152 ** It uses AES-128 encryption algorithm.
153 ** Plain_text is encrypted using key, the result is at p_out.
154 **
155 ** Returns void
156 **
157 *******************************************************************************/
smp_encrypt_data(UINT8 * key,UINT8 key_len,UINT8 * plain_text,UINT8 pt_len,tSMP_ENC * p_out)158 BOOLEAN smp_encrypt_data (UINT8 *key, UINT8 key_len,
159 UINT8 *plain_text, UINT8 pt_len,
160 tSMP_ENC *p_out)
161 {
162 aes_context ctx;
163 UINT8 *p_start = NULL;
164 UINT8 *p = NULL;
165 UINT8 *p_rev_data = NULL; /* input data in big endilan format */
166 UINT8 *p_rev_key = NULL; /* input key in big endilan format */
167 UINT8 *p_rev_output = NULL; /* encrypted output in big endilan format */
168
169 SMP_TRACE_DEBUG ("%s\n", __func__);
170 if ( (p_out == NULL ) || (key_len != SMP_ENCRYT_KEY_SIZE) ) {
171 SMP_TRACE_ERROR ("%s failed\n", __func__);
172 return FALSE;
173 }
174
175 if ((p_start = (UINT8 *)osi_malloc((SMP_ENCRYT_DATA_SIZE * 4))) == NULL) {
176 SMP_TRACE_ERROR ("%s failed unable to allocate buffer\n", __func__);
177 return FALSE;
178 }
179
180 if (pt_len > SMP_ENCRYT_DATA_SIZE) {
181 pt_len = SMP_ENCRYT_DATA_SIZE;
182 }
183
184 memset(p_start, 0, SMP_ENCRYT_DATA_SIZE * 4);
185 p = p_start;
186 ARRAY_TO_STREAM (p, plain_text, pt_len); /* byte 0 to byte 15 */
187 p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */
188 REVERSE_ARRAY_TO_STREAM (p, p_start, SMP_ENCRYT_DATA_SIZE); /* byte 16 to byte 31 */
189 p_rev_key = p; /* start at byte 32 */
190 REVERSE_ARRAY_TO_STREAM (p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */
191
192 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
193 smp_debug_print_nbyte_little_endian(key, (const UINT8 *)"Key", SMP_ENCRYT_KEY_SIZE);
194 smp_debug_print_nbyte_little_endian(p_start, (const UINT8 *)"Plain text", SMP_ENCRYT_DATA_SIZE);
195 #endif
196 p_rev_output = p;
197 aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx);
198 bluedroid_aes_encrypt(p_rev_data, p, &ctx); /* outputs in byte 48 to byte 63 */
199
200 p = p_out->param_buf;
201 REVERSE_ARRAY_TO_STREAM (p, p_rev_output, SMP_ENCRYT_DATA_SIZE);
202 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
203 smp_debug_print_nbyte_little_endian(p_out->param_buf, (const UINT8 *)"Encrypted text", SMP_ENCRYT_KEY_SIZE);
204 #endif
205
206 p_out->param_len = SMP_ENCRYT_KEY_SIZE;
207 p_out->status = HCI_SUCCESS;
208 p_out->opcode = HCI_BLE_ENCRYPT;
209
210 osi_free(p_start);
211
212 return TRUE;
213 }
214
smp_use_static_passkey(void)215 void smp_use_static_passkey(void)
216 {
217 tSMP_CB *p_cb = &smp_cb;
218 UINT8 *tt = p_cb->tk;
219 tSMP_KEY key;
220 UINT32 passkey = p_cb->static_passkey;
221 /* save the TK */
222 memset(p_cb->tk, 0, BT_OCTET16_LEN);
223 UINT32_TO_STREAM(tt, passkey);
224
225 key.key_type = SMP_KEY_TYPE_TK;
226 key.p_data = p_cb->tk;
227
228 if (p_cb->p_callback) {
229 (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey);
230 }
231
232 if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) {
233 smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
234 } else {
235 smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key);
236 }
237 }
238 /*******************************************************************************
239 **
240 ** Function smp_generate_passkey
241 **
242 ** Description This function is called to generate passkey.
243 **
244 ** Returns void
245 **
246 *******************************************************************************/
smp_generate_passkey(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)247 void smp_generate_passkey(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
248 {
249 UNUSED(p_data);
250
251 if(p_cb->use_static_passkey) {
252 SMP_TRACE_DEBUG ("%s use static passkey %6d", __func__, p_cb->static_passkey);
253 smp_use_static_passkey();
254 return;
255 }
256 SMP_TRACE_DEBUG ("%s generate rand passkey", __func__);
257 p_cb->rand_enc_proc_state = SMP_GEN_TK;
258
259 /* generate MRand or SRand */
260 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
261 smp_rand_back(NULL);
262 }
263 }
264
265 /*******************************************************************************
266 **
267 ** Function smp_proc_passkey
268 **
269 ** Description This function is called to process a passkey.
270 **
271 ** Returns void
272 **
273 *******************************************************************************/
smp_proc_passkey(tSMP_CB * p_cb,tBTM_RAND_ENC * p)274 void smp_proc_passkey(tSMP_CB *p_cb , tBTM_RAND_ENC *p)
275 {
276 UINT8 *tt = p_cb->tk;
277 tSMP_KEY key;
278 UINT32 passkey; /* 19655 test number; */
279 UINT8 *pp = p->param_buf;
280
281 SMP_TRACE_DEBUG ("%s", __func__);
282 STREAM_TO_UINT32(passkey, pp);
283 passkey &= ~SMP_PASSKEY_MASK;
284
285 /* truncate by maximum value */
286 while (passkey > BTM_MAX_PASSKEY_VAL) {
287 passkey >>= 1;
288 }
289
290 /* save the TK */
291 memset(p_cb->tk, 0, BT_OCTET16_LEN);
292 UINT32_TO_STREAM(tt, passkey);
293
294 key.key_type = SMP_KEY_TYPE_TK;
295 key.p_data = p_cb->tk;
296
297 if (p_cb->p_callback) {
298 (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey);
299 }
300
301 if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) {
302 smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
303 } else {
304 smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key);
305 }
306 }
307
308 /*******************************************************************************
309 **
310 ** Function smp_generate_stk
311 **
312 ** Description This function is called to generate STK calculated by running
313 ** AES with the TK value as key and a concatenation of the random
314 ** values.
315 **
316 ** Returns void
317 **
318 *******************************************************************************/
smp_generate_stk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)319 void smp_generate_stk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
320 {
321 UNUSED(p_data);
322
323 tSMP_ENC output;
324 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
325
326 SMP_TRACE_DEBUG ("%s\n", __func__);
327
328 if (p_cb->le_secure_connections_mode_is_used) {
329 SMP_TRACE_WARNING ("FOR LE SC LTK IS USED INSTEAD OF STK");
330 output.param_len = SMP_ENCRYT_KEY_SIZE;
331 output.status = HCI_SUCCESS;
332 output.opcode = HCI_BLE_ENCRYPT;
333 memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE);
334 } else if (!smp_calculate_legacy_short_term_key(p_cb, &output)) {
335 SMP_TRACE_ERROR("%s failed", __func__);
336 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
337 return;
338 }
339
340 smp_process_stk(p_cb, &output);
341 }
342
343 /*******************************************************************************
344 **
345 ** Function smp_generate_srand_mrand_confirm
346 **
347 ** Description This function is called to start the second pairing phase by
348 ** start generating random number.
349 **
350 **
351 ** Returns void
352 **
353 *******************************************************************************/
smp_generate_srand_mrand_confirm(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)354 void smp_generate_srand_mrand_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
355 {
356 UNUSED(p_data);
357
358 SMP_TRACE_DEBUG ("%s\n", __func__);
359 p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND;
360 /* generate MRand or SRand */
361 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
362 smp_rand_back(NULL);
363 }
364 }
365
366 /*******************************************************************************
367 **
368 ** Function smp_generate_rand_cont
369 **
370 ** Description This function is called to generate another 64 bits random for
371 ** MRand or Srand.
372 **
373 ** Returns void
374 **
375 *******************************************************************************/
smp_generate_rand_cont(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)376 void smp_generate_rand_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
377 {
378 UNUSED(p_data);
379
380 SMP_TRACE_DEBUG ("%s\n", __func__);
381 p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND_CONT;
382 /* generate 64 MSB of MRand or SRand */
383 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
384 smp_rand_back(NULL);
385 }
386 }
387
388 /*******************************************************************************
389 **
390 ** Function smp_generate_ltk
391 **
392 ** Description This function is called:
393 ** - in legacy pairing - to calculate LTK, starting with DIV
394 ** generation;
395 ** - in LE Secure Connections pairing over LE transport - to process LTK
396 ** already generated to encrypt LE link;
397 ** - in LE Secure Connections pairing over BR/EDR transport - to start
398 ** BR/EDR Link Key processing.
