1 /******************************************************************************
2 *
3 * Copyright 2022 Google LLC
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #include "ltpf.h"
20 #include "tables.h"
21
22 #include "ltpf_neon.h"
23 #include "ltpf_arm.h"
24
25
26 /* ----------------------------------------------------------------------------
27 * Resampling
28 * -------------------------------------------------------------------------- */
29
30 /**
31 * Resampling coefficients
32 * The coefficients, in fixed Q15, are reordered by phase for each source
33 * samplerate (coefficient matrix transposed)
34 */
35
36 #ifndef resample_8k_12k8
37 static const int16_t h_8k_12k8_q15[8*10] = {
38 214, 417, -1052, -4529, 26233, -4529, -1052, 417, 214, 0,
39 180, 0, -1522, -2427, 24506, -5289, 0, 763, 156, -28,
40 92, -323, -1361, 0, 19741, -3885, 1317, 861, 0, -61,
41 0, -457, -752, 1873, 13068, 0, 2389, 598, -213, -79,
42 -61, -398, 0, 2686, 5997, 5997, 2686, 0, -398, -61,
43 -79, -213, 598, 2389, 0, 13068, 1873, -752, -457, 0,
44 -61, 0, 861, 1317, -3885, 19741, 0, -1361, -323, 92,
45 -28, 156, 763, 0, -5289, 24506, -2427, -1522, 0, 180,
46 };
47 #endif /* resample_8k_12k8 */
48
49 #ifndef resample_16k_12k8
50 static const int16_t h_16k_12k8_q15[4*20] = {
51 -61, 214, -398, 417, 0, -1052, 2686, -4529, 5997, 26233,
52 5997, -4529, 2686, -1052, 0, 417, -398, 214, -61, 0,
53
54 -79, 180, -213, 0, 598, -1522, 2389, -2427, 0, 24506,
55 13068, -5289, 1873, 0, -752, 763, -457, 156, 0, -28,
56
57 -61, 92, 0, -323, 861, -1361, 1317, 0, -3885, 19741,
58 19741, -3885, 0, 1317, -1361, 861, -323, 0, 92, -61,
59
60 -28, 0, 156, -457, 763, -752, 0, 1873, -5289, 13068,
61 24506, 0, -2427, 2389, -1522, 598, 0, -213, 180, -79,
62 };
63 #endif /* resample_16k_12k8 */
64
65 #ifndef resample_32k_12k8
66 static const int16_t h_32k_12k8_q15[2*40] = {
67 -30, -31, 46, 107, 0, -199, -162, 209, 430, 0,
68 -681, -526, 658, 1343, 0, -2264, -1943, 2999, 9871, 13116,
69 9871, 2999, -1943, -2264, 0, 1343, 658, -526, -681, 0,
70 430, 209, -162, -199, 0, 107, 46, -31, -30, 0,
71
72 -14, -39, 0, 90, 78, -106, -229, 0, 382, 299,
73 -376, -761, 0, 1194, 937, -1214, -2644, 0, 6534, 12253,
74 12253, 6534, 0, -2644, -1214, 937, 1194, 0, -761, -376,
75 299, 382, 0, -229, -106, 78, 90, 0, -39, -14,
76 };
77 #endif /* resample_32k_12k8 */
78
79 #ifndef resample_24k_12k8
80 static const int16_t h_24k_12k8_q15[8*30] = {
81 -50, 19, 143, -93, -290, 278, 485, -658, -701, 1396,
82 901, -3019, -1042, 10276, 17488, 10276, -1042, -3019, 901, 1396,
83 -701, -658, 485, 278, -290, -93, 143, 19, -50, 0,
84
85 -46, 0, 141, -45, -305, 185, 543, -501, -854, 1153,
86 1249, -2619, -1908, 8712, 17358, 11772, 0, -3319, 480, 1593,
87 -504, -796, 399, 367, -261, -142, 138, 40, -52, -5,
88
89 -41, -17, 133, 0, -304, 91, 574, -334, -959, 878,
90 1516, -2143, -2590, 7118, 16971, 13161, 1202, -3495, 0, 1731,
91 -267, -908, 287, 445, -215, -188, 125, 62, -52, -12,
92
93 -34, -30, 120, 41, -291, 0, 577, -164, -1015, 585,
94 1697, -1618, -3084, 5534, 16337, 14406, 2544, -3526, -523, 1800,
95 0, -985, 152, 509, -156, -230, 104, 83, -48, -19,
96
97 -26, -41, 103, 76, -265, -83, 554, 0, -1023, 288,
98 1791, -1070, -3393, 3998, 15474, 15474, 3998, -3393, -1070, 1791,
99 288, -1023, 0, 554, -83, -265, 76, 103, -41, -26,
100
101 -19, -48, 83, 104, -230, -156, 509, 152, -985, 0,
102 1800, -523, -3526, 2544, 14406, 16337, 5534, -3084, -1618, 1697,
103 585, -1015, -164, 577, 0, -291, 41, 120, -30, -34,
104
105 -12, -52, 62, 125, -188, -215, 445, 287, -908, -267,
106 1731, 0, -3495, 1202, 13161, 16971, 7118, -2590, -2143, 1516,
107 878, -959, -334, 574, 91, -304, 0, 133, -17, -41,
108
109 -5, -52, 40, 138, -142, -261, 367, 399, -796, -504,
110 1593, 480, -3319, 0, 11772, 17358, 8712, -1908, -2619, 1249,
111 1153, -854, -501, 543, 185, -305, -45, 141, 0, -46,
112 };
113 #endif /* resample_24k_12k8 */
114
115 #ifndef resample_48k_12k8
116 static const int16_t h_48k_12k8_q15[4*60] = {
