1 /*
2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #ifndef _HARDWARE_ADC_H
8 #define _HARDWARE_ADC_H
9
10 #include "pico.h"
11 #include "hardware/structs/adc.h"
12 #include "hardware/gpio.h"
13
14 /** \file hardware/adc.h
15 * \defgroup hardware_adc hardware_adc
16 *
17 * \brief Analog to Digital Converter (ADC) API
18 *
19 * RP-series microcontrollers have
20 * an internal analogue-digital converter (ADC) with the following features:
21 * - SAR ADC
22 * - 500 kS/s (Using an independent 48MHz clock)
23 * - 12 bit (RP2040 8.7 ENOB, RP2350 9.2 ENOB)
24 * \if rp2040_specific
25 * - RP2040 5 input mux:
26 * - 4 inputs that are available on package pins shared with GPIO[29:26]
27 * - 1 input is dedicated to the internal temperature sensor
28 * - 4 element receive sample FIFO
29 * \endif
30 *
31 * \if rp2350_specific
32 * - RP2350 5 or 9 input mux:
33 * - 4 inputs available on QFN-60 package pins shared with GPIO[29:26]
34 * - 8 inputs available on QFN-80 package pins shared with GPIO[47:40]
35 * - 8 element receive sample FIFO
36 * \endif
37 * - One input dedicated to the internal temperature sensor (see Section 12.4.6)
38 * - Interrupt generation
39 * - DMA interface
40 *
41 * Although there is only one ADC you can specify the input to it using the adc_select_input() function.
42 * In round robin mode (adc_set_round_robin()), the ADC will use that input and move to the next one after a read.
43 *
44 * RP2040, RP2350 QFN-60: User ADC inputs are on 0-3 (GPIO 26-29), the temperature sensor is on input 4.
45 * RP2350 QFN-80 : User ADC inputs are on 0-7 (GPIO 40-47), the temperature sensor is on input 8.
46 *
47 * Temperature sensor values can be approximated in centigrade as:
48 *
49 * T = 27 - (ADC_Voltage - 0.706)/0.001721
50 *
51 * \subsection adc_example Example
52 * \addtogroup hardware_adc
53 *
54 * \include hello_adc.c
55 */
56
57 // PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_HARDWARE_ADC, Enable/disable assertions in the hardware_adc module, type=bool, default=0, group=hardware_adc
58 #ifndef PARAM_ASSERTIONS_ENABLED_HARDWARE_ADC
59 #ifdef PARAM_ASSERTIONS_ENABLED_ADC // backwards compatibility with SDK < 2.0.0
60 #define PARAM_ASSERTIONS_ENABLED_HARDWARE_ADC PARAM_ASSERTIONS_ENABLED_ADC
61 #else
62 #define PARAM_ASSERTIONS_ENABLED_HARDWARE_ADC 0
63 #endif
64 #endif
65
66 /**
67 * The ADC channel number of the on-board temperature sensor
68 */
69 #ifndef ADC_TEMPERATURE_CHANNEL_NUM
70 #define ADC_TEMPERATURE_CHANNEL_NUM (NUM_ADC_CHANNELS - 1)
71 #endif
72
73 // PICO_CONFIG: PICO_ADC_CLKDIV_ROUND_NEAREST, True if floating point ADC clock divisors should be rounded to the nearest possible clock divisor rather than rounding down, type=bool, default=PICO_CLKDIV_ROUND_NEAREST, group=hardware_adc
74 #ifndef PICO_ADC_CLKDIV_ROUND_NEAREST
75 #define PICO_ADC_CLKDIV_ROUND_NEAREST PICO_CLKDIV_ROUND_NEAREST
76 #endif
77
78 #ifdef __cplusplus
79 extern "C" {
80 #endif
81
82 /*! \brief Initialise the ADC HW
83 * \ingroup hardware_adc
84 *
85 */
86 void adc_init(void);
87
88 /*! \brief Initialise the gpio for use as an ADC pin
89 * \ingroup hardware_adc
90 *
91 * Prepare a GPIO for use with ADC by disabling all digital functions.
92 *
93 * \param gpio The GPIO number to use. Allowable GPIO numbers are 26 to 29 inclusive on RP2040 or RP2350A, 40-48 inclusive on RP2350B
94 */
adc_gpio_init(uint gpio)95 static inline void adc_gpio_init(uint gpio) {
96 invalid_params_if(HARDWARE_ADC, gpio < ADC_BASE_PIN || gpio >= ADC_BASE_PIN + NUM_ADC_CHANNELS - 1);
97 // Select NULL function to make output driver hi-Z
98 gpio_set_function(gpio, GPIO_FUNC_NULL);
99 // Also disable digital pulls and digital receiver
100 gpio_disable_pulls(gpio);
101 gpio_set_input_enabled(gpio, false);
102 }
103
104 /*! \brief ADC input select
105 * \ingroup hardware_adc
106 *
107 * Select an ADC input
108 * \if rp2040_specific
109 * On RP02040 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.
