1 // Copyright (c) 2019-2021 Linaro LTD
2 // Copyright (c) 2019-2020 JUUL Labs
3 // Copyright (c) 2019-2023 Arm Limited
4 //
5 // SPDX-License-Identifier: Apache-2.0
6
7 use byteorder::{
8 LittleEndian, WriteBytesExt,
9 };
10 use log::{
11 Level::Info,
12 error,
13 info,
14 log_enabled,
15 warn,
16 };
17 use rand::{
18 Rng, RngCore, SeedableRng,
19 rngs::SmallRng,
20 };
21 use std::{
22 collections::{BTreeMap, HashSet},
23 io::{Cursor, Write},
24 mem,
25 slice,
26 };
27 use aes::{
28 Aes128,
29 Aes128Ctr,
30 Aes256,
31 Aes256Ctr,
32 NewBlockCipher,
33 };
34 use cipher::{
35 FromBlockCipher,
36 generic_array::GenericArray,
37 StreamCipher,
38 };
39
40 use simflash::{Flash, SimFlash, SimMultiFlash};
41 use mcuboot_sys::{c, AreaDesc, FlashId, RamBlock};
42 use crate::{
43 ALL_DEVICES,
44 DeviceName,
45 };
46 use crate::caps::Caps;
47 use crate::depends::{
48 BoringDep,
49 Depender,
50 DepTest,
51 DepType,
52 NO_DEPS,
53 PairDep,
54 UpgradeInfo,
55 };
56 use crate::tlv::{ManifestGen, TlvGen, TlvFlags};
57 use crate::utils::align_up;
58 use typenum::{U32, U16};
59
60 /// For testing, use a non-zero offset for the ram-load, to make sure the offset is getting used
61 /// properly, but the value is not really that important.
62 const RAM_LOAD_ADDR: u32 = 1024;
63
64 /// A builder for Images. This describes a single run of the simulator,
65 /// capturing the configuration of a particular set of devices, including
66 /// the flash simulator(s) and the information about the slots.
67 #[derive(Clone)]
68 pub struct ImagesBuilder {
69 flash: SimMultiFlash,
70 areadesc: AreaDesc,
71 slots: Vec<[SlotInfo; 2]>,
72 ram: RamData,
73 }
74
75 /// Images represents the state of a simulation for a given set of images.
76 /// The flash holds the state of the simulated flash, whereas primaries
77 /// and upgrades hold the expected contents of these images.
78 pub struct Images {
79 flash: SimMultiFlash,
80 areadesc: AreaDesc,
81 images: Vec<OneImage>,
82 total_count: Option<i32>,
83 ram: RamData,
84 }
85
86 /// When doing multi-image, there is an instance of this information for
87 /// each of the images. Single image there will be one of these.
88 struct OneImage {
89 slots: [SlotInfo; 2],
90 primaries: ImageData,
91 upgrades: ImageData,
92 }
93
94 /// The Rust-side representation of an image. For unencrypted images, this
95 /// is just the unencrypted payload. For encrypted images, we store both
96 /// the encrypted and the plaintext.
97 struct ImageData {
98 size: usize,
99 plain: Vec<u8>,
100 cipher: Option<Vec<u8>>,
101 }
102
103 /// For the RamLoad test cases, we need a contiguous area of RAM to load these images into. For
104 /// multi-image builds, these may not correspond with the offsets. This has to be computed early,
105 /// before images are built, because each image contains the offset where the image is to be loaded
106 /// in the header, which is contained within the signature.
107 #[derive(Clone, Debug)]
108 struct RamData {
109 places: BTreeMap<SlotKey, SlotPlace>,
110 total: u32,
111 }
112
113 /// Every slot is indexed by this key.
114 #[derive(Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
115 struct SlotKey {
116 dev_id: u8,
117 base_off: usize,
118 }
119
120 #[derive(Clone, Debug)]
121 struct SlotPlace {
122 offset: u32,
123 size: u32,
124 }
125
126 impl ImagesBuilder {
127 /// Construct a new image builder for the given device. Returns
128 /// Some(builder) if is possible to test this configuration, or None if
129 /// not possible (for example, if there aren't enough image slots).
new(device: DeviceName, align: usize, erased_val: u8) -> Result<Self, String>130 pub fn new(device: DeviceName, align: usize, erased_val: u8) -> Result<Self, String> {
131 let (flash, areadesc, unsupported_caps) = Self::make_device(device, align, erased_val);
132
133 for cap in unsupported_caps {
134 if cap.present() {
135 return Err(format!("unsupported {:?}", cap));
136 }
137 }
138
139 let num_images = Caps::get_num_images();
140
141 let mut slots = Vec::with_capacity(num_images);
142 for image in 0..num_images {
143 // This mapping must match that defined in
144 // `boot/zephyr/include/sysflash/sysflash.h`.
145 let id0 = match image {
146 0 => FlashId::Image0,
147 1 => FlashId::Image2,
148 _ => panic!("More than 2 images not supported"),
149 };
150 let (primary_base, primary_len, primary_dev_id) = match areadesc.find(id0) {
151 Some(info) => info,
152 None => return Err("insufficient partitions".to_string()),
153 };
154 let id1 = match image {
155 0 => FlashId::Image1,
156 1 => FlashId::Image3,
157 _ => panic!("More than 2 images not supported"),
158 };
159 let (secondary_base, secondary_len, secondary_dev_id) = match areadesc.find(id1) {
160 Some(info) => info,
161 None => return Err("insufficient partitions".to_string()),
162 };
163
164 let offset_from_end = c::boot_magic_sz() + c::boot_max_align() * 4;
165
166 // Construct a primary image.
167 let primary = SlotInfo {
168 base_off: primary_base as usize,
169 trailer_off: primary_base + primary_len - offset_from_end,
170 len: primary_len as usize,
171 dev_id: primary_dev_id,
172 index: 0,
173 };
174
175 // And an upgrade image.
176 let secondary = SlotInfo {
177 base_off: secondary_base as usize,
178 trailer_off: secondary_base + secondary_len - offset_from_end,
179 len: secondary_len as usize,
180 dev_id: secondary_dev_id,
181 index: 1,
182 };
183
184 slots.push([primary, secondary]);
185 }
186
187 let ram = RamData::new(&slots);
188
189 Ok(ImagesBuilder {
190 flash,
191 areadesc,
192 slots,
193 ram,
194 })
195 }
196
each_device<F>(f: F) where F: Fn(Self)197 pub fn each_device<F>(f: F)
198 where F: Fn(Self)
199 {
200 for &dev in ALL_DEVICES {
201 for &align in test_alignments() {
202 for &erased_val in &[0, 0xff] {
203 match Self::new(dev, align, erased_val) {
204 Ok(run) => f(run),
205 Err(msg) => warn!("Skipping {}: {}", dev, msg),
206 }
207 }
208 }
209 }
210 }
211
212 /// Construct an `Images` that doesn't expect an upgrade to happen.
make_no_upgrade_image(self, deps: &DepTest) -> Images213 pub fn make_no_upgrade_image(self, deps: &DepTest) -> Images {
214 let num_images = self.num_images();
215 let mut flash = self.flash;
216 let ram = self.ram.clone(); // TODO: This is wasteful.
217 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
218 let dep: Box<dyn Depender> = if num_images > 1 {
219 Box::new(PairDep::new(num_images, image_num, deps))
220 } else {
221 Box::new(BoringDep::new(image_num, deps))
222 };
223 let primaries = install_image(&mut flash, &slots[0],
224 maximal(42784), &ram, &*dep, false);
225 let upgrades = match deps.depends[image_num] {
226 DepType::NoUpgrade => install_no_image(),
227 _ => install_image(&mut flash, &slots[1],
228 maximal(46928), &ram, &*dep, false)
229 };
230 OneImage {
231 slots,
232 primaries,
233 upgrades,
234 }}).collect();
235 install_ptable(&mut flash, &self.areadesc);
236 Images {
237 flash,
238 areadesc: self.areadesc,
239 images,
240 total_count: None,
241 ram: self.ram,
242 }
243 }
244
make_image(self, deps: &DepTest, permanent: bool) -> Images245 pub fn make_image(self, deps: &DepTest, permanent: bool) -> Images {
246 let mut images = self.make_no_upgrade_image(deps);
247 for image in &images.images {
248 mark_upgrade(&mut images.flash, &image.slots[1]);
249 }
250
251 // The count is meaningless if no flash operations are performed.
252 if !Caps::modifies_flash() {
253 return images;
254 }
255
256 // upgrades without fails, counts number of flash operations
257 let total_count = match images.run_basic_upgrade(permanent) {
258 Some(v) => v,
259 None =>
260 if deps.upgrades.iter().any(|u| *u == UpgradeInfo::Held) {
261 0
262 } else {
263 panic!("Unable to perform basic upgrade");
264 }
265 };
266
267 images.total_count = Some(total_count);
268 images
269 }
270
make_bad_secondary_slot_image(self) -> Images271 pub fn make_bad_secondary_slot_image(self) -> Images {
272 let mut bad_flash = self.flash;
273 let ram = self.ram.clone(); // TODO: Avoid this clone.
274 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
275 let dep = BoringDep::new(image_num, &NO_DEPS);
276 let primaries = install_image(&mut bad_flash, &slots[0],
277 maximal(32784), &ram, &dep, false);
278 let upgrades = install_image(&mut bad_flash, &slots[1],
279 maximal(41928), &ram, &dep, true);
280 OneImage {
281 slots,
282 primaries,
283 upgrades,
284 }}).collect();
285 Images {
286 flash: bad_flash,
287 areadesc: self.areadesc,
288 images,
289 total_count: None,
290 ram: self.ram,
291 }
292 }
293
make_oversized_secondary_slot_image(self) -> Images294 pub fn make_oversized_secondary_slot_image(self) -> Images {
295 let mut bad_flash = self.flash;
296 let ram = self.ram.clone(); // TODO: Avoid this clone.
