1 /*
2 ** Two Level Segregated Fit memory allocator, version 3.1.
3 ** Written by Matthew Conte
4 **	http://tlsf.baisoku.org
5 **
6 ** Based on the original documentation by Miguel Masmano:
7 **	http://www.gii.upv.es/tlsf/main/docs
8 **
9 ** This implementation was written to the specification
10 ** of the document, therefore no GPL restrictions apply.
11 **
12 ** Copyright (c) 2006-2016, Matthew Conte
13 ** All rights reserved.
14 **
15 ** Redistribution and use in source and binary forms, with or without
16 ** modification, are permitted provided that the following conditions are met:
17 **     * Redistributions of source code must retain the above copyright
18 **       notice, this list of conditions and the following disclaimer.
19 **     * Redistributions in binary form must reproduce the above copyright
20 **       notice, this list of conditions and the following disclaimer in the
21 **       documentation and/or other materials provided with the distribution.
22 **     * Neither the name of the copyright holder nor the
23 **       names of its contributors may be used to endorse or promote products
24 **       derived from this software without specific prior written permission.
25 **
26 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
27 ** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 ** DISCLAIMED. IN NO EVENT SHALL MATTHEW CONTE BE LIABLE FOR ANY
30 ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
33 ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37 #include "multi_heap_config.h"
38 #include "multi_heap.h"
39 #include "multi_heap_internal.h"
40 #include "heap_tlsf_config.h"
41 #include "heap_tlsf.h"
42 
43 /*
44 ** Architecture-specific bit manipulation routines.
45 **
46 ** TLSF achieves O(1) cost for malloc and free operations by limiting
47 ** the search for a free block to a free list of guaranteed size
48 ** adequate to fulfill the request, combined with efficient free list
49 ** queries using bitmasks and architecture-specific bit-manipulation
50 ** routines.
51 **
52 ** Most modern processors provide instructions to count leading zeroes
53 ** in a word, find the lowest and highest set bit, etc. These
54 ** specific implementations will be used when available, falling back
55 ** to a reasonably efficient generic implementation.
56 **
57 ** NOTE: TLSF spec relies on ffs/fls returning value 0..31.
58 ** ffs/fls return 1-32 by default, returning 0 for error.
59 */
tlsf_ffs(unsigned int word)60 static inline __attribute__((__always_inline__)) int tlsf_ffs(unsigned int word)
61 {
62 	const unsigned int reverse = word & (~word + 1);
63 	const int bit = 32 - __builtin_clz(reverse);
64 	return bit - 1;
65 }
66 
tlsf_fls(unsigned int word)67 static inline __attribute__((__always_inline__)) int tlsf_fls(unsigned int word)
68 {
69 	const int bit = word ? 32 - __builtin_clz(word) : 0;
70 	return bit - 1;
71 }
72 
73 /*
74 ** Set assert macro, if it has not been provided by the user.
75 */
76 #if !defined (tlsf_assert)
77 #define tlsf_assert assert
78 #endif
79 
80 /*
81 ** Static assertion mechanism.
82 */
83 #define _tlsf_glue2(x, y) x ## y
84 #define _tlsf_glue(x, y) _tlsf_glue2(x, y)
85 #define tlsf_static_assert(exp) \
86 	typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1]
87 
88 /* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
89 tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
90 tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
91 tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
92 
93 /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
94 tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
95 
96 /* Ensure we've properly tuned our sizes. */
97 tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
98 
align_up(size_t x,size_t align)99 static inline __attribute__((__always_inline__)) size_t align_up(size_t x, size_t align)
100 {
101 	tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
102 	return (x + (align - 1)) & ~(align - 1);
103 }
104 
align_down(size_t x,size_t align)105 static inline __attribute__((__always_inline__)) size_t align_down(size_t x, size_t align)
106 {
107 	tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
108 	return x - (x & (align - 1));
109 }
110 
align_ptr(const void * ptr,size_t align)111 static inline __attribute__((__always_inline__)) void* align_ptr(const void* ptr, size_t align)
112 {
113 	const tlsfptr_t aligned =
114 		(tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
115 	tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
116 	return tlsf_cast(void*, aligned);
117 }
118 
119 /*
120 ** Adjust an allocation size to be aligned to word size, and no smaller
121 ** than internal minimum.