110 * \endif
111 * \if rp2350_specific
112 * On RP2350A 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.
113 * On RP2350B 0...7 are GPIOs 40...47 respectively. Input 8 is the onboard temperature sensor.
114 * \endif
115 *
116 * \param input Input to select.
117 */
adc_select_input(uint input)118 static inline void adc_select_input(uint input) {
119 valid_params_if(HARDWARE_ADC, input < NUM_ADC_CHANNELS);
120 hw_write_masked(&adc_hw->cs, input << ADC_CS_AINSEL_LSB, ADC_CS_AINSEL_BITS);
121 }
122
123 /*! \brief Get the currently selected ADC input channel
124 * \ingroup hardware_adc
125 *
126 * \return The currently selected input channel.
127 *
128 * \if rp2040_specific
129 * On RP02040 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.
130 * \endif
131 *
132 * \if rp2350_specific
133 * On RP2350A 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.
134 * On RP2350B 0...7 are GPIOs 40...47 respectively. Input 8 is the onboard temperature sensor.
135 * \endif
136 */
adc_get_selected_input(void)137 static inline uint adc_get_selected_input(void) {
138 return (adc_hw->cs & ADC_CS_AINSEL_BITS) >> ADC_CS_AINSEL_LSB;
139 }
140
141 /*! \brief Round Robin sampling selector
142 * \ingroup hardware_adc
143 *
144 * This function sets which inputs are to be run through in round robin mode.
145 * RP2040, RP2350 QFN-60: Value between 0 and 0x1f (bit 0 to bit 4 for GPIO 26 to 29 and temperature sensor input respectively)
146 * RP2350 QFN-80: Value between 0 and 0xff (bit 0 to bit 7 for GPIO 40 to 47 and temperature sensor input respectively)
147 *
148 * \param input_mask A bit pattern indicating which of the 5/8 inputs are to be sampled. Write a value of 0 to disable round robin sampling.
149 */
adc_set_round_robin(uint input_mask)150 static inline void adc_set_round_robin(uint input_mask) {
151 valid_params_if(HARDWARE_ADC, input_mask < (1 << NUM_ADC_CHANNELS));
152 hw_write_masked(&adc_hw->cs, input_mask << ADC_CS_RROBIN_LSB, ADC_CS_RROBIN_BITS);
153 }
154
155 /*! \brief Enable the onboard temperature sensor
156 * \ingroup hardware_adc
157 *
158 * \param enable Set true to power on the onboard temperature sensor, false to power off.
159 *
160 */
adc_set_temp_sensor_enabled(bool enable)161 static inline void adc_set_temp_sensor_enabled(bool enable) {
162 if (enable)
163 hw_set_bits(&adc_hw->cs, ADC_CS_TS_EN_BITS);
164 else
165 hw_clear_bits(&adc_hw->cs, ADC_CS_TS_EN_BITS);
166 }
167
168 /*! \brief Perform a single conversion
169 * \ingroup hardware_adc
170 *
171 * Performs an ADC conversion, waits for the result, and then returns it.
172 *
173 * \return Result of the conversion.
174 */
pico_adc_read(void)175 static inline uint16_t pico_adc_read(void) {
176 hw_set_bits(&adc_hw->cs, ADC_CS_START_ONCE_BITS);
177
178 while (!(adc_hw->cs & ADC_CS_READY_BITS))
179 tight_loop_contents();
180
181 return (uint16_t) adc_hw->result;
182 }
183
184 /*! \brief Enable or disable free-running sampling mode
185 * \ingroup hardware_adc
186 *
187 * \param run false to disable, true to enable free running conversion mode.
188 */
adc_run(bool run)189 static inline void adc_run(bool run) {
190 if (run)
191 hw_set_bits(&adc_hw->cs, ADC_CS_START_MANY_BITS);
192 else
193 hw_clear_bits(&adc_hw->cs, ADC_CS_START_MANY_BITS);
194 }
195
196 /*! \brief Set the ADC Clock divisor
197 * \ingroup hardware_adc
198 *
199 * Period of samples will be (1 + div) cycles on average. Note it takes 96 cycles to perform a conversion,
200 * so any period less than that will be clamped to 96.
201 *
202 * \param clkdiv If non-zero, conversion will be started at intervals rather than back to back.