297 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
298 let dep = BoringDep::new(image_num, &NO_DEPS);
299 let primaries = install_image(&mut bad_flash, &slots[0],
300 maximal(32784), &ram, &dep, false);
301 let upgrades = install_image(&mut bad_flash, &slots[1],
302 ImageSize::Oversized, &ram, &dep, false);
303 OneImage {
304 slots,
305 primaries,
306 upgrades,
307 }}).collect();
308 Images {
309 flash: bad_flash,
310 areadesc: self.areadesc,
311 images,
312 total_count: None,
313 ram: self.ram,
314 }
315 }
316
make_erased_secondary_image(self) -> Images317 pub fn make_erased_secondary_image(self) -> Images {
318 let mut flash = self.flash;
319 let ram = self.ram.clone(); // TODO: Avoid this clone.
320 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
321 let dep = BoringDep::new(image_num, &NO_DEPS);
322 let primaries = install_image(&mut flash, &slots[0],
323 maximal(32784), &ram, &dep, false);
324 let upgrades = install_no_image();
325 OneImage {
326 slots,
327 primaries,
328 upgrades,
329 }}).collect();
330 Images {
331 flash,
332 areadesc: self.areadesc,
333 images,
334 total_count: None,
335 ram: self.ram,
336 }
337 }
338
make_bootstrap_image(self) -> Images339 pub fn make_bootstrap_image(self) -> Images {
340 let mut flash = self.flash;
341 let ram = self.ram.clone(); // TODO: Avoid this clone.
342 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
343 let dep = BoringDep::new(image_num, &NO_DEPS);
344 let primaries = install_no_image();
345 let upgrades = install_image(&mut flash, &slots[1],
346 maximal(32784), &ram, &dep, false);
347 OneImage {
348 slots,
349 primaries,
350 upgrades,
351 }}).collect();
352 Images {
353 flash,
354 areadesc: self.areadesc,
355 images,
356 total_count: None,
357 ram: self.ram,
358 }
359 }
360
make_oversized_bootstrap_image(self) -> Images361 pub fn make_oversized_bootstrap_image(self) -> Images {
362 let mut flash = self.flash;
363 let ram = self.ram.clone(); // TODO: Avoid this clone.
364 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
365 let dep = BoringDep::new(image_num, &NO_DEPS);
366 let primaries = install_no_image();
367 let upgrades = install_image(&mut flash, &slots[1],
368 ImageSize::Oversized, &ram, &dep, false);
369 OneImage {
370 slots,
371 primaries,
372 upgrades,
373 }}).collect();
374 Images {
375 flash,
376 areadesc: self.areadesc,
377 images,
378 total_count: None,
379 ram: self.ram,
380 }
381 }
382
383 /// Build the Flash and area descriptor for a given device.
make_device(device: DeviceName, align: usize, erased_val: u8) -> (SimMultiFlash, AreaDesc, &'static [Caps])384 pub fn make_device(device: DeviceName, align: usize, erased_val: u8) -> (SimMultiFlash, AreaDesc, &'static [Caps]) {
385 match device {
386 DeviceName::Stm32f4 => {
387 // STM style flash. Large sectors, with a large scratch area.
388 // The flash layout as described is not present in any real STM32F4 device, but it
389 // serves to exercise support for sectors of varying sizes inside a single slot,
390 // as long as they are compatible in both slots and all fit in the scratch.
391 let dev = SimFlash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024, 64 * 1024,
392 32 * 1024, 32 * 1024, 64 * 1024,
393 32 * 1024, 32 * 1024, 64 * 1024,
394 128 * 1024],
395 align as usize, erased_val);
396 let dev_id = 0;
397 let mut areadesc = AreaDesc::new();
398 areadesc.add_flash_sectors(dev_id, &dev);
399 areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
400 areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
401 areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
402
403 let mut flash = SimMultiFlash::new();
404 flash.insert(dev_id, dev);
405 (flash, areadesc, &[Caps::SwapUsingMove])
406 }
407 DeviceName::K64f => {
408 // NXP style flash. Small sectors, one small sector for scratch.
409 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
410
411 let dev_id = 0;
412 let mut areadesc = AreaDesc::new();
413 areadesc.add_flash_sectors(dev_id, &dev);
414 areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
415 areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
416 areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
417
418 let mut flash = SimMultiFlash::new();
419 flash.insert(dev_id, dev);
420 (flash, areadesc, &[])
421 }
422 DeviceName::K64fBig => {
423 // Simulating an STM style flash on top of an NXP style flash. Underlying flash device
424 // uses small sectors, but we tell the bootloader they are large.
425 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
426
427 let dev_id = 0;
428 let mut areadesc = AreaDesc::new();
429 areadesc.add_flash_sectors(dev_id, &dev);
430 areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0, dev_id);
431 areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1, dev_id);
432 areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
433
434 let mut flash = SimMultiFlash::new();
435 flash.insert(dev_id, dev);
436 (flash, areadesc, &[Caps::SwapUsingMove])
437 }
438 DeviceName::Nrf52840 => {
439 // Simulating the flash on the nrf52840 with partitions set up so that the scratch size
440 // does not divide into the image size.
441 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
442
443 let dev_id = 0;
444 let mut areadesc = AreaDesc::new();
445 areadesc.add_flash_sectors(dev_id, &dev);
446 areadesc.add_image(0x008000, 0x034000, FlashId::Image0, dev_id);
447 areadesc.add_image(0x03c000, 0x034000, FlashId::Image1, dev_id);
448 areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch, dev_id);
449
450 let mut flash = SimMultiFlash::new();
451 flash.insert(dev_id, dev);
452 (flash, areadesc, &[])
453 }
454 DeviceName::Nrf52840UnequalSlots => {
455 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
456
457 let dev_id = 0;
458 let mut areadesc = AreaDesc::new();
459 areadesc.add_flash_sectors(dev_id, &dev);
460 areadesc.add_image(0x008000, 0x03c000, FlashId::Image0, dev_id);
461 areadesc.add_image(0x044000, 0x03b000, FlashId::Image1, dev_id);
462
463 let mut flash = SimMultiFlash::new();
464 flash.insert(dev_id, dev);
465 (flash, areadesc, &[Caps::SwapUsingScratch, Caps::OverwriteUpgrade])
466 }
467 DeviceName::Nrf52840SpiFlash => {
468 // Simulate nrf52840 with external SPI flash. The external SPI flash
469 // has a larger sector size so for now store scratch on that flash.
470 let dev0 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
471 let dev1 = SimFlash::new(vec![8192; 64], align as usize, erased_val);
472
473 let mut areadesc = AreaDesc::new();
474 areadesc.add_flash_sectors(0, &dev0);
475 areadesc.add_flash_sectors(1, &dev1);
476
477 areadesc.add_image(0x008000, 0x068000, FlashId::Image0, 0);
478 areadesc.add_image(0x000000, 0x068000, FlashId::Image1, 1);
479 areadesc.add_image(0x068000, 0x018000, FlashId::ImageScratch, 1);
480
481 let mut flash = SimMultiFlash::new();
482 flash.insert(0, dev0);
483 flash.insert(1, dev1);
484 (flash, areadesc, &[Caps::SwapUsingMove])
485 }
486 DeviceName::K64fMulti => {
487 // NXP style flash, but larger, to support multiple images.
488 let dev = SimFlash::new(vec![4096; 256], align as usize, erased_val);
489
490 let dev_id = 0;
491 let mut areadesc = AreaDesc::new();
492 areadesc.add_flash_sectors(dev_id, &dev);
493 areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
494 areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
495 areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
496 areadesc.add_image(0x080000, 0x020000, FlashId::Image2, dev_id);
497 areadesc.add_image(0x0a0000, 0x020000, FlashId::Image3, dev_id);
498
499 let mut flash = SimMultiFlash::new();
500 flash.insert(dev_id, dev);
501 (flash, areadesc, &[])
502 }
503 }
504 }
505
num_images(&self) -> usize506 pub fn num_images(&self) -> usize {
507 self.slots.len()
508 }
509 }
510
511 impl Images {
512 /// A simple upgrade without forced failures.
513 ///
514 /// Returns the number of flash operations which can later be used to
515 /// inject failures at chosen steps. Returns None if it was unable to
516 /// count the operations in a basic upgrade.
run_basic_upgrade(&self, permanent: bool) -> Option<i32>517 pub fn run_basic_upgrade(&self, permanent: bool) -> Option<i32> {
518 let (flash, total_count) = self.try_upgrade(None, permanent);
519 info!("Total flash operation count={}", total_count);
520
521 if !self.verify_images(&flash, 0, 1) {
522 warn!("Image mismatch after first boot");
523 None
524 } else {
525 Some(total_count)
526 }
527 }
528
run_bootstrap(&self) -> bool529 pub fn run_bootstrap(&self) -> bool {
530 let mut flash = self.flash.clone();
531 let mut fails = 0;
532
533 if Caps::Bootstrap.present() {
534 info!("Try bootstraping image in the primary");
535
536 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
537 warn!("Failed first boot");
538 fails += 1;
539 }
540
541 if !self.verify_images(&flash, 0, 1) {
542 warn!("Image in the first slot was not bootstrapped");
543 fails += 1;
544 }
545
546 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
547 BOOT_FLAG_SET, BOOT_FLAG_SET) {
548 warn!("Mismatched trailer for the primary slot");
549 fails += 1;
550 }
551 }
552
553 if fails > 0 {
554 error!("Expected trailer on secondary slot to be erased");
555 }
556
557 fails > 0
558 }
559
run_oversized_bootstrap(&self) -> bool560 pub fn run_oversized_bootstrap(&self) -> bool {
561 let mut flash = self.flash.clone();
562 let mut fails = 0;
563
564 if Caps::Bootstrap.present() {
565 info!("Try bootstraping image in the primary");
566
567 let boot_result = c::boot_go(&mut flash, &self.areadesc, None, None, false).interrupted();
568
569 if boot_result {
570 warn!("Failed first boot");
571 fails += 1;
572 }
573
574 if self.verify_images(&flash, 0, 1) {
575 warn!("Image in the first slot was not bootstrapped");
576 fails += 1;
577 }
578
579 if self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
580 BOOT_FLAG_SET, BOOT_FLAG_SET) {
581 warn!("Mismatched trailer for the primary slot");
582 fails += 1;
583 }
584 }
585
586 if fails > 0 {
587 error!("Expected trailer on secondary slot to be erased");
588 }
589
590 fails > 0
591 }
592
593
594 /// Test a simple upgrade, with dependencies given, and verify that the
595 /// image does as is described in the test.