399 **
400 ** Returns void
401 **
402 *******************************************************************************/
smp_generate_ltk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)403 void smp_generate_ltk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
404 {
405 UNUSED(p_data);
406
407 BOOLEAN div_status;
408 SMP_TRACE_DEBUG ("%s\n", __FUNCTION__);
409 #if (CLASSIC_BT_INCLUDED == TRUE)
410 if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) {
411 smp_br_process_link_key(p_cb, NULL);
412 return;
413 }
414 #endif ///CLASSIC_BT_INCLUDED == TRUE
415 if (p_cb->le_secure_connections_mode_is_used) {
416 smp_process_secure_connection_long_term_key();
417 return;
418 }
419
420 div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
421
422 if (div_status) {
423 smp_generate_ltk_cont(p_cb, NULL);
424 } else {
425 SMP_TRACE_DEBUG ("Generate DIV for LTK\n");
426 p_cb->rand_enc_proc_state = SMP_GEN_DIV_LTK;
427 /* generate MRand or SRand */
428 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
429 smp_rand_back(NULL);
430 }
431 }
432 }
433
434 /*******************************************************************************
435 **
436 ** Function smp_compute_csrk
437 **
438 ** Description This function is called to calculate CSRK
439 **
440 **
441 ** Returns void
442 **
443 *******************************************************************************/
smp_compute_csrk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)444 void smp_compute_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
445 {
446 UNUSED(p_data);
447
448 BT_OCTET16 er;
449 UINT8 buffer[4]; /* for (r || DIV) r=1*/
450 UINT16 r = 1;
451 UINT8 *p = buffer;
452 tSMP_ENC output;
453 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
454
455 SMP_TRACE_DEBUG ("smp_compute_csrk div=%x\n", p_cb->div);
456 BTM_GetDeviceEncRoot(er);
457 /* CSRK = d1(ER, DIV, 1) */
458 UINT16_TO_STREAM(p, p_cb->div);
459 UINT16_TO_STREAM(p, r);
460
461 if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output)) {
462 SMP_TRACE_ERROR("smp_generate_csrk failed\n");
463 if (p_cb->smp_over_br) {
464 #if (CLASSIC_BT_INCLUDED == TRUE)
465 smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status);
466 #endif ///CLASSIC_BT_INCLUDED == TRUE
467 } else {
468 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
469 }
470 } else {
471 memcpy((void *)p_cb->csrk, output.param_buf, BT_OCTET16_LEN);
472 smp_send_csrk_info(p_cb, NULL);
473 }
474 }
475
476 /*******************************************************************************
477 **
478 ** Function smp_generate_csrk
479 **
480 ** Description This function is called to calculate CSRK, starting with DIV
481 ** generation.
482 **
483 **
484 ** Returns void
485 **
486 *******************************************************************************/
smp_generate_csrk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)487 void smp_generate_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
488 {
489 UNUSED(p_data);
490
491 BOOLEAN div_status;
492
493 SMP_TRACE_DEBUG ("smp_generate_csrk");
494
495 div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
496 if (div_status) {
497 smp_compute_csrk(p_cb, NULL);
498 } else {
499 SMP_TRACE_DEBUG ("Generate DIV for CSRK");
500 p_cb->rand_enc_proc_state = SMP_GEN_DIV_CSRK;
501 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
502 smp_rand_back(NULL);
503 }
504 }
505 }
506
507 /*******************************************************************************
508 ** Function smp_concatenate_peer
509 ** add pairing command sent from local device into p1.
510 *******************************************************************************/
smp_concatenate_local(tSMP_CB * p_cb,UINT8 ** p_data,UINT8 op_code)511 void smp_concatenate_local( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
512 {
513 UINT8 *p = *p_data;
514
515 SMP_TRACE_DEBUG ("%s\n", __func__);
516 UINT8_TO_STREAM(p, op_code);
517 UINT8_TO_STREAM(p, p_cb->local_io_capability);
518 UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
519 UINT8_TO_STREAM(p, p_cb->loc_auth_req);
520 UINT8_TO_STREAM(p, p_cb->loc_enc_size);
521 UINT8_TO_STREAM(p, p_cb->local_i_key);
522 UINT8_TO_STREAM(p, p_cb->local_r_key);
523
524 *p_data = p;
525 }
526
527 /*******************************************************************************
528 ** Function smp_concatenate_peer
529 ** add pairing command received from peer device into p1.
530 *******************************************************************************/
smp_concatenate_peer(tSMP_CB * p_cb,UINT8 ** p_data,UINT8 op_code)531 void smp_concatenate_peer( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
532 {
533 UINT8 *p = *p_data;
534
535 SMP_TRACE_DEBUG ("smp_concatenate_peer \n");
536 UINT8_TO_STREAM(p, op_code);
537 UINT8_TO_STREAM(p, p_cb->peer_io_caps);
538 UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
539 UINT8_TO_STREAM(p, p_cb->peer_auth_req);
540 UINT8_TO_STREAM(p, p_cb->peer_enc_size);
541 UINT8_TO_STREAM(p, p_cb->peer_i_key);
542 UINT8_TO_STREAM(p, p_cb->peer_r_key);
543
544 *p_data = p;
545 }
546
547 /*******************************************************************************
548 **
549 ** Function smp_gen_p1_4_confirm
550 **
551 ** Description Generate Confirm/Compare Step1:
552 ** p1 = pres || preq || rat' || iat'
553 **
554 ** Returns void
555 **
556 *******************************************************************************/
smp_gen_p1_4_confirm(tSMP_CB * p_cb,BT_OCTET16 p1)557 void smp_gen_p1_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p1)
558 {
559 UINT8 *p = (UINT8 *)p1;
560 tBLE_ADDR_TYPE addr_type = 0;
561 BD_ADDR remote_bda;
562
563 SMP_TRACE_DEBUG ("smp_gen_p1_4_confirm\n");
564
565 if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type)) {
566 SMP_TRACE_ERROR("can not generate confirm for unknown device\n");
567 return;
568 }
569
570 BTM_ReadConnectionAddr( p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
571
572 if (p_cb->role == HCI_ROLE_MASTER) {
573 /* LSB : rat': initiator's(local) address type */
574 UINT8_TO_STREAM(p, p_cb->addr_type);
575 /* LSB : iat': responder's address type */
576 UINT8_TO_STREAM(p, addr_type);
577 /* concatinate preq */
578 smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
579 /* concatinate pres */
580 smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
581 } else {
582 /* LSB : iat': initiator's address type */
583 UINT8_TO_STREAM(p, addr_type);
584 /* LSB : rat': responder's(local) address type */
585 UINT8_TO_STREAM(p, p_cb->addr_type);
586 /* concatinate preq */
587 smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
588 /* concatinate pres */
589 smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
590 }
591 #if SMP_DEBUG == TRUE
592 SMP_TRACE_DEBUG("p1 = pres || preq || rat' || iat'\n");
593 smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1", 16);
594 #endif
595 }
596
597 /*******************************************************************************
598 **
599 ** Function smp_gen_p2_4_confirm
600 **
601 ** Description Generate Confirm/Compare Step2:
602 ** p2 = padding || ia || ra
603 **
604 ** Returns void
605 **
606 *******************************************************************************/
smp_gen_p2_4_confirm(tSMP_CB * p_cb,BT_OCTET16 p2)607 void smp_gen_p2_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p2)
608 {
609 UINT8 *p = (UINT8 *)p2;
610 BD_ADDR remote_bda;
611 tBLE_ADDR_TYPE addr_type = 0;
612 SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm\n");
613 if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type)) {
614 SMP_TRACE_ERROR("can not generate confirm p2 for unknown device\n");
615 return;
616 }
617
618 SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm\n");
619
620 memset(p, 0, sizeof(BT_OCTET16));
621
622 if (p_cb->role == HCI_ROLE_MASTER) {
623 /* LSB ra */
624 BDADDR_TO_STREAM(p, remote_bda);
625 /* ia */
626 BDADDR_TO_STREAM(p, p_cb->local_bda);
627 } else {
628 /* LSB ra */
629 BDADDR_TO_STREAM(p, p_cb->local_bda);
630 /* ia */
631 BDADDR_TO_STREAM(p, remote_bda);
632 }
633 #if SMP_DEBUG == TRUE
634 SMP_TRACE_DEBUG("p2 = padding || ia || ra");
635 smp_debug_print_nbyte_little_endian(p2, (const UINT8 *)"p2", 16);
636 #endif
637 }
638
639 /*******************************************************************************
640 **
641 ** Function smp_calculate_comfirm
642 **
643 ** Description This function is called to calculate Confirm value.
644 **
645 ** Returns void
646 **
647 *******************************************************************************/
smp_calculate_comfirm(tSMP_CB * p_cb,BT_OCTET16 rand,BD_ADDR bda)648 void smp_calculate_comfirm (tSMP_CB *p_cb, BT_OCTET16 rand, BD_ADDR bda)
649 {
650 UNUSED(bda);
651
652 BT_OCTET16 p1;
653 tSMP_ENC output;
654 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
655
656 SMP_TRACE_DEBUG ("smp_calculate_comfirm \n");
657 /* generate p1 = pres || preq || rat' || iat' */
658 smp_gen_p1_4_confirm(p_cb, p1);
659
660 /* p1 = rand XOR p1 */
661 smp_xor_128(p1, rand);
662
663 smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1' = r XOR p1", 16);
664
665 /* calculate e(k, r XOR p1), where k = TK */
666 if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output)) {
667 SMP_TRACE_ERROR("smp_generate_csrk failed");
668 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
669 } else {
670 smp_calculate_comfirm_cont(p_cb, &output);
671 }
672 }
673
674 /*******************************************************************************
675 **
676 ** Function smp_calculate_comfirm_cont
677 **
678 ** Description This function is called when SConfirm/MConfirm is generated
679 ** proceed to send the Confirm request/response to peer device.