122 */
adjust_request_size(size_t size,size_t align)123 static inline __attribute__((__always_inline__)) size_t adjust_request_size(size_t size, size_t align)
124 {
125 	size_t adjust = 0;
126 	if (size)
127 	{
128 		const size_t aligned = align_up(size, align);
129 
130 		/* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
131 		if (aligned < block_size_max)
132 		{
133 			adjust = tlsf_max(aligned, block_size_min);
134 		}
135 	}
136 	return adjust;
137 }
138 
139 /*
140 ** TLSF utility functions. In most cases, these are direct translations of
141 ** the documentation found in the white paper.
142 */
143 
mapping_insert(size_t size,int * fli,int * sli)144 static inline __attribute__((__always_inline__)) void mapping_insert(size_t size, int* fli, int* sli)
145 {
146 	int fl, sl;
147 	if (size < SMALL_BLOCK_SIZE)
148 	{
149 		/* Store small blocks in first list. */
150 		fl = 0;
151 		sl = tlsf_cast(int, size) >> 2;
152 	}
153 	else
154 	{
155 		fl = tlsf_fls(size);
156 		sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
157 		fl -= (FL_INDEX_SHIFT - 1);
158 	}
159 	*fli = fl;
160 	*sli = sl;
161 }
162 
163 /* This version rounds up to the next block size (for allocations) */
mapping_search(size_t size,int * fli,int * sli)164 static inline __attribute__((__always_inline__)) void mapping_search(size_t size, int* fli, int* sli)
165 {
166 	if (size >= SMALL_BLOCK_SIZE)
167 	{
168 		const size_t round = (1 << (tlsf_fls(size) - SL_INDEX_COUNT_LOG2)) - 1;
169 		size += round;
170 	}
171 	mapping_insert(size, fli, sli);
172 }
173 
search_suitable_block(control_t * control,int * fli,int * sli)174 static inline __attribute__((__always_inline__)) block_header_t* search_suitable_block(control_t* control, int* fli, int* sli)
175 {
176 	int fl = *fli;
177 	int sl = *sli;
178 
179 	/*
180 	** First, search for a block in the list associated with the given
181 	** fl/sl index.
182 	*/
183 	unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
184 	if (!sl_map)
185 	{
186 		/* No block exists. Search in the next largest first-level list. */
187 		const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1));
188 		if (!fl_map)
189 		{
190 			/* No free blocks available, memory has been exhausted. */
191 			return 0;
192 		}
193 
194 		fl = tlsf_ffs(fl_map);
195 		*fli = fl;
196 		sl_map = control->sl_bitmap[fl];
197 	}
198 	tlsf_assert(sl_map && "internal error - second level bitmap is null");
199 	sl = tlsf_ffs(sl_map);
200 	*sli = sl;
201 
202 	/* Return the first block in the free list. */
203 	return control->blocks[fl][sl];
204 }
205 
206 /* Remove a free block from the free list.*/
remove_free_block(control_t * control,block_header_t * block,int fl,int sl)207 static inline __attribute__((__always_inline__)) void remove_free_block(control_t* control, block_header_t* block, int fl, int sl)
208 {
209 	block_header_t* prev = block->prev_free;
210 	block_header_t* next = block->next_free;
211 	tlsf_assert(prev && "prev_free field can not be null");
212 	tlsf_assert(next && "next_free field can not be null");
213 	next->prev_free = prev;
214 	prev->next_free = next;
215 
216 	/* If this block is the head of the free list, set new head. */
217 	if (control->blocks[fl][sl] == block)
218 	{
219 		control->blocks[fl][sl] = next;
220 
221 		/* If the new head is null, clear the bitmap. */
222 		if (next == &control->block_null)
223 		{
224 			control->sl_bitmap[fl] &= ~(1 << sl);
225 
226 			/* If the second bitmap is now empty, clear the fl bitmap. */
227 			if (!control->sl_bitmap[fl])
228 			{
229 				control->fl_bitmap &= ~(1 << fl);
230 			}
231 		}
232 	}
233 }
234 
235 /* Insert a free block into the free block list. */
insert_free_block(control_t * control,block_header_t * block,int fl,int sl)236 static inline __attribute__((__always_inline__)) void insert_free_block(control_t* control, block_header_t* block, int fl, int sl)
237 {
238 	block_header_t* current = control->blocks[fl][sl];
239 	tlsf_assert(current && "free list cannot have a null entry");
240 	tlsf_assert(block && "cannot insert a null entry into the free list");
241 	block->next_free = current;
242 	block->prev_free = &control->block_null;
243 	current->prev_free = block;
244 
245 	tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE)
246 		&& "block not aligned properly");
247 	/*
248 	** Insert the new block at the head of the list, and mark the first-
249 	** and second-level bitmaps appropriately.
