1 // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <stdbool.h>
16 #include <stddef.h>
17 #include <sys/param.h>
18 #include "esp_log.h"
19 #include "esp_intr_alloc.h"
20 #include "soc/soc_caps.h"
21 #include "soc/soc_pins.h"
22 #include "soc/gpio_periph.h"
23 #include "esp_rom_gpio.h"
24 #include "esp_rom_sys.h"
25 #include "driver/gpio.h"
26 #include "driver/sdmmc_host.h"
27 #include "driver/periph_ctrl.h"
28 #include "sdmmc_private.h"
29 #include "freertos/FreeRTOS.h"
30 #include "freertos/semphr.h"
31 #include "soc/sdmmc_periph.h"
32 #include "hal/gpio_hal.h"
33 
34 #define SDMMC_EVENT_QUEUE_LENGTH 32
35 
36 
37 static void sdmmc_isr(void* arg);
38 static void sdmmc_host_dma_init(void);
39 
40 
41 static const char* TAG = "sdmmc_periph";
42 static intr_handle_t s_intr_handle;
43 static QueueHandle_t s_event_queue;
44 static SemaphoreHandle_t s_io_intr_event;
45 
46 size_t s_slot_width[2] = {1,1};
47 
sdmmc_host_reset(void)48 void sdmmc_host_reset(void)
49 {
50     // Set reset bits
51     SDMMC.ctrl.controller_reset = 1;
52     SDMMC.ctrl.dma_reset = 1;
53     SDMMC.ctrl.fifo_reset = 1;
54     // Wait for the reset bits to be cleared by hardware
55     while (SDMMC.ctrl.controller_reset || SDMMC.ctrl.fifo_reset || SDMMC.ctrl.dma_reset) {
56         ;
57     }
58 }
59 
60 /* We have two clock divider stages:
61  * - one is the clock generator which drives SDMMC peripheral,
62  *   it can be configured using SDMMC.clock register. It can generate
63  *   frequencies 160MHz/(N + 1), where 0 < N < 16, I.e. from 10 to 80 MHz.
64  * - 4 clock dividers inside SDMMC peripheral, which can divide clock
65  *   from the first stage by 2 * M, where 0 < M < 255
66  *   (they can also be bypassed).
67  *
68  * For cards which aren't UHS-1 or UHS-2 cards, which we don't support,
69  * maximum bus frequency in high speed (HS) mode is 50 MHz.
70  * Note: for non-UHS-1 cards, HS mode is optional.
71  * Default speed (DS) mode is mandatory, it works up to 25 MHz.
72  * Whether the card supports HS or not can be determined using TRAN_SPEED
73  * field of card's CSD register.
74  *
75  * 50 MHz can not be obtained exactly, closest we can get is 53 MHz.
76  *
77  * The first stage divider is set to the highest possible value for the given
78  * frequency, and the the second stage dividers are used if division factor
79  * is >16.
80  *
81  * Of the second stage dividers, div0 is used for card 0, and div1 is used
82  * for card 1.
83  */
84 
sdmmc_host_set_clk_div(int div)85 static void sdmmc_host_set_clk_div(int div)
86 {
87     // Set frequency to 160MHz / div
88     // div = p + 1
89     // duty cycle = (h + 1)/(p + 1) (should be = 1/2)
90     assert (div > 1 && div <= 16);
91     int p = div - 1;
92     int h = div / 2 - 1;
93 
94     SDMMC.clock.div_factor_p = p;
95     SDMMC.clock.div_factor_h = h;
96     SDMMC.clock.div_factor_m = p;
97     // Set phases for in/out clocks
98     SDMMC.clock.phase_dout = 4;     // 180 degree phase on the output clock
99     SDMMC.clock.phase_din = 4;      // 180 degree phase on the input clock
100     SDMMC.clock.phase_core = 0;
101     // Wait for the clock to propagate
102     esp_rom_delay_us(10);
103 }
104 
sdmmc_host_input_clk_disable(void)105 static void sdmmc_host_input_clk_disable(void)
106 {
107     SDMMC.clock.val = 0;
108 }
109 
sdmmc_host_clock_update_command(int slot)110 static void sdmmc_host_clock_update_command(int slot)
111 {
112     // Clock update command (not a real command; just updates CIU registers)
113     sdmmc_hw_cmd_t cmd_val = {
114         .card_num = slot,
115         .update_clk_reg = 1,
116         .wait_complete = 1
117     };
118     bool repeat = true;
119     while(repeat) {
120         sdmmc_host_start_command(slot, cmd_val, 0);
121         while (true) {
122             // Sending clock update command to the CIU can generate HLE error.
