1 /*
2 * Copyright (c) 2017 Intel Corporation
3 * Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT espressif_esp32_i2c
9
10 /* Include esp-idf headers first to avoid redefining BIT() macro */
11 #include <soc/dport_reg.h>
12 #include <soc/i2c_reg.h>
13 #include <esp32/rom/gpio.h>
14 #include <soc/gpio_sig_map.h>
15
16 #include <soc.h>
17 #include <errno.h>
18 #include <drivers/gpio.h>
19 #include <drivers/gpio/gpio_esp32.h>
20 #include <drivers/i2c.h>
21 #include <drivers/interrupt_controller/intc_esp32.h>
22 #include <drivers/clock_control.h>
23 #include <sys/util.h>
24 #include <string.h>
25
26 #define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
27 #include <logging/log.h>
28 LOG_MODULE_REGISTER(i2c_esp32);
29
30 #include "i2c-priv.h"
31
32 /* Number of entries in hardware command queue */
33 #define I2C_ESP32_NUM_CMDS 16
34 /* Number of bytes in hardware FIFO */
35 #define I2C_ESP32_BUFFER_SIZE 32
36
37 #define I2C_ESP32_TRANSFER_TIMEOUT_MS 100
38 #define I2C_ESP32_TIMEOUT_USEC 1000
39
40 enum i2c_esp32_opcodes {
41 I2C_ESP32_OP_RSTART,
42 I2C_ESP32_OP_WRITE,
43 I2C_ESP32_OP_READ,
44 I2C_ESP32_OP_STOP,
45 I2C_ESP32_OP_END
46 };
47
48 struct i2c_esp32_cmd {
49 uint32_t num_bytes : 8;
50 uint32_t ack_en : 1;
51 uint32_t ack_exp : 1;
52 uint32_t ack_val : 1;
53 uint32_t opcode : 3;
54 uint32_t reserved : 17;
55 uint32_t done : 1;
56 };
57
58 struct i2c_esp32_data {
59 uint32_t dev_config;
60 uint16_t address;
61 uint32_t err_status;
62
63 struct k_sem fifo_sem;
64 struct k_sem transfer_sem;
65
66 int irq_line;
67 };
68
69 typedef void (*irq_connect_cb)(void);
70
71 struct i2c_esp32_config {
72 int index;
73
74 const struct device *clock_dev;
75
76 const struct {
77 int sda_out;
78 int sda_in;
79 int scl_out;
80 int scl_in;
81 } sig;
82
83 const struct {
84 int scl;
85 int sda;
86 } pins;
87
88 const clock_control_subsys_t peripheral_id;
89
90 const struct {
91 bool tx_lsb_first;
92 bool rx_lsb_first;
93 } mode;
94
95 int irq_source;
96
97 const uint32_t default_config;
98 const uint32_t bitrate;
99 };
100
i2c_esp32_configure_pins(int pin,int matrix_out,int matrix_in)101 static int i2c_esp32_configure_pins(int pin, int matrix_out, int matrix_in)
102 {
103 const int pin_mode = GPIO_OUTPUT_HIGH |
104 GPIO_OPEN_DRAIN |
105 GPIO_PULL_UP;
106 const char *device_name = gpio_esp32_get_gpio_for_pin(pin);
107 const struct device *gpio;
108 int ret;
109
110 if (!device_name) {
111 return -EINVAL;
112 }
113 gpio = device_get_binding(device_name);
114 if (!gpio) {
115 return -EINVAL;
116 }
117
118 ret = gpio_pin_configure(gpio, pin, pin_mode);
119 if (ret < 0) {
120 return ret;
121 }
122
123 esp32_rom_gpio_matrix_out(pin, matrix_out, false, false);
124 esp32_rom_gpio_matrix_in(pin, matrix_in, false);
125
126 return 0;
127 }
128
i2c_esp32_configure_speed(const struct device * dev,uint32_t speed)129 static int i2c_esp32_configure_speed(const struct device *dev,