680 **
681 ** Returns void
682 **
683 *******************************************************************************/
smp_calculate_comfirm_cont(tSMP_CB * p_cb,tSMP_ENC * p)684 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p)
685 {
686 BT_OCTET16 p2;
687 tSMP_ENC output;
688 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
689
690 SMP_TRACE_DEBUG ("smp_calculate_comfirm_cont \n");
691 #if SMP_DEBUG == TRUE
692 SMP_TRACE_DEBUG("Confirm step 1 p1' = e(k, r XOR p1) Generated\n");
693 smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"C1", 16);
694 #endif
695
696 smp_gen_p2_4_confirm(p_cb, p2);
697
698 /* calculate p2 = (p1' XOR p2) */
699 smp_xor_128(p2, p->param_buf);
700 smp_debug_print_nbyte_little_endian ((UINT8 *)p2, (const UINT8 *)"p2' = C1 xor p2", 16);
701
702 /* calculate: Confirm = E(k, p1' XOR p2) */
703 if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, &output)) {
704 SMP_TRACE_ERROR("smp_calculate_comfirm_cont failed\n");
705 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
706 } else {
707 SMP_TRACE_DEBUG("p_cb->rand_enc_proc_state=%d\n", p_cb->rand_enc_proc_state);
708 switch (p_cb->rand_enc_proc_state) {
709 case SMP_GEN_CONFIRM:
710 smp_process_confirm(p_cb, &output);
711 break;
712
713 case SMP_GEN_COMPARE:
714 smp_process_compare(p_cb, &output);
715 break;
716 }
717 }
718 }
719
720 /*******************************************************************************
721 **
722 ** Function smp_generate_confirm
723 **
724 ** Description This function is called when a 48 bits random number is generated
725 ** as SRand or MRand, continue to calculate Sconfirm or MConfirm.
726 **
727 ** Returns void
728 **
729 *******************************************************************************/
smp_generate_confirm(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)730 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
731 {
732 UNUSED(p_data);
733
734 SMP_TRACE_DEBUG ("%s\n", __func__);
735 p_cb->rand_enc_proc_state = SMP_GEN_CONFIRM;
736 smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rand, (const UINT8 *)"local rand", 16);
737 smp_calculate_comfirm(p_cb, p_cb->rand, p_cb->pairing_bda);
738 }
739
740 /*******************************************************************************
741 **
742 ** Function smp_generate_compare
743 **
744 ** Description This function is called to generate SConfirm for Slave device,
745 ** or MSlave for Master device. This function can be also used for
746 ** generating Compare number for confirm value check.
747 **
748 ** Returns void
749 **
750 *******************************************************************************/
smp_generate_compare(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)751 void smp_generate_compare (tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
752 {
753 UNUSED(p_data);
754
755 SMP_TRACE_DEBUG ("smp_generate_compare \n");
756 p_cb->rand_enc_proc_state = SMP_GEN_COMPARE;
757 smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rrand, (const UINT8 *)"peer rand", 16);
758 smp_calculate_comfirm(p_cb, p_cb->rrand, p_cb->local_bda);
759 }
760
761 /*******************************************************************************
762 **
763 ** Function smp_process_confirm
764 **
765 ** Description This function is called when SConfirm/MConfirm is generated
766 ** proceed to send the Confirm request/response to peer device.
767 **
768 ** Returns void
769 **
770 *******************************************************************************/
smp_process_confirm(tSMP_CB * p_cb,tSMP_ENC * p)771 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p)
772 {
773 tSMP_KEY key;
774
775 SMP_TRACE_DEBUG ("%s\n", __FUNCTION__);
776 memcpy(p_cb->confirm, p->param_buf, BT_OCTET16_LEN);
777
778 #if (SMP_DEBUG == TRUE)
779 SMP_TRACE_DEBUG("Confirm Generated");
780 smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->confirm, (const UINT8 *)"Confirm", 16);
781 #endif
782
783 key.key_type = SMP_KEY_TYPE_CFM;
784 key.p_data = p->param_buf;
785
786 smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
787
788 }
789
790 /*******************************************************************************
791 **
792 ** Function smp_process_compare
793 **
794 ** Description This function is called when Compare is generated using the
795 ** RRand and local BDA, TK information.
796 **
797 ** Returns void
798 **
799 *******************************************************************************/
smp_process_compare(tSMP_CB * p_cb,tSMP_ENC * p)800 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p)
801 {
802 tSMP_KEY key;
803
804 SMP_TRACE_DEBUG ("smp_process_compare \n");
805 #if (SMP_DEBUG == TRUE)
806 SMP_TRACE_DEBUG("Compare Generated\n");
807 smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"Compare", 16);
808 #endif
809 key.key_type = SMP_KEY_TYPE_CMP;
810 key.p_data = p->param_buf;
811 //smp_set_state(SMP_STATE_CONFIRM);
812 smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
813 }
814
815 /*******************************************************************************
816 **
817 ** Function smp_process_stk
818 **
819 ** Description This function is called when STK is generated
820 ** proceed to send the encrypt the link using STK.
821 **
822 ** Returns void
823 **
824 *******************************************************************************/
smp_process_stk(tSMP_CB * p_cb,tSMP_ENC * p)825 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p)
826 {
827 tSMP_KEY key;
828
829 SMP_TRACE_DEBUG ("smp_process_stk ");
830 #if (SMP_DEBUG == TRUE)
831 SMP_TRACE_ERROR("STK Generated");
832 #endif
833 smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf);
834
835 key.key_type = SMP_KEY_TYPE_STK;
836 key.p_data = p->param_buf;
837
838 smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
839 }
840
841 /*******************************************************************************
842 **
843 ** Function smp_generate_ltk_cont
844 **
845 ** Description This function is to calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
846 **
847 ** Returns void
848 **
849 *******************************************************************************/
smp_generate_ltk_cont(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)850 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
851 {
852 UNUSED(p_data);
853
854 BT_OCTET16 er;
855 tSMP_ENC output;
856 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
857
858 SMP_TRACE_DEBUG ("%s\n", __func__);
859 BTM_GetDeviceEncRoot(er);
860
861 /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
862 if (!SMP_Encrypt(er, BT_OCTET16_LEN, (UINT8 *)&p_cb->div,
863 sizeof(UINT16), &output)) {
864 SMP_TRACE_ERROR("%s failed\n", __func__);
865 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
866 } else {
867 /* mask the LTK */
868 smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf);
869 memcpy((void *)p_cb->ltk, output.param_buf, BT_OCTET16_LEN);
870 smp_generate_rand_vector(p_cb, NULL);
871 }
872 }
873
874 /*******************************************************************************
875 **
876 ** Function smp_generate_y
877 **
878 ** Description This function is to proceed generate Y = E(DHK, Rand)
879 **
880 ** Returns void
881 **
882 *******************************************************************************/
smp_generate_y(tSMP_CB * p_cb,tSMP_INT_DATA * p)883 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p)
884 {
885 UNUSED(p);
886
887 BT_OCTET16 dhk;
888 tSMP_ENC output;
889 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
890
891
892 SMP_TRACE_DEBUG ("smp_generate_y \n");
893 BTM_GetDeviceDHK(dhk);
894
895 if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, p_cb->enc_rand,
896 BT_OCTET8_LEN, &output)) {
897 SMP_TRACE_ERROR("smp_generate_y failed");
898 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
899 } else {
900 smp_process_ediv(p_cb, &output);
901 }
902 }
903
904 /*******************************************************************************
905 **
906 ** Function smp_generate_rand_vector
907 **
908 ** Description This function is called when LTK is generated, send state machine
909 ** event to SMP.
910 **
911 ** Returns void
912 **
913 *******************************************************************************/
smp_generate_rand_vector(tSMP_CB * p_cb,tSMP_INT_DATA * p)914 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p)
915 {
916 UNUSED(p);
917
918 /* generate EDIV and rand now */
919 /* generate random vector */
920 SMP_TRACE_DEBUG ("smp_generate_rand_vector\n");
921 p_cb->rand_enc_proc_state = SMP_GEN_RAND_V;
922 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
923 smp_rand_back(NULL);
924 }
925 }
926
927 /*******************************************************************************
928 **
929 ** Function smp_process_ediv
930 **
931 ** Description This function is to calculate EDIV = Y xor DIV
932 **
933 ** Returns void
934 **
935 *******************************************************************************/
smp_process_ediv(tSMP_CB * p_cb,tSMP_ENC * p)936 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p)
937 {
938 tSMP_KEY key;
939 UINT8 *pp = p->param_buf;
940 UINT16 y;
941
942 SMP_TRACE_DEBUG ("smp_process_ediv ");
943 STREAM_TO_UINT16(y, pp);
944
945 /* EDIV = Y xor DIV */
946 p_cb->ediv = p_cb->div ^ y;
947 /* send LTK ready */
948 SMP_TRACE_DEBUG("LTK ready");
949 key.key_type = SMP_KEY_TYPE_LTK;
950 key.p_data = p->param_buf;
951
952 smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
953 }
954
955 /*******************************************************************************
956 **
957 ** Function smp_calculate_legacy_short_term_key
958 **
959 ** Description The function calculates legacy STK.
960 **
961 ** Returns FALSE if out of resources, TRUE in other cases.