run_check_deps(&self, deps: &DepTest) -> bool596 pub fn run_check_deps(&self, deps: &DepTest) -> bool {
597 if !Caps::modifies_flash() {
598 return false;
599 }
600
601 let (flash, _) = self.try_upgrade(None, true);
602
603 self.verify_dep_images(&flash, deps)
604 }
605
is_swap_upgrade(&self) -> bool606 fn is_swap_upgrade(&self) -> bool {
607 Caps::SwapUsingScratch.present() || Caps::SwapUsingMove.present()
608 }
609
run_basic_revert(&self) -> bool610 pub fn run_basic_revert(&self) -> bool {
611 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
612 return false;
613 }
614
615 let mut fails = 0;
616
617 // FIXME: this test would also pass if no swap is ever performed???
618 if self.is_swap_upgrade() {
619 for count in 2 .. 5 {
620 info!("Try revert: {}", count);
621 let flash = self.try_revert(count);
622 if !self.verify_images(&flash, 0, 0) {
623 error!("Revert failure on count {}", count);
624 fails += 1;
625 }
626 }
627 }
628
629 fails > 0
630 }
631
run_perm_with_fails(&self) -> bool632 pub fn run_perm_with_fails(&self) -> bool {
633 if !Caps::modifies_flash() {
634 return false;
635 }
636
637 let mut fails = 0;
638 let total_flash_ops = self.total_count.unwrap();
639
640 // Let's try an image halfway through.
641 for i in 1 .. total_flash_ops {
642 info!("Try interruption at {}", i);
643 let (flash, count) = self.try_upgrade(Some(i), true);
644 info!("Second boot, count={}", count);
645 if !self.verify_images(&flash, 0, 1) {
646 warn!("FAIL at step {} of {}", i, total_flash_ops);
647 fails += 1;
648 }
649
650 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
651 BOOT_FLAG_SET, BOOT_FLAG_SET) {
652 warn!("Mismatched trailer for the primary slot");
653 fails += 1;
654 }
655
656 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
657 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
658 warn!("Mismatched trailer for the secondary slot");
659 fails += 1;
660 }
661
662 if self.is_swap_upgrade() && !self.verify_images(&flash, 1, 0) {
663 warn!("Secondary slot FAIL at step {} of {}",
664 i, total_flash_ops);
665 fails += 1;
666 }
667 }
668
669 if fails > 0 {
670 error!("{} out of {} failed {:.2}%", fails, total_flash_ops,
671 fails as f32 * 100.0 / total_flash_ops as f32);
672 }
673
674 fails > 0
675 }
676
run_perm_with_random_fails(&self, total_fails: usize) -> bool677 pub fn run_perm_with_random_fails(&self, total_fails: usize) -> bool {
678 if !Caps::modifies_flash() {
679 return false;
680 }
681
682 let mut fails = 0;
683 let total_flash_ops = self.total_count.unwrap();
684 let (flash, total_counts) = self.try_random_fails(total_flash_ops, total_fails);
685 info!("Random interruptions at reset points={:?}", total_counts);
686
687 let primary_slot_ok = self.verify_images(&flash, 0, 1);
688 let secondary_slot_ok = if self.is_swap_upgrade() {
689 // TODO: This result is ignored.
690 self.verify_images(&flash, 1, 0)
691 } else {
692 true
693 };
694 if !primary_slot_ok || !secondary_slot_ok {
695 error!("Image mismatch after random interrupts: primary slot={} \
696 secondary slot={}",
697 if primary_slot_ok { "ok" } else { "fail" },
698 if secondary_slot_ok { "ok" } else { "fail" });
699 fails += 1;
700 }
701 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
702 BOOT_FLAG_SET, BOOT_FLAG_SET) {
703 error!("Mismatched trailer for the primary slot");
704 fails += 1;
705 }
706 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
707 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
708 error!("Mismatched trailer for the secondary slot");
709 fails += 1;
710 }
711
712 if fails > 0 {
713 error!("Error testing perm upgrade with {} fails", total_fails);
714 }
715
716 fails > 0
717 }
718
run_revert_with_fails(&self) -> bool719 pub fn run_revert_with_fails(&self) -> bool {
720 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
721 return false;
722 }
723
724 let mut fails = 0;
725
726 if self.is_swap_upgrade() {
727 for i in 1 .. self.total_count.unwrap() {
728 info!("Try interruption at {}", i);
729 if self.try_revert_with_fail_at(i) {
730 error!("Revert failed at interruption {}", i);
731 fails += 1;
732 }
733 }
734 }
735
736 fails > 0
737 }
738
run_norevert(&self) -> bool739 pub fn run_norevert(&self) -> bool {
740 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
741 return false;
742 }
743
744 let mut flash = self.flash.clone();
745 let mut fails = 0;
746
747 info!("Try norevert");
748
749 // First do a normal upgrade...
750 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
751 warn!("Failed first boot");
752 fails += 1;
753 }
754
755 //FIXME: copy_done is written by boot_go, is it ok if no copy
756 // was ever done?
757
758 if !self.verify_images(&flash, 0, 1) {
759 warn!("Primary slot image verification FAIL");
760 fails += 1;
761 }
762 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
763 BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
764 warn!("Mismatched trailer for the primary slot");
765 fails += 1;
766 }
767 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
768 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
769 warn!("Mismatched trailer for the secondary slot");
770 fails += 1;
771 }
772
773 // Marks image in the primary slot as permanent,
774 // no revert should happen...
775 self.mark_permanent_upgrades(&mut flash, 0);
776
777 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
778 BOOT_FLAG_SET, BOOT_FLAG_SET) {
779 warn!("Mismatched trailer for the primary slot");
780 fails += 1;
781 }
782
783 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
784 warn!("Failed second boot");
785 fails += 1;
786 }
787
788 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
789 BOOT_FLAG_SET, BOOT_FLAG_SET) {
790 warn!("Mismatched trailer for the primary slot");
791 fails += 1;
792 }
793 if !self.verify_images(&flash, 0, 1) {
794 warn!("Failed image verification");
795 fails += 1;
796 }
797
798 if fails > 0 {
799 error!("Error running upgrade without revert");
800 }
801
802 fails > 0
803 }
804
805 // Test taht too big upgrade image will be rejected
run_oversizefail_upgrade(&self) -> bool806 pub fn run_oversizefail_upgrade(&self) -> bool {
807 let mut flash = self.flash.clone();
808 let mut fails = 0;
809
810 info!("Try upgrade image with to big size");
811
812 // Only perform this test if an upgrade is expected to happen.
813 if !Caps::modifies_flash() {
814 info!("Skipping upgrade image with bad signature");
815 return false;
816 }
817
818 self.mark_upgrades(&mut flash, 0);
819 self.mark_permanent_upgrades(&mut flash, 0);
820 self.mark_upgrades(&mut flash, 1);
821
822 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
823 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
824 warn!("1. Mismatched trailer for the primary slot");
825 fails += 1;
826 }
827
828 // Run the bootloader...
829 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
830 warn!("Failed first boot");
831 fails += 1;
832 }
833
834 // State should not have changed
835 if !self.verify_images(&flash, 0, 0) {
836 warn!("Failed image verification");
837 fails += 1;
838 }
839 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
840 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
841 warn!("2. Mismatched trailer for the primary slot");
842 fails += 1;
843 }
844
845 if fails > 0 {
846 error!("Expected an upgrade failure when image has to big size");
847 }
848
849 fails > 0
850 }
851
852 // Test that an upgrade is rejected. Assumes that the image was build
853 // such that the upgrade is instead a downgrade.
run_nodowngrade(&self) -> bool854 pub fn run_nodowngrade(&self) -> bool {
855 if !Caps::DowngradePrevention.present() {
856 return false;
857 }
858
859 let mut flash = self.flash.clone();
860 let mut fails = 0;
861
862 info!("Try no downgrade");
863
864 // First, do a normal upgrade.
865 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
866 warn!("Failed first boot");
867 fails += 1;
868 }
869
870 if !self.verify_images(&flash, 0, 0) {
871 warn!("Failed verification after downgrade rejection");
872 fails += 1;
873 }
874
875 if fails > 0 {
876 error!("Error testing downgrade rejection");
877 }
878
879 fails > 0
880 }
881
882 // Tests a new image written to the primary slot that already has magic and
883 // image_ok set while there is no image on the secondary slot, so no revert
884 // should ever happen...
run_norevert_newimage(&self) -> bool885 pub fn run_norevert_newimage(&self) -> bool {
886 if !Caps::modifies_flash() {
887 info!("Skipping run_norevert_newimage, as configuration doesn't modify flash");
888 return false;
889 }
890
891 let mut flash = self.flash.clone();
892 let mut fails = 0;
893
894 info!("Try non-revert on imgtool generated image");
895
896 self.mark_upgrades(&mut flash, 0);
897
898 // This simulates writing an image created by imgtool to
899 // the primary slot
900 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
901 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
902 warn!("Mismatched trailer for the primary slot");
903 fails += 1;
904 }
905
906 // Run the bootloader...