123             // According to the manual, this is okay and we must retry the command.
124             if (SDMMC.rintsts.hle) {
125                 SDMMC.rintsts.hle = 1;
126                 repeat = true;
127                 break;
128             }
129             // When the command is accepted by CIU, start_command bit will be
130             // cleared in SDMMC.cmd register.
131             if (SDMMC.cmd.start_command == 0) {
132                 repeat = false;
133                 break;
134             }
135         }
136     }
137 }
138 
sdmmc_host_set_card_clk(int slot,uint32_t freq_khz)139 esp_err_t sdmmc_host_set_card_clk(int slot, uint32_t freq_khz)
140 {
141     if (!(slot == 0 || slot == 1)) {
142         return ESP_ERR_INVALID_ARG;
143     }
144     const int clk40m = 40000;
145 
146     // Disable clock first
147     SDMMC.clkena.cclk_enable &= ~BIT(slot);
148     sdmmc_host_clock_update_command(slot);
149 
150     int host_div = 0;   /* clock divider of the host (SDMMC.clock) */
151     int card_div = 0;   /* 1/2 of card clock divider (SDMMC.clkdiv) */
152 
153     // Calculate new dividers
154     if (freq_khz >= SDMMC_FREQ_HIGHSPEED) {
155         host_div = 4;       // 160 MHz / 4 = 40 MHz
156         card_div = 0;
157     } else if (freq_khz == SDMMC_FREQ_DEFAULT) {
158         host_div = 8;       // 160 MHz / 8 = 20 MHz
159         card_div = 0;
160     } else if (freq_khz == SDMMC_FREQ_PROBING) {
161         host_div = 10;      // 160 MHz / 10 / (20 * 2) = 400 kHz
162         card_div = 20;
163     } else {
164         host_div = 2;
165         card_div = (clk40m + freq_khz * 2 - 1) / (freq_khz * 2); // round up
166     }
167 
168     ESP_LOGD(TAG, "slot=%d host_div=%d card_div=%d freq=%dkHz",
169             slot, host_div, card_div,
170             2 * APB_CLK_FREQ / host_div / ((card_div == 0) ? 1 : card_div * 2) / 1000);
171 
172     // Program CLKDIV and CLKSRC, send them to the CIU
173     switch(slot) {
174         case 0:
175             SDMMC.clksrc.card0 = 0;
176             SDMMC.clkdiv.div0 = card_div;
177             break;
178         case 1:
179             SDMMC.clksrc.card1 = 1;
180             SDMMC.clkdiv.div1 = card_div;
181             break;
182     }
183     sdmmc_host_set_clk_div(host_div);
184     sdmmc_host_clock_update_command(slot);
185 
186     // Re-enable clocks
187     SDMMC.clkena.cclk_enable |= BIT(slot);
188     SDMMC.clkena.cclk_low_power |= BIT(slot);
189     sdmmc_host_clock_update_command(slot);
190 
191     // set data timeout
192     const uint32_t data_timeout_ms = 100;