130 uint32_t speed)
131 {
132 static const uint32_t speed_to_freq_tbl[] = {
133 [I2C_SPEED_STANDARD] = KHZ(100),
134 [I2C_SPEED_FAST] = KHZ(400),
135 [I2C_SPEED_FAST_PLUS] = MHZ(1),
136 [I2C_SPEED_HIGH] = 0,
137 [I2C_SPEED_ULTRA] = 0
138 };
139
140 const struct i2c_esp32_config *config = dev->config;
141
142 uint32_t sys_clk_freq = 0;
143 uint32_t freq_hz = speed_to_freq_tbl[speed];
144 uint32_t period;
145
146 if (!freq_hz) {
147 return -ENOTSUP;
148 }
149
150 if (clock_control_get_rate(config->clock_dev,
151 config->peripheral_id,
152 &sys_clk_freq)) {
153 return -EINVAL;
154 }
155
156 period = (sys_clk_freq / freq_hz);
157 period /= 2U; /* Set hold and setup times to 1/2th of period */
158
159 esp32_set_mask32(period << I2C_SCL_LOW_PERIOD_S,
160 I2C_SCL_LOW_PERIOD_REG(config->index));
161 esp32_set_mask32(period << I2C_SCL_HIGH_PERIOD_S,
162 I2C_SCL_HIGH_PERIOD_REG(config->index));
163
164 esp32_set_mask32(period << I2C_SCL_START_HOLD_TIME_S,
165 I2C_SCL_START_HOLD_REG(config->index));
166 esp32_set_mask32(period << I2C_SCL_RSTART_SETUP_TIME_S,
167 I2C_SCL_RSTART_SETUP_REG(config->index));
168 esp32_set_mask32(period << I2C_SCL_STOP_HOLD_TIME_S,
169 I2C_SCL_STOP_HOLD_REG(config->index));
170 esp32_set_mask32(period << I2C_SCL_STOP_SETUP_TIME_S,
171 I2C_SCL_STOP_SETUP_REG(config->index));
172
173 period /= 2U; /* Set sample and hold times to 1/4th of period */
174 esp32_set_mask32(period << I2C_SDA_HOLD_TIME_S,
175 I2C_SDA_HOLD_REG(config->index));
176 esp32_set_mask32(period << I2C_SDA_SAMPLE_TIME_S,
177 I2C_SDA_SAMPLE_REG(config->index));
178
179 return 0;
180 }
181
i2c_esp32_configure(const struct device * dev,uint32_t dev_config)182 static int i2c_esp32_configure(const struct device *dev, uint32_t dev_config)
183 {
184 const struct i2c_esp32_config *config = dev->config;
185 struct i2c_esp32_data *data = dev->data;
186 unsigned int key = irq_lock();
187 uint32_t v = 0U;
188 int ret;
189
190 ret = i2c_esp32_configure_pins(config->pins.scl,
191 config->sig.scl_out,
192 config->sig.scl_in);
193 if (ret < 0) {
194 return ret;
195 }
196
197 ret = i2c_esp32_configure_pins(config->pins.sda,
198 config->sig.sda_out,
199 config->sig.sda_in);
200 if (ret < 0) {
201 return ret;
202 }
203
204 clock_control_on(config->clock_dev, config->peripheral_id);
205
206 /* MSB or LSB first is configurable for both TX and RX */
207 if (config->mode.tx_lsb_first) {
208 v |= I2C_TX_LSB_FIRST;
209 }
210
211 if (config->mode.rx_lsb_first) {
212 v |= I2C_RX_LSB_FIRST;
213 }
214
215 if (dev_config & I2C_MODE_MASTER) {
216 v |= I2C_MS_MODE;
217 sys_write32(0, I2C_SLAVE_ADDR_REG(config->index));
218 } else {
219 uint32_t addr = (data->address & I2C_SLAVE_ADDR_V);
220
221 if (dev_config & I2C_ADDR_10_BITS) {
222 addr |= I2C_ADDR_10BIT_EN;
223 }
224 sys_write32(addr << I2C_SLAVE_ADDR_S,
225 I2C_SLAVE_ADDR_REG(config->index));
226
227 /* Before setting up FIFO and interrupts, stop transmission */
