1 /*
2  * Simultaneous authentication of equals
3  * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #ifdef CONFIG_WPA3_SAE
10 
11 #include "utils/includes.h"
12 #include "utils/common.h"
13 #include "crypto/crypto.h"
14 #include "crypto/sha256.h"
15 #include "crypto/random.h"
16 #include "crypto/dh_groups.h"
17 #include "ieee802_11_defs.h"
18 #include "sae.h"
19 #include "esp_wifi_crypto_types.h"
20 
sae_set_group(struct sae_data * sae,int group)21 int sae_set_group(struct sae_data *sae, int group)
22 {
23 	struct sae_temporary_data *tmp;
24 
25 	sae_clear_data(sae);
26 	tmp = sae->tmp = os_zalloc(sizeof(*tmp));
27 	if (tmp == NULL)
28 		return ESP_FAIL;
29 
30 	/* First, check if this is an ECC group */
31 	tmp->ec = crypto_ec_init(group);
32 	if (tmp->ec) {
33 		wpa_printf(MSG_DEBUG, "SAE: Selecting supported ECC group %d",
34 			   group);
35 		sae->group = group;
36 		tmp->prime_len = crypto_ec_prime_len(tmp->ec);
37 		tmp->prime = crypto_ec_get_prime(tmp->ec);
38 		tmp->order = crypto_ec_get_order(tmp->ec);
39 		return ESP_OK;
40 	}
41 
42 	/* Not an ECC group, check FFC */
43 	tmp->dh = dh_groups_get(group);
44 	if (tmp->dh) {
45 		wpa_printf(MSG_DEBUG, "SAE: Selecting supported FFC group %d",
46 			   group);
47 		sae->group = group;
48 		tmp->prime_len = tmp->dh->prime_len;
49 		if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
50 			sae_clear_data(sae);
51 			os_free(tmp);
52 			return ESP_FAIL;
53 		}
54 
55 		tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
56 							tmp->prime_len);
57 		if (tmp->prime_buf == NULL) {
58 			sae_clear_data(sae);
59 			os_free(tmp);
60 			return ESP_FAIL;
61 		}
62 		tmp->prime = tmp->prime_buf;
63 
64 		tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
65 							tmp->dh->order_len);
66 		if (tmp->order_buf == NULL) {
67 			sae_clear_data(sae);
68 			os_free(tmp);
69 			return ESP_FAIL;
70 		}
71 		tmp->order = tmp->order_buf;
72 
73 		return ESP_OK;
74 	}
75 
76 	/* Unsupported group */
77 	wpa_printf(MSG_DEBUG,
78 		   "SAE: Group %d not supported by the crypto library", group);
79         os_free(tmp);
80 	return ESP_FAIL;
81 }
82 
sae_clear_temp_data(struct sae_data * sae)83 void sae_clear_temp_data(struct sae_data *sae)
84 {
85 	struct sae_temporary_data *tmp;
86 	if (sae == NULL || sae->tmp == NULL)
87 		return;
88 	tmp = sae->tmp;
89 	crypto_ec_deinit(tmp->ec);
90 	crypto_bignum_deinit(tmp->prime_buf, 0);
91 	crypto_bignum_deinit(tmp->order_buf, 0);
92 	crypto_bignum_deinit(tmp->sae_rand, 1);
93 	crypto_bignum_deinit(tmp->pwe_ffc, 1);
94 	crypto_bignum_deinit(tmp->own_commit_scalar, 0);
95 	crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
96 	crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
97 	crypto_ec_point_deinit(tmp->pwe_ecc, 1);
98 	crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
99 	crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
100 	os_free(tmp->pw_id);
101 	bin_clear_free(tmp, sizeof(*tmp));
102 	sae->tmp = NULL;
103 }
104 
sae_clear_data(struct sae_data * sae)105 void sae_clear_data(struct sae_data *sae)
106 {
107 	if (sae == NULL)
108 		return;
109 	sae_clear_temp_data(sae);
110 	crypto_bignum_deinit(sae->peer_commit_scalar, 0);
111 	os_memset(sae, 0, sizeof(*sae));
112 }
113 
buf_shift_right(u8 * buf,size_t len,size_t bits)114 static void buf_shift_right(u8 *buf, size_t len, size_t bits)
115 {
116 	size_t i;
117 	for (i = len - 1; i > 0; i--)
118 		buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
119 	buf[0] >>= bits;
120 }
121 
sae_get_rand(struct sae_data * sae)122 static struct crypto_bignum * sae_get_rand(struct sae_data *sae)
123 {
124 	u8 val[SAE_MAX_PRIME_LEN];
125 	int iter = 0;
126 	struct crypto_bignum *bn = NULL;
127 	int order_len_bits = crypto_bignum_bits(sae->tmp->order);
128 	size_t order_len = (order_len_bits + 7) / 8;
129 
130 	if (order_len > sizeof(val))
131 		return NULL;
132 
133 	for (;;) {
134 		if (iter++ > 100 || random_get_bytes(val, order_len) < 0)
135 			return NULL;
136 		if (order_len_bits % 8)
137 			buf_shift_right(val, order_len, 8 - order_len_bits % 8);
138 		bn = crypto_bignum_init_set(val, order_len);
139 		if (bn == NULL)
140 			return NULL;
141 		if (crypto_bignum_is_zero(bn) ||
142 		    crypto_bignum_is_one(bn) ||
143 		    crypto_bignum_cmp(bn, sae->tmp->order) >= 0) {
144 			crypto_bignum_deinit(bn, 0);
145 			continue;
146 		}
147 		break;
148 	}
149 
150 	os_memset(val, 0, order_len);
151 	return bn;
152 }
153 
sae_get_rand_and_mask(struct sae_data * sae)154 static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae)
155 {
156 	crypto_bignum_deinit(sae->tmp->sae_rand, 1);
157 	sae->tmp->sae_rand = sae_get_rand(sae);
158 	if (sae->tmp->sae_rand == NULL)
159 		return NULL;
160 	return sae_get_rand(sae);
161 }
162 
sae_pwd_seed_key(const u8 * addr1,const u8 * addr2,u8 * key)163 static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
164 {
165 	wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
166 		   " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
167 	if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
168 		os_memcpy(key, addr1, ETH_ALEN);
169 		os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
170 	} else {
171 		os_memcpy(key, addr2, ETH_ALEN);
172 		os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
173 	}
174 }
175 
176 static struct crypto_bignum *
get_rand_1_to_p_1(const u8 * prime,size_t prime_len,size_t prime_bits,int * r_odd)177 get_rand_1_to_p_1(const u8 *prime, size_t prime_len, size_t prime_bits,
178 		  int *r_odd)
179 {
180 	for (;;) {
181 		struct crypto_bignum *r;
182 		u8 tmp[SAE_MAX_ECC_PRIME_LEN];
183 
184 		if (random_get_bytes(tmp, prime_len) < 0)
185 			break;
186 		if (prime_bits % 8)
187 			buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
188 		if (os_memcmp(tmp, prime, prime_len) >= 0)
189 			continue;
190 		r = crypto_bignum_init_set(tmp, prime_len);
191 		if (!r)
192 			break;
193 		if (crypto_bignum_is_zero(r)) {
194 			crypto_bignum_deinit(r, 0);
195 			continue;
196 		}
197 
198 		*r_odd = tmp[prime_len - 1] & 0x01;
199 		return r;
200 	}
201 
202 	return NULL;
203 }
204 
is_quadratic_residue_blind(struct sae_data * sae,const u8 * prime,size_t bits,const struct crypto_bignum * qr,const struct crypto_bignum * qnr,const struct crypto_bignum * y_sqr)205 static int is_quadratic_residue_blind(struct sae_data *sae,
206 				      const u8 *prime, size_t bits,
207 				      const struct crypto_bignum *qr,
208 				      const struct crypto_bignum *qnr,
209 				      const struct crypto_bignum *y_sqr)
210 {
211 	struct crypto_bignum *r, *num;
212 	int r_odd, check, res = -1;
213 
214 	/*
215 	 * Use the blinding technique to mask y_sqr while determining
216 	 * whether it is a quadratic residue modulo p to avoid leaking
217 	 * timing information while determining the Legendre symbol.