193     uint32_t data_timeout_cycles = data_timeout_ms * freq_khz;
194     const uint32_t data_timeout_cycles_max = 0xffffff;
195     if (data_timeout_cycles > data_timeout_cycles_max) {
196         data_timeout_cycles = data_timeout_cycles_max;
197     }
198     SDMMC.tmout.data = data_timeout_cycles;
199     // always set response timeout to highest value, it's small enough anyway
200     SDMMC.tmout.response = 255;
201     return ESP_OK;
202 }
203 
sdmmc_host_start_command(int slot,sdmmc_hw_cmd_t cmd,uint32_t arg)204 esp_err_t sdmmc_host_start_command(int slot, sdmmc_hw_cmd_t cmd, uint32_t arg) {
205     if (!(slot == 0 || slot == 1)) {
206         return ESP_ERR_INVALID_ARG;
207     }
208     if ((SDMMC.cdetect.cards & BIT(slot)) != 0) {
209         return ESP_ERR_NOT_FOUND;
210     }
211     if (cmd.data_expected && cmd.rw && (SDMMC.wrtprt.cards & BIT(slot)) != 0) {
212         return ESP_ERR_INVALID_STATE;
213     }
214     while (SDMMC.cmd.start_command == 1) {
215         ;
216     }
217     SDMMC.cmdarg = arg;
218     cmd.card_num = slot;
219     cmd.start_command = 1;
220     SDMMC.cmd = cmd;
221     return ESP_OK;
222 }
223 
sdmmc_host_init(void)224 esp_err_t sdmmc_host_init(void)
225 {
226     if (s_intr_handle) {
227         return ESP_ERR_INVALID_STATE;
228     }
229 
230     periph_module_reset(PERIPH_SDMMC_MODULE);
231     periph_module_enable(PERIPH_SDMMC_MODULE);
232 
233     // Enable clock to peripheral. Use smallest divider first.
234     sdmmc_host_set_clk_div(2);
235 
236     // Reset
237     sdmmc_host_reset();
238     ESP_LOGD(TAG, "peripheral version %x, hardware config %08x", SDMMC.verid, SDMMC.hcon);
239 
240     // Clear interrupt status and set interrupt mask to known state
241     SDMMC.rintsts.val = 0xffffffff;
242     SDMMC.intmask.val = 0;
243     SDMMC.ctrl.int_enable = 0;
244 
245     // Allocate event queue
246     s_event_queue = xQueueCreate(SDMMC_EVENT_QUEUE_LENGTH, sizeof(sdmmc_event_t));
247     if (!s_event_queue) {
248         return ESP_ERR_NO_MEM;
249     }
250     s_io_intr_event = xSemaphoreCreateBinary();
251     if (!s_io_intr_event) {
252         vQueueDelete(s_event_queue);
253         s_event_queue = NULL;
254         return ESP_ERR_NO_MEM;
255     }
256     // Attach interrupt handler
257     esp_err_t ret = esp_intr_alloc(ETS_SDIO_HOST_INTR_SOURCE, 0, &sdmmc_isr, s_event_queue, &s_intr_handle);
258     if (ret != ESP_OK) {
259         vQueueDelete(s_event_queue);
260         s_event_queue = NULL;
261         vSemaphoreDelete(s_io_intr_event);
262         s_io_intr_event = NULL;
263         return ret;