962 **
963 *******************************************************************************/
smp_calculate_legacy_short_term_key(tSMP_CB * p_cb,tSMP_ENC * output)964 BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output)
965 {
966 BT_OCTET16 ptext;
967 UINT8 *p = ptext;
968
969 SMP_TRACE_DEBUG ("%s\n", __func__);
970 memset(p, 0, BT_OCTET16_LEN);
971 if (p_cb->role == HCI_ROLE_MASTER) {
972 memcpy(p, p_cb->rand, BT_OCTET8_LEN);
973 memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN);
974 } else {
975 memcpy(p, p_cb->rrand, BT_OCTET8_LEN);
976 memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN);
977 }
978
979 BOOLEAN encrypted;
980 /* generate STK = Etk(rand|rrand)*/
981 encrypted = SMP_Encrypt( p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output);
982 if (!encrypted) {
983 SMP_TRACE_ERROR("%s failed\n", __func__);
984 }
985 return encrypted;
986 }
987
988 /*******************************************************************************
989 **
990 ** Function smp_create_private_key
991 **
992 ** Description This function is called to create private key used to
993 ** calculate public key and DHKey.
994 ** The function starts private key creation requesting controller
995 ** to generate [0-7] octets of private key.
996 **
997 ** Returns void
998 **
999 *******************************************************************************/
smp_create_private_key(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1000 void smp_create_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1001 {
1002 SMP_TRACE_DEBUG("%s", __func__);
1003
1004 if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_OOB) {
1005 SMP_TRACE_EVENT("OOB Association Model");
1006 if (!oob_data_is_empty(&saved_local_oob_data)) {
1007 SMP_TRACE_EVENT("Found OOB data, loading keys");
1008 memcpy(&p_cb->sc_oob_data.loc_oob_data, &saved_local_oob_data, sizeof(tSMP_LOC_OOB_DATA));
1009 smp_process_private_key(p_cb);
1010 return;
1011 }
1012 SMP_TRACE_EVENT("OOB Association Model with no saved data");
1013 }
1014
1015 p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_0_7;
1016 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
1017 smp_rand_back(NULL);
1018 }
1019 }
1020
1021 /*******************************************************************************
1022 **
1023 ** Function smp_use_oob_private_key
1024 **
1025 ** Description This function is called
1026 ** - to save the secret key used to calculate the public key used
1027 ** in calculations of commitment sent OOB to a peer
1028 ** - to use this secret key to recalculate the public key and
1029 ** start the process of sending this public key to the peer
1030 ** if secret/public keys have to be reused.
1031 ** If the keys aren't supposed to be reused, continue from the
1032 ** point from which request for OOB data was issued.
1033 **
1034 ** Returns void
1035 **
1036 *******************************************************************************/
smp_use_oob_private_key(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1037 void smp_use_oob_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1038 {
1039 SMP_TRACE_DEBUG ("%s req_oob_type: %d, role: %d\n",
1040 __func__, p_cb->req_oob_type, p_cb->role);
1041
1042 switch (p_cb->req_oob_type) {
1043 case SMP_OOB_BOTH:
1044 case SMP_OOB_LOCAL:
1045 SMP_TRACE_DEBUG("%s restore secret key\n", __func__);
1046 // copy private key in smp_process_private_key
1047 smp_process_private_key(p_cb);
1048 break;
1049 default:
1050 SMP_TRACE_DEBUG("%s create secret key anew\n", __func__);
1051 smp_set_state(SMP_STATE_PAIR_REQ_RSP);
1052 smp_decide_association_model(p_cb, NULL);
1053 break;
1054 }
1055 }
1056
1057 /*******************************************************************************
1058 **
1059 ** Function smp_continue_private_key_creation
1060 **
1061 ** Description This function is used to continue private key creation.
1062 **
1063 ** Returns void
1064 **
1065 *******************************************************************************/
smp_continue_private_key_creation(tSMP_CB * p_cb,tBTM_RAND_ENC * p)1066 void smp_continue_private_key_creation (tSMP_CB *p_cb, tBTM_RAND_ENC *p)
1067 {
1068 UINT8 state = p_cb->rand_enc_proc_state & ~0x80;
1069 SMP_TRACE_DEBUG ("%s state=0x%x\n", __func__, state);
1070
1071 switch (state) {
1072 case SMP_GENERATE_PRIVATE_KEY_0_7:
1073 memcpy((void *)p_cb->private_key, p->param_buf, p->param_len);
1074 p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_8_15;
1075 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
1076 smp_rand_back(NULL);
1077 }
1078 break;
1079
1080 case SMP_GENERATE_PRIVATE_KEY_8_15:
1081 memcpy((void *)&p_cb->private_key[8], p->param_buf, p->param_len);
1082 p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_16_23;
1083 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
1084 smp_rand_back(NULL);
1085 }
1086 break;
1087
1088 case SMP_GENERATE_PRIVATE_KEY_16_23:
1089 memcpy((void *)&p_cb->private_key[16], p->param_buf, p->param_len);
1090 p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_24_31;
1091 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
1092 smp_rand_back(NULL);
1093 }
1094 break;
1095
1096 case SMP_GENERATE_PRIVATE_KEY_24_31:
1097 memcpy((void *)&p_cb->private_key[24], p->param_buf, p->param_len);
1098 smp_process_private_key (p_cb);
1099 break;
1100
1101 default:
1102 break;
1103 }
1104
1105 return;
1106 }
1107
1108 /*******************************************************************************
1109 **
1110 ** Function smp_process_private_key
1111 **
1112 ** Description This function processes private key.
1113 ** It calculates public key and notifies SM that private key /
1114 ** public key pair is created.
1115 **
1116 ** Returns void
1117 **
1118 *******************************************************************************/
smp_process_private_key(tSMP_CB * p_cb)1119 void smp_process_private_key(tSMP_CB *p_cb)
1120 {
1121 Point public_key;
1122 BT_OCTET32 private_key;
1123 tSMP_LOC_OOB_DATA *p_loc_oob = &p_cb->sc_oob_data.loc_oob_data;
1124
1125 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1126
1127 /* if local oob data present, then restore oob private and public key */
1128 if (p_loc_oob->present) {
1129 memcpy(p_cb->private_key, p_loc_oob->private_key_used, BT_OCTET32_LEN);
1130 memcpy(p_cb->loc_publ_key.x, p_loc_oob->publ_key_used.x, BT_OCTET32_LEN);
1131 memcpy(p_cb->loc_publ_key.y, p_loc_oob->publ_key_used.y, BT_OCTET32_LEN);
1132 memcpy(p_cb->local_random, p_loc_oob->randomizer, BT_OCTET16_LEN);
1133 } else {
1134 memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
1135 ECC_PointMult(&public_key, &(curve_p256.G), (DWORD *) private_key, KEY_LENGTH_DWORDS_P256);
1136 memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
1137 memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);
1138 }
1139
1140 smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
1141 BT_OCTET32_LEN);
1142 smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.x, (const UINT8 *)"local public(x)",
1143 BT_OCTET32_LEN);
1144 smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.y, (const UINT8 *)"local public(y)",
1145 BT_OCTET32_LEN);
1146 p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
1147 smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
1148 }
1149
1150 /*******************************************************************************
1151 **
1152 ** Function smp_compute_dhkey
1153 **
1154 ** Description The function:
1155 ** - calculates a new public key using as input local private
1156 ** key and peer public key;
1157 ** - saves the new public key x-coordinate as DHKey.
1158 **
1159 ** Returns void
1160 **
1161 *******************************************************************************/
smp_compute_dhkey(tSMP_CB * p_cb)1162 void smp_compute_dhkey (tSMP_CB *p_cb)
1163 {
1164 Point peer_publ_key, new_publ_key;
1165 BT_OCTET32 private_key;
1166
1167 SMP_TRACE_DEBUG ("%s\n", __FUNCTION__);
1168
1169 memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
1170 memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
1171 memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);
1172
1173 ECC_PointMult(&new_publ_key, &peer_publ_key, (DWORD *) private_key, KEY_LENGTH_DWORDS_P256);
1174
1175 memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);
1176
1177 smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Old DHKey",
1178 BT_OCTET32_LEN);
1179
1180 smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
1181 BT_OCTET32_LEN);
1182 smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.x, (const UINT8 *)"rem public(x)",
1183 BT_OCTET32_LEN);
1184 smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.y, (const UINT8 *)"rem public(y)",
1185 BT_OCTET32_LEN);
1186 smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Reverted DHKey",
1187 BT_OCTET32_LEN);
1188 }
1189
1190 /*******************************************************************************
1191 **
1192 ** Function smp_calculate_local_commitment
1193 **
1194 ** Description The function calculates and saves local commmitment in CB.