218 	 *
219 	 * v = y_sqr
220 	 * r = a random number between 1 and p-1, inclusive
221 	 * num = (v * r * r) modulo p
222 	 */
223 	r = get_rand_1_to_p_1(prime, sae->tmp->prime_len, bits, &r_odd);
224 	if (!r)
225 		return ESP_FAIL;
226 
227 	num = crypto_bignum_init();
228 	if (!num ||
229 	    crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
230 	    crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
231 		goto fail;
232 
233 	if (r_odd) {
234 		/*
235 		 * num = (num * qr) module p
236 		 * LGR(num, p) = 1 ==> quadratic residue
237 		 */
238 		if (crypto_bignum_mulmod(num, qr, sae->tmp->prime, num) < 0)
239 			goto fail;
240 		check = 1;
241 	} else {
242 		/*
243 		 * num = (num * qnr) module p
244 		 * LGR(num, p) = -1 ==> quadratic residue
245 		 */
246 		if (crypto_bignum_mulmod(num, qnr, sae->tmp->prime, num) < 0)
247 			goto fail;
248 		check = -1;
249 	}
250 
251 	res = crypto_bignum_legendre(num, sae->tmp->prime);
252 	if (res == -2) {
253 		res = -1;
254 		goto fail;
255 	}
256 	res = res == check;
257 fail:
258 	crypto_bignum_deinit(num, 1);
259 	crypto_bignum_deinit(r, 1);
260 	return res;
261 }
262 
sae_test_pwd_seed_ecc(struct sae_data * sae,const u8 * pwd_seed,const u8 * prime,const struct crypto_bignum * qr,const struct crypto_bignum * qnr,struct crypto_bignum ** ret_x_cand)263 static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
264 				 const u8 *prime,
265 				 const struct crypto_bignum *qr,
266 				 const struct crypto_bignum *qnr,
267 				 struct crypto_bignum **ret_x_cand)
268 {
269 	u8 pwd_value[SAE_MAX_ECC_PRIME_LEN];
270 	struct crypto_bignum *y_sqr, *x_cand;
271 	int res;
272 	size_t bits;
273 
274 	*ret_x_cand = NULL;
275 
276 	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
277 
278 	/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
279 	bits = crypto_ec_prime_len_bits(sae->tmp->ec);
280 	if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
281 			    prime, sae->tmp->prime_len, pwd_value, bits) < 0)
282 		return ESP_FAIL;
283 	if (bits % 8)
284 		buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
285 	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
286 			pwd_value, sae->tmp->prime_len);
287 
288 	if (os_memcmp(pwd_value, prime, sae->tmp->prime_len) >= 0)
289 		return ESP_OK;
290 
291 	x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
292 	if (!x_cand)
293 		return ESP_FAIL;
294 	y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
295 	if (!y_sqr) {
296 		crypto_bignum_deinit(x_cand, 1);
297 		return ESP_FAIL;
298 	}
299 
300 	res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr);
301 	crypto_bignum_deinit(y_sqr, 1);
302 	if (res <= 0) {
303 		crypto_bignum_deinit(x_cand, 1);
304 		return res;
305 	}
306 
307 	*ret_x_cand = x_cand;
308 	return 1;
309 }
310 
sae_test_pwd_seed_ffc(struct sae_data * sae,const u8 * pwd_seed,struct crypto_bignum * pwe)311 static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
312 				 struct crypto_bignum *pwe)
313 {
314 	u8 pwd_value[SAE_MAX_PRIME_LEN];
315 	size_t bits = sae->tmp->prime_len * 8;
316 	u8 exp[1];
317 	struct crypto_bignum *a, *b;
318 	int res;
319 
320 	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
321 
322 	/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
323 	if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
324 			    sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
325 			    bits) < 0)
326 		return ESP_FAIL;
327 	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
328 			sae->tmp->prime_len);
329 
330 	if (os_memcmp(pwd_value, sae->tmp->dh->prime, sae->tmp->prime_len) >= 0)
331 	{
332 		wpa_printf(MSG_DEBUG, "SAE: pwd-value >= p");
333 		return ESP_OK;
334 	}
335 
336 	/* PWE = pwd-value^((p-1)/r) modulo p */
337 
338 	a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
339 
340 	if (sae->tmp->dh->safe_prime) {
341 		/*
342 		 * r = (p-1)/2 for the group used here, so this becomes:
343 		 * PWE = pwd-value^2 modulo p
344 		 */
345 		exp[0] = 2;
346 		b = crypto_bignum_init_set(exp, sizeof(exp));
347 	} else {
348 		/* Calculate exponent: (p-1)/r */
349 		exp[0] = 1;
350 		b = crypto_bignum_init_set(exp, sizeof(exp));
351 		if (b == NULL ||
352 		    crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
353 		    crypto_bignum_div(b, sae->tmp->order, b) < 0) {
354 			crypto_bignum_deinit(b, 0);
355 			b = NULL;
356 		}
357 	}
358 
359 	if (a == NULL || b == NULL)
360 		res = -1;
361 	else
362 		res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
363 
364 	crypto_bignum_deinit(a, 0);
365 	crypto_bignum_deinit(b, 0);
366 
367 	if (res < 0) {
368 		wpa_printf(MSG_DEBUG, "SAE: Failed to calculate PWE");
369 		return ESP_FAIL;
370 	}
371 
372 	/* if (PWE > 1) --> found */
373 	if (crypto_bignum_is_zero(pwe) || crypto_bignum_is_one(pwe)) {
374 		wpa_printf(MSG_DEBUG, "SAE: PWE <= 1");
375 		return ESP_OK;
376 	}
377 
378 	wpa_printf(MSG_DEBUG, "SAE: PWE found");
379 	return 1;
380 }
381 