203 */
adc_set_clkdiv(float clkdiv)204 static inline void adc_set_clkdiv(float clkdiv) {
205 invalid_params_if(HARDWARE_ADC, clkdiv >= 1 << REG_FIELD_WIDTH(ADC_DIV_INT));
206 const int frac_bit_count = REG_FIELD_WIDTH(ADC_DIV_FRAC);
207 #if PICO_ADC_CLKDIV_ROUND_NEAREST
208 clkdiv += 0.5f / (1 << frac_bit_count); // round to the nearest fraction
209 #endif
210 adc_hw->div = (uint32_t)(clkdiv * (float) (1 << frac_bit_count));
211 }
212
213 /*! \brief Setup the ADC FIFO
214 * \ingroup hardware_adc
215 *
216 * \if rp2040_specific
217 * On RP2040 the FIFO is 4 samples long.
218 * \endif
219 *
220 * \if rp2350_specific
221 * On RP2350 the FIFO is 8 samples long.
222 * \endif
223 *
224 * If a conversion is completed and the FIFO is full, the result is dropped.
225 *
226 * \param en Enables write each conversion result to the FIFO
227 * \param dreq_en Enable DMA requests when FIFO contains data
228 * \param dreq_thresh Threshold for DMA requests/FIFO IRQ if enabled.
229 * \param err_in_fifo If enabled, bit 15 of the FIFO contains error flag for each sample
230 * \param byte_shift Shift FIFO contents to be one byte in size (for byte DMA) - enables DMA to byte buffers.
231 */
adc_fifo_setup(bool en,bool dreq_en,uint16_t dreq_thresh,bool err_in_fifo,bool byte_shift)232 static inline void adc_fifo_setup(bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift) {
233 hw_write_masked(&adc_hw->fcs,
234 (bool_to_bit(en) << ADC_FCS_EN_LSB) |
235 (bool_to_bit(dreq_en) << ADC_FCS_DREQ_EN_LSB) |
236 (((uint)dreq_thresh) << ADC_FCS_THRESH_LSB) |
237 (bool_to_bit(err_in_fifo) << ADC_FCS_ERR_LSB) |
238 (bool_to_bit(byte_shift) << ADC_FCS_SHIFT_LSB),
239 ADC_FCS_EN_BITS |
240 ADC_FCS_DREQ_EN_BITS |
241 ADC_FCS_THRESH_BITS |
242 ADC_FCS_ERR_BITS |
243 ADC_FCS_SHIFT_BITS
244 );
245 }
246
247 /*! \brief Check FIFO empty state
248 * \ingroup hardware_adc
249 *
250 * \return Returns true if the FIFO is empty
251 */
adc_fifo_is_empty(void)252 static inline bool adc_fifo_is_empty(void) {
253 return adc_hw->fcs & ADC_FCS_EMPTY_BITS;
254 }
255
256 /*! \brief Get number of entries in the ADC FIFO
257 * \ingroup hardware_adc
258 *
259 * \if rp2040_specific
260 * On RP2040 the FIFO is 4 samples long.
261 * \endif
262 * \if rp2350_specific
263 * On RP2350 the FIFO is 8 samples long.
264 * \endif
265 *
266 * This function will return how many samples are currently present.
267 */
adc_fifo_get_level(void)268 static inline uint8_t adc_fifo_get_level(void) {
269 return (adc_hw->fcs & ADC_FCS_LEVEL_BITS) >> ADC_FCS_LEVEL_LSB;
270 }
271
272 /*! \brief Get ADC result from FIFO
273 * \ingroup hardware_adc
274 *
275 * Pops the latest result from the ADC FIFO.
276 */
adc_fifo_get(void)277 static inline uint16_t adc_fifo_get(void) {
278 return (uint16_t)adc_hw->fifo;
279 }
280
281 /*! \brief Wait for the ADC FIFO to have data.
282 * \ingroup hardware_adc
283 *
284 * Blocks until data is present in the FIFO
285 */
adc_fifo_get_blocking(void)286 static inline uint16_t adc_fifo_get_blocking(void) {
287 while (adc_fifo_is_empty())
288 tight_loop_contents();
289 return (uint16_t)adc_hw->fifo;
290 }
291
292 /*! \brief Drain the ADC FIFO
293 * \ingroup hardware_adc
294 *
295 * Will wait for any conversion to complete then drain the FIFO, discarding any results.
296 */
adc_fifo_drain(void)297 static inline void adc_fifo_drain(void) {
298 // Potentially there is still a conversion in progress -- wait for this to complete before draining
299 while (!(adc_hw->cs & ADC_CS_READY_BITS))
300 tight_loop_contents();
301 while (!adc_fifo_is_empty())
302 (void) adc_fifo_get();
303 }
304
305 /*! \brief Enable/Disable ADC interrupts.
306 * \ingroup hardware_adc
307 *
308 * \param enabled Set to true to enable the ADC interrupts, false to disable
309 */
adc_irq_set_enabled(bool enabled)310 static inline void adc_irq_set_enabled(bool enabled) {
311 adc_hw->inte = !!enabled;
312 }
313
314 #ifdef __cplusplus
315 }
316 #endif
317
318 #endif
319