907 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
908 warn!("Failed first boot");
909 fails += 1;
910 }
911
912 // State should not have changed
913 if !self.verify_images(&flash, 0, 0) {
914 warn!("Failed image verification");
915 fails += 1;
916 }
917 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
918 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
919 warn!("Mismatched trailer for the primary slot");
920 fails += 1;
921 }
922 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
923 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
924 warn!("Mismatched trailer for the secondary slot");
925 fails += 1;
926 }
927
928 if fails > 0 {
929 error!("Expected a non revert with new image");
930 }
931
932 fails > 0
933 }
934
935 // Tests a new image written to the primary slot that already has magic and
936 // image_ok set while there is no image on the secondary slot, so no revert
937 // should ever happen...
run_signfail_upgrade(&self) -> bool938 pub fn run_signfail_upgrade(&self) -> bool {
939 let mut flash = self.flash.clone();
940 let mut fails = 0;
941
942 info!("Try upgrade image with bad signature");
943
944 // Only perform this test if an upgrade is expected to happen.
945 if !Caps::modifies_flash() {
946 info!("Skipping upgrade image with bad signature");
947 return false;
948 }
949
950 self.mark_upgrades(&mut flash, 0);
951 self.mark_permanent_upgrades(&mut flash, 0);
952 self.mark_upgrades(&mut flash, 1);
953
954 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
955 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
956 warn!("Mismatched trailer for the primary slot");
957 fails += 1;
958 }
959
960 // Run the bootloader...
961 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
962 warn!("Failed first boot");
963 fails += 1;
964 }
965
966 // State should not have changed
967 if !self.verify_images(&flash, 0, 0) {
968 warn!("Failed image verification");
969 fails += 1;
970 }
971 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
972 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
973 warn!("Mismatched trailer for the primary slot");
974 fails += 1;
975 }
976
977 if fails > 0 {
978 error!("Expected an upgrade failure when image has bad signature");
979 }
980
981 fails > 0
982 }
983
984 // Should detect there is a leftover trailer in an otherwise erased
985 // secondary slot and erase its trailer.
run_secondary_leftover_trailer(&self) -> bool986 pub fn run_secondary_leftover_trailer(&self) -> bool {
987 if !Caps::modifies_flash() {
988 return false;
989 }
990
991 let mut flash = self.flash.clone();
992 let mut fails = 0;
993
994 info!("Try with a leftover trailer in the secondary; must be erased");
995
996 // Add a trailer on the secondary slot
997 self.mark_permanent_upgrades(&mut flash, 1);
998 self.mark_upgrades(&mut flash, 1);
999
1000 // Run the bootloader...
1001 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1002 warn!("Failed first boot");
1003 fails += 1;
1004 }
1005
1006 // State should not have changed
1007 if !self.verify_images(&flash, 0, 0) {
1008 warn!("Failed image verification");
1009 fails += 1;
1010 }
1011 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
1012 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
1013 warn!("Mismatched trailer for the secondary slot");
1014 fails += 1;
1015 }
1016
1017 if fails > 0 {
1018 error!("Expected trailer on secondary slot to be erased");
1019 }
1020
1021 fails > 0
1022 }
1023
trailer_sz(&self, align: usize) -> usize1024 fn trailer_sz(&self, align: usize) -> usize {
1025 c::boot_trailer_sz(align as u32) as usize
1026 }
1027
status_sz(&self, align: usize) -> usize1028 fn status_sz(&self, align: usize) -> usize {
1029 c::boot_status_sz(align as u32) as usize
1030 }
1031
1032 /// This test runs a simple upgrade with no fails in the images, but
1033 /// allowing for fails in the status area. This should run to the end
1034 /// and warn that write fails were detected...
run_with_status_fails_complete(&self) -> bool1035 pub fn run_with_status_fails_complete(&self) -> bool {
1036 if !Caps::ValidatePrimarySlot.present() || !Caps::modifies_flash() {
1037 return false;
1038 }
1039
1040 let mut flash = self.flash.clone();
1041 let mut fails = 0;
1042
1043 info!("Try swap with status fails");
1044
1045 self.mark_permanent_upgrades(&mut flash, 1);
1046 self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
1047
1048 let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
1049 if !result.success() {
1050 warn!("Failed!");
1051 fails += 1;
1052 }
1053
1054 // Failed writes to the marked "bad" region don't assert anymore.
1055 // Any detected assert() is happening in another part of the code.
1056 if result.asserts() != 0 {
1057 warn!("At least one assert() was called");
1058 fails += 1;
1059 }
1060
1061 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1062 BOOT_FLAG_SET, BOOT_FLAG_SET) {
1063 warn!("Mismatched trailer for the primary slot");
1064 fails += 1;
1065 }
1066
1067 if !self.verify_images(&flash, 0, 1) {
1068 warn!("Failed image verification");
1069 fails += 1;
1070 }
1071
1072 info!("validate primary slot enabled; \
1073 re-run of boot_go should just work");
1074 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1075 warn!("Failed!");
1076 fails += 1;
1077 }
1078
1079 if fails > 0 {
1080 error!("Error running upgrade with status write fails");
1081 }
1082
1083 fails > 0
1084 }
1085
1086 /// This test runs a simple upgrade with no fails in the images, but
1087 /// allowing for fails in the status area. This should run to the end
1088 /// and warn that write fails were detected...
run_with_status_fails_with_reset(&self) -> bool1089 pub fn run_with_status_fails_with_reset(&self) -> bool {
1090 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
1091 false
1092 } else if Caps::ValidatePrimarySlot.present() {
1093
1094 let mut flash = self.flash.clone();
1095 let mut fails = 0;
1096 let mut count = self.total_count.unwrap() / 2;
1097
1098 //info!("count={}\n", count);
1099
1100 info!("Try interrupted swap with status fails");
1101
1102 self.mark_permanent_upgrades(&mut flash, 1);
1103 self.mark_bad_status_with_rate(&mut flash, 0, 0.5);
1104
1105 // Should not fail, writing to bad regions does not assert
1106 let asserts = c::boot_go(&mut flash, &self.areadesc,
1107 Some(&mut count), None, true).asserts();
1108 if asserts != 0 {
1109 warn!("At least one assert() was called");
1110 fails += 1;
1111 }
1112
1113 self.reset_bad_status(&mut flash, 0);
1114
1115 info!("Resuming an interrupted swap operation");
1116 let asserts = c::boot_go(&mut flash, &self.areadesc, None, None,
1117 true).asserts();
1118
1119 // This might throw no asserts, for large sector devices, where
1120 // a single failure writing is indistinguishable from no failure,
1121 // or throw a single assert for small sector devices that fail
1122 // multiple times...
1123 if asserts > 1 {
1124 warn!("Expected single assert validating the primary slot, \
1125 more detected {}", asserts);
1126 fails += 1;
1127 }
1128
1129 if fails > 0 {
1130 error!("Error running upgrade with status write fails");
1131 }
1132
1133 fails > 0
1134 } else {
1135 let mut flash = self.flash.clone();
1136 let mut fails = 0;
1137
1138 info!("Try interrupted swap with status fails");
1139
1140 self.mark_permanent_upgrades(&mut flash, 1);
1141 self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
1142
1143 // This is expected to fail while writing to bad regions...
1144 let asserts = c::boot_go(&mut flash, &self.areadesc, None, None,
1145 true).asserts();
1146 if asserts == 0 {
1147 warn!("No assert() detected");
1148 fails += 1;
1149 }
1150
1151 fails > 0
1152 }
1153 }
1154
1155 /// Test the direct XIP configuration. With this mode, flash images are never moved, and the
1156 /// bootloader merely selects which partition is the proper one to boot.
run_direct_xip(&self) -> bool1157 pub fn run_direct_xip(&self) -> bool {
1158 if !Caps::DirectXip.present() {
1159 return false;
1160 }
1161
1162 // Clone the flash so we can tell if unchanged.
1163 let mut flash = self.flash.clone();
1164
1165 let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
1166
1167 // Ensure the boot was successful.
1168 let resp = if let Some(resp) = result.resp() {
1169 resp
1170 } else {
1171 panic!("Boot didn't return a valid result");
1172 };
1173
1174 // This configuration should always try booting from the first upgrade slot.
1175 if let Some((offset, _, dev_id)) = self.areadesc.find(FlashId::Image1) {
1176 assert_eq!(offset, resp.image_off as usize);
1177 assert_eq!(dev_id, resp.flash_dev_id);
1178 } else {
1179 panic!("Unable to find upgrade image");
1180 }
1181 false
1182 }
1183
1184 /// Test the ram-loading.
run_ram_load(&self) -> bool1185 pub fn run_ram_load(&self) -> bool {
1186 if !Caps::RamLoad.present() {
1187 return false;
1188 }
1189
1190 // Clone the flash so we can tell if unchanged.
1191 let mut flash = self.flash.clone();
1192
1193 // Setup ram based on the ram configuration we determined earlier for the images.
1194 let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
1195
1196 // println!("Ram: {:#?}", self.ram);
1197
1198 // Verify that the images area loaded into this.
1199 let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc, None,
1200 None, true));
1201 if !result.success() {
1202 error!("Failed to execute ram-load");
1203 return true;
1204 }
1205
1206 // Verify each image.
1207 for image in &self.images {
1208 let place = self.ram.lookup(&image.slots[0]);
1209 let ram_image = ram.borrow_part(place.offset as usize - RAM_LOAD_ADDR as usize,
1210 place.size as usize);
1211 let src_sz = image.upgrades.size();
1212 if src_sz > ram_image.len() {
1213 error!("Image ended up too large, nonsensical");
1214 return true;
1215 }
1216 let src_image = &image.upgrades.plain[0..src_sz];
1217 let ram_image = &ram_image[0..src_sz];
1218 if ram_image != src_image {
1219 error!("Image not loaded correctly");
1220 return true;
1221 }
1222
1223 }
1224
1225 return false;
1226 }
1227
1228 /// Test the split ram-loading.
run_split_ram_load(&self) -> bool1229 pub fn run_split_ram_load(&self) -> bool {
1230 if !Caps::RamLoad.present() {
1231 return false;
1232 }
1233
1234 // Clone the flash so we can tell if unchanged.