get_random_qr_qnr(const u8 * prime,size_t prime_len,const struct crypto_bignum * prime_bn,size_t prime_bits,struct crypto_bignum ** qr,struct crypto_bignum ** qnr)382 static int get_random_qr_qnr(const u8 *prime, size_t prime_len,
383 			     const struct crypto_bignum *prime_bn,
384 			     size_t prime_bits, struct crypto_bignum **qr,
385 			     struct crypto_bignum **qnr)
386 {
387 	*qr = NULL;
388 	*qnr = NULL;
389 
390 	while (!(*qr) || !(*qnr)) {
391 		u8 tmp[SAE_MAX_ECC_PRIME_LEN];
392 		struct crypto_bignum *q;
393 		int res;
394 
395 		if (random_get_bytes(tmp, prime_len) < 0)
396 			break;
397 		if (prime_bits % 8)
398 			buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
399 		if (os_memcmp(tmp, prime, prime_len) >= 0)
400 			continue;
401 		q = crypto_bignum_init_set(tmp, prime_len);
402 		if (!q)
403 			break;
404 		res = crypto_bignum_legendre(q, prime_bn);
405 
406 		if (res == 1 && !(*qr))
407 			*qr = q;
408 		else if (res == -1 && !(*qnr))
409 			*qnr = q;
410 		else
411 			crypto_bignum_deinit(q, 0);
412 	}
413 
414 	return (*qr && *qnr) ? 0 : -1;
415 }
416 
sae_derive_pwe_ecc(struct sae_data * sae,const u8 * addr1,const u8 * addr2,const u8 * password,size_t password_len,const char * identifier)417 static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
418 			      const u8 *addr2, const u8 *password,
419 			      size_t password_len, const char *identifier)
420 {
421 	u8 counter, k = 40;
422 	u8 addrs[2 * ETH_ALEN];
423 	const u8 *addr[3];
424 	size_t len[3];
425 	size_t num_elem;
426 	u8 dummy_password[32];
427 	size_t dummy_password_len;
428 	int pwd_seed_odd = 0;
429 	u8 prime[SAE_MAX_ECC_PRIME_LEN];
430 	size_t prime_len;
431 	struct crypto_bignum *x = NULL, *qr, *qnr;
432 	size_t bits;
433 	int res;
434 
435 	dummy_password_len = password_len;
436 	if (dummy_password_len > sizeof(dummy_password))
437 		dummy_password_len = sizeof(dummy_password);
438 	if (random_get_bytes(dummy_password, dummy_password_len) < 0)
439 		return ESP_FAIL;
440 
441 	prime_len = sae->tmp->prime_len;
442 	if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
443 				 prime_len) < 0)
444 		return ESP_FAIL;
445 	bits = crypto_ec_prime_len_bits(sae->tmp->ec);
446 
447 	/*
448 	 * Create a random quadratic residue (qr) and quadratic non-residue
449 	 * (qnr) modulo p for blinding purposes during the loop.
450 	 */
451 	if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
452 			      &qr, &qnr) < 0)
453 		return ESP_FAIL;
454 
455 	wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
456 			      password, password_len);
457 	if (identifier)
458 		wpa_printf(MSG_DEBUG, "SAE: password identifier: %s",
459 			   identifier);
460 
461 	/*
462 	 * H(salt, ikm) = HMAC-SHA256(salt, ikm)
463 	 * base = password [|| identifier]
464 	 * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
465 	 *              base || counter)
466 	 */
467 	sae_pwd_seed_key(addr1, addr2, addrs);
468 
469 	addr[0] = password;
470 	len[0] = password_len;
471 	num_elem = 1;
472 	if (identifier) {
473 		addr[num_elem] = (const u8 *) identifier;
474 		len[num_elem] = os_strlen(identifier);
475 		num_elem++;
476 	}
477 	addr[num_elem] = &counter;
478 	len[num_elem] = sizeof(counter);
479 	num_elem++;
480 
481 	/*
482 	 * Continue for at least k iterations to protect against side-channel
483 	 * attacks that attempt to determine the number of iterations required
484 	 * in the loop.
485 	 */
486 	for (counter = 1; counter <= k || !x; counter++) {
487 		u8 pwd_seed[SHA256_MAC_LEN];
488 		struct crypto_bignum *x_cand;
489 
490 		if (counter > 200) {
491 			/* This should not happen in practice */
492 			wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
493 			break;
494 		}
495 
496 		wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
497 		if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
498 				       addr, len, pwd_seed) < 0)
499 			break;
500 
501 		res = sae_test_pwd_seed_ecc(sae, pwd_seed,
502 					    prime, qr, qnr, &x_cand);
503 		if (res < 0)
504 			goto fail;
505 		if (res > 0 && !x) {
506 			wpa_printf(MSG_DEBUG,
507 				   "SAE: Selected pwd-seed with counter %u",
508 				   counter);
509 			x = x_cand;
510 			pwd_seed_odd = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
511 			os_memset(pwd_seed, 0, sizeof(pwd_seed));
512 
513 			/*
514 			 * Use a dummy password for the following rounds, if
515 			 * any.
516 			 */
517 			addr[0] = dummy_password;
518 			len[0] = dummy_password_len;
519 		} else if (res > 0) {
520 			crypto_bignum_deinit(x_cand, 1);
521 		}
522 	}
523 
524 	if (!x) {
525 		wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
526 		res = -1;
527 		goto fail;
528 	}
529 
530 	if (!sae->tmp->pwe_ecc)
531 		sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
532 	if (!sae->tmp->pwe_ecc)
533 		res = -1;
534 	else
535 		res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
536 						    sae->tmp->pwe_ecc, x,
537 						    pwd_seed_odd);
538 	crypto_bignum_deinit(x, 1);
539 	if (res < 0) {
540 		/*
541 		 * This should not happen since we already checked that there
542 		 * is a result.