264     }
265     // Enable interrupts
266     SDMMC.intmask.val =
267             SDMMC_INTMASK_CD |
268             SDMMC_INTMASK_CMD_DONE |
269             SDMMC_INTMASK_DATA_OVER |
270             SDMMC_INTMASK_RCRC | SDMMC_INTMASK_DCRC |
271             SDMMC_INTMASK_RTO | SDMMC_INTMASK_DTO | SDMMC_INTMASK_HTO |
272             SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE |
273             SDMMC_INTMASK_RESP_ERR | SDMMC_INTMASK_HLE; //sdio is enabled only when use.
274     SDMMC.ctrl.int_enable = 1;
275 
276     // Disable generation of Busy Clear Interrupt
277     SDMMC.cardthrctl.busy_clr_int_en = 0;
278 
279     // Enable DMA
280     sdmmc_host_dma_init();
281 
282     // Initialize transaction handler
283     ret = sdmmc_host_transaction_handler_init();
284     if (ret != ESP_OK) {
285         vQueueDelete(s_event_queue);
286         s_event_queue = NULL;
287         vSemaphoreDelete(s_io_intr_event);
288         s_io_intr_event = NULL;
289         esp_intr_free(s_intr_handle);
290         s_intr_handle = NULL;
291         return ret;
292     }
293 
294     return ESP_OK;
295 }
296 
configure_pin(int pin)297 static void configure_pin(int pin)
298 {
299     const int sdmmc_func = 3;
300     const int drive_strength = 3;
301     assert(pin!=GPIO_NUM_NC);
302     gpio_pulldown_dis(pin);
303 
304     uint32_t reg = GPIO_PIN_MUX_REG[pin];
305     assert(reg != UINT32_MAX);
306     PIN_INPUT_ENABLE(reg);
307     gpio_hal_iomux_func_sel(reg, sdmmc_func);
308     PIN_SET_DRV(reg, drive_strength);
309 }
310 
sdmmc_host_init_slot(int slot,const sdmmc_slot_config_t * slot_config)311 esp_err_t sdmmc_host_init_slot(int slot, const sdmmc_slot_config_t* slot_config)
312 {
313     if (!s_intr_handle) {
314         return ESP_ERR_INVALID_STATE;
315     }
316     if (!(slot == 0 || slot == 1)) {
317         return ESP_ERR_INVALID_ARG;
318     }
319     if (slot_config == NULL) {
320         return ESP_ERR_INVALID_ARG;
321     }
322     bool pullup = slot_config->flags & SDMMC_SLOT_FLAG_INTERNAL_PULLUP;
323     if (pullup) {
324         sdmmc_host_pullup_en(slot, slot_config->width);
325     }
326     int gpio_cd = slot_config->gpio_cd;
327     int gpio_wp = slot_config->gpio_wp;
328     uint8_t slot_width = slot_config->width;
329 
330     // Configure pins
331     const sdmmc_slot_info_t* pslot = &sdmmc_slot_info[slot];
332 
333     if (slot_width == SDMMC_SLOT_WIDTH_DEFAULT) {
334         slot_width = pslot->width;
335     }
336     else if (slot_width > pslot->width) {
337         return ESP_ERR_INVALID_ARG;
338     }
339     s_slot_width[slot] = slot_width;
340 
341     configure_pin(pslot->clk_gpio);
342     configure_pin(pslot->cmd_gpio);
343     configure_pin(pslot->d0_gpio);
344 
345     if (slot_width >= 4) {
346         configure_pin(pslot->d1_gpio);
347         configure_pin(pslot->d2_gpio);
348         // Force D3 high to make slave enter SD mode.
349         // Connect to peripheral after width configuration.
350         gpio_config_t gpio_conf = {
351             .pin_bit_mask = BIT64(pslot->d3_gpio),
352             .mode = GPIO_MODE_OUTPUT ,
353             .pull_up_en = 0,
354             .pull_down_en = 0,
355             .intr_type = GPIO_INTR_DISABLE,
356         };
357         gpio_config(&gpio_conf);
358         gpio_set_level(pslot->d3_gpio, 1);
359         if (slot_width == 8) {
360             configure_pin(pslot->d4_gpio);
361             configure_pin(pslot->d5_gpio);