1195 **
1196 ** Returns void
1197 **
1198 *******************************************************************************/
smp_calculate_local_commitment(tSMP_CB * p_cb)1199 void smp_calculate_local_commitment(tSMP_CB *p_cb)
1200 {
1201 UINT8 random_input;
1202
1203 SMP_TRACE_DEBUG("%s\n", __FUNCTION__);
1204
1205 switch (p_cb->selected_association_model) {
1206 case SMP_MODEL_SEC_CONN_JUSTWORKS:
1207 case SMP_MODEL_SEC_CONN_NUM_COMP:
1208 if (p_cb->role == HCI_ROLE_MASTER) {
1209 SMP_TRACE_WARNING ("local commitment calc on master is not expected \
1210 for Just Works/Numeric Comparison models\n");
1211 }
1212 smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0,
1213 p_cb->commitment);
1214 break;
1215 case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
1216 case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
1217 random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round);
1218 smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
1219 random_input, p_cb->commitment);
1220 break;
1221 case SMP_MODEL_SEC_CONN_OOB:
1222 SMP_TRACE_WARNING ("local commitment calc is expected for OOB model BEFORE pairing\n");
1223 smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0,
1224 p_cb->commitment);
1225 break;
1226 default:
1227 SMP_TRACE_ERROR("Association Model = %d is not used in LE SC\n",
1228 p_cb->selected_association_model);
1229 return;
1230 }
1231
1232 SMP_TRACE_EVENT ("local commitment calculation is completed");
1233 }
1234
1235 /*******************************************************************************
1236 **
1237 ** Function smp_calculate_peer_commitment
1238 **
1239 ** Description The function calculates and saves peer commmitment at the
1240 ** provided output buffer.
1241 **
1242 ** Returns void
1243 **
1244 *******************************************************************************/
smp_calculate_peer_commitment(tSMP_CB * p_cb,BT_OCTET16 output_buf)1245 void smp_calculate_peer_commitment(tSMP_CB *p_cb, BT_OCTET16 output_buf)
1246 {
1247 UINT8 ri;
1248
1249 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1250
1251 switch (p_cb->selected_association_model) {
1252 case SMP_MODEL_SEC_CONN_JUSTWORKS:
1253 case SMP_MODEL_SEC_CONN_NUM_COMP:
1254 if (p_cb->role == HCI_ROLE_SLAVE) {
1255 SMP_TRACE_WARNING ("peer commitment calc on slave is not expected \
1256 for Just Works/Numeric Comparison models\n");
1257 }
1258 smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0,
1259 output_buf);
1260 break;
1261 case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
1262 case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
1263 ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round);
1264 smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri,
1265 output_buf);
1266 break;
1267 case SMP_MODEL_SEC_CONN_OOB:
1268 smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0,
1269 output_buf);
1270 break;
1271 default:
1272 SMP_TRACE_ERROR("Association Model = %d is not used in LE SC\n",
1273 p_cb->selected_association_model);
1274 return;
1275 }
1276
1277 SMP_TRACE_EVENT ("peer commitment calculation is completed\n");
1278 }
1279
1280 /*******************************************************************************
1281 **
1282 ** Function smp_calculate_f4
1283 **
1284 ** Description The function calculates
1285 ** C = f4(U, V, X, Z) = AES-CMAC (U||V||Z)
1286 ** X
1287 ** where
1288 ** input: U is 256 bit,
1289 ** V is 256 bit,
1290 ** X is 128 bit,
1291 ** Z is 8 bit,
1292 ** output: C is 128 bit.
1293 **
1294 ** Returns void
1295 **
1296 ** Note The LSB is the first octet, the MSB is the last octet of
1297 ** the AES-CMAC input/output stream.
1298 **
1299 *******************************************************************************/
smp_calculate_f4(UINT8 * u,UINT8 * v,UINT8 * x,UINT8 z,UINT8 * c)1300 void smp_calculate_f4(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 z, UINT8 *c)
1301 {
1302 UINT8 msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */;
1303 UINT8 msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1];
1304 UINT8 key[BT_OCTET16_LEN];
1305 UINT8 cmac[BT_OCTET16_LEN];
1306 UINT8 *p = NULL;
1307 #if SMP_DEBUG == TRUE
1308 UINT8 *p_prnt = NULL;
1309 #endif
1310
1311 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1312
1313 #if SMP_DEBUG == TRUE
1314 p_prnt = u;
1315 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
1316 p_prnt = v;
1317 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
1318 p_prnt = x;
1319 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
1320 p_prnt = &z;
1321 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Z", 1);
1322 #endif
1323
1324 p = msg;
1325 UINT8_TO_STREAM(p, z);
1326 ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
1327 ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
1328 #if SMP_DEBUG == TRUE
1329 p_prnt = msg;
1330 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
1331 #endif
1332
1333 p = key;
1334 ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
1335 #if SMP_DEBUG == TRUE
1336 p_prnt = key;
1337 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1338 #endif
1339
1340 aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac);
1341 #if SMP_DEBUG == TRUE
1342 p_prnt = cmac;
1343 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES_CMAC", BT_OCTET16_LEN);
1344 #endif
1345
1346 p = c;
1347 ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1348 }
1349
1350 /*******************************************************************************
1351 **
1352 ** Function smp_calculate_numeric_comparison_display_number
1353 **
1354 ** Description The function calculates and saves number to display in numeric
1355 ** comparison association mode.
1356 **
1357 ** Returns void
1358 **
1359 *******************************************************************************/
smp_calculate_numeric_comparison_display_number(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1360 void smp_calculate_numeric_comparison_display_number(tSMP_CB *p_cb,
1361 tSMP_INT_DATA *p_data)
1362 {
1363 SMP_TRACE_DEBUG ("%s", __func__);
1364
1365 if (p_cb->role == HCI_ROLE_MASTER) {
1366 p_cb->number_to_display =
1367 smp_calculate_g2(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
1368 p_cb->rrand);
1369 } else {
1370 p_cb->number_to_display =
1371 smp_calculate_g2(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
1372 p_cb->rand);
1373 }
1374
1375 if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) {
1376 UINT8 reason;
1377 reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
1378 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason);
1379 return;
1380 }
1381
1382 SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display);
1383 p_cb->cb_evt = SMP_NC_REQ_EVT;
1384 smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display);
1385 return;
1386 }
1387
1388 /*******************************************************************************
1389 **
1390 ** Function smp_calculate_g2
1391 **
1392 ** Description The function calculates
1393 ** g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6
1394 ** X
1395 ** and
1396 ** Vres = g2(U, V, X, Y) mod 10**6
1397 ** where
1398 ** input: U is 256 bit,
1399 ** V is 256 bit,
1400 ** X is 128 bit,
1401 ** Y is 128 bit,
1402 **
1403 ** Returns Vres.
1404 ** Expected value has to be in the range [0 - 999999] i.e. [0 - 0xF423F].
1405 ** Vres = 1000000 means that the calculation fails.
1406 **
1407 ** Note The LSB is the first octet, the MSB is the last octet of
1408 ** the AES-CMAC input/output stream.
1409 **
1410 *******************************************************************************/
smp_calculate_g2(UINT8 * u,UINT8 * v,UINT8 * x,UINT8 * y)1411 UINT32 smp_calculate_g2(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 *y)
1412 {
1413 UINT8 msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */
1414 + BT_OCTET16_LEN /* Y size */;
1415 UINT8 msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN];
1416 UINT8 key[BT_OCTET16_LEN];
1417 UINT8 cmac[BT_OCTET16_LEN];
1418 UINT8 *p = NULL;
1419 UINT32 vres;
1420 #if SMP_DEBUG == TRUE
1421 UINT8 *p_prnt = NULL;
1422 #endif
1423
1424 SMP_TRACE_DEBUG ("%s\n", __FUNCTION__);
1425
1426 p = msg;
1427 ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN);
1428 ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
1429 ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
1430 #if SMP_DEBUG == TRUE
1431 p_prnt = u;
1432 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
1433 p_prnt = v;
1434 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
1435 p_prnt = x;
1436 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
1437 p_prnt = y;
1438 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Y", BT_OCTET16_LEN);
1439 #endif
1440
1441 p = key;
1442 ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
1443 #if SMP_DEBUG == TRUE
1444 p_prnt = key;
1445 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1446 #endif
1447
1448 if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
1449 SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1450 return (BTM_MAX_PASSKEY_VAL + 1);
1451 }
1452
1453 #if SMP_DEBUG == TRUE
1454 p_prnt = cmac;
1455 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1456 #endif
1457
1458 /* vres = cmac mod 2**32 mod 10**6 */
1459 p = &cmac[0];
1460 STREAM_TO_UINT32(vres, p);
1461 #if SMP_DEBUG == TRUE
1462 p_prnt = (UINT8 *) &vres;
1463 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32", 4);
1464 #endif
1465
1466 while (vres > BTM_MAX_PASSKEY_VAL) {
1467 vres -= (BTM_MAX_PASSKEY_VAL + 1);
1468 }
1469 #if SMP_DEBUG == TRUE
1470 p_prnt = (UINT8 *) &vres;
1471 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32 mod 10**6", 4);
1472 #endif
1473
1474 SMP_TRACE_ERROR("Value for numeric comparison = %d", vres);
1475 return vres;
1476 }
1477
1478 /*******************************************************************************
1479 **
1480 ** Function smp_calculate_f5
1481 **
1482 ** Description The function provides two AES-CMAC that are supposed to be used as
1483 ** - MacKey (MacKey is used in pairing DHKey check calculation);
1484 ** - LTK (LTK is used to ecrypt the link after completion of Phase 2
1485 ** and on reconnection, to derive BR/EDR LK).
1486 ** The function inputs are W, N1, N2, A1, A2.
1487 ** F5 rules:
1488 ** - the value used as key in MacKey/LTK (T) is calculated
1489 ** (function smp_calculate_f5_key(...));
1490 ** The formula is:
1491 ** T = AES-CMAC (W)
1492 ** salt
1493 ** where salt is internal parameter of smp_calculate_f5_key(...).
