1 /*
2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include "pico.h"
8 #include "hardware/regs/clocks.h"
9 #include "hardware/platform_defs.h"
10 #include "hardware/clocks.h"
11 #include "hardware/pll.h"
12 #include "hardware/irq.h"
13 #include "hardware/gpio.h"
14 
15 check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET);
16 check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET);
17 check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET);
18 
19 static uint32_t configured_freq[CLK_COUNT];
20 
21 static resus_callback_t _resus_callback;
22 
23 // Clock muxing consists of two components:
24 // - A glitchless mux, which can be switched freely, but whose inputs must be
25 //   free-running
26 // - An auxiliary (glitchy) mux, whose output glitches when switched, but has
27 //   no constraints on its inputs
28 // Not all clocks have both types of mux.
has_glitchless_mux(clock_handle_t clock)29 static inline bool has_glitchless_mux(clock_handle_t clock) {
30     return clock == clk_sys || clock == clk_ref;
31 }
32 
clock_stop(clock_handle_t clock)33 void clock_stop(clock_handle_t clock) {
34     clock_hw_t *clock_hw = &clocks_hw->clk[clock];
35     hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS);
36     configured_freq[clock] = 0;
37 }
38 
39 /// \tag::clock_configure[]
clock_configure_internal(clock_handle_t clock,uint32_t src,uint32_t auxsrc,uint32_t actual_freq,uint32_t div)40 static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t actual_freq, uint32_t div) {
41     clock_hw_t *clock_hw = &clocks_hw->clk[clock];
42 
43     // If increasing divisor, set divisor before source. Otherwise set source
44     // before divisor. This avoids a momentary overspeed when e.g. switching
45     // to a faster source and increasing divisor to compensate.
46     if (div > clock_hw->div)
47         clock_hw->div = div;
48 
49     // If switching a glitchless slice (ref or sys) to an aux source, switch
50     // away from aux *first* to avoid passing glitches when changing aux mux.
51     // Assume (!!!) glitchless source 0 is no faster than the aux source.
52     if (has_glitchless_mux(clock) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
53         hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
54         while (!(clock_hw->selected & 1u))
55             tight_loop_contents();
56     }
57     // If no glitchless mux, cleanly stop the clock to avoid glitches
58     // propagating when changing aux mux. Note it would be a really bad idea
59     // to do this on one of the glitchless clocks (clk_sys, clk_ref).
60     else {
61         // Disable clock. On clk_ref and clk_sys this does nothing,
62         // all other clocks have the ENABLE bit in the same position.
63         hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
64         if (configured_freq[clock] > 0) {
65             // Delay for 3 cycles of the target clock, for ENABLE propagation.
66             // Note XOSC_COUNT is not helpful here because XOSC is not
67             // necessarily running, nor is timer...
68             uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1;
69             busy_wait_at_least_cycles(delay_cyc * 3);
70         }
71     }
72 
73     // Set aux mux first, and then glitchless mux if this clock has one
74     hw_write_masked(&clock_hw->ctrl,
75         (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
76         CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
77     );
78 
79     if (has_glitchless_mux(clock)) {
80         hw_write_masked(&clock_hw->ctrl,
81             src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
82             CLOCKS_CLK_REF_CTRL_SRC_BITS
83         );
84         while (!(clock_hw->selected & (1u << src)))
85             tight_loop_contents();
86     }
87 
88     // Enable clock. On clk_ref and clk_sys this does nothing,
89     // all other clocks have the ENABLE bit in the same position.
90     hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
91 
92     // Now that the source is configured, we can trust that the user-supplied
93     // divisor is a safe value.