543 		 */
544 		wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
545 	}
546 
547 fail:
548 	crypto_bignum_deinit(qr, 0);
549 	crypto_bignum_deinit(qnr, 0);
550 
551 	return res;
552 }
553 
sae_derive_pwe_ffc(struct sae_data * sae,const u8 * addr1,const u8 * addr2,const u8 * password,size_t password_len,const char * identifier)554 static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
555 			      const u8 *addr2, const u8 *password,
556 			      size_t password_len, const char *identifier)
557 {
558 	u8 counter;
559 	u8 addrs[2 * ETH_ALEN];
560 	const u8 *addr[3];
561 	size_t len[3];
562 	size_t num_elem;
563 	int found = 0;
564 
565 	if (sae->tmp->pwe_ffc == NULL) {
566 		sae->tmp->pwe_ffc = crypto_bignum_init();
567 		if (sae->tmp->pwe_ffc == NULL)
568 			return ESP_FAIL;
569 	}
570 
571 	wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
572 			      password, password_len);
573 
574 	/*
575 	 * H(salt, ikm) = HMAC-SHA256(salt, ikm)
576 	 * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
577 	 *              password [|| identifier] || counter)
578 	 */
579 	sae_pwd_seed_key(addr1, addr2, addrs);
580 
581 	addr[0] = password;
582 	len[0] = password_len;
583 	num_elem = 1;
584 	if (identifier) {
585 		addr[num_elem] = (const u8 *) identifier;
586 		len[num_elem] = os_strlen(identifier);
587 		num_elem++;
588 	}
589 	addr[num_elem] = &counter;
590 	len[num_elem] = sizeof(counter);
591 	num_elem++;
592 
593 	for (counter = 1; !found; counter++) {
594 		u8 pwd_seed[SHA256_MAC_LEN];
595 		int res;
596 
597 		if (counter > 200) {
598 			/* This should not happen in practice */
599 			wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
600 			break;
601 		}
602 
603 		wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
604 		if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
605 				       addr, len, pwd_seed) < 0)
606 			break;
607 		res = sae_test_pwd_seed_ffc(sae, pwd_seed, sae->tmp->pwe_ffc);
608 		if (res < 0)
609 			break;
610 		if (res > 0) {
611 			wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
612 			found = 1;
613 		}
614 	}
615 
616 	return found ? 0 : -1;
617 }
618 
sae_derive_commit_element_ecc(struct sae_data * sae,struct crypto_bignum * mask)619 static int sae_derive_commit_element_ecc(struct sae_data *sae,
620 					 struct crypto_bignum *mask)
621 {
622 	/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
623 	if (!sae->tmp->own_commit_element_ecc) {
624 		sae->tmp->own_commit_element_ecc =
625 			crypto_ec_point_init(sae->tmp->ec);
626 		if (!sae->tmp->own_commit_element_ecc)
627 			return ESP_FAIL;
628 	}
629 
630 	if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
631 				sae->tmp->own_commit_element_ecc) < 0 ||
632 	    crypto_ec_point_invert(sae->tmp->ec,
633 				   sae->tmp->own_commit_element_ecc) < 0) {
634 		wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
635 		return ESP_FAIL;
636 	}
637 
638 	return ESP_OK;
639 }
640 
sae_derive_commit_element_ffc(struct sae_data * sae,struct crypto_bignum * mask)641 static int sae_derive_commit_element_ffc(struct sae_data *sae,
642 					 struct crypto_bignum *mask)
643 {
644 	/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
645 	if (!sae->tmp->own_commit_element_ffc) {
646 		sae->tmp->own_commit_element_ffc = crypto_bignum_init();
647 		if (!sae->tmp->own_commit_element_ffc)
648 			return ESP_FAIL;
649 	}
650 
651 	if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
652 				  sae->tmp->own_commit_element_ffc) < 0 ||
653 	    crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
654 				  sae->tmp->prime,
655 				  sae->tmp->own_commit_element_ffc) < 0) {
656 		wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
657 		return ESP_FAIL;
658 	}
659 
660 	return ESP_OK;
661 }
662 
sae_derive_commit(struct sae_data * sae)663 static int sae_derive_commit(struct sae_data *sae)
664 {
665 	struct crypto_bignum *mask = NULL;
666 	int ret = -1;
667 	unsigned int counter = 0;
668 
669 	do {
670 		counter++;
671 		if (counter > 100) {
672 			/*
673 			 * This cannot really happen in practice if the random
674 			 * number generator is working. Anyway, to avoid even a
675 			 * theoretical infinite loop, break out after 100
676 			 * attemps.
677 			 */
678 			crypto_bignum_deinit(mask, 1);
679 			return ESP_FAIL;
680 		}
681 
682 		if (mask) {
683 		    crypto_bignum_deinit(mask, 1);
684 		}
685 		mask = sae_get_rand_and_mask(sae);
686 		if (mask == NULL) {
687 			wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
688 			return ESP_FAIL;
689 		}
690 
691 		/* commit-scalar = (rand + mask) modulo r */
692 		if (!sae->tmp->own_commit_scalar) {
693 			sae->tmp->own_commit_scalar = crypto_bignum_init();
694 			if (!sae->tmp->own_commit_scalar)
695 				goto fail;
696 		}
697 		crypto_bignum_add(sae->tmp->sae_rand, mask,
698 				  sae->tmp->own_commit_scalar);
699 		crypto_bignum_mod(sae->tmp->own_commit_scalar, sae->tmp->order,
700 				  sae->tmp->own_commit_scalar);
701 	} while (crypto_bignum_is_zero(sae->tmp->own_commit_scalar) ||
702 		 crypto_bignum_is_one(sae->tmp->own_commit_scalar));
703 
704 	if ((sae->tmp->ec && sae_derive_commit_element_ecc(sae, mask) < 0) ||
705 	    (sae->tmp->dh && sae_derive_commit_element_ffc(sae, mask) < 0))
706 		goto fail;
707 
708 	ret = 0;
709 fail:
710 	crypto_bignum_deinit(mask, 1);
711 	return ret;
712 }
713 
sae_prepare_commit(const u8 * addr1,const u8 * addr2,const u8 * password,size_t password_len,const char * identifier,struct sae_data * sae)714 int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
715 		       const u8 *password, size_t password_len,
716 		       const char *identifier, struct sae_data *sae)
717 {
718 	if (sae->tmp == NULL ||
719 	    (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
720 						password_len,
721 						identifier) < 0) ||
722 	    (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
723 						password_len,
724 						identifier) < 0) ||
725 	    sae_derive_commit(sae) < 0)
726 		return ESP_FAIL;
727 	return ESP_OK;
728 }
729 
sae_derive_k_ecc(struct sae_data * sae,u8 * k)730 static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
731 {
732 	struct crypto_ec_point *K;
733 	int ret = -1;
734 
735 	K = crypto_ec_point_init(sae->tmp->ec);
736 	if (K == NULL)
737 		goto fail;
738 
739 	/*
740 	 * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
741 	 *                                        PEER-COMMIT-ELEMENT)))
742 	 * If K is identity element (point-at-infinity), reject
743 	 * k = F(K) (= x coordinate)
744 	 */
745 
746 	if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
747 				sae->peer_commit_scalar, K) < 0 ||
748 	    crypto_ec_point_add(sae->tmp->ec, K,
749 				sae->tmp->peer_commit_element_ecc, K) < 0 ||
750 	    crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
751 	    crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
752 	    crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
753 		wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
754 		goto fail;
755 	}
756 
757 	wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
758 
759 	ret = 0;
760 fail:
761 	crypto_ec_point_deinit(K, 1);
762 	return ret;
763 }
764 
sae_derive_k_ffc(struct sae_data * sae,u8 * k)765 static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
766 {
767 	struct crypto_bignum *K;
768 	int ret = -1;
769 
770 	K = crypto_bignum_init();
771 	if (K == NULL)
772 		goto fail;
773 
774 	/*
775 	 * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
776 	 *                                        PEER-COMMIT-ELEMENT)))
777 	 * If K is identity element (one), reject.