1494 ** - MacKey and LTK are calculated as AES-MAC values received with the
1495 ** key T calculated in the previous step and the plaintext message
1496 ** built from the external parameters N1, N2, A1, A2 and the internal
1497 ** parameters counter, keyID, length.
1498 ** The function smp_calculate_f5_mackey_or_long_term_key(...) is used in the
1499 ** calculations.
1500 ** The same formula is used in calculation of MacKey and LTK and the
1501 ** same parameter values except the value of the internal parameter
1502 ** counter:
1503 ** - in MacKey calculations the value is 0;
1504 ** - in LTK calculations the value is 1.
1505 ** MacKey = AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256)
1506 ** T
1507 ** LTK = AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256)
1508 ** T
1509 ** The parameters are
1510 ** input:
1511 ** W is 256 bits,
1512 ** N1 is 128 bits,
1513 ** N2 is 128 bits,
1514 ** A1 is 56 bit,
1515 ** A2 is 56 bit.
1516 ** internal:
1517 ** Counter is 8 bits, its value is 0 for MacKey,
1518 ** 1 for LTK;
1519 ** KeyId is 32 bits, its value is
1520 ** 0x62746c65 (MSB~LSB);
1521 ** Length is 16 bits, its value is 0x0100
1522 ** (MSB~LSB).
1523 ** output:
1524 ** MacKey is 128 bits;
1525 ** LTK is 128 bits
1526 **
1527 ** Returns FALSE if out of resources, TRUE in other cases.
1528 **
1529 ** Note The LSB is the first octet, the MSB is the last octet of
1530 ** the AES-CMAC input/output stream.
1531 **
1532 *******************************************************************************/
smp_calculate_f5(UINT8 * w,UINT8 * n1,UINT8 * n2,UINT8 * a1,UINT8 * a2,UINT8 * mac_key,UINT8 * ltk)1533 BOOLEAN smp_calculate_f5(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
1534 UINT8 *mac_key, UINT8 *ltk)
1535 {
1536 BT_OCTET16 t; /* AES-CMAC output in smp_calculate_f5_key(...), key in */
1537 /* smp_calculate_f5_mackey_or_long_term_key(...) */
1538 #if SMP_DEBUG == TRUE
1539 UINT8 *p_prnt = NULL;
1540 #endif
1541 /* internal parameters: */
1542
1543 /*
1544 counter is 0 for MacKey,
1545 is 1 for LTK
1546 */
1547 UINT8 counter_mac_key[1] = {0};
1548 UINT8 counter_ltk[1] = {1};
1549 /*
1550 keyID 62746c65
1551 */
1552 UINT8 key_id[4] = {0x65, 0x6c, 0x74, 0x62};
1553 /*
1554 length 0100
1555 */
1556 UINT8 length[2] = {0x00, 0x01};
1557
1558 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1559 #if SMP_DEBUG == TRUE
1560 p_prnt = w;
1561 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
1562 p_prnt = n1;
1563 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
1564 p_prnt = n2;
1565 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
1566 p_prnt = a1;
1567 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
1568 p_prnt = a2;
1569 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *) "A2", 7);
1570 #endif
1571
1572 if (!smp_calculate_f5_key(w, t)) {
1573 SMP_TRACE_ERROR("%s failed to calc T", __FUNCTION__);
1574 return FALSE;
1575 }
1576 #if SMP_DEBUG == TRUE
1577 p_prnt = t;
1578 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
1579 #endif
1580
1581 if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2,
1582 length, mac_key)) {
1583 SMP_TRACE_ERROR("%s failed to calc MacKey", __FUNCTION__);
1584 return FALSE;
1585 }
1586 #if SMP_DEBUG == TRUE
1587 p_prnt = mac_key;
1588 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"MacKey", BT_OCTET16_LEN);
1589 #endif
1590
1591 if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2,
1592 length, ltk)) {
1593 SMP_TRACE_ERROR("%s failed to calc LTK", __FUNCTION__);
1594 return FALSE;
1595 }
1596 #if SMP_DEBUG == TRUE
1597 p_prnt = ltk;
1598 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"LTK", BT_OCTET16_LEN);
1599 #endif
1600
1601 return TRUE;
1602 }
1603
1604 /*******************************************************************************
1605 **
1606 ** Function smp_calculate_f5_mackey_or_long_term_key
1607 **
1608 ** Description The function calculates the value of MacKey or LTK by the rules
1609 ** defined for f5 function.
1610 ** At the moment exactly the same formula is used to calculate
1611 ** LTK and MacKey.
1612 ** The difference is the value of input parameter Counter:
1613 ** - in MacKey calculations the value is 0;
1614 ** - in LTK calculations the value is 1.
1615 ** The formula:
1616 ** mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length)
1617 ** T
1618 ** where
1619 ** input: T is 256 bits;
1620 ** Counter is 8 bits, its value is 0 for MacKey,
1621 ** 1 for LTK;
1622 ** keyID is 32 bits, its value is 0x62746c65;
1623 ** N1 is 128 bits;
1624 ** N2 is 128 bits;
1625 ** A1 is 56 bits;
1626 ** A2 is 56 bits;
1627 ** Length is 16 bits, its value is 0x0100
1628 ** output: LTK is 128 bit.
1629 **
1630 ** Returns FALSE if out of resources, TRUE in other cases.
1631 **
1632 ** Note The LSB is the first octet, the MSB is the last octet of
1633 ** the AES-CMAC input/output stream.
1634 **
1635 *******************************************************************************/
smp_calculate_f5_mackey_or_long_term_key(UINT8 * t,UINT8 * counter,UINT8 * key_id,UINT8 * n1,UINT8 * n2,UINT8 * a1,UINT8 * a2,UINT8 * length,UINT8 * mac)1636 BOOLEAN smp_calculate_f5_mackey_or_long_term_key(UINT8 *t, UINT8 *counter,
1637 UINT8 *key_id, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
1638 UINT8 *length, UINT8 *mac)
1639 {
1640 UINT8 *p = NULL;
1641 UINT8 cmac[BT_OCTET16_LEN];
1642 UINT8 key[BT_OCTET16_LEN];
1643 UINT8 msg_len = 1 /* Counter size */ + 4 /* keyID size */ +
1644 BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
1645 7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */;
1646 UINT8 msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2];
1647 BOOLEAN ret = TRUE;
1648 #if SMP_DEBUG == TRUE
1649 UINT8 *p_prnt = NULL;
1650 #endif
1651
1652 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1653 #if SMP_DEBUG == TRUE
1654 p_prnt = t;
1655 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
1656 p_prnt = counter;
1657 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Counter", 1);
1658 p_prnt = key_id;
1659 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"KeyID", 4);
1660 p_prnt = n1;
1661 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
1662 p_prnt = n2;
1663 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
1664 p_prnt = a1;
1665 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
1666 p_prnt = a2;
1667 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A2", 7);
1668 p_prnt = length;
1669 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Length", 2);
1670 #endif
1671
1672 p = key;
1673 ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN);
1674 #if SMP_DEBUG == TRUE
1675 p_prnt = key;
1676 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1677 #endif
1678 p = msg;
1679 ARRAY_TO_STREAM(p, length, 2);
1680 ARRAY_TO_STREAM(p, a2, 7);
1681 ARRAY_TO_STREAM(p, a1, 7);
1682 ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
1683 ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
1684 ARRAY_TO_STREAM(p, key_id, 4);
1685 ARRAY_TO_STREAM(p, counter, 1);
1686 #if SMP_DEBUG == TRUE
1687 p_prnt = msg;
1688 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
1689 #endif
1690
1691 if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
1692 SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1693 ret = FALSE;
1694 }
1695
1696 #if SMP_DEBUG == TRUE
1697 p_prnt = cmac;
1698 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1699 #endif
1700
1701 p = mac;
1702 ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1703 return ret;
1704 }
1705
1706 /*******************************************************************************
1707 **
1708 ** Function smp_calculate_f5_key
1709 **
1710 ** Description The function calculates key T used in calculation of
1711 ** MacKey and LTK (f5 output is defined as MacKey || LTK).
1712 ** T = AES-CMAC (W)
1713 ** salt
1714 ** where
1715 ** Internal: salt is 128 bit.
1716 ** input: W is 256 bit.
1717 ** Output: T is 128 bit.
1718 **
1719 ** Returns FALSE if out of resources, TRUE in other cases.
1720 **
1721 ** Note The LSB is the first octet, the MSB is the last octet of
1722 ** the AES-CMAC input/output stream.
1723 **
1724 *******************************************************************************/
smp_calculate_f5_key(UINT8 * w,UINT8 * t)1725 BOOLEAN smp_calculate_f5_key(UINT8 *w, UINT8 *t)
1726 {
1727 UINT8 *p = NULL;
1728 /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */
1729 /*
1730 salt: 6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE
1731 */
1732 BT_OCTET16 salt = {
1733 0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60,
1734 0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C
1735 };
1736 #if SMP_DEBUG == TRUE
1737 UINT8 *p_prnt = NULL;
1738 #endif
1739
1740 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1741 #if SMP_DEBUG == TRUE
1742 p_prnt = salt;
1743 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"salt", BT_OCTET16_LEN);
1744 p_prnt = w;
1745 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
1746 #endif
1747
1748 BT_OCTET16 key;
1749 BT_OCTET32 msg;
1750
1751 p = key;
1752 ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);
1753 p = msg;
1754 ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN);
1755 #if SMP_DEBUG == TRUE
1756 p_prnt = key;
1757 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1758 p_prnt = msg;
1759 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", BT_OCTET32_LEN);
1760 #endif
1761
1762 BT_OCTET16 cmac;
1763 BOOLEAN ret = TRUE;
1764 if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac)) {
1765 SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1766 ret = FALSE;
1767 }
1768
1769 #if SMP_DEBUG == TRUE
1770 p_prnt = cmac;
1771 smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1772 #endif
1773
1774 p = t;
1775 ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1776 return ret;
1777 }
1778
1779 /*******************************************************************************
1780 **
1781 ** Function smp_calculate_local_dhkey_check
1782 **
1783 ** Description The function calculates and saves local device DHKey check
1784 ** value in CB.