250 	*/
251 	control->blocks[fl][sl] = block;
252 	control->fl_bitmap |= (1 << fl);
253 	control->sl_bitmap[fl] |= (1 << sl);
254 }
255 
256 /* Remove a given block from the free list. */
block_remove(control_t * control,block_header_t * block)257 static inline __attribute__((__always_inline__)) void block_remove(control_t* control, block_header_t* block)
258 {
259 	int fl, sl;
260 	mapping_insert(block_size(block), &fl, &sl);
261 	remove_free_block(control, block, fl, sl);
262 }
263 
264 /* Insert a given block into the free list. */
block_insert(control_t * control,block_header_t * block)265 static inline __attribute__((__always_inline__)) void block_insert(control_t* control, block_header_t* block)
266 {
267 	int fl, sl;
268 	mapping_insert(block_size(block), &fl, &sl);
269 	insert_free_block(control, block, fl, sl);
270 }
271 
block_can_split(block_header_t * block,size_t size)272 static inline __attribute__((__always_inline__)) int block_can_split(block_header_t* block, size_t size)
273 {
274 	return block_size(block) >= sizeof(block_header_t) + size;
275 }
276 
277 /* Split a block into two, the second of which is free. */
block_split(block_header_t * block,size_t size)278 static inline __attribute__((__always_inline__)) block_header_t* block_split(block_header_t* block, size_t size)
279 {
280     /* Calculate the amount of space left in the remaining block.
281      * REMINDER: remaining pointer's first field is `prev_phys_block` but this field is part of the
282      * previous physical block. */
283 	block_header_t* remaining =
284 		offset_to_block(block_to_ptr(block), size - block_header_overhead);
285 
286     /* `size` passed as an argument is the first block's new size, thus, the remaining block's size
287      * is `block_size(block) - size`. However, the block's data must be precedeed by the data size.
288      * This field is NOT part of the size, so it has to be substracted from the calculation. */
289 	const size_t remain_size = block_size(block) - (size + block_header_overhead);
290 
291 	tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE)
292 		&& "remaining block not aligned properly");
293 
294 	tlsf_assert(block_size(block) == remain_size + size + block_header_overhead);
295 	block_set_size(remaining, remain_size);
296 	tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size");
297 
298 	block_set_size(block, size);
299 	block_mark_as_free(remaining);
300 
301     /**
302      * Here is the final outcome of this function:
303      *
304      * block             remaining (block_ptr + size - BHO)
305      * +                                +
306      * |                                |
307      * v                                v
308      * +----------------------------------------------------------------------+
309      * |0000|    |xxxxxxxxxxxxxxxxxxxxxx|xxxx|    |###########################|
310      * |0000|    |xxxxxxxxxxxxxxxxxxxxxx|xxxx|    |###########################|
311      * |0000|    |xxxxxxxxxxxxxxxxxxxxxx|xxxx|    |###########################|
312      * |0000|    |xxxxxxxxxxxxxxxxxxxxxx|xxxx|    |###########################|
313      * +----------------------------------------------------------------------+
314      *      |    |                           |    |
315      *      +    +<------------------------->+    +<------------------------->
316      *       BHO    `size` (argument) bytes   BHO      `remain_size` bytes
317      *
318      * Where BHO = block_header_overhead,
319      * 0: part of the memory owned by a `block`'s previous neighbour,
320      * x: part of the memory owned by `block`.
321      * #: part of the memory owned by `remaining`.