117 -13, -25, -20, 10, 51, 71, 38, -47, -133, -145,
118 -42, 139, 277, 242, 0, -329, -511, -351, 144, 698,
119 895, 450, -535, -1510, -1697, -521, 1999, 5138, 7737, 8744,
120 7737, 5138, 1999, -521, -1697, -1510, -535, 450, 895, 698,
121 144, -351, -511, -329, 0, 242, 277, 139, -42, -145,
122 -133, -47, 38, 71, 51, 10, -20, -25, -13, 0,
123
124 -9, -23, -24, 0, 41, 71, 52, -23, -115, -152,
125 -78, 92, 254, 272, 76, -251, -493, -427, 0, 576,
126 900, 624, -262, -1309, -1763, -954, 1272, 4356, 7203, 8679,
127 8169, 5886, 2767, 0, -1542, -1660, -809, 240, 848, 796,
128 292, -252, -507, -398, -82, 199, 288, 183, 0, -130,
129 -145, -71, 20, 69, 60, 20, -15, -26, -17, -3,
130
131 -6, -20, -26, -8, 31, 67, 62, 0, -94, -152,
132 -108, 45, 223, 287, 143, -167, -454, -480, -134, 439,
133 866, 758, 0, -1071, -1748, -1295, 601, 3559, 6580, 8485,
134 8485, 6580, 3559, 601, -1295, -1748, -1071, 0, 758, 866,
135 439, -134, -480, -454, -167, 143, 287, 223, 45, -108,
136 -152, -94, 0, 62, 67, 31, -8, -26, -20, -6,
137
138 -3, -17, -26, -15, 20, 60, 69, 20, -71, -145,
139 -130, 0, 183, 288, 199, -82, -398, -507, -252, 292,
140 796, 848, 240, -809, -1660, -1542, 0, 2767, 5886, 8169,
141 8679, 7203, 4356, 1272, -954, -1763, -1309, -262, 624, 900,
142 576, 0, -427, -493, -251, 76, 272, 254, 92, -78,
143 -152, -115, -23, 52, 71, 41, 0, -24, -23, -9,
144 };
145 #endif /* resample_48k_12k8 */
146
147 #ifndef resample_96k_12k8
148 static const int16_t h_96k_12k8_q15[2*120] = {
149 -3, -7, -10, -13, -13, -10, -4, 5, 15, 26,
150 33, 36, 31, 19, 0, -23, -47, -66, -76, -73,
151 -54, -21, 23, 70, 111, 139, 143, 121, 72, 0,
152 -84, -165, -227, -256, -240, -175, -67, 72, 219, 349,
153 433, 448, 379, 225, 0, -268, -536, -755, -874, -848,
154 -648, -260, 301, 1000, 1780, 2569, 3290, 3869, 4243, 4372,
155 4243, 3869, 3290, 2569, 1780, 1000, 301, -260, -648, -848,
156 -874, -755, -536, -268, 0, 225, 379, 448, 433, 349,
157 219, 72, -67, -175, -240, -256, -227, -165, -84, 0,
158 72, 121, 143, 139, 111, 70, 23, -21, -54, -73,
159 -76, -66, -47, -23, 0, 19, 31, 36, 33, 26,
160 15, 5, -4, -10, -13, -13, -10, -7, -3, 0,
161
162 -1, -5, -8, -12, -13, -12, -8, 0, 10, 21,
163 30, 35, 34, 26, 10, -11, -35, -58, -73, -76,
164 -65, -39, 0, 46, 92, 127, 144, 136, 100, 38,
165 -41, -125, -199, -246, -254, -214, -126, 0, 146, 288,
166 398, 450, 424, 312, 120, -131, -405, -655, -830, -881,
167 -771, -477, 0, 636, 1384, 2178, 2943, 3601, 4084, 4340,
168 4340, 4084, 3601, 2943, 2178, 1384, 636, 0, -477, -771,
169 -881, -830, -655, -405, -131, 120, 312, 424, 450, 398,
170 288, 146, 0, -126, -214, -254, -246, -199, -125, -41,
171 38, 100, 136, 144, 127, 92, 46, 0, -39, -65,
172 -76, -73, -58, -35, -11, 10, 26, 34, 35, 30,
173 21, 10, 0, -8, -12, -13, -12, -8, -5, -1,
174 };
175 #endif /* resample_96k_12k8 */
176
177
178 /**
179 * High-pass 50Hz filtering, at 12.8 KHz samplerate
180 * hp50 Biquad filter state
181 * xn Input sample, in fixed Q30
182 * return Filtered sample, in fixed Q30
183 */
filter_hp50(struct lc3_ltpf_hp50_state * hp50,int32_t xn)184 LC3_HOT static inline int32_t filter_hp50(
185 struct lc3_ltpf_hp50_state *hp50, int32_t xn)
186 {
187 int32_t yn;
188
189 const int32_t a1 = -2110217691, a2 = 1037111617;
190 const int32_t b1 = -2110535566, b2 = 1055267782;
191
192 yn = (hp50->s1 + (int64_t)xn * b2) >> 30;
193 hp50->s1 = (hp50->s2 + (int64_t)xn * b1 - (int64_t)yn * a1);
194 hp50->s2 = ( (int64_t)xn * b2 - (int64_t)yn * a2);
195
196 return yn;
197 }
198
199 /**
200 * Resample from 8 / 16 / 32 KHz to 12.8 KHz Template
201 * p Resampling factor with compared to 192 KHz (8, 4 or 2)
202 * h Arrange by phase coefficients table
203 * hp50 High-Pass biquad filter state
204 * x [-d..-1] Previous, [0..ns-1] Current samples, Q15
205 * y, n [0..n-1] Output `n` processed samples, Q14
206 *
207 * The `x` vector is aligned on 32 bits
208 * The number of previous samples `d` accessed on `x` is :
209 * d: { 10, 20, 40 } - 1 for resampling factors 8, 4 and 2.