1785 ** Before doing this it calls smp_calculate_f5_mackey_and_long_term_key(...).
1786 ** to calculate MacKey and LTK.
1787 ** MacKey is used in dhkey calculation.
1788 **
1789 ** Returns void
1790 **
1791 *******************************************************************************/
smp_calculate_local_dhkey_check(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1792 void smp_calculate_local_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1793 {
1794 UINT8 iocap[3], a[7], b[7];
1795
1796 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1797
1798 smp_calculate_f5_mackey_and_long_term_key(p_cb);
1799
1800 smp_collect_local_io_capabilities(iocap, p_cb);
1801
1802 smp_collect_local_ble_address(a, p_cb);
1803 smp_collect_peer_ble_address(b, p_cb);
1804 smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b,
1805 p_cb->dhkey_check);
1806
1807 SMP_TRACE_EVENT ("local DHKey check calculation is completed");
1808 }
1809
1810 /*******************************************************************************
1811 **
1812 ** Function smp_calculate_peer_dhkey_check
1813 **
1814 ** Description The function calculates peer device DHKey check value.
1815 **
1816 ** Returns void
1817 **
1818 *******************************************************************************/
smp_calculate_peer_dhkey_check(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1819 void smp_calculate_peer_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1820 {
1821 UINT8 iocap[3], a[7], b[7];
1822 BT_OCTET16 param_buf;
1823 BOOLEAN ret;
1824 tSMP_KEY key;
1825 tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
1826
1827 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1828
1829 smp_collect_peer_io_capabilities(iocap, p_cb);
1830
1831 smp_collect_local_ble_address(a, p_cb);
1832 smp_collect_peer_ble_address(b, p_cb);
1833 ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap,
1834 b, a, param_buf);
1835
1836 if (ret) {
1837 SMP_TRACE_EVENT ("peer DHKey check calculation is completed");
1838 #if (SMP_DEBUG == TRUE)
1839 smp_debug_print_nbyte_little_endian (param_buf, (const UINT8 *)"peer DHKey check",
1840 BT_OCTET16_LEN);
1841 #endif
1842 key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
1843 key.p_data = param_buf;
1844 smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key);
1845 } else {
1846 SMP_TRACE_EVENT ("peer DHKey check calculation failed");
1847 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
1848 }
1849 }
1850
1851 /*******************************************************************************
1852 **
1853 ** Function smp_calculate_f6
1854 **
1855 ** Description The function calculates
1856 ** C = f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMAC (N1||N2||R||IOcap||A1||A2)
1857 ** W
1858 ** where
1859 ** input: W is 128 bit,
1860 ** N1 is 128 bit,
1861 ** N2 is 128 bit,
1862 ** R is 128 bit,
1863 ** IOcap is 24 bit,
1864 ** A1 is 56 bit,
1865 ** A2 is 56 bit,
1866 ** output: C is 128 bit.
1867 **
1868 ** Returns FALSE if out of resources, TRUE in other cases.
1869 **
1870 ** Note The LSB is the first octet, the MSB is the last octet of
1871 ** the AES-CMAC input/output stream.
1872 **
1873 *******************************************************************************/
smp_calculate_f6(UINT8 * w,UINT8 * n1,UINT8 * n2,UINT8 * r,UINT8 * iocap,UINT8 * a1,UINT8 * a2,UINT8 * c)1874 BOOLEAN smp_calculate_f6(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *r, UINT8 *iocap, UINT8 *a1,
1875 UINT8 *a2, UINT8 *c)
1876 {
1877 UINT8 *p = NULL;
1878 UINT8 msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
1879 BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/
1880 + 7 /* A2 size*/;
1881 UINT8 msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7];
1882 #if SMP_DEBUG == TRUE
1883 UINT8 *p_print = NULL;
1884 #endif
1885
1886 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1887 #if SMP_DEBUG == TRUE
1888 p_print = w;
1889 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
1890 p_print = n1;
1891 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N1", BT_OCTET16_LEN);
1892 p_print = n2;
1893 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N2", BT_OCTET16_LEN);
1894 p_print = r;
1895 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"R", BT_OCTET16_LEN);
1896 p_print = iocap;
1897 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"IOcap", 3);
1898 p_print = a1;
1899 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A1", 7);
1900 p_print = a2;
1901 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A2", 7);
1902 #endif
1903
1904 UINT8 cmac[BT_OCTET16_LEN];
1905 UINT8 key[BT_OCTET16_LEN];
1906
1907 p = key;
1908 ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
1909 #if SMP_DEBUG == TRUE
1910 p_print = key;
1911 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
1912 #endif
1913
1914 p = msg;
1915 ARRAY_TO_STREAM(p, a2, 7);
1916 ARRAY_TO_STREAM(p, a1, 7);
1917 ARRAY_TO_STREAM(p, iocap, 3);
1918 ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN);
1919 ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
1920 ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
1921 #if SMP_DEBUG == TRUE
1922 p_print = msg;
1923 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"M", msg_len);
1924 #endif
1925
1926 BOOLEAN ret = TRUE;
1927 if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
1928 SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1929 ret = FALSE;
1930 }
1931
1932 #if SMP_DEBUG == TRUE
1933 p_print = cmac;
1934 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1935 #endif
1936
1937 p = c;
1938 ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1939 return ret;
1940 }
1941
1942 /*******************************************************************************
1943 **
1944 ** Function smp_calculate_link_key_from_long_term_key
1945 **
1946 ** Description The function calculates and saves BR/EDR link key derived from
1947 ** LE SC LTK.
1948 **
1949 ** Returns FALSE if out of resources, TRUE in other cases.
1950 **
1951 *******************************************************************************/
smp_calculate_link_key_from_long_term_key(tSMP_CB * p_cb)1952 BOOLEAN smp_calculate_link_key_from_long_term_key(tSMP_CB *p_cb)
1953 {
1954 tBTM_SEC_DEV_REC *p_dev_rec;
1955 BD_ADDR bda_for_lk;
1956 tBLE_ADDR_TYPE conn_addr_type;
1957
1958 SMP_TRACE_DEBUG ("%s", __func__);
1959
1960 if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) {
1961 SMP_TRACE_DEBUG ("Use rcvd identity address as BD_ADDR of LK rcvd identity address");
1962 memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN);
1963 } else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) &&
1964 conn_addr_type == BLE_ADDR_PUBLIC) {
1965 SMP_TRACE_DEBUG ("Use rcvd connection address as BD_ADDR of LK");
1966 } else {
1967 SMP_TRACE_WARNING ("Don't have peer public address to associate with LK");
1968 return FALSE;
1969 }
1970
1971 if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL) {
1972 SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
1973 return FALSE;
1974 }
1975
1976 BT_OCTET16 intermediate_link_key;
1977 BOOLEAN ret = TRUE;
1978
1979 ret = smp_calculate_h6(p_cb->ltk, (UINT8 *)"1pmt" /* reversed "tmp1" */, intermediate_link_key);
1980 if (!ret) {
1981 SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__);
1982 return ret;
1983 }
1984
1985 BT_OCTET16 link_key;
1986 ret = smp_calculate_h6(intermediate_link_key, (UINT8 *) "rbel" /* reversed "lebr" */, link_key);
1987 if (!ret) {
1988 SMP_TRACE_ERROR("%s failed", __func__);
1989 } else {
1990 UINT8 link_key_type;
1991 if (btm_cb.security_mode == BTM_SEC_MODE_SC) {
1992 /* Secure Connections Only Mode */
1993 link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
1994 } else if (controller_get_interface()->supports_secure_connections()) {
1995 /* both transports are SC capable */
1996 if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) {
1997 link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
1998 } else {
1999 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
2000 }
2001 } else if (btm_cb.security_mode == BTM_SEC_MODE_SP) {
2002 /* BR/EDR transport is SSP capable */
2003 if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) {
2004 link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
2005 } else {
2006 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
2007 }
2008 } else {
2009 SMP_TRACE_ERROR ("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x",
2010 __func__, btm_cb.security_mode, p_dev_rec->sm4);
2011 return FALSE;
2012 }
2013
2014 link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;
2015
2016 UINT8 *p;
2017 BT_OCTET16 notif_link_key;
2018 p = notif_link_key;
2019 ARRAY16_TO_STREAM(p, link_key);
2020
2021 btm_sec_link_key_notification (bda_for_lk, notif_link_key, link_key_type);
2022
2023 SMP_TRACE_EVENT ("%s is completed", __func__);
2024 }
2025
2026 return ret;
2027 }
2028
2029 /*******************************************************************************
2030 **
2031 ** Function smp_calculate_long_term_key_from_link_key
2032 **
2033 ** Description The function calculates and saves SC LTK derived from BR/EDR
2034 ** link key.