322      */
323 
324 	return remaining;
325 }
326 
327 /* Absorb a free block's storage into an adjacent previous free block. */
block_absorb(block_header_t * prev,block_header_t * block)328 static inline __attribute__((__always_inline__)) block_header_t* block_absorb(block_header_t* prev, block_header_t* block)
329 {
330 	tlsf_assert(!block_is_last(prev) && "previous block can't be last");
331 	/* Note: Leaves flags untouched. */
332 	prev->size += block_size(block) + block_header_overhead;
333 	block_link_next(prev);
334 
335 #ifdef MULTI_HEAP_POISONING_SLOW
336         /* next_block header needs to be replaced with a fill pattern */
337         multi_heap_internal_poison_fill_region(block, sizeof(block_header_t), true /* free */);
338 #endif
339 
340 	return prev;
341 }
342 
343 /* Merge a just-freed block with an adjacent previous free block. */
block_merge_prev(control_t * control,block_header_t * block)344 static inline __attribute__((__always_inline__)) block_header_t* block_merge_prev(control_t* control, block_header_t* block)
345 {
346 	if (block_is_prev_free(block))
347 	{
348 		block_header_t* prev = block_prev(block);
349 		tlsf_assert(prev && "prev physical block can't be null");
350 		tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
351 		block_remove(control, prev);
352 		block = block_absorb(prev, block);
353 	}
354 
355 	return block;
356 }
357 
358 /* Merge a just-freed block with an adjacent free block. */
block_merge_next(control_t * control,block_header_t * block)359 static inline __attribute__((__always_inline__)) block_header_t* block_merge_next(control_t* control, block_header_t* block)
360 {
361 	block_header_t* next = block_next(block);
362 	tlsf_assert(next && "next physical block can't be null");
363 
364 	if (block_is_free(next))
365 	{
366 		tlsf_assert(!block_is_last(block) && "previous block can't be last");
367 		block_remove(control, next);
368 		block = block_absorb(block, next);
369 	}
370 
371 	return block;
372 }
373 
374 /* Trim any trailing block space off the end of a block, return to pool. */
block_trim_free(control_t * control,block_header_t * block,size_t size)375 static inline __attribute__((__always_inline__)) void block_trim_free(control_t* control, block_header_t* block, size_t size)
376 {
377 	tlsf_assert(block_is_free(block) && "block must be free");
378 	if (block_can_split(block, size))
379 	{
380 		block_header_t* remaining_block = block_split(block, size);
381 		block_link_next(block);
382 		block_set_prev_free(remaining_block);
383 		block_insert(control, remaining_block);
384 	}
385 }
386 
387 /* Trim any trailing block space off the end of a used block, return to pool. */
block_trim_used(control_t * control,block_header_t * block,size_t size)388 static inline __attribute__((__always_inline__)) void block_trim_used(control_t* control, block_header_t* block, size_t size)
389 {
390 	tlsf_assert(!block_is_free(block) && "block must be used");
391 	if (block_can_split(block, size))
392 	{
393 		/* If the next block is free, we must coalesce. */
394 		block_header_t* remaining_block = block_split(block, size);
395 		block_set_prev_used(remaining_block);
396 
397 		remaining_block = block_merge_next(control, remaining_block);
398 		block_insert(control, remaining_block);
399 	}
400 }
401 
block_trim_free_leading(control_t * control,block_header_t * block,size_t size)402 static inline __attribute__((__always_inline__)) block_header_t* block_trim_free_leading(control_t* control, block_header_t* block, size_t size)
403 {
404 	block_header_t* remaining_block = block;
405 	if (block_can_split(block, size))
406 	{
407         /* We want to split `block` in two: the first block will be freed and the
408          * second block will be returned. */
409 		remaining_block = block_split(block, size - block_header_overhead);
410 
411         /* `remaining_block` is the second block, mark its predecessor (first
412          * block) as free. */
413 		block_set_prev_free(remaining_block);
414 
415 		block_link_next(block);
416 
417         /* Put back the first block into the free memory list. */
418 		block_insert(control, block);
419 	}
420 
421 	return remaining_block;
422 }
423 
block_locate_free(control_t * control,size_t size)424 static inline  __attribute__((__always_inline__)) block_header_t* block_locate_free(control_t* control, size_t size)
425 {
426 	int fl = 0, sl = 0;
427 	block_header_t* block = 0;
428 
429 	if (size)
430 	{
431 		mapping_search(size, &fl, &sl);
432 
433 		/*
434 		** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
435 		** with indices that are off the end of the block array.
436 		** So, we protect against that here, since this is the only callsite of mapping_search.