210 */
211 #if !defined(resample_8k_12k8) || !defined(resample_16k_12k8) \
212 || !defined(resample_32k_12k8)
resample_x64k_12k8(const int p,const int16_t * h,struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)213 LC3_HOT static inline void resample_x64k_12k8(const int p, const int16_t *h,
214 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
215 {
216 const int w = 2*(40 / p);
217
218 x -= w - 1;
219
220 for (int i = 0; i < 5*n; i += 5) {
221 const int16_t *hn = h + (i % p) * w;
222 const int16_t *xn = x + (i / p);
223 int32_t un = 0;
224
225 for (int k = 0; k < w; k += 10) {
226 un += *(xn++) * *(hn++);
227 un += *(xn++) * *(hn++);
228 un += *(xn++) * *(hn++);
229 un += *(xn++) * *(hn++);
230 un += *(xn++) * *(hn++);
231 un += *(xn++) * *(hn++);
232 un += *(xn++) * *(hn++);
233 un += *(xn++) * *(hn++);
234 un += *(xn++) * *(hn++);
235 un += *(xn++) * *(hn++);
236 }
237
238 int32_t yn = filter_hp50(hp50, un);
239 *(y++) = (yn + (1 << 15)) >> 16;
240 }
241 }
242 #endif
243
244 /**
245 * Resample from 24 / 48 KHz to 12.8 KHz Template
246 * p Resampling factor with compared to 192 KHz (8 or 4)
247 * h Arrange by phase coefficients table
248 * hp50 High-Pass biquad filter state
249 * x [-d..-1] Previous, [0..ns-1] Current samples, Q15
250 * y, n [0..n-1] Output `n` processed samples, Q14
251 *
252 * The `x` vector is aligned on 32 bits
253 * The number of previous samples `d` accessed on `x` is :
254 * d: { 30, 60 } - 1 for resampling factors 8 and 4.
255 */
256 #if !defined(resample_24k_12k8) || !defined(resample_48k_12k8) \
257 || !defined(resample_96k_12k8)
resample_x192k_12k8(const int p,const int16_t * h,struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)258 LC3_HOT static inline void resample_x192k_12k8(const int p, const int16_t *h,
259 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
260 {
261 const int w = 2*(120 / p);
262
263 x -= w - 1;
264
265 for (int i = 0; i < 15*n; i += 15) {
266 const int16_t *hn = h + (i % p) * w;
267 const int16_t *xn = x + (i / p);
268 int32_t un = 0;
269
270 for (int k = 0; k < w; k += 15) {
271 un += *(xn++) * *(hn++);
272 un += *(xn++) * *(hn++);
273 un += *(xn++) * *(hn++);
274 un += *(xn++) * *(hn++);
275 un += *(xn++) * *(hn++);
276 un += *(xn++) * *(hn++);
277 un += *(xn++) * *(hn++);
278 un += *(xn++) * *(hn++);
279 un += *(xn++) * *(hn++);
280 un += *(xn++) * *(hn++);
281 un += *(xn++) * *(hn++);
282 un += *(xn++) * *(hn++);
283 un += *(xn++) * *(hn++);
284 un += *(xn++) * *(hn++);
285 un += *(xn++) * *(hn++);
286 }
287
288 int32_t yn = filter_hp50(hp50, un);
289 *(y++) = (yn + (1 << 15)) >> 16;
290 }
291 }
292 #endif
293
294 /**
295 * Resample from 8 Khz to 12.8 KHz
296 * hp50 High-Pass biquad filter state
297 * x [-10..-1] Previous, [0..ns-1] Current samples, Q15
298 * y, n [0..n-1] Output `n` processed samples, Q14
299 *
300 * The `x` vector is aligned on 32 bits
301 */
302 #ifndef resample_8k_12k8
resample_8k_12k8(struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)303 LC3_HOT static void resample_8k_12k8(
304 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
305 {
306 resample_x64k_12k8(8, h_8k_12k8_q15, hp50, x, y, n);
307 }
308 #endif /* resample_8k_12k8 */
309
310 /**
311 * Resample from 16 Khz to 12.8 KHz
312 * hp50 High-Pass biquad filter state
313 * x [-20..-1] Previous, [0..ns-1] Current samples, in fixed Q15
314 * y, n [0..n-1] Output `n` processed samples, in fixed Q14
315 *
316 * The `x` vector is aligned on 32 bits
317 */
318 #ifndef resample_16k_12k8
resample_16k_12k8(struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)319 LC3_HOT static void resample_16k_12k8(
320 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
321 {
322 resample_x64k_12k8(4, h_16k_12k8_q15, hp50, x, y, n);
323 }
324 #endif /* resample_16k_12k8 */
325
326 /**
327 * Resample from 32 Khz to 12.8 KHz
328 * hp50 High-Pass biquad filter state
329 * x [-30..-1] Previous, [0..ns-1] Current samples, in fixed Q15
330 * y, n [0..n-1] Output `n` processed samples, in fixed Q14