2035 **
2036 ** Returns FALSE if out of resources, TRUE in other cases.
2037 **
2038 *******************************************************************************/
smp_calculate_long_term_key_from_link_key(tSMP_CB * p_cb)2039 BOOLEAN smp_calculate_long_term_key_from_link_key(tSMP_CB *p_cb)
2040 {
2041 BOOLEAN ret = TRUE;
2042 tBTM_SEC_DEV_REC *p_dev_rec;
2043 UINT8 rev_link_key[16];
2044
2045 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
2046
2047 if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL) {
2048 SMP_TRACE_ERROR("%s failed to find Security Record", __FUNCTION__);
2049 return FALSE;
2050 }
2051
2052 UINT8 br_link_key_type;
2053 if ((br_link_key_type = BTM_SecGetDeviceLinkKeyType (p_cb->pairing_bda))
2054 == BTM_LKEY_TYPE_IGNORE) {
2055 SMP_TRACE_ERROR("%s failed to retrieve BR link type", __FUNCTION__);
2056 return FALSE;
2057 }
2058
2059 if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
2060 (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) {
2061 SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d",
2062 __FUNCTION__, br_link_key_type);
2063 return FALSE;
2064 }
2065
2066 UINT8 *p1;
2067 UINT8 *p2;
2068 p1 = rev_link_key;
2069 p2 = p_dev_rec->link_key;
2070 REVERSE_ARRAY_TO_STREAM(p1, p2, 16);
2071
2072 BT_OCTET16 intermediate_long_term_key;
2073 /* "tmp2" obtained from the spec */
2074 ret = smp_calculate_h6(rev_link_key, (UINT8 *) "2pmt" /* reversed "tmp2" */,
2075 intermediate_long_term_key);
2076
2077 if (!ret) {
2078 SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key", __FUNCTION__);
2079 return ret;
2080 }
2081
2082 /* "brle" obtained from the spec */
2083 ret = smp_calculate_h6(intermediate_long_term_key, (UINT8 *) "elrb" /* reversed "brle" */,
2084 p_cb->ltk);
2085
2086 if (!ret) {
2087 SMP_TRACE_ERROR("%s failed", __FUNCTION__);
2088 } else {
2089 p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
2090 ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE;
2091 SMP_TRACE_EVENT ("%s is completed", __FUNCTION__);
2092 }
2093
2094 return ret;
2095 }
2096
2097 /*******************************************************************************
2098 **
2099 ** Function smp_calculate_h6
2100 **
2101 ** Description The function calculates
2102 ** C = h6(W, KeyID) = AES-CMAC (KeyID)
2103 ** W
2104 ** where
2105 ** input: W is 128 bit,
2106 ** KeyId is 32 bit,
2107 ** output: C is 128 bit.
2108 **
2109 ** Returns FALSE if out of resources, TRUE in other cases.
2110 **
2111 ** Note The LSB is the first octet, the MSB is the last octet of
2112 ** the AES-CMAC input/output stream.
2113 **
2114 *******************************************************************************/
smp_calculate_h6(UINT8 * w,UINT8 * keyid,UINT8 * c)2115 BOOLEAN smp_calculate_h6(UINT8 *w, UINT8 *keyid, UINT8 *c)
2116 {
2117 #if SMP_DEBUG == TRUE
2118 UINT8 *p_print = NULL;
2119 #endif
2120
2121 SMP_TRACE_DEBUG ("%s", __FUNCTION__);
2122 #if SMP_DEBUG == TRUE
2123 p_print = w;
2124 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
2125 p_print = keyid;
2126 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"keyID", 4);
2127 #endif
2128
2129 UINT8 *p = NULL;
2130 UINT8 key[BT_OCTET16_LEN];
2131
2132 p = key;
2133 ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
2134
2135 #if SMP_DEBUG == TRUE
2136 p_print = key;
2137 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
2138 #endif
2139
2140 UINT8 msg_len = 4 /* KeyID size */;
2141 UINT8 msg[4];
2142
2143 p = msg;
2144 ARRAY_TO_STREAM(p, keyid, 4);
2145
2146 #if SMP_DEBUG == TRUE
2147 p_print = msg;
2148 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *) "M", msg_len);
2149 #endif
2150
2151 BOOLEAN ret = TRUE;
2152 UINT8 cmac[BT_OCTET16_LEN];
2153 if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) {
2154 SMP_TRACE_ERROR("%s failed", __FUNCTION__);
2155 ret = FALSE;
2156 }
2157
2158 #if SMP_DEBUG == TRUE
2159 p_print = cmac;
2160 smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
2161 #endif
2162
2163 p = c;
2164 ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
2165 return ret;
2166 }
2167
2168 /*******************************************************************************
2169 **
2170 ** Function smp_start_nonce_generation
2171 **
2172 ** Description This function starts nonce generation.
2173 **
2174 ** Returns void
2175 **
2176 *******************************************************************************/
smp_start_nonce_generation(tSMP_CB * p_cb)2177 void smp_start_nonce_generation(tSMP_CB *p_cb)
2178 {
2179 SMP_TRACE_DEBUG("%s", __FUNCTION__);
2180 p_cb->rand_enc_proc_state = SMP_GEN_NONCE_0_7;
2181 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
2182 smp_rand_back(NULL);
2183 }
2184 }
2185
2186 /*******************************************************************************
2187 **
2188 ** Function smp_finish_nonce_generation
2189 **
2190 ** Description This function finishes nonce generation.
2191 **
2192 ** Returns void
2193 **
2194 *******************************************************************************/
smp_finish_nonce_generation(tSMP_CB * p_cb)2195 void smp_finish_nonce_generation(tSMP_CB *p_cb)
2196 {
2197 SMP_TRACE_DEBUG("%s", __FUNCTION__);
2198 p_cb->rand_enc_proc_state = SMP_GEN_NONCE_8_15;
2199 if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) {
2200 smp_rand_back(NULL);
2201 }
2202 }
2203
2204 /*******************************************************************************
2205 **
2206 ** Function smp_process_new_nonce
2207 **
2208 ** Description This function notifies SM that it has new nonce.
2209 **
2210 ** Returns void
2211 **
2212 *******************************************************************************/
smp_process_new_nonce(tSMP_CB * p_cb)2213 void smp_process_new_nonce(tSMP_CB *p_cb)
2214 {
2215 SMP_TRACE_DEBUG ("%s round %d", __FUNCTION__, p_cb->round);
2216 smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
2217 }
2218
2219 /*******************************************************************************
2220 **
2221 ** Function smp_rand_back
2222 **
2223 ** Description This function is to process the rand command finished,
2224 ** process the random/encrypted number for further action.
2225 **
2226 ** Returns void
2227 **
2228 *******************************************************************************/
smp_rand_back(tBTM_RAND_ENC * p)2229 static void smp_rand_back(tBTM_RAND_ENC *p)
2230 {
2231 tSMP_CB *p_cb = &smp_cb;
2232 UINT8 *pp = p->param_buf;
2233 UINT8 failure = SMP_PAIR_FAIL_UNKNOWN;
2234 UINT8 state = p_cb->rand_enc_proc_state & ~0x80;
2235
2236 SMP_TRACE_DEBUG ("%s state=0x%x", __FUNCTION__, state);
2237 if (p && p->status == HCI_SUCCESS) {
2238 switch (state) {
2239 case SMP_GEN_SRAND_MRAND:
2240 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
2241 smp_generate_rand_cont(p_cb, NULL);
2242 break;
2243
2244 case SMP_GEN_SRAND_MRAND_CONT:
2245 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
2246 smp_generate_confirm(p_cb, NULL);
2247 break;
2248
2249 case SMP_GEN_DIV_LTK:
2250 STREAM_TO_UINT16(p_cb->div, pp);
2251 smp_generate_ltk_cont(p_cb, NULL);
2252 break;
2253
2254 case SMP_GEN_DIV_CSRK:
2255 STREAM_TO_UINT16(p_cb->div, pp);
2256 smp_compute_csrk(p_cb, NULL);
2257 break;
2258
2259 case SMP_GEN_TK:
2260 smp_proc_passkey(p_cb, p);
2261 break;
2262
2263 case SMP_GEN_RAND_V:
2264 memcpy(p_cb->enc_rand, p->param_buf, BT_OCTET8_LEN);
2265 smp_generate_y(p_cb, NULL);
2266 break;
2267
2268 case SMP_GENERATE_PRIVATE_KEY_0_7:
2269 case SMP_GENERATE_PRIVATE_KEY_8_15:
2270 case SMP_GENERATE_PRIVATE_KEY_16_23:
2271 case SMP_GENERATE_PRIVATE_KEY_24_31:
2272 smp_continue_private_key_creation(p_cb, p);
2273 break;
2274
2275 case SMP_GEN_NONCE_0_7:
2276 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
2277 smp_finish_nonce_generation(p_cb);
2278 break;
2279
2280 case SMP_GEN_NONCE_8_15:
2281 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
2282 smp_process_new_nonce(p_cb);
2283 break;
2284 }
2285
2286 return;
2287 }
2288
2289 SMP_TRACE_ERROR("%s key generation failed: (%d)", __FUNCTION__, p_cb->rand_enc_proc_state);
2290 smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &failure);
2291 }
2292
2293 #endif
2294