1235 let mut flash = self.flash.clone();
1236
1237 // Setup ram based on the ram configuration we determined earlier for the images.
1238 let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
1239
1240 for (idx, _image) in (&self.images).iter().enumerate() {
1241 // Verify that the images area loaded into this.
1242 let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc,
1243 None, Some(idx as i32), true));
1244 if !result.success() {
1245 error!("Failed to execute ram-load");
1246 return true;
1247 }
1248 }
1249
1250 // Verify each image.
1251 for image in &self.images {
1252 let place = self.ram.lookup(&image.slots[0]);
1253 let ram_image = ram.borrow_part(place.offset as usize - RAM_LOAD_ADDR as usize,
1254 place.size as usize);
1255 let src_sz = image.upgrades.size();
1256 if src_sz > ram_image.len() {
1257 error!("Image ended up too large, nonsensical");
1258 return true;
1259 }
1260 let src_image = &image.upgrades.plain[0..src_sz];
1261 let ram_image = &ram_image[0..src_sz];
1262 if ram_image != src_image {
1263 error!("Image not loaded correctly");
1264 return true;
1265 }
1266
1267 }
1268
1269 return false;
1270 }
1271
1272 /// Adds a new flash area that fails statistically
mark_bad_status_with_rate(&self, flash: &mut SimMultiFlash, slot: usize, rate: f32)1273 fn mark_bad_status_with_rate(&self, flash: &mut SimMultiFlash, slot: usize,
1274 rate: f32) {
1275 if Caps::OverwriteUpgrade.present() {
1276 return;
1277 }
1278
1279 // Set this for each image.
1280 for image in &self.images {
1281 let dev_id = &image.slots[slot].dev_id;
1282 let dev = flash.get_mut(&dev_id).unwrap();
1283 let align = dev.align();
1284 let off = &image.slots[slot].base_off;
1285 let len = &image.slots[slot].len;
1286 let status_off = off + len - self.trailer_sz(align);
1287
1288 // Mark the status area as a bad area
1289 let _ = dev.add_bad_region(status_off, self.status_sz(align), rate);
1290 }
1291 }
1292
reset_bad_status(&self, flash: &mut SimMultiFlash, slot: usize)1293 fn reset_bad_status(&self, flash: &mut SimMultiFlash, slot: usize) {
1294 if !Caps::ValidatePrimarySlot.present() {
1295 return;
1296 }
1297
1298 for image in &self.images {
1299 let dev_id = &image.slots[slot].dev_id;
1300 let dev = flash.get_mut(&dev_id).unwrap();
1301 dev.reset_bad_regions();
1302
1303 // Disabling write verification the only assert triggered by
1304 // boot_go should be checking for integrity of status bytes.
1305 dev.set_verify_writes(false);
1306 }
1307 }
1308
1309 /// Test a boot, optionally stopping after 'n' flash options. Returns a count
1310 /// of the number of flash operations done total.
try_upgrade(&self, stop: Option<i32>, permanent: bool) -> (SimMultiFlash, i32)1311 fn try_upgrade(&self, stop: Option<i32>, permanent: bool) -> (SimMultiFlash, i32) {
1312 // Clone the flash to have a new copy.
1313 let mut flash = self.flash.clone();
1314
1315 if permanent {
1316 self.mark_permanent_upgrades(&mut flash, 1);
1317 }
1318
1319 let mut counter = stop.unwrap_or(0);
1320
1321 let (first_interrupted, count) = match c::boot_go(&mut flash,
1322 &self.areadesc,
1323 Some(&mut counter),
1324 None, false) {
1325 x if x.interrupted() => (true, stop.unwrap()),
1326 x if x.success() => (false, -counter),
1327 x => panic!("Unknown return: {:?}", x),
1328 };
1329
1330 counter = 0;
1331 if first_interrupted {
1332 // fl.dump();
1333 match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter),
1334 None, false) {
1335 x if x.interrupted() => panic!("Shouldn't stop again"),
1336 x if x.success() => (),
1337 x => panic!("Unknown return: {:?}", x),
1338 }
1339 }
1340
1341 (flash, count - counter)
1342 }
1343
try_revert(&self, count: usize) -> SimMultiFlash1344 fn try_revert(&self, count: usize) -> SimMultiFlash {
1345 let mut flash = self.flash.clone();
1346
1347 // fl.write_file("image0.bin").unwrap();
1348 for i in 0 .. count {
1349 info!("Running boot pass {}", i + 1);
1350 assert!(c::boot_go(&mut flash, &self.areadesc, None, None, false).success_no_asserts());
1351 }
1352 flash
1353 }
1354
try_revert_with_fail_at(&self, stop: i32) -> bool1355 fn try_revert_with_fail_at(&self, stop: i32) -> bool {
1356 let mut flash = self.flash.clone();
1357 let mut fails = 0;
1358
1359 let mut counter = stop;
1360 if !c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), None,
1361 false).interrupted() {
1362 warn!("Should have stopped test at interruption point");
1363 fails += 1;
1364 }
1365
1366 // In a multi-image setup, copy done might be set if any number of
1367 // images was already successfully swapped.
1368 if !self.verify_trailers_loose(&flash, 0, None, None, BOOT_FLAG_UNSET) {
1369 warn!("copy_done should be unset");
1370 fails += 1;
1371 }
1372
1373 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1374 warn!("Should have finished test upgrade");
1375 fails += 1;
1376 }
1377
1378 if !self.verify_images(&flash, 0, 1) {
1379 warn!("Image in the primary slot before revert is invalid at stop={}",
1380 stop);
1381 fails += 1;
1382 }
1383 if !self.verify_images(&flash, 1, 0) {
1384 warn!("Image in the secondary slot before revert is invalid at stop={}",
1385 stop);
1386 fails += 1;
1387 }
1388 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1389 BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
1390 warn!("Mismatched trailer for the primary slot before revert");
1391 fails += 1;
1392 }
1393 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
1394 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
1395 warn!("Mismatched trailer for the secondary slot before revert");
1396 fails += 1;
1397 }
1398
1399 // Do Revert
1400 let mut counter = stop;
1401 if !c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), None,
1402 false).interrupted() {
1403 warn!("Should have stopped revert at interruption point");
1404 fails += 1;
1405 }
1406
1407 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1408 warn!("Should have finished revert upgrade");
1409 fails += 1;
1410 }
1411
1412 if !self.verify_images(&flash, 0, 0) {
1413 warn!("Image in the primary slot after revert is invalid at stop={}",
1414 stop);
1415 fails += 1;
1416 }
1417 if !self.verify_images(&flash, 1, 1) {
1418 warn!("Image in the secondary slot after revert is invalid at stop={}",
1419 stop);
1420 fails += 1;
1421 }
1422
1423 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1424 BOOT_FLAG_SET, BOOT_FLAG_SET) {
1425 warn!("Mismatched trailer for the primary slot after revert");
1426 fails += 1;
1427 }
1428 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
1429 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
1430 warn!("Mismatched trailer for the secondary slot after revert");
1431 fails += 1;
1432 }
1433
1434 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1435 warn!("Should have finished 3rd boot");
1436 fails += 1;
1437 }
1438
1439 if !self.verify_images(&flash, 0, 0) {
1440 warn!("Image in the primary slot is invalid on 1st boot after revert");
1441 fails += 1;
1442 }
1443 if !self.verify_images(&flash, 1, 1) {
1444 warn!("Image in the secondary slot is invalid on 1st boot after revert");
1445 fails += 1;
1446 }
1447
1448 fails > 0
1449 }
1450
1451
try_random_fails(&self, total_ops: i32, count: usize) -> (SimMultiFlash, Vec<i32>)1452 fn try_random_fails(&self, total_ops: i32, count: usize) -> (SimMultiFlash, Vec<i32>) {
1453 let mut flash = self.flash.clone();
1454
1455 self.mark_permanent_upgrades(&mut flash, 1);
1456
1457 let mut rng = rand::thread_rng();
1458 let mut resets = vec![0i32; count];
1459 let mut remaining_ops = total_ops;
1460 for reset in &mut resets {
1461 let reset_counter = rng.gen_range(1 ..= remaining_ops / 2);
1462 let mut counter = reset_counter;
1463 match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter),
1464 None, false) {
1465 x if x.interrupted() => (),
1466 x => panic!("Unknown return: {:?}", x),
1467 }
1468 remaining_ops -= reset_counter;
1469 *reset = reset_counter;
1470 }
1471
1472 match c::boot_go(&mut flash, &self.areadesc, None, None, false) {
1473 x if x.interrupted() => panic!("Should not be have been interrupted!"),
1474 x if x.success() => (),
1475 x => panic!("Unknown return: {:?}", x),
1476 }
1477
1478 (flash, resets)
1479 }
1480
1481 /// Verify the image in the given flash device, the specified slot
1482 /// against the expected image.
verify_images(&self, flash: &SimMultiFlash, slot: usize, against: usize) -> bool1483 fn verify_images(&self, flash: &SimMultiFlash, slot: usize, against: usize) -> bool {
1484 self.images.iter().all(|image| {
1485 verify_image(flash, &image.slots[slot],
1486 match against {
1487 0 => &image.primaries,
1488 1 => &image.upgrades,
1489 _ => panic!("Invalid 'against'")
1490 })
1491 })
1492 }
1493
1494 /// Verify the images, according to the dependency test.