778 	 * k = F(K) (= x coordinate)
779 	 */
780 
781 	if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
782 				  sae->tmp->prime, K) < 0 ||
783 	    crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
784 				 sae->tmp->prime, K) < 0 ||
785 	    crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
786 	    ||
787 	    crypto_bignum_is_one(K) ||
788 	    crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
789 	    0) {
790 		wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
791 		goto fail;
792 	}
793 
794 	wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
795 
796 	ret = 0;
797 fail:
798 	crypto_bignum_deinit(K, 1);
799 	return ret;
800 }
801 
sae_derive_keys(struct sae_data * sae,const u8 * k)802 static int sae_derive_keys(struct sae_data *sae, const u8 *k)
803 {
804 	u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
805 	u8 keyseed[SHA256_MAC_LEN];
806 	u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
807 	struct crypto_bignum *tmp;
808 	int ret = -1;
809 
810 	tmp = crypto_bignum_init();
811 	if (tmp == NULL)
812 		goto fail;
813 
814 	/* keyseed = H(<0>32, k)
815 	 * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
816 	 *                      (commit-scalar + peer-commit-scalar) modulo r)
817 	 * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
818 	 */
819 
820 	os_memset(null_key, 0, sizeof(null_key));
821 	hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
822 		    keyseed);
823 	wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
824 
825 	crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
826 			  tmp);
827 	crypto_bignum_mod(tmp, sae->tmp->order, tmp);
828 	crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->prime_len);
829 	wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
830 	if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
831 		       val, sae->tmp->prime_len, keys, sizeof(keys)) < 0)
832 		goto fail;
833 	os_memset(keyseed, 0, sizeof(keyseed));
834 	os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
835 	os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
836 	os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
837 	os_memset(keys, 0, sizeof(keys));
838 	wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
839 	wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
840 
841 	ret = 0;
842 fail:
843 	crypto_bignum_deinit(tmp, 0);
844 	return ret;
845 }
846 
sae_process_commit(struct sae_data * sae)847 int sae_process_commit(struct sae_data *sae)
848 {
849 	u8 k[SAE_MAX_PRIME_LEN];
850 	if (sae->tmp == NULL ||
851 	    (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
852 	    (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
853 	    sae_derive_keys(sae, k) < 0)
854 		return ESP_FAIL;
855 	return ESP_OK;
856 }
857 
sae_write_commit(struct sae_data * sae,struct wpabuf * buf,const struct wpabuf * token,const char * identifier)858 int sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
859 		      const struct wpabuf *token, const char *identifier)
860 {
861 	u8 *pos;
862 
863 	if (sae->tmp == NULL)
864 		return ESP_FAIL;
865 
866 	wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
867 	if (token) {
868 		wpabuf_put_buf(buf, token);
869 		wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
870 			    wpabuf_head(token), wpabuf_len(token));
871 	}
872 	pos = wpabuf_put(buf, sae->tmp->prime_len);
873 	if (crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
874 				 sae->tmp->prime_len, sae->tmp->prime_len) < 0) {
875 		wpa_printf(MSG_ERROR, "SAE: failed bignum operation on own commit scalar");
876 		return ESP_FAIL;
877 	}
878 	wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
879 		    pos, sae->tmp->prime_len);
880 	if (sae->tmp->ec) {
881 		pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
882 		if (crypto_ec_point_to_bin(sae->tmp->ec,
883 					   sae->tmp->own_commit_element_ecc,
884 					   pos, pos + sae->tmp->prime_len) < 0) {
885 			wpa_printf(MSG_ERROR, "SAE: failed bignum op while deriving ec point");
886 			return ESP_FAIL;
887 		}
888 		wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
889 			    pos, sae->tmp->prime_len);
890 		wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
891 			    pos + sae->tmp->prime_len, sae->tmp->prime_len);
892 	} else {
893 		pos = wpabuf_put(buf, sae->tmp->prime_len);
894 		if (crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
895 					 sae->tmp->prime_len, sae->tmp->prime_len) < 0) {
896 			wpa_printf(MSG_ERROR, "SAE: failed bignum operation on commit elem ffc");
897 			return ESP_FAIL;
898 		}
899 		wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
900 			    pos, sae->tmp->prime_len);
901 	}
902 
903 	if (identifier) {
904 		/* Password Identifier element */
905 		wpabuf_put_u8(buf, WLAN_EID_EXTENSION);
906 		wpabuf_put_u8(buf, 1 + os_strlen(identifier));
907 		wpabuf_put_u8(buf, WLAN_EID_EXT_PASSWORD_IDENTIFIER);
908 		wpabuf_put_str(buf, identifier);
909 		wpa_printf(MSG_DEBUG, "SAE: own Password Identifier: %s",
910 			   identifier);
911 	}
912 	return ESP_OK;
913 }
914 
sae_group_allowed(struct sae_data * sae,int * allowed_groups,u16 group)915 u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
916 {
917 	if (allowed_groups) {
918 		int i;
919 		for (i = 0; allowed_groups[i] > 0; i++) {
920 			if (allowed_groups[i] == group)
921 				break;
922 		}
923 		if (allowed_groups[i] != group) {
924 			wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
925 				   "enabled in the current configuration",
926 				   group);
927 			return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
928 		}
929 	}
930 
931 	if (sae->state == SAE_COMMITTED && group != sae->group) {
932 		wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
933 		return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
934 	}
935 
936 	if (group != sae->group && sae_set_group(sae, group) < 0) {
937 		wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
938 			   group);
939 		return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
940 	}
941 
942 	if (sae->tmp == NULL) {
943 		wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
944 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
945 	}
946 
947 	if (sae->tmp->dh && !allowed_groups) {
948 		wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
949 			   "explicit configuration enabling it", group);
950 		return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
951 	}
952 
953 	return WLAN_STATUS_SUCCESS;
954 }
955 
sae_is_password_id_elem(const u8 * pos,const u8 * end)956 static int sae_is_password_id_elem(const u8 *pos, const u8 *end)
957 {
958 	int ret = end - pos >= 3 &&
959 		pos[0] == WLAN_EID_EXTENSION &&
960 		pos[1] >= 1 &&
961 		end - pos - 2 >= pos[1] &&
962 		pos[2] == WLAN_EID_EXT_PASSWORD_IDENTIFIER;
963 
964 	return ret;
965 }
966 
sae_parse_commit_token(struct sae_data * sae,const u8 ** pos,const u8 * end,const u8 ** token,size_t * token_len)967 static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
968 				   const u8 *end, const u8 **token,
969 				   size_t *token_len)
970 {
971 	size_t scalar_elem_len, tlen;
972 	const u8 *elem;
973 
974 	if (token)
975 		*token = NULL;
976 	if (token_len)
977 		*token_len = 0;
978 
979 	scalar_elem_len = (sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len;
980 	if (scalar_elem_len >= (size_t) (end - *pos))
981 		return; /* No extra data beyond peer scalar and element */
982 
983 	/* It is a bit difficult to parse this now that there is an
984 	 * optional variable length Anti-Clogging Token field and
985 	 * optional variable length Password Identifier element in the
986 	 * frame. We are sending out fixed length Anti-Clogging Token
987 	 * fields, so use that length as a requirement for the received
988 	 * token and check for the presence of possible Password
989 	 * Identifier element based on the element header information.