331 *
332 * The `x` vector is aligned on 32 bits
333 */
334 #ifndef resample_32k_12k8
resample_32k_12k8(struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)335 LC3_HOT static void resample_32k_12k8(
336 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
337 {
338 resample_x64k_12k8(2, h_32k_12k8_q15, hp50, x, y, n);
339 }
340 #endif /* resample_32k_12k8 */
341
342 /**
343 * Resample from 24 Khz to 12.8 KHz
344 * hp50 High-Pass biquad filter state
345 * x [-30..-1] Previous, [0..ns-1] Current samples, in fixed Q15
346 * y, n [0..n-1] Output `n` processed samples, in fixed Q14
347 *
348 * The `x` vector is aligned on 32 bits
349 */
350 #ifndef resample_24k_12k8
resample_24k_12k8(struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)351 LC3_HOT static void resample_24k_12k8(
352 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
353 {
354 resample_x192k_12k8(8, h_24k_12k8_q15, hp50, x, y, n);
355 }
356 #endif /* resample_24k_12k8 */
357
358 /**
359 * Resample from 48 Khz to 12.8 KHz
360 * hp50 High-Pass biquad filter state
361 * x [-60..-1] Previous, [0..ns-1] Current samples, in fixed Q15
362 * y, n [0..n-1] Output `n` processed samples, in fixed Q14
363 *
364 * The `x` vector is aligned on 32 bits
365 */
366 #ifndef resample_48k_12k8
resample_48k_12k8(struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)367 LC3_HOT static void resample_48k_12k8(
368 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
369 {
370 resample_x192k_12k8(4, h_48k_12k8_q15, hp50, x, y, n);
371 }
372 #endif /* resample_48k_12k8 */
373
374 /**
375 * Resample from 96 Khz to 12.8 KHz
376 * hp50 High-Pass biquad filter state
377 * x [-120..-1] Previous, [0..ns-1] Current samples, in fixed Q15
378 * y, n [0..n-1] Output `n` processed samples, in fixed Q14
379 *
380 * The `x` vector is aligned on 32 bits
381 */
382 #ifndef resample_96k_12k8
resample_96k_12k8(struct lc3_ltpf_hp50_state * hp50,const int16_t * x,int16_t * y,int n)383 LC3_HOT static void resample_96k_12k8(
384 struct lc3_ltpf_hp50_state *hp50, const int16_t *x, int16_t *y, int n)
385 {
386 resample_x192k_12k8(2, h_96k_12k8_q15, hp50, x, y, n);
387 }
388 #endif /* resample_96k_12k8 */
389
390 /**
391 * Resample to 6.4 KHz
392 * x [-3..-1] Previous, [0..n-1] Current samples
393 * y, n [0..n-1] Output `n` processed samples
394 *
395 * The `x` vector is aligned on 32 bits
396 */
397 #ifndef resample_6k4
resample_6k4(const int16_t * x,int16_t * y,int n)398 LC3_HOT static void resample_6k4(const int16_t *x, int16_t *y, int n)
399 {
400 static const int16_t h[] = { 18477, 15424, 8105 };
401 const int16_t *ye = y + n;
402
403 for (x--; y < ye; x += 2)
404 *(y++) = (x[0] * h[0] + (x[-1] + x[1]) * h[1]
405 + (x[-2] + x[2]) * h[2]) >> 16;
406 }
407 #endif /* resample_6k4 */
408
409 /**
410 * LTPF Resample to 12.8 KHz implementations for each samplerates
411 */
412
413 static void (* const resample_12k8[])
414 (struct lc3_ltpf_hp50_state *, const int16_t *, int16_t *, int ) =
415 {
416 [LC3_SRATE_8K ] = resample_8k_12k8,
417 [LC3_SRATE_16K ] = resample_16k_12k8,
418 [LC3_SRATE_24K ] = resample_24k_12k8,
419 [LC3_SRATE_32K ] = resample_32k_12k8,
420 [LC3_SRATE_48K ] = resample_48k_12k8,
421 [LC3_SRATE_48K_HR] = resample_48k_12k8,
422 [LC3_SRATE_96K_HR] = resample_96k_12k8,
423 };
424
425
426 /* ----------------------------------------------------------------------------
427 * Analysis
428 * -------------------------------------------------------------------------- */
429
430 /**
431 * Return dot product of 2 vectors
432 * a, b, n The 2 vectors of size `n` (> 0 and <= 128)
433 * return sum( a[i] * b[i] ), i = [0..n-1]
434 *
435 * The size `n` of vectors must be multiple of 16, and less or equal to 128
436 */
437 #ifndef dot
dot(const int16_t * a,const int16_t * b,int n)438 LC3_HOT static inline float dot(const int16_t *a, const int16_t *b, int n)
439 {
440 int64_t v = 0;
441
442 for (int i = 0; i < (n >> 4); i++)
443 for (int j = 0; j < 16; j++)