437 		** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
438 		*/
439 		if (fl < FL_INDEX_COUNT)
440 		{
441 			block = search_suitable_block(control, &fl, &sl);
442 		}
443 	}
444 
445 	if (block)
446 	{
447 		tlsf_assert(block_size(block) >= size);
448 		remove_free_block(control, block, fl, sl);
449 	}
450 
451 	return block;
452 }
453 
block_prepare_used(control_t * control,block_header_t * block,size_t size)454 static inline __attribute__((__always_inline__)) void* block_prepare_used(control_t* control, block_header_t* block, size_t size)
455 {
456 	void* p = 0;
457 	if (block)
458 	{
459 		tlsf_assert(size && "size must be non-zero");
460 		block_trim_free(control, block, size);
461 		block_mark_as_used(block);
462 		p = block_to_ptr(block);
463 	}
464 	return p;
465 }
466 
467 /* Clear structure and point all empty lists at the null block. */
control_construct(control_t * control)468 static void control_construct(control_t* control)
469 {
470 	int i, j;
471 
472 	control->block_null.next_free = &control->block_null;
473 	control->block_null.prev_free = &control->block_null;
474 
475 	control->fl_bitmap = 0;
476 	for (i = 0; i < FL_INDEX_COUNT; ++i)
477 	{
478 		control->sl_bitmap[i] = 0;
479 		for (j = 0; j < SL_INDEX_COUNT; ++j)
480 		{
481 			control->blocks[i][j] = &control->block_null;
482 		}
483 	}
484 }
485 
486 /*
487 ** Debugging utilities.
488 */
489 
490 typedef struct integrity_t
491 {
492 	int prev_status;
493 	int status;
494 } integrity_t;
495 
496 #define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }
497 
integrity_walker(void * ptr,size_t size,int used,void * user)498 static void integrity_walker(void* ptr, size_t size, int used, void* user)
499 {
500 	block_header_t* block = block_from_ptr(ptr);
501 	integrity_t* integ = tlsf_cast(integrity_t*, user);
502 	const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
503 	const int this_status = block_is_free(block) ? 1 : 0;
504 	const size_t this_block_size = block_size(block);
505 
506 	int status = 0;
507 	(void)used;
508 	tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
509 	tlsf_insist(size == this_block_size && "block size incorrect");
510 
511 	integ->prev_status = this_status;
512 	integ->status += status;
513 }
514 
tlsf_check(tlsf_t tlsf)515 int tlsf_check(tlsf_t tlsf)
516 {
517 	int i, j;
518 
519 	control_t* control = tlsf_cast(control_t*, tlsf);
520 	int status = 0;
521 
522 	/* Check that the free lists and bitmaps are accurate. */
523 	for (i = 0; i < FL_INDEX_COUNT; ++i)
524 	{
525 		for (j = 0; j < SL_INDEX_COUNT; ++j)
526 		{
527 			const int fl_map = control->fl_bitmap & (1 << i);
528 			const int sl_list = control->sl_bitmap[i];
529 			const int sl_map = sl_list & (1 << j);
530 			const block_header_t* block = control->blocks[i][j];
531 
532 			/* Check that first- and second-level lists agree. */
533 			if (!fl_map)
534 			{
535 				tlsf_insist(!sl_map && "second-level map must be null");
536 			}
537 
538 			if (!sl_map)
539 			{
540 				tlsf_insist(block == &control->block_null && "block list must be null");
541 				continue;
542 			}
543 
544 			/* Check that there is at least one free block. */
545 			tlsf_insist(sl_list && "no free blocks in second-level map");
546 			tlsf_insist(block != &control->block_null && "block should not be null");
547 
548 			while (block != &control->block_null)
549 			{
550 				int fli, sli;
551 				tlsf_insist(block_is_free(block) && "block should be free");
552 				tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
553 				tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
554 				tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
555 				tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
556 
557 				mapping_insert(block_size(block), &fli, &sli);
558 				tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
559 				block = block->next_free;
560 			}
561 		}
562 	}
563 
564 	return status;
565 }
566 
567 #undef tlsf_insist
568 
default_walker(void * ptr,size_t size,int used,void * user)569 static void default_walker(void* ptr, size_t size, int used, void* user)
570 {
571 	(void)user;
572 	printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, block_from_ptr(ptr));
573 }
574 
tlsf_walk_pool(pool_t pool,tlsf_walker walker,void * user)575 void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void* user)
576 {
577 	tlsf_walker pool_walker = walker ? walker : default_walker;
578 	block_header_t* block =
579 		offset_to_block(pool, -(int)block_header_overhead);
580 
581 	while (block && !block_is_last(block))
582 	{
583 		pool_walker(
584 			block_to_ptr(block),
585 			block_size(block),
586 			!block_is_free(block),
587 			user);
588 		block = block_next(block);
589 	}
590 }
591 
tlsf_block_size(void * ptr)592 size_t tlsf_block_size(void* ptr)
593 {
594 	size_t size = 0;
595 	if (ptr)
596 	{
597 		const block_header_t* block = block_from_ptr(ptr);
598 		size = block_size(block);
599 	}
600 	return size;
601 }
602 
tlsf_check_pool(pool_t pool)603 int tlsf_check_pool(pool_t pool)
604 {
605 	/* Check that the blocks are physically correct. */
606 	integrity_t integ = { 0, 0 };
607 	tlsf_walk_pool(pool, integrity_walker, &integ);
608 
609 	return integ.status;
610 }
611 
612 /*
613 ** Size of the TLSF structures in a given memory block passed to
614 ** tlsf_create, equal to the size of a control_t
615 */
tlsf_size(void)616 size_t tlsf_size(void)
617 {
618 	return sizeof(control_t);
619 }
620 
tlsf_align_size(void)621 size_t tlsf_align_size(void)
622 {
623 	return ALIGN_SIZE;
624 }
625 
tlsf_block_size_min(void)626 size_t tlsf_block_size_min(void)
627 {
628 	return block_size_min;
629 }
630 
tlsf_block_size_max(void)631 size_t tlsf_block_size_max(void)
632 {
633 	return block_size_max;
634 }
635 
636 /*
637 ** Overhead of the TLSF structures in a given memory block passed to
638 ** tlsf_add_pool, equal to the overhead of a free block and the
639 ** sentinel block.