990 	 */
991 	tlen = end - (*pos + scalar_elem_len);
992 
993 	if (tlen < SHA256_MAC_LEN) {
994 		wpa_printf(MSG_DEBUG,
995 			   "SAE: Too short optional data (%u octets) to include our Anti-Clogging Token",
996 			   (unsigned int) tlen);
997 		return;
998 	}
999 
1000 	elem = *pos + scalar_elem_len;
1001 	if (sae_is_password_id_elem(elem, end)) {
1002 		 /* Password Identifier element takes out all available
1003 		  * extra octets, so there can be no Anti-Clogging token in
1004 		  * this frame. */
1005 		return;
1006 	}
1007 
1008 	elem += SHA256_MAC_LEN;
1009 	if (sae_is_password_id_elem(elem, end)) {
1010 		 /* Password Identifier element is included in the end, so
1011 		  * remove its length from the Anti-Clogging token field. */
1012 		tlen -= 2 + elem[1];
1013 	}
1014 
1015 	wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
1016 	if (token)
1017 		*token = *pos;
1018 	if (token_len)
1019 		*token_len = tlen;
1020 	*pos += tlen;
1021 }
1022 
sae_parse_commit_scalar(struct sae_data * sae,const u8 ** pos,const u8 * end)1023 static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
1024 				   const u8 *end)
1025 {
1026 	struct crypto_bignum *peer_scalar;
1027 
1028 	if (sae->tmp->prime_len > end - *pos) {
1029 		wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
1030 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1031 	}
1032 
1033 	peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
1034 	if (peer_scalar == NULL)
1035 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1036 
1037 	/*
1038 	 * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
1039 	 * the peer and it is in Authenticated state, the new Commit Message
1040 	 * shall be dropped if the peer-scalar is identical to the one used in
1041 	 * the existing protocol instance.
1042 	 */
1043 	if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
1044 	    crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
1045 		wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
1046 			   "peer-commit-scalar");
1047 		crypto_bignum_deinit(peer_scalar, 0);
1048 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1049 	}
1050 
1051 	/* 1 < scalar < r */
1052 	if (crypto_bignum_is_zero(peer_scalar) ||
1053 	    crypto_bignum_is_one(peer_scalar) ||
1054 	    crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
1055 		wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
1056 		crypto_bignum_deinit(peer_scalar, 0);
1057 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1058 	}
1059 
1060 	crypto_bignum_deinit(sae->peer_commit_scalar, 0);
1061 	sae->peer_commit_scalar = peer_scalar;
1062 	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
1063 		    *pos, sae->tmp->prime_len);
1064 	*pos += sae->tmp->prime_len;
1065 
1066 	return WLAN_STATUS_SUCCESS;
1067 }
1068 
sae_parse_commit_element_ecc(struct sae_data * sae,const u8 ** pos,const u8 * end)1069 static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 **pos,
1070 					const u8 *end)
1071 {
1072 	u8 prime[SAE_MAX_ECC_PRIME_LEN];
1073 
1074 	if (2 * sae->tmp->prime_len > end - *pos) {
1075 		wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1076 			   "commit-element");
1077 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1078 	}
1079 
1080 	if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
1081 				 sae->tmp->prime_len) < 0)
1082 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1083 
1084 	/* element x and y coordinates < p */
1085 	if (os_memcmp(*pos, prime, sae->tmp->prime_len) >= 0 ||
1086 	    os_memcmp(*pos + sae->tmp->prime_len, prime,
1087 		      sae->tmp->prime_len) >= 0) {
1088 		wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
1089 			   "element");
1090 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1091 	}
1092 
1093 	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
1094 		    *pos, sae->tmp->prime_len);
1095 	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
1096 		    *pos + sae->tmp->prime_len, sae->tmp->prime_len);
1097 
1098 	crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
1099 	sae->tmp->peer_commit_element_ecc =
1100 		crypto_ec_point_from_bin(sae->tmp->ec, *pos);
1101 	if (sae->tmp->peer_commit_element_ecc == NULL)
1102 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1103 
1104 	if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
1105 					 sae->tmp->peer_commit_element_ecc)) {
1106 		wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
1107 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1108 	}
1109 
1110 	*pos += 2 * sae->tmp->prime_len;
1111 
1112 	return WLAN_STATUS_SUCCESS;
1113 }
1114 
sae_parse_commit_element_ffc(struct sae_data * sae,const u8 ** pos,const u8 * end)1115 static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 **pos,
1116 					const u8 *end)
1117 {
1118 	struct crypto_bignum *res, *one;
1119 	const u8 one_bin[1] = { 0x01 };
1120 
1121 	if (sae->tmp->prime_len > end - *pos) {
1122 		wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1123 			   "commit-element");
1124 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1125 	}
1126 	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", *pos,
1127 		    sae->tmp->prime_len);
1128 
1129 	crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