verify_dep_images(&self, flash: &SimMultiFlash, deps: &DepTest) -> bool1495 fn verify_dep_images(&self, flash: &SimMultiFlash, deps: &DepTest) -> bool {
1496 for (image_num, (image, upgrade)) in self.images.iter().zip(deps.upgrades.iter()).enumerate() {
1497 info!("Upgrade: slot:{}, {:?}", image_num, upgrade);
1498 if !verify_image(flash, &image.slots[0],
1499 match upgrade {
1500 UpgradeInfo::Upgraded => &image.upgrades,
1501 UpgradeInfo::Held => &image.primaries,
1502 }) {
1503 error!("Failed to upgrade properly: image: {}, upgrade: {:?}", image_num, upgrade);
1504 return true;
1505 }
1506 }
1507
1508 false
1509 }
1510
1511 /// Verify that at least one of the trailers of the images have the
1512 /// specified values.
verify_trailers_loose(&self, flash: &SimMultiFlash, slot: usize, magic: Option<u8>, image_ok: Option<u8>, copy_done: Option<u8>) -> bool1513 fn verify_trailers_loose(&self, flash: &SimMultiFlash, slot: usize,
1514 magic: Option<u8>, image_ok: Option<u8>,
1515 copy_done: Option<u8>) -> bool {
1516 self.images.iter().any(|image| {
1517 verify_trailer(flash, &image.slots[slot],
1518 magic, image_ok, copy_done)
1519 })
1520 }
1521
1522 /// Verify that the trailers of the images have the specified
1523 /// values.
verify_trailers(&self, flash: &SimMultiFlash, slot: usize, magic: Option<u8>, image_ok: Option<u8>, copy_done: Option<u8>) -> bool1524 fn verify_trailers(&self, flash: &SimMultiFlash, slot: usize,
1525 magic: Option<u8>, image_ok: Option<u8>,
1526 copy_done: Option<u8>) -> bool {
1527 self.images.iter().all(|image| {
1528 verify_trailer(flash, &image.slots[slot],
1529 magic, image_ok, copy_done)
1530 })
1531 }
1532
1533 /// Mark each of the images for permanent upgrade.
mark_permanent_upgrades(&self, flash: &mut SimMultiFlash, slot: usize)1534 fn mark_permanent_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
1535 for image in &self.images {
1536 mark_permanent_upgrade(flash, &image.slots[slot]);
1537 }
1538 }
1539
1540 /// Mark each of the images for permanent upgrade.
mark_upgrades(&self, flash: &mut SimMultiFlash, slot: usize)1541 fn mark_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
1542 for image in &self.images {
1543 mark_upgrade(flash, &image.slots[slot]);
1544 }
1545 }
1546
1547 /// Dump out the flash image(s) to one or more files for debugging
1548 /// purposes. The names will be written as either "{prefix}.mcubin" or
1549 /// "{prefix}-001.mcubin" depending on how many images there are.
debug_dump(&self, prefix: &str)1550 pub fn debug_dump(&self, prefix: &str) {
1551 for (id, fdev) in &self.flash {
1552 let name = if self.flash.len() == 1 {
1553 format!("{}.mcubin", prefix)
1554 } else {
1555 format!("{}-{:>0}.mcubin", prefix, id)
1556 };
1557 fdev.write_file(&name).unwrap();
1558 }
1559 }
1560 }
1561
1562 impl RamData {
1563 // TODO: This is not correct. The second slot of each image should be at the same address as
1564 // the primary.
new(slots: &[[SlotInfo; 2]]) -> RamData1565 fn new(slots: &[[SlotInfo; 2]]) -> RamData {
1566 let mut addr = RAM_LOAD_ADDR;
1567 let mut places = BTreeMap::new();
1568 // println!("Setup:-------------");
1569 for imgs in slots {
1570 for si in imgs {
1571 // println!("Setup: si: {:?}", si);
1572 let offset = addr;
1573 let size = si.len as u32;
1574 places.insert(SlotKey {
1575 dev_id: si.dev_id,
1576 base_off: si.base_off,
1577 }, SlotPlace { offset, size });
1578 // println!(" load: offset: {}, size: {}", offset, size);
1579 }
1580 addr += imgs[0].len as u32;
1581 }
1582 RamData {
1583 places,
1584 total: addr,
1585 }
1586 }
1587
1588 /// Lookup the ram data associated with a given flash partition. We just panic if not present,
1589 /// because all slots used should be in the map.
lookup(&self, slot: &SlotInfo) -> &SlotPlace1590 fn lookup(&self, slot: &SlotInfo) -> &SlotPlace {
1591 self.places.get(&SlotKey{dev_id: slot.dev_id, base_off: slot.base_off})
1592 .expect("RamData should contain all slots")
1593 }
1594 }
1595
1596 /// Show the flash layout.
1597 #[allow(dead_code)]
show_flash(flash: &dyn Flash)1598 fn show_flash(flash: &dyn Flash) {
1599 println!("---- Flash configuration ----");
1600 for sector in flash.sector_iter() {
1601 println!(" {:3}: 0x{:08x}, 0x{:08x}",
1602 sector.num, sector.base, sector.size);
1603 }
1604 println!();
1605 }
1606
1607 #[derive(Debug)]
1608 enum ImageSize {
1609 /// Make the image the specified given size.
1610 Given(usize),
1611 /// Make the image as large as it can be for the partition/device.
1612 Largest,
1613 /// Make the image quite larger than it can be for the partition/device/
1614 Oversized,
1615 }
1616
1617 #[cfg(not(feature = "max-align-32"))]
tralier_estimation(dev: &dyn Flash) -> usize1618 fn tralier_estimation(dev: &dyn Flash) -> usize {
1619 c::boot_trailer_sz(dev.align() as u32) as usize
1620 }
1621
1622 #[cfg(feature = "max-align-32")]
tralier_estimation(dev: &dyn Flash) -> usize1623 fn tralier_estimation(dev: &dyn Flash) -> usize {
1624
1625 let sector_size = dev.sector_iter().next().unwrap().size as u32;
1626
1627 align_up(c::boot_trailer_sz(dev.align() as u32), sector_size) as usize
1628 }
1629
image_largest_trailer(dev: &dyn Flash) -> usize1630 fn image_largest_trailer(dev: &dyn Flash) -> usize {
1631 // Using the header size we know, the trailer size, and the slot size, we can compute
1632 // the largest image possible.
1633 let trailer = if Caps::OverwriteUpgrade.present() {
1634 // This computation is incorrect, and we need to figure out the correct size.
1635 // c::boot_status_sz(dev.align() as u32) as usize
1636 16 + 4 * dev.align()
1637 } else if Caps::SwapUsingMove.present() {
1638 let sector_size = dev.sector_iter().next().unwrap().size as u32;
1639 align_up(c::boot_trailer_sz(dev.align() as u32), sector_size) as usize
1640 } else if Caps::SwapUsingScratch.present() {
1641 tralier_estimation(dev)
1642 } else {
1643 panic!("The maximum image size can't be calculated.")
1644 };
1645
1646 trailer
1647 }
1648
1649 /// Install a "program" into the given image. This fakes the image header, or at least all of the
1650 /// fields used by the given code. Returns a copy of the image that was written.
install_image(flash: &mut SimMultiFlash, slot: &SlotInfo, len: ImageSize, ram: &RamData, deps: &dyn Depender, bad_sig: bool) -> ImageData1651 fn install_image(flash: &mut SimMultiFlash, slot: &SlotInfo, len: ImageSize,
1652 ram: &RamData,
1653 deps: &dyn Depender, bad_sig: bool) -> ImageData {
1654 let offset = slot.base_off;
1655 let slot_len = slot.len;
1656 let dev_id = slot.dev_id;
1657 let dev = flash.get_mut(&dev_id).unwrap();
1658
1659 let mut tlv: Box<dyn ManifestGen> = Box::new(make_tlv());
1660
1661 // Add the dependencies early to the tlv.
1662 for dep in deps.my_deps(offset, slot.index) {
1663 tlv.add_dependency(deps.other_id(), &dep);
1664 }
1665
1666 const HDR_SIZE: usize = 32;
1667
1668 let place = ram.lookup(&slot);
1669 let load_addr = if Caps::RamLoad.present() {
1670 place.offset
1671 } else {
1672 0
1673 };
1674
1675 let len = match len {
1676 ImageSize::Given(size) => size,
1677 ImageSize::Largest => {
1678 let trailer = image_largest_trailer(dev);
1679 let tlv_len = tlv.estimate_size();
1680 info!("slot: 0x{:x}, HDR: 0x{:x}, trailer: 0x{:x}",
1681 slot_len, HDR_SIZE, trailer);
1682 slot_len - HDR_SIZE - trailer - tlv_len
1683 },
1684 ImageSize::Oversized => {
1685 let trailer = image_largest_trailer(dev);
1686 let tlv_len = tlv.estimate_size();
1687 info!("slot: 0x{:x}, HDR: 0x{:x}, trailer: 0x{:x}",
1688 slot_len, HDR_SIZE, trailer);
1689 // the overflow size is rougly estimated to work for all
1690 // configurations. It might be precise if tlv_len will be maked precise.
1691 slot_len - HDR_SIZE - trailer - tlv_len + dev.align()*4
1692 }
1693
1694 };
1695
1696 // Generate a boot header. Note that the size doesn't include the header.
1697 let header = ImageHeader {
1698 magic: tlv.get_magic(),
1699 load_addr,
1700 hdr_size: HDR_SIZE as u16,
1701 protect_tlv_size: tlv.protect_size(),
1702 img_size: len as u32,
1703 flags: tlv.get_flags(),
1704 ver: deps.my_version(offset, slot.index),
1705 _pad2: 0,
1706 };
1707
1708 let mut b_header = [0; HDR_SIZE];
1709 b_header[..32].clone_from_slice(header.as_raw());
1710 assert_eq!(b_header.len(), HDR_SIZE);
1711
1712 tlv.add_bytes(&b_header);
1713
1714 // The core of the image itself is just pseudorandom data.