640 */
tlsf_pool_overhead(void)641 size_t tlsf_pool_overhead(void)
642 {
643 	return 2 * block_header_overhead;
644 }
645 
tlsf_alloc_overhead(void)646 size_t tlsf_alloc_overhead(void)
647 {
648 	return block_header_overhead;
649 }
650 
tlsf_add_pool(tlsf_t tlsf,void * mem,size_t bytes)651 pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes)
652 {
653 	block_header_t* block;
654 	block_header_t* next;
655 
656 	const size_t pool_overhead = tlsf_pool_overhead();
657 	const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);
658 
659 	if (((ptrdiff_t)mem % ALIGN_SIZE) != 0)
660 	{
661 		printf("tlsf_add_pool: Memory must be aligned by %u bytes.\n",
662 			(unsigned int)ALIGN_SIZE);
663 		return 0;
664 	}
665 
666 	if (pool_bytes < block_size_min || pool_bytes > block_size_max)
667 	{
668 #if defined (TLSF_64BIT)
669 		printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
670 			(unsigned int)(pool_overhead + block_size_min),
671 			(unsigned int)((pool_overhead + block_size_max) / 256));
672 #else
673 		printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
674 			(unsigned int)(pool_overhead + block_size_min),
675 			(unsigned int)(pool_overhead + block_size_max));
676 #endif
677 		return 0;
678 	}
679 
680 	/*
681 	** Create the main free block. Offset the start of the block slightly
682 	** so that the prev_phys_block field falls outside of the pool -
683 	** it will never be used.
684 	*/
685 	block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
686 	block_set_size(block, pool_bytes);
687 	block_set_free(block);
688 	block_set_prev_used(block);
689 	block_insert(tlsf_cast(control_t*, tlsf), block);
690 
691 	/* Split the block to create a zero-size sentinel block. */
692 	next = block_link_next(block);
693 	block_set_size(next, 0);
694 	block_set_used(next);
695 	block_set_prev_free(next);
696 
697 	return mem;
698 }
699 
tlsf_remove_pool(tlsf_t tlsf,pool_t pool)700 void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
701 {
702 	control_t* control = tlsf_cast(control_t*, tlsf);
703 	block_header_t* block = offset_to_block(pool, -(int)block_header_overhead);
704 
705 	int fl = 0, sl = 0;
706 
707 	tlsf_assert(block_is_free(block) && "block should be free");
708 	tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
709 	tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
710 
711 	mapping_insert(block_size(block), &fl, &sl);
712 	remove_free_block(control, block, fl, sl);
713 }
714 
715 /*
716 ** TLSF main interface.