444 v += *(a++) * *(b++);
445
446 int32_t v32 = (v + (1 << 5)) >> 6;
447 return (float)v32;
448 }
449 #endif /* dot */
450
451 /**
452 * Return vector of correlations
453 * a, b, n The 2 vector of size `n` (> 0 and <= 128)
454 * y, nc Output the correlation vector of size `nc`
455 *
456 * The first vector `a` is aligned of 32 bits
457 * The size `n` of vectors is multiple of 16, and less or equal to 128
458 */
459 #ifndef correlate
correlate(const int16_t * a,const int16_t * b,int n,float * y,int nc)460 LC3_HOT static void correlate(
461 const int16_t *a, const int16_t *b, int n, float *y, int nc)
462 {
463 for (const float *ye = y + nc; y < ye; )
464 *(y++) = dot(a, b--, n);
465 }
466 #endif /* correlate */
467
468 /**
469 * Search the maximum value and returns its argument
470 * x, n The input vector of size `n`
471 * x_max Return the maximum value
472 * return Return the argument of the maximum
473 */
argmax(const float * x,int n,float * x_max)474 LC3_HOT static int argmax(const float *x, int n, float *x_max)
475 {
476 int arg = 0;
477
478 *x_max = x[arg = 0];
479 for (int i = 1; i < n; i++)
480 if (*x_max < x[i])
481 *x_max = x[arg = i];
482
483 return arg;
484 }
485
486 /**
487 * Search the maximum weithed value and returns its argument
488 * x, n The input vector of size `n`
489 * w_incr Increment of the weight
490 * x_max, xw_max Return the maximum not weighted value
491 * return Return the argument of the weigthed maximum
492 */
argmax_weighted(const float * x,int n,float w_incr,float * x_max)493 LC3_HOT static int argmax_weighted(
494 const float *x, int n, float w_incr, float *x_max)
495 {
496 int arg;
497
498 float xw_max = (*x_max = x[arg = 0]);
499 float w = 1 + w_incr;
500
501 for (int i = 1; i < n; i++, w += w_incr)
502 if (xw_max < x[i] * w)
503 xw_max = (*x_max = x[arg = i]) * w;
504
505 return arg;
506 }
507
508 /**
509 * Interpolate from pitch detected value
510 * x, n [-2..-1] Previous, [0..n] Current input
511 * d The phase of interpolation (0 to 3)
512 * return The interpolated vector
513 *
514 * The size `n` of vectors must be multiple of 4
515 */
interpolate(const int16_t * x,int n,int d,int16_t * y)516 LC3_HOT static void interpolate(const int16_t *x, int n, int d, int16_t *y)
517 {
518 static const int16_t h4_q15[][4] = {
519 { 6877, 19121, 6877, 0 }, { 3506, 18025, 11000, 220 },
520 { 1300, 15048, 15048, 1300 }, { 220, 11000, 18025, 3506 } };
521
522 const int16_t *h = h4_q15[d];
523 int16_t x3 = x[-2], x2 = x[-1], x1, x0;
524
525 x1 = (*x++);
526 for (const int16_t *ye = y + n; y < ye; ) {
527 int32_t yn;
528
529 yn = (x0 = *(x++)) * h[0] + x1 * h[1] + x2 * h[2] + x3 * h[3];
530 *(y++) = yn >> 15;
531
532 yn = (x3 = *(x++)) * h[0] + x0 * h[1] + x1 * h[2] + x2 * h[3];
533 *(y++) = yn >> 15;
534
535 yn = (x2 = *(x++)) * h[0] + x3 * h[1] + x0 * h[2] + x1 * h[3];
536 *(y++) = yn >> 15;
537
538 yn = (x1 = *(x++)) * h[0] + x2 * h[1] + x3 * h[2] + x0 * h[3];
539 *(y++) = yn >> 15;
540 }
541 }
542
543 /**
544 * Interpolate autocorrelation
545 * x [-4..-1] Previous, [0..4] Current input
546 * d The phase of interpolation (-3 to 3)
547 * return The interpolated value
548 */
interpolate_corr(const float * x,int d)549 LC3_HOT static float interpolate_corr(const float *x, int d)
550 {
551 static const float h4[][8] = {
552 { 1.53572770e-02, -4.72963246e-02, 8.35788573e-02, 8.98638285e-01,
553 8.35788573e-02, -4.72963246e-02, 1.53572770e-02, },
554 { 2.74547165e-03, 4.59833449e-03, -7.54404636e-02, 8.17488686e-01,
555 3.30182571e-01, -1.05835916e-01, 2.86823405e-02, -2.87456116e-03 },
556 { -3.00125103e-03, 2.95038503e-02, -1.30305021e-01, 6.03297008e-01,
557 6.03297008e-01, -1.30305021e-01, 2.95038503e-02, -3.00125103e-03 },
558 { -2.87456116e-03, 2.86823405e-02, -1.05835916e-01, 3.30182571e-01,
559 8.17488686e-01, -7.54404636e-02, 4.59833449e-03, 2.74547165e-03 },
560 };
561
562 const float *h = h4[(4+d) % 4];
563
564 float y = d < 0 ? x[-4] * *(h++) :
565 d > 0 ? x[ 4] * *(h+7) : 0;
566