1130 	sae->tmp->peer_commit_element_ffc =
1131 		crypto_bignum_init_set(*pos, sae->tmp->prime_len);
1132 	if (sae->tmp->peer_commit_element_ffc == NULL)
1133 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1134 	/* 1 < element < p - 1 */
1135 	res = crypto_bignum_init();
1136 	one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
1137 	if (!res || !one ||
1138 	    crypto_bignum_sub(sae->tmp->prime, one, res) ||
1139 	    crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
1140 	    crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
1141 	    crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
1142 		crypto_bignum_deinit(res, 0);
1143 		crypto_bignum_deinit(one, 0);
1144 		wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
1145 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1146 	}
1147 	crypto_bignum_deinit(one, 0);
1148 
1149 	/* scalar-op(r, ELEMENT) = 1 modulo p */
1150 	if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
1151 				  sae->tmp->order, sae->tmp->prime, res) < 0 ||
1152 	    !crypto_bignum_is_one(res)) {
1153 		wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
1154 		crypto_bignum_deinit(res, 0);
1155 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1156 	}
1157 	crypto_bignum_deinit(res, 0);
1158 
1159 	*pos += sae->tmp->prime_len;
1160 
1161 	return WLAN_STATUS_SUCCESS;
1162 }
1163 
sae_parse_commit_element(struct sae_data * sae,const u8 ** pos,const u8 * end)1164 static u16 sae_parse_commit_element(struct sae_data *sae, const u8 **pos,
1165 				    const u8 *end)
1166 {
1167 	if (sae->tmp->dh)
1168 		return sae_parse_commit_element_ffc(sae, pos, end);
1169 	return sae_parse_commit_element_ecc(sae, pos, end);
1170 }
1171 
sae_parse_password_identifier(struct sae_data * sae,const u8 * pos,const u8 * end)1172 static int sae_parse_password_identifier(struct sae_data *sae,
1173 					 const u8 *pos, const u8 *end)
1174 {
1175 	wpa_hexdump(MSG_DEBUG, "SAE: Possible elements at the end of the frame",
1176 		    pos, end - pos);
1177 	if (!sae_is_password_id_elem(pos, end)) {
1178 		if (sae->tmp->pw_id) {
1179 			wpa_printf(MSG_DEBUG,
1180 				   "SAE: No Password Identifier included, but expected one (%s)",
1181 				   sae->tmp->pw_id);
1182 			return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1183 		}
1184 		os_free(sae->tmp->pw_id);
1185 		sae->tmp->pw_id = NULL;
1186 		return WLAN_STATUS_SUCCESS; /* No Password Identifier */
1187 	}
1188 
1189 	if (sae->tmp->pw_id &&
1190 	    (pos[1] - 1 != (int) os_strlen(sae->tmp->pw_id) ||
1191 	     os_memcmp(sae->tmp->pw_id, pos + 3, pos[1] - 1) != 0)) {
1192 		wpa_printf(MSG_DEBUG,
1193 			   "SAE: The included Password Identifier does not match the expected one (%s)",
1194 			   sae->tmp->pw_id);
1195 		return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1196 	}
1197 
1198 	os_free(sae->tmp->pw_id);
1199 	sae->tmp->pw_id = os_malloc(pos[1]);
1200 	if (!sae->tmp->pw_id)
1201 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1202 	os_memcpy(sae->tmp->pw_id, pos + 3, pos[1] - 1);
1203 	sae->tmp->pw_id[pos[1] - 1] = '\0';
1204 	return WLAN_STATUS_SUCCESS;
1205 }
1206 
sae_parse_commit(struct sae_data * sae,const u8 * data,size_t len,const u8 ** token,size_t * token_len,int * allowed_groups)1207 u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
1208 		     const u8 **token, size_t *token_len, int *allowed_groups)
1209 {
1210 	const u8 *pos = data, *end = data + len;
1211 	u16 res;
1212 
1213 	/* Check Finite Cyclic Group */
1214 	if (end - pos < 2)
1215 		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1216 	res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
1217 	if (res != WLAN_STATUS_SUCCESS)
1218 		return res;
1219 	pos += 2;
1220 
1221 	/* Optional Anti-Clogging Token */
1222 	sae_parse_commit_token(sae, &pos, end, token, token_len);
1223 
1224 	/* commit-scalar */
1225 	res = sae_parse_commit_scalar(sae, &pos, end);
1226 	if (res != WLAN_STATUS_SUCCESS)
1227 		return res;
1228 
1229 	/* commit-element */
1230 	res = sae_parse_commit_element(sae, &pos, end);
1231 	if (res != WLAN_STATUS_SUCCESS)
1232 		return res;
1233 
1234 	/* Optional Password Identifier element */
1235 	res = sae_parse_password_identifier(sae, pos, end);
1236 	if (res != WLAN_STATUS_SUCCESS)
1237 		return res;
1238 
1239 	/*
1240 	 * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
1241 	 * the values we sent which would be evidence of a reflection attack.
1242 	 */
1243 	if (!sae->tmp->own_commit_scalar ||
1244 	    crypto_bignum_cmp(sae->tmp->own_commit_scalar,
1245 			      sae->peer_commit_scalar) != 0 ||
1246 	    (sae->tmp->dh &&
1247 	     (!sae->tmp->own_commit_element_ffc ||
1248 	      crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
1249 				sae->tmp->peer_commit_element_ffc) != 0)) ||
1250 	    (sae->tmp->ec &&
1251 	     (!sae->tmp->own_commit_element_ecc ||
1252 	      crypto_ec_point_cmp(sae->tmp->ec,
1253 				  sae->tmp->own_commit_element_ecc,
1254 				  sae->tmp->peer_commit_element_ecc) != 0)))
1255 		return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
1256 
1257 	/*
1258 	 * This is a reflection attack - return special value to trigger caller
1259 	 * to silently discard the frame instead of replying with a specific
1260 	 * status code.