717 */
718 
719 
tlsf_create(void * mem)720 tlsf_t tlsf_create(void* mem)
721 {
722 #if _DEBUG
723 	if (test_ffs_fls())
724 	{
725 		return 0;
726 	}
727 #endif
728 
729 	if (((tlsfptr_t)mem % ALIGN_SIZE) != 0)
730 	{
731 		printf("tlsf_create: Memory must be aligned to %u bytes.\n",
732 			(unsigned int)ALIGN_SIZE);
733 		return 0;
734 	}
735 
736 	control_construct(tlsf_cast(control_t*, mem));
737 
738 	return tlsf_cast(tlsf_t, mem);
739 }
740 
tlsf_get_pool(tlsf_t tlsf)741 pool_t tlsf_get_pool(tlsf_t tlsf)
742 {
743 	return tlsf_cast(pool_t, (char*)tlsf + tlsf_size());
744 }
745 
tlsf_create_with_pool(void * mem,size_t bytes)746 tlsf_t tlsf_create_with_pool(void* mem, size_t bytes)
747 {
748 	tlsf_t tlsf = tlsf_create(mem);
749 	tlsf_add_pool(tlsf, (char*)mem + tlsf_size(), bytes - tlsf_size());
750 	return tlsf;
751 }
752 
tlsf_malloc(tlsf_t tlsf,size_t size)753 void* tlsf_malloc(tlsf_t tlsf, size_t size)
754 {
755 	control_t* control = tlsf_cast(control_t*, tlsf);
756 	size_t adjust = adjust_request_size(size, ALIGN_SIZE);
757 	block_header_t* block = block_locate_free(control, adjust);
758 	return block_prepare_used(control, block, adjust);
759 }
760 
761 /**
762  * @brief Allocate memory of at least `size` bytes where byte at `data_offset` will be aligned to `alignment`.
763  *
764  * This function will allocate memory pointed by `ptr`. However, the byte at `data_offset` of
765  * this piece of memory (i.e., byte at `ptr` + `data_offset`) will be aligned to `alignment`.
766  * This function is useful for allocating memory that will internally have a header, and the
767  * usable memory following the header (i.e. `ptr` + `data_offset`) must be aligned.
768  *
769  * For example, a call to `multi_heap_aligned_alloc_impl_offs(heap, 64, 256, 20)` will return a
770  * pointer `ptr` to free memory of minimum 64 bytes, where `ptr + 20` is aligned on `256`.
771  * So `(ptr + 20) % 256` equals 0.
772  *
773  * @param tlsf TLSF structure to allocate memory from.
774  * @param align Alignment for the returned pointer's offset.
775  * @param size Minimum size, in bytes, of the memory to allocate INCLUDING
776  *             `data_offset` bytes.
777  * @param data_offset Offset to be aligned on `alignment`. This can be 0, in
778  *                    this case, the returned pointer will be aligned on
779  *                    `alignment`. If it is not a multiple of CPU word size,
780  *                    it will be aligned up to the closest multiple of it.
781  *
782  * @return pointer to free memory.
783  */
tlsf_memalign_offs(tlsf_t tlsf,size_t align,size_t size,size_t data_offset)784 void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_offset)
785 {
786     control_t* control = tlsf_cast(control_t*, tlsf);
787     const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
788     const size_t off_adjust = align_up(data_offset, ALIGN_SIZE);
789 
790 	/*
791 	** We must allocate an additional minimum block size bytes so that if
792 	** our free block will leave an alignment gap which is smaller, we can
793 	** trim a leading free block and release it back to the pool. We must
794 	** do this because the previous physical block is in use, therefore
795 	** the prev_phys_block field is not valid, and we can't simply adjust
796 	** the size of that block.
797 	*/
798 	const size_t gap_minimum = sizeof(block_header_t) + off_adjust;
799     /* The offset is included in both `adjust` and `gap_minimum`, so we
800     ** need to subtract it once.
801     */
802 	const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum - off_adjust, align);
803 
804     /*
805     ** If alignment is less than or equal to base alignment, we're done, because
806     ** we are guaranteed that the size is at least sizeof(block_header_t), enough
807     ** to store next blocks' metadata. Plus, all pointers allocated will all be
808     ** aligned on a 4-byte bound, so ptr + data_offset will also have this
809     ** alignment constraint. Thus, the gap is not required.
810     ** If we requested 0 bytes, return null, as tlsf_malloc(0) does.
811     */
812 	const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
813 
814 	block_header_t* block = block_locate_free(control, aligned_size);
815 
816 	/* This can't be a static assert. */
817 	tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
818 
819 	if (block)
820 	{
821 		void* ptr = block_to_ptr(block);
822 		void* aligned = align_ptr(ptr, align);
823 		size_t gap = tlsf_cast(size_t,
824 			tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
825 
826        /*
827         ** If gap size is too small or if there is no gap but we need one,
828         ** offset to next aligned boundary.