567 y += x[-3] * h[0] + x[-2] * h[1] + x[-1] * h[2] + x[0] * h[3] +
568 x[ 1] * h[4] + x[ 2] * h[5] + x[ 3] * h[6];
569
570 return y;
571 }
572
573 /**
574 * Pitch detection algorithm
575 * ltpf Context of analysis
576 * x, n [-114..-17] Previous, [0..n-1] Current 6.4KHz samples
577 * tc Return the pitch-lag estimation
578 * return True when pitch present
579 *
580 * The `x` vector is aligned on 32 bits
581 */
detect_pitch(struct lc3_ltpf_analysis * ltpf,const int16_t * x,int n,int * tc)582 static bool detect_pitch(struct lc3_ltpf_analysis *ltpf,
583 const int16_t *x, int n, int *tc)
584 {
585 float rm1, rm2;
586 float r[98];
587
588 const int r0 = 17, nr = 98;
589 int k0 = LC3_MAX( 0, ltpf->tc-4);
590 int nk = LC3_MIN(nr-1, ltpf->tc+4) - k0 + 1;
591
592 correlate(x, x - r0, n, r, nr);
593
594 int t1 = argmax_weighted(r, nr, -.5f/(nr-1), &rm1);
595 int t2 = k0 + argmax(r + k0, nk, &rm2);
596
597 const int16_t *x1 = x - (r0 + t1);
598 const int16_t *x2 = x - (r0 + t2);
599
600 float nc1 = rm1 <= 0 ? 0 :
601 rm1 / sqrtf(dot(x, x, n) * dot(x1, x1, n));
602
603 float nc2 = rm2 <= 0 ? 0 :
604 rm2 / sqrtf(dot(x, x, n) * dot(x2, x2, n));
605
606 int t1sel = nc2 <= 0.85f * nc1;
607 ltpf->tc = (t1sel ? t1 : t2);
608
609 *tc = r0 + ltpf->tc;
610 return (t1sel ? nc1 : nc2) > 0.6f;
611 }
612
613 /**
614 * Pitch-lag parameter
615 * x, n [-232..-28] Previous, [0..n-1] Current 12.8KHz samples, Q14
616 * tc Pitch-lag estimation
617 * pitch The pitch value, in fixed .4
618 * return The bitstream pitch index value
619 *
620 * The `x` vector is aligned on 32 bits
621 */
refine_pitch(const int16_t * x,int n,int tc,int * pitch)622 static int refine_pitch(const int16_t *x, int n, int tc, int *pitch)
623 {
624 float r[17], rm;
625 int e, f;
626
627 int r0 = LC3_MAX( 32, 2*tc - 4);
628 int nr = LC3_MIN(228, 2*tc + 4) - r0 + 1;
629
630 correlate(x, x - (r0 - 4), n, r, nr + 8);
631
632 e = r0 + argmax(r + 4, nr, &rm);
633 const float *re = r + (e - (r0 - 4));
634
635 float dm = interpolate_corr(re, f = 0);
636 for (int i = 1; i <= 3; i++) {
637 float d;
638
639 if (e >= 127 && ((i & 1) | (e >= 157)))
640 continue;
641
642 if ((d = interpolate_corr(re, i)) > dm)
643 dm = d, f = i;
644
645 if (e > 32 && (d = interpolate_corr(re, -i)) > dm)
646 dm = d, f = -i;
647 }
648
649 e -= (f < 0);
650 f += 4*(f < 0);
651
652 *pitch = 4*e + f;
653 return e < 127 ? 4*e + f - 128 :
654 e < 157 ? 2*e + (f >> 1) + 126 : e + 283;
655 }
656
657 /**
658 * LTPF Analysis
659 */
lc3_ltpf_analyse(enum lc3_dt dt,enum lc3_srate sr,struct lc3_ltpf_analysis * ltpf,const int16_t * x,struct lc3_ltpf_data * data)660 bool lc3_ltpf_analyse(
661 enum lc3_dt dt, enum lc3_srate sr, struct lc3_ltpf_analysis *ltpf,
662 const int16_t *x, struct lc3_ltpf_data *data)
663 {
664 /* --- Resampling to 12.8 KHz --- */
665
666 int z_12k8 = sizeof(ltpf->x_12k8) / sizeof(*ltpf->x_12k8);
667 int n_12k8 = (1 + dt) * 32;
668
669 memmove(ltpf->x_12k8, ltpf->x_12k8 + n_12k8,
670 (z_12k8 - n_12k8) * sizeof(*ltpf->x_12k8));
671
672 int16_t *x_12k8 = ltpf->x_12k8 + (z_12k8 - n_12k8);
673
674 resample_12k8[sr](<pf->hp50, x, x_12k8, n_12k8);
675
676 x_12k8 -= (dt == LC3_DT_7M5 ? 44 : 24);
677
678 /* --- Resampling to 6.4 KHz --- */
679
680 int z_6k4 = sizeof(ltpf->x_6k4) / sizeof(*ltpf->x_6k4);
681 int n_6k4 = n_12k8 >> 1;
682
683 memmove(ltpf->x_6k4, ltpf->x_6k4 + n_6k4,
684 (z_6k4 - n_6k4) * sizeof(*ltpf->x_6k4));
685
686 int16_t *x_6k4 = ltpf->x_6k4 + (z_6k4 - n_6k4);
687
688 resample_6k4(x_12k8, x_6k4, n_6k4);
689
690 /* --- Enlarge for small frame size --- */
691
692 if (dt == LC3_DT_2M5) {
693 x_12k8 -= n_12k8, x_6k4 -= n_6k4;
694 n_12k8 += n_12k8; n_6k4 += n_6k4;
695 }
696
697 /* --- Pitch detection --- */
698
699 int tc, pitch = 0;
700 float nc = 0;
701
702 bool pitch_present = detect_pitch(ltpf, x_6k4, n_6k4, &tc);
703
704 if (pitch_present) {
705 int16_t u[128], v[128];
706
707 data->pitch_index = refine_pitch(x_12k8, n_12k8, tc, &pitch);
708
709 interpolate(x_12k8, n_12k8, 0, u);