1261 	 */
1262 	return SAE_SILENTLY_DISCARD;
1263 }
1264 
sae_cn_confirm(struct sae_data * sae,const u8 * sc,const struct crypto_bignum * scalar1,const u8 * element1,size_t element1_len,const struct crypto_bignum * scalar2,const u8 * element2,size_t element2_len,u8 * confirm)1265 static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
1266 			   const struct crypto_bignum *scalar1,
1267 			   const u8 *element1, size_t element1_len,
1268 			   const struct crypto_bignum *scalar2,
1269 			   const u8 *element2, size_t element2_len,
1270 			   u8 *confirm)
1271 {
1272 	const u8 *addr[5];
1273 	size_t len[5];
1274 	u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
1275 
1276 	/* Confirm
1277 	 * CN(key, X, Y, Z, ...) =
1278 	 *    HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
1279 	 * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
1280 	 *              peer-commit-scalar, PEER-COMMIT-ELEMENT)
1281 	 * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
1282 	 *               PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
1283 	 */
1284 	addr[0] = sc;
1285 	len[0] = 2;
1286 	crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
1287 			     sae->tmp->prime_len);
1288 	addr[1] = scalar_b1;
1289 	len[1] = sae->tmp->prime_len;
1290 	addr[2] = element1;
1291 	len[2] = element1_len;
1292 	crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
1293 			     sae->tmp->prime_len);
1294 	addr[3] = scalar_b2;
1295 	len[3] = sae->tmp->prime_len;
1296 	addr[4] = element2;
1297 	len[4] = element2_len;
1298 	hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
1299 			   confirm);
1300 }
1301 
sae_cn_confirm_ecc(struct sae_data * sae,const u8 * sc,const struct crypto_bignum * scalar1,const struct crypto_ec_point * element1,const struct crypto_bignum * scalar2,const struct crypto_ec_point * element2,u8 * confirm)1302 static int sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
1303 			       const struct crypto_bignum *scalar1,
1304 			       const struct crypto_ec_point *element1,
1305 			       const struct crypto_bignum *scalar2,
1306 			       const struct crypto_ec_point *element2,
1307 			       u8 *confirm)
1308 {
1309 	u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
1310 	u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
1311 
1312 	if (crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
1313 			       element_b1 + sae->tmp->prime_len) < 0) {
1314 		wpa_printf(MSG_ERROR, "SAE: failed bignum op while deriving ec point");
1315 		return ESP_FAIL;
1316 	}
1317 	if (crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
1318 			       element_b2 + sae->tmp->prime_len) < 0) {
1319 		wpa_printf(MSG_ERROR, "SAE: failed bignum op while deriving ec point");
1320 		return ESP_FAIL;
1321 	}
1322 
1323 	sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
1324 		       scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
1325 	return ESP_OK;
1326 }
1327 
sae_cn_confirm_ffc(struct sae_data * sae,const u8 * sc,const struct crypto_bignum * scalar1,const struct crypto_bignum * element1,const struct crypto_bignum * scalar2,const struct crypto_bignum * element2,u8 * confirm)1328 static int sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
1329 			      const struct crypto_bignum *scalar1,
1330 			      const struct crypto_bignum *element1,
1331 			      const struct crypto_bignum *scalar2,
1332 			      const struct crypto_bignum *element2,
1333 			      u8 *confirm)
1334 {
1335 	u8 element_b1[SAE_MAX_PRIME_LEN];
1336 	u8 element_b2[SAE_MAX_PRIME_LEN];
1337 
1338 	if (crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
1339 			         sae->tmp->prime_len) < 0) {
1340 		wpa_printf(MSG_ERROR, "SAE: failed bignum op while generating SAE confirm - e1");
1341 		return ESP_FAIL;
1342 	}
1343 	if (crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
1344 				 sae->tmp->prime_len) < 0) {
1345 		wpa_printf(MSG_ERROR, "SAE: failed bignum op while generating SAE confirm - e2");
1346 		return ESP_FAIL;
1347 	}
1348 
1349 	sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
1350 		       scalar2, element_b2, sae->tmp->prime_len, confirm);
1351 	return ESP_OK;
1352 }
1353 
sae_write_confirm(struct sae_data * sae,struct wpabuf * buf)1354 int sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
1355 {
1356 	const u8 *sc;
1357 
1358 	if (sae->tmp == NULL)
1359 		return ESP_FAIL;
1360 
1361 	/* Send-Confirm */
1362 	sc = wpabuf_put(buf, 0);
1363 	wpabuf_put_le16(buf, sae->send_confirm);
1364 	if (sae->send_confirm < 0xffff)
1365 		sae->send_confirm++;
1366 
1367 	if (sae->tmp->ec) {
1368 		if (sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
1369 				       sae->tmp->own_commit_element_ecc,
1370 				       sae->peer_commit_scalar,
1371 				       sae->tmp->peer_commit_element_ecc,
1372 				       wpabuf_put(buf, SHA256_MAC_LEN))) {
1373 			wpa_printf(MSG_ERROR, "SAE: failed generate SAE confirm (ecc)");
1374 			return ESP_FAIL;
1375 		}
1376 	} else {
1377 		if (sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
1378 				       sae->tmp->own_commit_element_ffc,
1379 				       sae->peer_commit_scalar,
1380 				       sae->tmp->peer_commit_element_ffc,
1381 				       wpabuf_put(buf, SHA256_MAC_LEN))) {
1382 			wpa_printf(MSG_ERROR, "SAE: failed generate SAE confirm (ffc)");
1383 			return ESP_FAIL;
1384 		}
1385 	}
1386 	return ESP_OK;
1387 }
1388 
sae_check_confirm(struct sae_data * sae,const u8 * data,size_t len)1389 int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
1390 {
1391 	u8 verifier[SHA256_MAC_LEN];
1392 
1393 	if (len < 2 + SHA256_MAC_LEN) {
1394 		wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
1395 		return ESP_FAIL;
1396 	}
1397 
1398 	wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
1399 
1400 	if (sae->tmp == NULL) {
1401 		wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
1402 		return ESP_FAIL;
1403 	}
1404 
1405 	if (sae->tmp->ec) {
1406 		if (sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
1407 				       sae->tmp->peer_commit_element_ecc,
1408 				       sae->tmp->own_commit_scalar,
1409 				       sae->tmp->own_commit_element_ecc,
1410 				       verifier)) {
1411 			wpa_printf(MSG_ERROR, "SAE: failed to check SAE confirm (ecc)");
1412 			return ESP_FAIL;
1413 		}
1414 	} else {
1415 		if (sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
1416 				       sae->tmp->peer_commit_element_ffc,
1417 				       sae->tmp->own_commit_scalar,
1418 				       sae->tmp->own_commit_element_ffc,
1419 				       verifier)) {
1420 			wpa_printf(MSG_ERROR, "SAE: failed check SAE confirm (ffc)");
1421 			return ESP_FAIL;
1422 		}
1423 	}
1424 
1425 	if (os_memcmp(verifier, data + 2, SHA256_MAC_LEN) != 0) {
1426 		wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
1427 		wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
1428 			    data + 2, SHA256_MAC_LEN);
1429 		wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
1430 			    verifier, SHA256_MAC_LEN);
1431 		return ESP_FAIL;
1432 	}
1433 
1434 	return ESP_OK;
1435 }
1436 
sae_state_txt(enum sae_state state)1437 const char * sae_state_txt(enum sae_state state)
1438 {
1439 	switch (state) {
1440 	case SAE_NOTHING:
1441 		return "Nothing";
1442 	case SAE_COMMITTED:
1443 		return "Committed";
1444 	case SAE_CONFIRMED:
1445 		return "Confirmed";
1446 	case SAE_ACCEPTED:
1447 		return "Accepted";
1448 	}
1449 	return "?";
1450 }
1451 
1452 #endif /* CONFIG_WPA3_SAE */
1453