228 sys_clear_bit(I2C_CTR_REG(config->index), I2C_TRANS_START_S);
229
230 /* Byte after address isn't the offset address in slave RAM */
231 sys_clear_bit(I2C_FIFO_CONF_REG(config->index),
232 I2C_FIFO_ADDR_CFG_EN_S);
233 }
234
235 /* Use open-drain for clock and data pins */
236 v |= (I2C_SCL_FORCE_OUT | I2C_SDA_FORCE_OUT);
237 v |= I2C_CLK_EN;
238 sys_write32(v, I2C_CTR_REG(config->index));
239
240 ret = i2c_esp32_configure_speed(dev, I2C_SPEED_GET(dev_config));
241 if (ret < 0) {
242 goto out;
243 }
244
245 /* Use FIFO to transmit data */
246 sys_clear_bit(I2C_FIFO_CONF_REG(config->index), I2C_NONFIFO_EN_S);
247
248 v = CONFIG_I2C_ESP32_TIMEOUT & I2C_TIME_OUT_REG;
249 sys_write32(v << I2C_TIME_OUT_REG_S, I2C_TO_REG(config->index));
250
251 /* Enable interrupt types handled by the ISR */
252 sys_write32(I2C_ACK_ERR_INT_ENA_M |
253 I2C_TIME_OUT_INT_ENA_M |
254 I2C_TRANS_COMPLETE_INT_ENA_M |
255 I2C_ARBITRATION_LOST_INT_ENA_M,
256 I2C_INT_ENA_REG(config->index));
257
258 irq_enable(data->irq_line);
259
260 out:
261 irq_unlock(key);
262
263 return ret;
264 }
265
i2c_esp32_reset_fifo(const struct i2c_esp32_config * config)266 static inline void i2c_esp32_reset_fifo(const struct i2c_esp32_config *config)
267 {
268 uint32_t reg = I2C_FIFO_CONF_REG(config->index);
269
270 /* Writing 1 and then 0 to these bits will reset the I2C fifo */
271 esp32_set_mask32(I2C_TX_FIFO_RST | I2C_RX_FIFO_RST, reg);
272 esp32_clear_mask32(I2C_TX_FIFO_RST | I2C_RX_FIFO_RST, reg);
273 }
274
i2c_esp32_wait_timeout(uint32_t * counter)275 static int i2c_esp32_wait_timeout(uint32_t *counter)
276 {
277 if (*counter == 0) {
278 return 1;
279 }
280
281 (*counter)--;
282 k_busy_wait(1);
283 return 0;
284 }
285
i2c_esp32_wait(const struct device * dev,volatile struct i2c_esp32_cmd * wait_cmd)286 static int i2c_esp32_wait(const struct device *dev,
287 volatile struct i2c_esp32_cmd *wait_cmd)
288 {
289 const struct i2c_esp32_config *config = dev->config;
290 struct i2c_esp32_data *data = dev->data;
291 uint32_t timeout = I2C_ESP32_TIMEOUT_USEC;
292
293 if (wait_cmd) {
294 while (!wait_cmd->done) {
295 if (i2c_esp32_wait_timeout(&timeout)) {
296 return -ETIMEDOUT;
297 }
298 }
299 }
300
301 /* Wait for I2C bus to finish its business */
302 timeout = I2C_ESP32_TIMEOUT_USEC;
303 while (sys_read32(I2C_SR_REG(config->index)) & I2C_BUS_BUSY) {
304 if (i2c_esp32_wait_timeout(&timeout)) {
305 return -ETIMEDOUT;
306 }
307 }
308
309 uint32_t status = data->err_status;
310 if (status & (I2C_ARBITRATION_LOST_INT_RAW | I2C_ACK_ERR_INT_RAW)) {
311 data->err_status = 0;
312 return -EIO;
313 }
314 if (status & I2C_TIME_OUT_INT_RAW) {
315 data->err_status = 0;
316 return -ETIMEDOUT;
317 }
318
319 return 0;
320 }
321
i2c_esp32_transmit(const struct device * dev,volatile struct i2c_esp32_cmd * wait_cmd)322 static int i2c_esp32_transmit(const struct device *dev, volatile struct i2c_esp32_cmd *wait_cmd)