829         ** NOTE: No need for a gap if the alignment required is less than or is
830         ** equal to ALIGN_SIZE.
831         */
832 		if ((gap && gap < gap_minimum) || (!gap && off_adjust && align > ALIGN_SIZE))
833 		{
834 			const size_t gap_remain = gap_minimum - gap;
835 			const size_t offset = tlsf_max(gap_remain, align);
836 			const void* next_aligned = tlsf_cast(void*,
837 				tlsf_cast(tlsfptr_t, aligned) + offset);
838 
839 			aligned = align_ptr(next_aligned, align);
840 			gap = tlsf_cast(size_t,
841 				tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
842 		}
843 
844 		if (gap)
845 		{
846 			tlsf_assert(gap >= gap_minimum && "gap size too small");
847 			block = block_trim_free_leading(control, block, gap - off_adjust);
848 		}
849 	}
850 
851     /* Preparing the block will also the trailing free memory. */
852 	return block_prepare_used(control, block, adjust);
853 }
854 
855 /**
856  * @brief Same as `tlsf_memalign_offs` function but with a 0 offset.
857  * The pointer returned is aligned on `align`.
858  */
tlsf_memalign(tlsf_t tlsf,size_t align,size_t size)859 void* tlsf_memalign(tlsf_t tlsf, size_t align, size_t size)
860 {
861     return tlsf_memalign_offs(tlsf, align, size, 0);
862 }
863 
864 
tlsf_free(tlsf_t tlsf,void * ptr)865 void tlsf_free(tlsf_t tlsf, void* ptr)
866 {
867 	/* Don't attempt to free a NULL pointer. */
868 	if (ptr)
869 	{
870 		control_t* control = tlsf_cast(control_t*, tlsf);
871 		block_header_t* block = block_from_ptr(ptr);
872 		tlsf_assert(!block_is_free(block) && "block already marked as free");
873 		block_mark_as_free(block);
874 		block = block_merge_prev(control, block);
875 		block = block_merge_next(control, block);
876 		block_insert(control, block);
877 	}
878 }
879 
880 /*
881 ** The TLSF block information provides us with enough information to
882 ** provide a reasonably intelligent implementation of realloc, growing or
883 ** shrinking the currently allocated block as required.
884 **
885 ** This routine handles the somewhat esoteric edge cases of realloc:
886 ** - a non-zero size with a null pointer will behave like malloc
887 ** - a zero size with a non-null pointer will behave like free
888 ** - a request that cannot be satisfied will leave the original buffer
889 **   untouched
890 ** - an extended buffer size will leave the newly-allocated area with
891 **   contents undefined
892 */
tlsf_realloc(tlsf_t tlsf,void * ptr,size_t size)893 void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size)
894 {
895 	control_t* control = tlsf_cast(control_t*, tlsf);
896 	void* p = 0;
897 
898 	/* Zero-size requests are treated as free. */
899 	if (ptr && size == 0)
900 	{
901 		tlsf_free(tlsf, ptr);
902 	}
903 	/* Requests with NULL pointers are treated as malloc. */
904 	else if (!ptr)
905 	{
906 		p = tlsf_malloc(tlsf, size);
907 	}
908 	else
909 	{
910 		block_header_t* block = block_from_ptr(ptr);
911 		block_header_t* next = block_next(block);
912 
913 		const size_t cursize = block_size(block);
914 		const size_t combined = cursize + block_size(next) + block_header_overhead;
915 		const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
916 
917 		tlsf_assert(!block_is_free(block) && "block already marked as free");
918 
919 		/*
920 		** If the next block is used, or when combined with the current
921 		** block, does not offer enough space, we must reallocate and copy.
922 		*/
923 		if (adjust > cursize && (!block_is_free(next) || adjust > combined))
924 		{
925 			p = tlsf_malloc(tlsf, size);
926 			if (p)
927 			{
928 				const size_t minsize = tlsf_min(cursize, size);
929 				memcpy(p, ptr, minsize);
930 				tlsf_free(tlsf, ptr);
931 			}
932 		}
933 		else
934 		{
935 			/* Do we need to expand to the next block? */
936 			if (adjust > cursize)
937 			{
938 				block_merge_next(control, block);
939 				block_mark_as_used(block);
940 			}
941 
942 			/* Trim the resulting block and return the original pointer. */
943 			block_trim_used(control, block, adjust);
944 			p = ptr;
945 		}
946 	}
947 
948 	return p;
949 }
950