362             configure_pin(pslot->d6_gpio);
363             configure_pin(pslot->d7_gpio);
364         }
365     }
366 
367     // SDIO slave interrupt is edge sensitive to ~(int_n | card_int | card_detect)
368     // set this and card_detect to high to enable sdio interrupt
369     esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, pslot->card_int, false);
370 
371     // Set up Card Detect input
372     int matrix_in_cd;
373     if (gpio_cd != SDMMC_SLOT_NO_CD) {
374         ESP_LOGD(TAG, "using GPIO%d as CD pin", gpio_cd);
375         esp_rom_gpio_pad_select_gpio(gpio_cd);
376         gpio_set_direction(gpio_cd, GPIO_MODE_INPUT);
377         matrix_in_cd = gpio_cd;
378     } else {
379         // if not set, default to CD low (card present)
380         matrix_in_cd = GPIO_MATRIX_CONST_ZERO_INPUT;
381     }
382     esp_rom_gpio_connect_in_signal(matrix_in_cd, pslot->card_detect, false);
383 
384     // Set up Write Protect input
385     int matrix_in_wp;
386     if (gpio_wp != SDMMC_SLOT_NO_WP) {
387         ESP_LOGD(TAG, "using GPIO%d as WP pin", gpio_wp);
388         esp_rom_gpio_pad_select_gpio(gpio_wp);
389         gpio_set_direction(gpio_wp, GPIO_MODE_INPUT);
390         matrix_in_wp = gpio_wp;
391     } else {
392         // if not set, default to WP high (not write protected)
393         matrix_in_wp = GPIO_MATRIX_CONST_ONE_INPUT;
394     }
395     // WP signal is normally active low, but hardware expects
396     // an active-high signal, so invert it in GPIO matrix
397     esp_rom_gpio_connect_in_signal(matrix_in_wp, pslot->write_protect, true);
398 
399     // By default, set probing frequency (400kHz) and 1-bit bus
400     esp_err_t ret = sdmmc_host_set_card_clk(slot, 400);
401     if (ret != ESP_OK) {
402         return ret;
403     }
404     ret = sdmmc_host_set_bus_width(slot, 1);
405     if (ret != ESP_OK) {
406         return ret;
407     }
408     return ESP_OK;
409 }
410 
sdmmc_host_deinit(void)411 esp_err_t sdmmc_host_deinit(void)
412 {
413     if (!s_intr_handle) {
414         return ESP_ERR_INVALID_STATE;
415     }
416     esp_intr_free(s_intr_handle);
417     s_intr_handle = NULL;
418     vQueueDelete(s_event_queue);
419     s_event_queue = NULL;
420     vQueueDelete(s_io_intr_event);
421     s_io_intr_event = NULL;
422     sdmmc_host_input_clk_disable();
423     sdmmc_host_transaction_handler_deinit();
424     periph_module_disable(PERIPH_SDMMC_MODULE);
425     return ESP_OK;
426 }
427 
sdmmc_host_wait_for_event(int tick_count,sdmmc_event_t * out_event)428 esp_err_t sdmmc_host_wait_for_event(int tick_count, sdmmc_event_t* out_event)
429 {
430     if (!out_event) {
431         return ESP_ERR_INVALID_ARG;
432     }
433     if (!s_event_queue) {
434         return ESP_ERR_INVALID_STATE;
435     }
436     int ret = xQueueReceive(s_event_queue, out_event, tick_count);
437     if (ret == pdFALSE) {
438         return ESP_ERR_TIMEOUT;
439     }
440     return ESP_OK;
441 }
442 
sdmmc_host_set_bus_width(int slot,size_t width)443 esp_err_t sdmmc_host_set_bus_width(int slot, size_t width)
444 {
445     if (!(slot == 0 || slot == 1)) {
446         return ESP_ERR_INVALID_ARG;
447     }
448     if (sdmmc_slot_info[slot].width < width) {
449         return ESP_ERR_INVALID_ARG;
450     }
451     const uint16_t mask = BIT(slot);
452     if (width == 1) {
453         SDMMC.ctype.card_width_8 &= ~mask;
454         SDMMC.ctype.card_width &= ~mask;
455     } else if (width == 4) {