323 {
324 const struct i2c_esp32_config *config = dev->config;
325 struct i2c_esp32_data *data = dev->data;
326
327 /* Start transmission and wait for the ISR to give the semaphore */
328 sys_set_bit(I2C_CTR_REG(config->index), I2C_TRANS_START_S);
329 if (k_sem_take(&data->fifo_sem, K_MSEC(I2C_ESP32_TRANSFER_TIMEOUT_MS)) < 0) {
330 return -ETIMEDOUT;
331 }
332
333 return i2c_esp32_wait(dev, wait_cmd);
334 }
335
336 static volatile struct i2c_esp32_cmd *
i2c_esp32_write_addr(const struct device * dev,volatile struct i2c_esp32_cmd * cmd,struct i2c_msg * msg,uint16_t addr)337 i2c_esp32_write_addr(const struct device *dev,
338 volatile struct i2c_esp32_cmd *cmd,
339 struct i2c_msg *msg,
340 uint16_t addr)
341 {
342 const struct i2c_esp32_config *config = dev->config;
343 struct i2c_esp32_data *data = dev->data;
344 uint32_t addr_len = 1U;
345
346 i2c_esp32_reset_fifo(config);
347
348 sys_write32(addr & I2C_FIFO_RDATA, I2C_DATA_APB_REG(config->index));
349 if (data->dev_config & I2C_ADDR_10_BITS) {
350 sys_write32(I2C_DATA_APB_REG(config->index),
351 (addr >> 8) & I2C_FIFO_RDATA);
352 addr_len++;
353 }
354
355 if ((msg->flags & I2C_MSG_RW_MASK) != I2C_MSG_WRITE) {
356 *cmd++ = (struct i2c_esp32_cmd) {
357 .opcode = I2C_ESP32_OP_WRITE,
358 .ack_en = true,
359 .num_bytes = addr_len,
360 };
361 } else {
362 msg->len += addr_len;
363 }
364
365 return cmd;
366 }
367
i2c_esp32_read_msg(const struct device * dev,uint16_t addr,struct i2c_msg msg)368 static int i2c_esp32_read_msg(const struct device *dev, uint16_t addr,
369 struct i2c_msg msg)
370 {
371 const struct i2c_esp32_config *config = dev->config;
372 volatile struct i2c_esp32_cmd *cmd =
373 (void *)I2C_COMD0_REG(config->index);
374 uint32_t i;
375 int ret;
376
377 /* Set the R/W bit to R */
378 addr |= BIT(0);
379
380 *cmd++ = (struct i2c_esp32_cmd) {
381 .opcode = I2C_ESP32_OP_RSTART
382 };
383
384 cmd = i2c_esp32_write_addr(dev, cmd, &msg, addr);
385
386 for (; msg.len; cmd = (void *)I2C_COMD0_REG(config->index)) {
387 volatile struct i2c_esp32_cmd *wait_cmd = NULL;
388 uint32_t to_read = MIN(I2C_ESP32_BUFFER_SIZE, msg.len - 1);
389
390 /* Might be the last byte, in which case, `to_read` will
391 * be 0 here. See comment below.
392 */
393 if (to_read) {
394 *cmd++ = (struct i2c_esp32_cmd) {
395 .opcode = I2C_ESP32_OP_READ,
396 .num_bytes = to_read,
397 };
398 }
399
400 /* I2C master won't acknowledge the last byte read from the
401 * slave device. Divide the read command in two segments as
402 * recommended by the ESP32 Technical Reference Manual.
403 */
404 if (msg.len - to_read <= 1U) {
405 /* Read the last byte and explicitly ask for an
406 * acknowledgment.
407 */
408 *cmd++ = (struct i2c_esp32_cmd) {
409 .opcode = I2C_ESP32_OP_READ,
410 .num_bytes = 1,
411 .ack_val = true,
412 };
413
414 /* Account for the `msg.len - 1` when clamping
415 * transmission length to FIFO buffer size.