710 interpolate(x_12k8 - (pitch >> 2), n_12k8, pitch & 3, v);
711
712 nc = dot(u, v, n_12k8) / sqrtf(dot(u, u, n_12k8) * dot(v, v, n_12k8));
713 }
714
715 /* --- Activation --- */
716
717 if (ltpf->active) {
718 int pitch_diff =
719 LC3_MAX(pitch, ltpf->pitch) - LC3_MIN(pitch, ltpf->pitch);
720 float nc_diff = nc - ltpf->nc[0];
721
722 data->active = !lc3_hr(sr) && pitch_present &&
723 ((nc > 0.9f) || (nc > 0.84f && pitch_diff < 8 && nc_diff > -0.1f));
724
725 } else {
726 data->active = !lc3_hr(sr) && pitch_present &&
727 ( (dt == LC3_DT_10M || ltpf->nc[1] > 0.94f) &&
728 (ltpf->nc[0] > 0.94f && nc > 0.94f) );
729 }
730
731 ltpf->active = data->active;
732 ltpf->pitch = pitch;
733 ltpf->nc[1] = ltpf->nc[0];
734 ltpf->nc[0] = nc;
735
736 return pitch_present;
737 }
738
739
740 /* ----------------------------------------------------------------------------
741 * Synthesis
742 * -------------------------------------------------------------------------- */
743
744 /**
745 * Width of synthesis filter
746 */
747
748 #define MAX_FILTER_WIDTH \
749 (LC3_MAX_SRATE_HZ / 4000)
750
751
752 /**
753 * Synthesis filter template
754 * xh, nh History ring buffer of filtered samples
755 * lag Lag parameter in the ring buffer
756 * x0 w-1 previous input samples
757 * x, n Current samples as input, filtered as output
758 * c, w Coefficients `den` then `num`, and width of filter
759 * fade Fading mode of filter -1: Out 1: In 0: None
760 */
synthesize_template(const float * xh,int nh,int lag,const float * x0,float * x,int n,const float * c,const int w,int fade)761 LC3_HOT static inline void synthesize_template(
762 const float *xh, int nh, int lag,
763 const float *x0, float *x, int n,
764 const float *c, const int w, int fade)
765 {
766 float g = (float)(fade <= 0);
767 float g_incr = (float)((fade > 0) - (fade < 0)) / n;
768 float u[MAX_FILTER_WIDTH];
769
770 /* --- Load previous samples --- */
771
772 lag += (w >> 1);
773
774 const float *y = x - xh < lag ? x + (nh - lag) : x - lag;
775 const float *y_end = xh + nh - 1;
776
777 for (int j = 0; j < w-1; j++) {
778
779 u[j] = 0;
780
781 float yi = *y, xi = *(x0++);
782 y = y < y_end ? y + 1 : xh;
783
784 for (int k = 0; k <= j; k++)
785 u[j-k] -= yi * c[k];
786
787 for (int k = 0; k <= j; k++)
788 u[j-k] += xi * c[w+k];
789 }
790
791 u[w-1] = 0;
792
793 /* --- Process by filter length --- */
794
795 for (int i = 0; i < n; i += w)
796 for (int j = 0; j < w; j++, g += g_incr) {
797
798 float yi = *y, xi = *x;
799 y = y < y_end ? y + 1 : xh;
800
801 for (int k = 0; k < w; k++)
802 u[(j+(w-1)-k)%w] -= yi * c[k];
803
804 for (int k = 0; k < w; k++)
805 u[(j+(w-1)-k)%w] += xi * c[w+k];
806
807 *(x++) = xi - g * u[j];
808 u[j] = 0;
809 }
810 }
811
812 /**
813 * Synthesis filter for each samplerates (width of filter)
814 */
815
816
synthesize_4(const float * xh,int nh,int lag,const float * x0,float * x,int n,const float * c,int fade)817 LC3_HOT static void synthesize_4(const float *xh, int nh, int lag,
818 const float *x0, float *x, int n, const float *c, int fade)
819 {
820 synthesize_template(xh, nh, lag, x0, x, n, c, 4, fade);
821 }
822
synthesize_6(const float * xh,int nh,int lag,const float * x0,float * x,int n,const float * c,int fade)823 LC3_HOT static void synthesize_6(const float *xh, int nh, int lag,
824 const float *x0, float *x, int n, const float *c, int fade)
825 {
826 synthesize_template(xh, nh, lag, x0, x, n, c, 6, fade);
827 }
828
synthesize_8(const float * xh,int nh,int lag,const float * x0,float * x,int n,const float * c,int fade)829 LC3_HOT static void synthesize_8(const float *xh, int nh, int lag,
830 const float *x0, float *x, int n, const float *c, int fade)
831 {
832 synthesize_template(xh, nh, lag, x0, x, n, c, 8, fade);
833 }
834
synthesize_12(const float * xh,int nh,int lag,const float * x0,float * x,int n,const float * c,int fade)835 LC3_HOT static void synthesize_12(const float *xh, int nh, int lag,
836 const float *x0, float *x, int n, const float *c, int fade)