456         SDMMC.ctype.card_width_8 &= ~mask;
457         SDMMC.ctype.card_width |= mask;
458         // D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
459         configure_pin(sdmmc_slot_info[slot].d3_gpio);
460     } else if (width == 8) {
461         SDMMC.ctype.card_width_8 |= mask;
462         // D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
463         configure_pin(sdmmc_slot_info[slot].d3_gpio);
464     } else {
465         return ESP_ERR_INVALID_ARG;
466     }
467     ESP_LOGD(TAG, "slot=%d width=%d", slot, width);
468     return ESP_OK;
469 }
470 
sdmmc_host_get_slot_width(int slot)471 size_t sdmmc_host_get_slot_width(int slot)
472 {
473     assert( slot == 0 || slot == 1 );
474     return s_slot_width[slot];
475 }
476 
sdmmc_host_set_bus_ddr_mode(int slot,bool ddr_enabled)477 esp_err_t sdmmc_host_set_bus_ddr_mode(int slot, bool ddr_enabled)
478 {
479     if (!(slot == 0 || slot == 1)) {
480         return ESP_ERR_INVALID_ARG;
481     }
482     if (s_slot_width[slot] == 8 && ddr_enabled) {
483         ESP_LOGW(TAG, "DDR mode with 8-bit bus width is not supported yet");
484         // requires reconfiguring controller clock for 2x card frequency
485         return ESP_ERR_NOT_SUPPORTED;
486     }
487     uint32_t mask = BIT(slot);
488     if (ddr_enabled) {
489         SDMMC.uhs.ddr |= mask;
490         SDMMC.emmc_ddr_reg |= mask;
491     } else {
492         SDMMC.uhs.ddr &= ~mask;
493         SDMMC.emmc_ddr_reg &= ~mask;
494     }
495     ESP_LOGD(TAG, "slot=%d ddr=%d", slot, ddr_enabled ? 1 : 0);
496     return ESP_OK;
497 }
498 
sdmmc_host_dma_init(void)499 static void sdmmc_host_dma_init(void)
500 {
501     SDMMC.ctrl.dma_enable = 1;
502     SDMMC.bmod.val = 0;
503     SDMMC.bmod.sw_reset = 1;
504     SDMMC.idinten.ni = 1;
505     SDMMC.idinten.ri = 1;
506     SDMMC.idinten.ti = 1;
507 }
508 
509 
sdmmc_host_dma_stop(void)510 void sdmmc_host_dma_stop(void)
511 {
512     SDMMC.ctrl.use_internal_dma = 0;
513     SDMMC.ctrl.dma_reset = 1;
514     SDMMC.bmod.fb = 0;
515     SDMMC.bmod.enable = 0;
516 }
517 
sdmmc_host_dma_prepare(sdmmc_desc_t * desc,size_t block_size,size_t data_size)518 void sdmmc_host_dma_prepare(sdmmc_desc_t* desc, size_t block_size, size_t data_size)
519 {
520     // Set size of data and DMA descriptor pointer
521     SDMMC.bytcnt = data_size;
522     SDMMC.blksiz = block_size;
523     SDMMC.dbaddr = desc;
524 
525     // Enable everything needed to use DMA
526     SDMMC.ctrl.dma_enable = 1;
527     SDMMC.ctrl.use_internal_dma = 1;
528     SDMMC.bmod.enable = 1;
529     SDMMC.bmod.fb = 1;
530     sdmmc_host_dma_resume();
531 }
532 
sdmmc_host_dma_resume(void)533 void sdmmc_host_dma_resume(void)
534 {
535     SDMMC.pldmnd = 1;
536 }
537 
sdmmc_host_card_busy(void)538 bool sdmmc_host_card_busy(void)
539 {
540     return SDMMC.status.data_busy == 1;
541 }
542 
sdmmc_host_io_int_enable(int slot)543 esp_err_t sdmmc_host_io_int_enable(int slot)
544 {
545     configure_pin(sdmmc_slot_info[slot].d1_gpio);
546     return ESP_OK;
547 }
548 
sdmmc_host_io_int_wait(int slot,TickType_t timeout_ticks)549 esp_err_t sdmmc_host_io_int_wait(int slot, TickType_t timeout_ticks)
550 {
551     /* SDIO interrupts are negedge sensitive ones: the status bit is only set
552      * when first interrupt triggered.
553      *
554      * If D1 GPIO is low when entering this function, we know that interrupt
555      * (in SDIO sense) has occurred and we don't need to use SDMMC peripheral
556      * interrupt.