416 */
417 to_read++;
418
419 if (msg.flags & I2C_MSG_STOP) {
420 wait_cmd = cmd;
421 *cmd++ = (struct i2c_esp32_cmd) {
422 .opcode = I2C_ESP32_OP_STOP
423 };
424 }
425 }
426 if (!wait_cmd) {
427 *cmd++ = (struct i2c_esp32_cmd) {
428 .opcode = I2C_ESP32_OP_END
429 };
430 }
431
432 ret = i2c_esp32_transmit(dev, wait_cmd);
433 if (ret < 0) {
434 return ret;
435 }
436
437 for (i = 0U; i < to_read; i++) {
438 uint32_t v = sys_read32(I2C_DATA_APB_REG(config->index));
439
440 *msg.buf++ = v & I2C_FIFO_RDATA;
441 }
442 msg.len -= to_read;
443
444 i2c_esp32_reset_fifo(config);
445 }
446
447 return 0;
448 }
449
i2c_esp32_write_msg(const struct device * dev,uint16_t addr,struct i2c_msg msg)450 static int i2c_esp32_write_msg(const struct device *dev, uint16_t addr,
451 struct i2c_msg msg)
452 {
453 const struct i2c_esp32_config *config = dev->config;
454 volatile struct i2c_esp32_cmd *cmd =
455 (void *)I2C_COMD0_REG(config->index);
456
457 *cmd++ = (struct i2c_esp32_cmd) {
458 .opcode = I2C_ESP32_OP_RSTART
459 };
460
461 cmd = i2c_esp32_write_addr(dev, cmd, &msg, addr);
462
463 for (; msg.len; cmd = (void *)I2C_COMD0_REG(config->index)) {
464 uint32_t to_send = MIN(I2C_ESP32_BUFFER_SIZE, msg.len);
465 uint32_t i;
466 int ret;
467
468 /* Copy data to TX fifo */
469 for (i = 0U; i < to_send; i++) {
470 sys_write32(*msg.buf++,
471 I2C_DATA_APB_REG(config->index));
472 }
473 *cmd++ = (struct i2c_esp32_cmd) {
474 .opcode = I2C_ESP32_OP_WRITE,
475 .num_bytes = to_send,
476 .ack_en = true,
477 };
478 msg.len -= to_send;
479
480 if (!msg.len || (msg.flags & I2C_MSG_STOP)) {
481 *cmd = (struct i2c_esp32_cmd) {
482 .opcode = I2C_ESP32_OP_STOP
483 };
484 } else {
485 *cmd = (struct i2c_esp32_cmd) {
486 .opcode = I2C_ESP32_OP_END
487 };
488 }
489
490 ret = i2c_esp32_transmit(dev, cmd);
491 if (ret < 0) {
492 return ret;
493 }
494
495 i2c_esp32_reset_fifo(config);
496 }
497
498 return 0;
499 }
500
i2c_esp32_transfer(const struct device * dev,struct i2c_msg * msgs,uint8_t num_msgs,uint16_t addr)501 static int i2c_esp32_transfer(const struct device *dev, struct i2c_msg *msgs,
502 uint8_t num_msgs, uint16_t addr)
503 {
504 struct i2c_esp32_data *data = dev->data;
505 int ret = 0;
506 uint8_t i;
507
508 k_sem_take(&data->transfer_sem, K_FOREVER);
509
510 /* Mask out unused address bits, and make room for R/W bit */
511 addr &= BIT_MASK(data->dev_config & I2C_ADDR_10_BITS ? 10 : 7);
512 addr <<= 1;
513
514 for (i = 0U; i < num_msgs; i++) {
515 if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
516 ret = i2c_esp32_write_msg(dev, addr, msgs[i]);
517 } else {
518 ret = i2c_esp32_read_msg(dev, addr, msgs[i]);
519 }
520
521 if (ret < 0) {
522 break;
523 }
524 }
525
526 k_sem_give(&data->transfer_sem);
527
528 return ret;
529 }
530
i2c_esp32_isr(void * arg)531 static void i2c_esp32_isr(void *arg)
532 {
533 struct device *dev = (struct device *)arg;
534 const int fifo_give_mask = I2C_ACK_ERR_INT_ST |
535 I2C_TIME_OUT_INT_ST |
536 I2C_TRANS_COMPLETE_INT_ST |
537 I2C_ARBITRATION_LOST_INT_ST;
538 const struct i2c_esp32_config *config = dev->config;
539 uint32_t status = sys_read32(I2C_INT_STATUS_REG(config->index));
540
541 if (status & fifo_give_mask) {
542 struct i2c_esp32_data *data = dev->data;
543
544 /* Only give the semaphore if a watched interrupt happens.
545 * Error checking is performed at the other side of the
546 * semaphore, by reading the status register.