1715 let mut b_img = vec![0; len];
1716 splat(&mut b_img, offset);
1717
1718 // Add some information at the start of the payload to make it easier
1719 // to see what it is. This will fail if the image itself is too small.
1720 {
1721 let mut wr = Cursor::new(&mut b_img);
1722 writeln!(&mut wr, "offset: {:#x}, dev_id: {:#x}, slot_info: {:?}",
1723 offset, dev_id, slot).unwrap();
1724 writeln!(&mut wr, "version: {:?}", deps.my_version(offset, slot.index)).unwrap();
1725 }
1726
1727 // TLV signatures work over plain image
1728 tlv.add_bytes(&b_img);
1729
1730 // Generate encrypted images
1731 let flag = TlvFlags::ENCRYPTED_AES128 as u32 | TlvFlags::ENCRYPTED_AES256 as u32;
1732 let is_encrypted = (tlv.get_flags() & flag) != 0;
1733 let mut b_encimg = vec![];
1734 if is_encrypted {
1735 let flag = TlvFlags::ENCRYPTED_AES256 as u32;
1736 let aes256 = (tlv.get_flags() & flag) == flag;
1737 tlv.generate_enc_key();
1738 let enc_key = tlv.get_enc_key();
1739 let nonce = GenericArray::from_slice(&[0; 16]);
1740 b_encimg = b_img.clone();
1741 if aes256 {
1742 let key: &GenericArray<u8, U32> = GenericArray::from_slice(enc_key.as_slice());
1743 let block = Aes256::new(&key);
1744 let mut cipher = Aes256Ctr::from_block_cipher(block, &nonce);
1745 cipher.apply_keystream(&mut b_encimg);
1746 } else {
1747 let key: &GenericArray<u8, U16> = GenericArray::from_slice(enc_key.as_slice());
1748 let block = Aes128::new(&key);
1749 let mut cipher = Aes128Ctr::from_block_cipher(block, &nonce);
1750 cipher.apply_keystream(&mut b_encimg);
1751 }
1752 }
1753
1754 // Build the TLV itself.
1755 if bad_sig {
1756 tlv.corrupt_sig();
1757 }
1758 let mut b_tlv = tlv.make_tlv();
1759
1760 let mut buf = vec![];
1761 buf.append(&mut b_header.to_vec());
1762 buf.append(&mut b_img);
1763 buf.append(&mut b_tlv.clone());
1764
1765 // Pad the buffer to a multiple of the flash alignment.
1766 let align = dev.align();
1767 let image_sz = buf.len();
1768 while buf.len() % align != 0 {
1769 buf.push(dev.erased_val());
1770 }
1771
1772 let mut encbuf = vec![];
1773 if is_encrypted {
1774 encbuf.append(&mut b_header.to_vec());
1775 encbuf.append(&mut b_encimg);
1776 encbuf.append(&mut b_tlv);
1777
1778 while encbuf.len() % align != 0 {
1779 encbuf.push(dev.erased_val());
1780 }
1781 }
1782
1783 // Since images are always non-encrypted in the primary slot, we first write
1784 // an encrypted image, re-read to use for verification, erase + flash
1785 // un-encrypted. In the secondary slot the image is written un-encrypted,
1786 // and if encryption is requested, it follows an erase + flash encrypted.
1787
1788 if slot.index == 0 {
1789 let enc_copy: Option<Vec<u8>>;
1790
1791 if is_encrypted {
1792 dev.write(offset, &encbuf).unwrap();
1793
1794 let mut enc = vec![0u8; encbuf.len()];
1795 dev.read(offset, &mut enc).unwrap();
1796
1797 enc_copy = Some(enc);
1798
1799 dev.erase(offset, slot_len).unwrap();
1800 } else {
1801 enc_copy = None;
1802 }
1803
1804 dev.write(offset, &buf).unwrap();
1805
1806 let mut copy = vec![0u8; buf.len()];
1807 dev.read(offset, &mut copy).unwrap();
1808
1809 ImageData {
1810 size: image_sz,
1811 plain: copy,
1812 cipher: enc_copy,
1813 }
1814 } else {
1815
1816 dev.write(offset, &buf).unwrap();
1817
1818 let mut copy = vec![0u8; buf.len()];
1819 dev.read(offset, &mut copy).unwrap();
1820
1821 let enc_copy: Option<Vec<u8>>;
1822
1823 if is_encrypted {
1824 dev.erase(offset, slot_len).unwrap();
1825
1826 dev.write(offset, &encbuf).unwrap();
1827
1828 let mut enc = vec![0u8; encbuf.len()];
1829 dev.read(offset, &mut enc).unwrap();
1830
1831 enc_copy = Some(enc);
1832 } else {
1833 enc_copy = None;
1834 }
1835
1836 ImageData {
1837 size: image_sz,
1838 plain: copy,
1839 cipher: enc_copy,
1840 }
1841 }
1842 }
1843
1844 /// Install no image. This is used when no upgrade happens.
install_no_image() -> ImageData1845 fn install_no_image() -> ImageData {
1846 ImageData {
1847 size: 0,
1848 plain: vec![],
1849 cipher: None,
1850 }
1851 }
1852
1853 /// Construct a TLV generator based on how MCUboot is currently configured. The returned
1854 /// ManifestGen will generate the appropriate entries based on this configuration.
make_tlv() -> TlvGen1855 fn make_tlv() -> TlvGen {
1856 let aes_key_size = if Caps::Aes256.present() { 256 } else { 128 };
1857
1858 if Caps::EncKw.present() {
1859 if Caps::RSA2048.present() {
1860 TlvGen::new_rsa_kw(aes_key_size)
1861 } else if Caps::EcdsaP256.present() {
1862 TlvGen::new_ecdsa_kw(aes_key_size)
1863 } else {
1864 TlvGen::new_enc_kw(aes_key_size)
1865 }
1866 } else if Caps::EncRsa.present() {
1867 if Caps::RSA2048.present() {
1868 TlvGen::new_sig_enc_rsa(aes_key_size)
1869 } else {
1870 TlvGen::new_enc_rsa(aes_key_size)
1871 }
1872 } else if Caps::EncEc256.present() {
1873 if Caps::EcdsaP256.present() {
1874 TlvGen::new_ecdsa_ecies_p256(aes_key_size)
1875 } else {
1876 TlvGen::new_ecies_p256(aes_key_size)
1877 }
1878 } else if Caps::EncX25519.present() {
1879 if Caps::Ed25519.present() {
1880 TlvGen::new_ed25519_ecies_x25519(aes_key_size)
1881 } else {
1882 TlvGen::new_ecies_x25519(aes_key_size)
1883 }
1884 } else {
1885 // The non-encrypted configuration.
1886 if Caps::RSA2048.present() {
1887 TlvGen::new_rsa_pss()
1888 } else if Caps::RSA3072.present() {
1889 TlvGen::new_rsa3072_pss()
1890 } else if Caps::EcdsaP256.present() {
1891 TlvGen::new_ecdsa()
1892 } else if Caps::Ed25519.present() {
1893 TlvGen::new_ed25519()
1894 } else {
1895 TlvGen::new_hash_only()
1896 }
1897 }
1898 }
1899
1900 impl ImageData {
1901 /// Find the image contents for the given slot. This assumes that slot 0
1902 /// is unencrypted, and slot 1 is encrypted.
find(&self, slot: usize) -> &Vec<u8>1903 fn find(&self, slot: usize) -> &Vec<u8> {
1904 let encrypted = Caps::EncRsa.present() || Caps::EncKw.present() ||
1905 Caps::EncEc256.present() || Caps::EncX25519.present();
1906 match (encrypted, slot) {
1907 (false, _) => &self.plain,
1908 (true, 0) => &self.plain,
1909 (true, 1) => self.cipher.as_ref().expect("Invalid image"),
1910 _ => panic!("Invalid slot requested"),
1911 }
1912 }
1913
size(&self) -> usize1914 fn size(&self) -> usize {
1915 self.size
1916 }
1917 }
1918
1919 /// Verify that given image is present in the flash at the given offset.
verify_image(flash: &SimMultiFlash, slot: &SlotInfo, images: &ImageData) -> bool1920 fn verify_image(flash: &SimMultiFlash, slot: &SlotInfo, images: &ImageData) -> bool {
1921 let image = images.find(slot.index);
1922 let buf = image.as_slice();
1923 let dev_id = slot.dev_id;
1924
1925 let mut copy = vec![0u8; buf.len()];
1926 let offset = slot.base_off;
1927 let dev = flash.get(&dev_id).unwrap();
1928 dev.read(offset, &mut copy).unwrap();
1929
1930 if buf != ©[..] {
1931 for i in 0 .. buf.len() {
1932 if buf[i] != copy[i] {
1933 info!("First failure for slot{} at {:#x} ({:#x} within) {:#x}!={:#x}",
1934 slot.index, offset + i, i, buf[i], copy[i]);
1935 break;
1936 }
1937 }
1938 false
1939 } else {
1940 true
1941 }
1942 }
1943
verify_trailer(flash: &SimMultiFlash, slot: &SlotInfo, magic: Option<u8>, image_ok: Option<u8>, copy_done: Option<u8>) -> bool1944 fn verify_trailer(flash: &SimMultiFlash, slot: &SlotInfo,
1945 magic: Option<u8>, image_ok: Option<u8>,
1946 copy_done: Option<u8>) -> bool {
1947 if Caps::OverwriteUpgrade.present() {
1948 return true;
1949 }
1950
1951 let offset = slot.trailer_off + c::boot_max_align();
1952 let dev_id = slot.dev_id;
1953 let mut copy = vec![0u8; c::boot_magic_sz() + c::boot_max_align() * 3];
1954 let mut failed = false;
1955
1956 let dev = flash.get(&dev_id).unwrap();
1957 let erased_val = dev.erased_val();
1958 dev.read(offset, &mut copy).unwrap();
1959
1960 failed |= match magic {
1961 Some(v) => {
1962 let magic_off = (c::boot_max_align() * 3) + (c::boot_magic_sz() - MAGIC.len());
1963 if v == 1 && ©[magic_off..] != MAGIC {
1964 warn!("\"magic\" mismatch at {:#x}", offset);
1965 true
1966 } else if v == 3 {
1967 let expected = [erased_val; 16];
1968 if copy[magic_off..] != expected {
1969 warn!("\"magic\" mismatch at {:#x}", offset);
1970 true
1971 } else {
1972 false
1973 }
1974 } else {
1975 false
1976 }
1977 },
1978 None => false,
1979 };
1980
1981 failed |= match image_ok {
1982 Some(v) => {
1983 let image_ok_off = c::boot_max_align() * 2;
1984 if (v == 1 && copy[image_ok_off] != v) || (v == 3 && copy[image_ok_off] != erased_val) {
1985 warn!("\"image_ok\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[image_ok_off]);
1986 true
1987 } else {
1988 false
1989 }
1990 },
1991 None => false,
1992 };
1993
1994 failed |= match copy_done {
1995 Some(v) => {
1996 let copy_done_off = c::boot_max_align();
1997 if (v == 1 && copy[copy_done_off] != v) || (v == 3 && copy[copy_done_off] != erased_val) {
1998 warn!("\"copy_done\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[copy_done_off]);
1999 true
2000 } else {
2001 false
2002 }
2003 },
2004 None => false,
2005 };
2006
2007 !failed
2008 }
2009
2010 /// Install a partition table. This is a simplified partition table that
2011 /// we write at the beginning of flash so make it easier for external tools
2012 /// to analyze these images.