557      */
558 
559     SDMMC.intmask.sdio &= ~BIT(slot);   /* Disable SDIO interrupt */
560     SDMMC.rintsts.sdio = BIT(slot);
561     if (gpio_get_level(sdmmc_slot_info[slot].d1_gpio) == 0) {
562         return ESP_OK;
563     }
564     /* Otherwise, need to wait for an interrupt. Since D1 was high,
565      * SDMMC peripheral interrupt is guaranteed to trigger on negedge.
566      */
567     xSemaphoreTake(s_io_intr_event, 0);
568     SDMMC.intmask.sdio |= BIT(slot);    /* Re-enable SDIO interrupt */
569 
570     if (xSemaphoreTake(s_io_intr_event, timeout_ticks) == pdTRUE) {
571         return ESP_OK;
572     } else {
573         return ESP_ERR_TIMEOUT;
574     }
575 }
576 
577 /**
578  * @brief SDMMC interrupt handler
579  *
580  * All communication in SD protocol is driven by the master, and the hardware
581  * handles things like stop commands automatically.
582  * So the interrupt handler doesn't need to do much, we just push interrupt
583  * status into a queue, clear interrupt flags, and let the task currently
584  * doing communication figure out what to do next.
585  * This also applies to SDIO interrupts which are generated by the slave.
586  *
587  * Card detect interrupts pose a small issue though, because if a card is
588  * plugged in and out a few times, while there is no task to process
589  * the events, event queue can become full and some card detect events
590  * may be dropped. We ignore this problem for now, since the there are no other
591  * interesting events which can get lost due to this.
592  */
sdmmc_isr(void * arg)593 static void sdmmc_isr(void* arg) {
594     QueueHandle_t queue = (QueueHandle_t) arg;
595     sdmmc_event_t event;
596     int higher_priority_task_awoken = pdFALSE;
597 
598     uint32_t pending = SDMMC.mintsts.val & 0xFFFF;
599     SDMMC.rintsts.val = pending;
600     event.sdmmc_status = pending;
601 
602     uint32_t dma_pending = SDMMC.idsts.val;
603     SDMMC.idsts.val = dma_pending;
604     event.dma_status = dma_pending & 0x1f;
605 
606     if (pending != 0 || dma_pending != 0) {
607         xQueueSendFromISR(queue, &event, &higher_priority_task_awoken);
608     }
609 
610     uint32_t sdio_pending = SDMMC.mintsts.sdio;
611     if (sdio_pending) {
612         // disable the interrupt (no need to clear here, this is done in sdmmc_host_io_wait_int)
613         SDMMC.intmask.sdio &= ~sdio_pending;
614         xSemaphoreGiveFromISR(s_io_intr_event, &higher_priority_task_awoken);
615     }
616 
617     if (higher_priority_task_awoken == pdTRUE) {
618         portYIELD_FROM_ISR();
619     }
620 }
621 
sdmmc_host_pullup_en(int slot,int width)622 esp_err_t sdmmc_host_pullup_en(int slot, int width)
623 {
624     if (width > sdmmc_slot_info[slot].width) {
625         //in esp32 we only support 8 bit in slot 0, note this is occupied by the flash by default
626         return ESP_ERR_INVALID_ARG;
627     }
628     //according to the spec, the host control the clk, we don't to pull it up here
629     gpio_pullup_en(sdmmc_slot_info[slot].cmd_gpio);
630     gpio_pullup_en(sdmmc_slot_info[slot].d0_gpio);
631     if (width >= 4) {
632         gpio_pullup_en(sdmmc_slot_info[slot].d1_gpio);
633         gpio_pullup_en(sdmmc_slot_info[slot].d2_gpio);
634         gpio_pullup_en(sdmmc_slot_info[slot].d3_gpio);
635     }
636     if (width == 8) {
637         gpio_pullup_en(sdmmc_slot_info[slot].d4_gpio);
638         gpio_pullup_en(sdmmc_slot_info[slot].d5_gpio);
639         gpio_pullup_en(sdmmc_slot_info[slot].d6_gpio);
640         gpio_pullup_en(sdmmc_slot_info[slot].d7_gpio);
641     }
642     return ESP_OK;
643 }
644