547 */
548 if (status & I2C_ACK_ERR_INT_ST) {
549 data->err_status |= I2C_ACK_ERR_INT_ST;
550 }
551 if (status & I2C_ARBITRATION_LOST_INT_ST) {
552 data->err_status |= I2C_ARBITRATION_LOST_INT_ST;
553 }
554 if (status & I2C_TIME_OUT_INT_ST) {
555 data->err_status |= I2C_TIME_OUT_INT_ST;
556 }
557 k_sem_give(&data->fifo_sem);
558 }
559
560 /* Acknowledge all I2C interrupts */
561 sys_write32(~0, I2C_INT_CLR_REG(config->index));
562 }
563
564 static int i2c_esp32_init(const struct device *dev);
565
566 static const struct i2c_driver_api i2c_esp32_driver_api = {
567 .configure = i2c_esp32_configure,
568 .transfer = i2c_esp32_transfer,
569 };
570
571 #if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
572 static const struct i2c_esp32_config i2c_esp32_config_0 = {
573 .index = 0,
574 .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)),
575 .peripheral_id = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(0, offset),
576 .sig = {
577 .sda_out = I2CEXT0_SDA_OUT_IDX,
578 .sda_in = I2CEXT0_SDA_IN_IDX,
579 .scl_out = I2CEXT0_SCL_OUT_IDX,
580 .scl_in = I2CEXT0_SCL_IN_IDX,
581 },
582 .pins = {
583 .scl = DT_INST_PROP(0, scl_pin),
584 .sda = DT_INST_PROP(0, sda_pin),
585 },
586 .mode = {
587 .tx_lsb_first =
588 IS_ENABLED(CONFIG_I2C_ESP32_0_TX_LSB_FIRST),
589 .rx_lsb_first =
590 IS_ENABLED(CONFIG_I2C_ESP32_0_RX_LSB_FIRST),
591 },
592 .irq_source = DT_IRQN(DT_NODELABEL(i2c0)),
593 .default_config = I2C_MODE_MASTER, /* FIXME: Zephyr don't support I2C_SLAVE_MODE */
594 .bitrate = DT_INST_PROP(0, clock_frequency),
595 };
596
597 static struct i2c_esp32_data i2c_esp32_data_0;
598
599 DEVICE_DT_INST_DEFINE(0, &i2c_esp32_init, NULL,
600 &i2c_esp32_data_0, &i2c_esp32_config_0,
601 POST_KERNEL, CONFIG_I2C_INIT_PRIORITY,
602 &i2c_esp32_driver_api);
603 #endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */
604
605 #if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
606 static const struct i2c_esp32_config i2c_esp32_config_1 = {
607 .index = 1,
608 .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(1)),
609 .peripheral_id = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(1, offset),
610 .sig = {
611 .sda_out = I2CEXT1_SDA_OUT_IDX,
612 .sda_in = I2CEXT1_SDA_IN_IDX,
613 .scl_out = I2CEXT1_SCL_OUT_IDX,
614 .scl_in = I2CEXT1_SCL_IN_IDX,
615 },
616 .pins = {
617 .scl = DT_INST_PROP(1, scl_pin),
618 .sda = DT_INST_PROP(1, sda_pin),
619 },
620 .mode = {
621 .tx_lsb_first =
622 IS_ENABLED(CONFIG_I2C_ESP32_1_TX_LSB_FIRST),
623 .rx_lsb_first =
624 IS_ENABLED(CONFIG_I2C_ESP32_1_RX_LSB_FIRST),
625 },
626 .irq_source = DT_IRQN(DT_NODELABEL(i2c1)),
627 .default_config = I2C_MODE_MASTER, /* FIXME: Zephyr don't support I2C_SLAVE_MODE */
628 .bitrate = DT_INST_PROP(1, clock_frequency),
629 };
630
631 static struct i2c_esp32_data i2c_esp32_data_1;
632
633 DEVICE_DT_INST_DEFINE(1, &i2c_esp32_init, NULL,
634 &i2c_esp32_data_1, &i2c_esp32_config_1,
635 POST_KERNEL, CONFIG_I2C_INIT_PRIORITY,
636 &i2c_esp32_driver_api);
637 #endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */
638
i2c_esp32_init(const struct device * dev)639 static int i2c_esp32_init(const struct device *dev)
640 {
641 const struct i2c_esp32_config *config = dev->config;
642 struct i2c_esp32_data *data = dev->data;
643 uint32_t bitrate_cfg = i2c_map_dt_bitrate(config->bitrate);
644
645 unsigned int key = irq_lock();
646
647 k_sem_init(&data->fifo_sem, 1, 1);
648 k_sem_init(&data->transfer_sem, 1, 1);
649
650 /* Even if irq_enable() is called on config->irq.line, disable
651 * interrupt sources in the I2C controller.
652 */
653 sys_write32(0, I2C_INT_ENA_REG(config->index));
654 data->irq_line = esp_intr_alloc(config->irq_source, 0, i2c_esp32_isr, (void *)dev, NULL);
655 irq_unlock(key);
656
657 return i2c_esp32_configure(dev, config->default_config | bitrate_cfg);
658 }
659