837 {
838 synthesize_template(xh, nh, lag, x0, x, n, c, 12, fade);
839 }
840
841 static void (* const synthesize[])(const float *, int, int,
842 const float *, float *, int, const float *, int) =
843 {
844 [LC3_SRATE_8K ] = synthesize_4,
845 [LC3_SRATE_16K] = synthesize_4,
846 [LC3_SRATE_24K] = synthesize_6,
847 [LC3_SRATE_32K] = synthesize_8,
848 [LC3_SRATE_48K] = synthesize_12,
849 };
850
851
852 /**
853 * LTPF Synthesis
854 */
lc3_ltpf_synthesize(enum lc3_dt dt,enum lc3_srate sr,int nbytes,lc3_ltpf_synthesis_t * ltpf,const lc3_ltpf_data_t * data,const float * xh,float * x)855 void lc3_ltpf_synthesize(enum lc3_dt dt, enum lc3_srate sr, int nbytes,
856 lc3_ltpf_synthesis_t *ltpf, const lc3_ltpf_data_t *data,
857 const float *xh, float *x)
858 {
859 int nh = lc3_ns(dt, sr) + lc3_nh(dt, sr);
860
861 /* --- Filter parameters --- */
862
863 int p_idx = data ? data->pitch_index : 0;
864 int pitch =
865 p_idx >= 440 ? (((p_idx ) - 283) << 2) :
866 p_idx >= 380 ? (((p_idx >> 1) - 63) << 2) + (((p_idx & 1)) << 1) :
867 (((p_idx >> 2) + 32) << 2) + (((p_idx & 3)) << 0) ;
868
869 pitch = (pitch * lc3_ns(LC3_DT_10M, sr) + 64) / 128;
870
871 int nbits = (nbytes*8 * (1 + LC3_DT_10M)) / (1 + dt);
872 if (dt == LC3_DT_2M5)
873 nbits = (6 * nbits + 5) / 10;
874 if (dt == LC3_DT_5M)
875 nbits -= 160;
876
877 int g_idx = LC3_MAX(nbits / 80, (int)(3 + sr)) - (3 + sr);
878 bool active = data && data->active && g_idx < 4;
879
880 int w = LC3_MAX(4, lc3_ns_4m[sr] >> 4);
881 float c[2 * MAX_FILTER_WIDTH];
882
883 for (int i = 0; i < w; i++) {
884 float g = active ? 0.4f - 0.05f * g_idx : 0;
885 c[ i] = g * lc3_ltpf_cden[sr][pitch & 3][(w-1)-i];
886 c[w+i] = 0.85f * g * lc3_ltpf_cnum[sr][LC3_MIN(g_idx, 3)][(w-1)-i];
887 }
888
889 /* --- Transition handling --- */
890
891 int ns = lc3_ns(dt, sr);
892 int nt = ns / (1 + dt);
893 float x0[2][MAX_FILTER_WIDTH];
894
895 memcpy(x0[0], ltpf->x, (w-1) * sizeof(float));
896 memcpy(ltpf->x, x + ns - (w-1), (w-1) * sizeof(float));
897
898 if (active)
899 memcpy(x0[1], x + nt-(w-1), (w-1) * sizeof(float));
900
901 if (!ltpf->active && active)
902 synthesize[sr](xh, nh, pitch/4, x0[0], x, nt, c, 1);
903 else if (ltpf->active && !active)
904 synthesize[sr](xh, nh, ltpf->pitch/4, x0[0], x, nt, ltpf->c, -1);
905 else if (ltpf->active && active && ltpf->pitch == pitch)
906 synthesize[sr](xh, nh, pitch/4, x0[0], x, nt, c, 0);
907 else if (ltpf->active && active) {
908 synthesize[sr](xh, nh, ltpf->pitch/4, x0[0], x, nt, ltpf->c, -1);
909 synthesize[sr](xh, nh, pitch/4,
910 (x <= xh ? x + nh : x) - (w-1), x, nt, c, 1);
911 }
912
913 /* --- Remainder --- */
914
915 if (active && ns > nt)
916 synthesize[sr](xh, nh, pitch/4, x0[1], x + nt, ns-nt, c, 0);
917
918 /* --- Update state --- */
919
920 ltpf->active = active;
921 ltpf->pitch = pitch;
922 memcpy(ltpf->c, c, 2*w * sizeof(*ltpf->c));
923 }
924
925
926 /* ----------------------------------------------------------------------------
927 * Bitstream data
928 * -------------------------------------------------------------------------- */
929
930 /**
931 * LTPF disable
932 */
lc3_ltpf_disable(struct lc3_ltpf_data * data)933 void lc3_ltpf_disable(struct lc3_ltpf_data *data)
934 {
935 data->active = false;
936 }
937
938 /**
939 * Return number of bits coding the bitstream data
940 */
lc3_ltpf_get_nbits(bool pitch)941 int lc3_ltpf_get_nbits(bool pitch)
942 {
943 return 1 + 10 * pitch;
944 }
945
946 /**
947 * Put bitstream data
948 */
lc3_ltpf_put_data(lc3_bits_t * bits,const struct lc3_ltpf_data * data)949 void lc3_ltpf_put_data(lc3_bits_t *bits,
950 const struct lc3_ltpf_data *data)
951 {
952 lc3_put_bit(bits, data->active);
953 lc3_put_bits(bits, data->pitch_index, 9);
954 }
955
956 /**
957 * Get bitstream data
958 */
lc3_ltpf_get_data(lc3_bits_t * bits,struct lc3_ltpf_data * data)959 void lc3_ltpf_get_data(lc3_bits_t *bits,
960 struct lc3_ltpf_data *data)
961 {
962 data->active = lc3_get_bit(bits);
963 data->pitch_index = lc3_get_bits(bits, 9);
964 }
965