install_ptable(flash: &mut SimMultiFlash, areadesc: &AreaDesc)2013 fn install_ptable(flash: &mut SimMultiFlash, areadesc: &AreaDesc) {
2014 let ids: HashSet<u8> = areadesc.iter_areas().map(|area| area.device_id).collect();
2015 for &id in &ids {
2016 // If there are any partitions in this device that start at 0, and
2017 // aren't marked as the BootLoader partition, avoid adding the
2018 // partition table. This makes it harder to view the image, but
2019 // avoids messing up images already written.
2020 let skip_ptable = areadesc
2021 .iter_areas()
2022 .any(|area| {
2023 area.device_id == id &&
2024 area.off == 0 &&
2025 area.flash_id != FlashId::BootLoader
2026 });
2027 if skip_ptable {
2028 if log_enabled!(Info) {
2029 let special: Vec<FlashId> = areadesc.iter_areas()
2030 .filter(|area| area.device_id == id && area.off == 0)
2031 .map(|area| area.flash_id)
2032 .collect();
2033 info!("Skipping partition table: {:?}", special);
2034 }
2035 break;
2036 }
2037
2038 let mut buf: Vec<u8> = vec![];
2039 write!(&mut buf, "mcuboot\0").unwrap();
2040
2041 // Iterate through all of the partitions in that device, and encode
2042 // into the table.
2043 let count = areadesc.iter_areas().filter(|area| area.device_id == id).count();
2044 buf.write_u32::<LittleEndian>(count as u32).unwrap();
2045
2046 for area in areadesc.iter_areas().filter(|area| area.device_id == id) {
2047 buf.write_u32::<LittleEndian>(area.flash_id as u32).unwrap();
2048 buf.write_u32::<LittleEndian>(area.off).unwrap();
2049 buf.write_u32::<LittleEndian>(area.size).unwrap();
2050 buf.write_u32::<LittleEndian>(0).unwrap();
2051 }
2052
2053 let dev = flash.get_mut(&id).unwrap();
2054
2055 // Pad to alignment.
2056 while buf.len() % dev.align() != 0 {
2057 buf.push(0);
2058 }
2059
2060 dev.write(0, &buf).unwrap();
2061 }
2062 }
2063
2064 /// The image header
2065 #[repr(C)]
2066 #[derive(Debug)]
2067 pub struct ImageHeader {
2068 magic: u32,
2069 load_addr: u32,
2070 hdr_size: u16,
2071 protect_tlv_size: u16,
2072 img_size: u32,
2073 flags: u32,
2074 ver: ImageVersion,
2075 _pad2: u32,
2076 }
2077
2078 impl AsRaw for ImageHeader {}
2079
2080 #[repr(C)]
2081 #[derive(Clone, Debug)]
2082 pub struct ImageVersion {
2083 pub major: u8,
2084 pub minor: u8,
2085 pub revision: u16,
2086 pub build_num: u32,
2087 }
2088
2089 #[derive(Clone, Debug)]
2090 pub struct SlotInfo {
2091 pub base_off: usize,
2092 pub trailer_off: usize,
2093 pub len: usize,
2094 // Which slot within this device.
2095 pub index: usize,
2096 pub dev_id: u8,
2097 }
2098
2099 #[cfg(not(feature = "max-align-32"))]
2100 const MAGIC: &[u8] = &[0x77, 0xc2, 0x95, 0xf3,
2101 0x60, 0xd2, 0xef, 0x7f,
2102 0x35, 0x52, 0x50, 0x0f,
2103 0x2c, 0xb6, 0x79, 0x80];
2104
2105 #[cfg(feature = "max-align-32")]
2106 const MAGIC: &[u8] = &[0x20, 0x00, 0x2d, 0xe1,
2107 0x5d, 0x29, 0x41, 0x0b,
2108 0x8d, 0x77, 0x67, 0x9c,
2109 0x11, 0x0f, 0x1f, 0x8a];
2110
2111 // Replicates defines found in bootutil.h
2112 const BOOT_MAGIC_GOOD: Option<u8> = Some(1);
2113 const BOOT_MAGIC_UNSET: Option<u8> = Some(3);
2114
2115 const BOOT_FLAG_SET: Option<u8> = Some(1);
2116 const BOOT_FLAG_UNSET: Option<u8> = Some(3);
2117
2118 /// Write out the magic so that the loader tries doing an upgrade.
mark_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo)2119 pub fn mark_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
2120 let dev = flash.get_mut(&slot.dev_id).unwrap();
2121 let align = dev.align();
2122 let offset = slot.trailer_off + c::boot_max_align() * 4;
2123 if offset % align != 0 || MAGIC.len() % align != 0 {
2124 // The write size is larger than the magic value. Fill a buffer
2125 // with the erased value, put the MAGIC in it, and write it in its
2126 // entirety.
2127 let mut buf = vec![dev.erased_val(); c::boot_max_align()];
2128 let magic_off = (offset % align) + (c::boot_magic_sz() - MAGIC.len());
2129 buf[magic_off..].copy_from_slice(MAGIC);
2130 dev.write(offset - (offset % align), &buf).unwrap();
2131 } else {
2132 dev.write(offset, MAGIC).unwrap();
2133 }
2134 }
2135
2136 /// Writes the image_ok flag which, guess what, tells the bootloader
2137 /// the this image is ok (not a test, and no revert is to be performed).
mark_permanent_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo)2138 fn mark_permanent_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
2139 // Overwrite mode always is permanent, and only the magic is used in
2140 // the trailer. To avoid problems with large write sizes, don't try to
2141 // set anything in this case.
2142 if Caps::OverwriteUpgrade.present() {
2143 return;
2144 }
2145
2146 let dev = flash.get_mut(&slot.dev_id).unwrap();
2147 let align = dev.align();
2148 let mut ok = vec![dev.erased_val(); align];
2149 ok[0] = 1u8;
2150 let off = slot.trailer_off + c::boot_max_align() * 3;
2151 dev.write(off, &ok).unwrap();
2152 }
2153
2154 // Drop some pseudo-random gibberish onto the data.
splat(data: &mut [u8], seed: usize)2155 fn splat(data: &mut [u8], seed: usize) {
2156 let mut seed_block = [0u8; 32];
2157 let mut buf = Cursor::new(&mut seed_block[..]);
2158 buf.write_u32::<LittleEndian>(0x135782ea).unwrap();
2159 buf.write_u32::<LittleEndian>(0x92184728).unwrap();
2160 buf.write_u32::<LittleEndian>(data.len() as u32).unwrap();
2161 buf.write_u32::<LittleEndian>(seed as u32).unwrap();
2162 let mut rng: SmallRng = SeedableRng::from_seed(seed_block);
2163 rng.fill_bytes(data);
2164 }
2165
2166 /// Return a read-only view into the raw bytes of this object
2167 trait AsRaw : Sized {
as_raw(&self) -> &[u8]2168 fn as_raw(&self) -> &[u8] {
2169 unsafe { slice::from_raw_parts(self as *const _ as *const u8,
2170 mem::size_of::<Self>()) }
2171 }
2172 }
2173
2174 /// Determine whether it makes sense to test this configuration with a maximally-sized image.
2175 /// Returns an ImageSize representing the best size to test, possibly just with the given size.
maximal(size: usize) -> ImageSize2176 fn maximal(size: usize) -> ImageSize {
2177 if Caps::OverwriteUpgrade.present() ||
2178 Caps::SwapUsingMove.present()
2179 {
2180 ImageSize::Given(size)
2181 } else {
2182 ImageSize::Largest
2183 }
2184 }
2185
show_sizes()2186 pub fn show_sizes() {
2187 // This isn't panic safe.
2188 for min in &[1, 2, 4, 8] {
2189 let msize = c::boot_trailer_sz(*min);
2190 println!("{:2}: {} (0x{:x})", min, msize, msize);
2191 }
2192 }
2193
2194 #[cfg(not(feature = "max-align-32"))]
test_alignments() -> &'static [usize]2195 fn test_alignments() -> &'static [usize] {
2196 &[1, 2, 4, 8]
2197 }
2198
2199 #[cfg(feature = "max-align-32")]
test_alignments() -> &'static [usize]2200 fn test_alignments() -> &'static [usize] {
2201 &[32]
2202 }
2203