94     clock_hw->div = div;
95     configured_freq[clock] = actual_freq;
96 }
97 
clock_configure(clock_handle_t clock,uint32_t src,uint32_t auxsrc,uint32_t src_freq,uint32_t freq)98 bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) {
99     assert(src_freq >= freq);
100 
101     if (freq > src_freq)
102         return false;
103 
104     uint32_t div = (uint32_t)((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq);
105     uint32_t actual_freq = (uint32_t) ((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / div);
106 
107     clock_configure_internal(clock, src, auxsrc, actual_freq, div);
108     // Store the configured frequency
109     return true;
110 }
111 
clock_configure_int_divider(clock_handle_t clock,uint32_t src,uint32_t auxsrc,uint32_t src_freq,uint32_t int_divider)112 void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t int_divider) {
113     clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider << CLOCKS_CLK_GPOUT0_DIV_INT_LSB);
114 }
115 
clock_configure_undivided(clock_handle_t clock,uint32_t src,uint32_t auxsrc,uint32_t src_freq)116 void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq) {
117     clock_configure_internal(clock, src, auxsrc, src_freq, 1u << CLOCKS_CLK_GPOUT0_DIV_INT_LSB);
118 }
119 
120 /// \end::clock_configure[]
121 
122 /// \tag::clock_get_hz[]
clock_get_hz(clock_handle_t clock)123 uint32_t clock_get_hz(clock_handle_t clock) {
124     return configured_freq[clock];
125 }
126 /// \end::clock_get_hz[]
127 
clock_set_reported_hz(clock_handle_t clock,uint hz)128 void clock_set_reported_hz(clock_handle_t clock, uint hz) {
129     configured_freq[clock] = hz;
130 }
131 
132 /// \tag::frequency_count_khz[]
frequency_count_khz(uint src)133 uint32_t frequency_count_khz(uint src) {
134     fc_hw_t *fc = &clocks_hw->fc0;
135 
136     // If frequency counter is running need to wait for it. It runs even if the source is NULL
137     while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) {
138         tight_loop_contents();
139     }
140 
141     // Set reference freq
142     fc->ref_khz = clock_get_hz(clk_ref) / 1000;
143 
144     // FIXME: Don't pick random interval. Use best interval
145     fc->interval = 10;
146 
147     // No min or max
148     fc->min_khz = 0;
149     fc->max_khz = 0xffffffff;
150 
151     // Set SRC which automatically starts the measurement
152     fc->src = src;
153 
154     while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) {
155         tight_loop_contents();
156     }
157 
158     // Return the result
159     return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB;
160 }
161 /// \end::frequency_count_khz[]
162 
clocks_handle_resus(void)163 static void clocks_handle_resus(void) {
164     // Set clk_sys back to the ref clock rather than it being forced to clk_ref
165     // by resus. Call the user's resus callback if they have set one
166 
167     // CLK SYS = CLK_REF. Must be running for this code to be running
168     uint clk_ref_freq = clock_get_hz(clk_ref);
169     clock_configure_undivided(clk_sys,
170                     CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF,
171                     0,
172                     clk_ref_freq);
173 
174     // Assert we have been resussed
175     assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS);
176 
177     // Now we have fixed clk_sys we can safely remove the resus
178     hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
179     hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
180 
181     // Now we should no longer be resussed
182     assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS));
183 
184     // Call the user's callback to notify them of the resus event
185     if (_resus_callback) {
186         _resus_callback();
187     }
188 }
189 
clocks_irq_handler(void)190 static void clocks_irq_handler(void) {
191     // Clocks interrupt handler. Only resus but handle irq
192     // defensively just in case.
193     uint32_t ints = clocks_hw->ints;
194 
195     if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) {
196         ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS;
197         clocks_handle_resus();
198     }
199 
200 #ifndef NDEBUG
201     if (ints) {
202         panic("Unexpected clocks irq\n");
203     }
204 #endif
205 }
206 
clocks_enable_resus(resus_callback_t resus_callback)207 void clocks_enable_resus(resus_callback_t resus_callback) {
208     // Restart clk_sys if it is stopped by forcing it
209     // to the default source of clk_ref. If clk_ref stops running this will
210     // not work.
211 
212     // Store user's resus callback
213     _resus_callback = resus_callback;
214 
215     irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler);
216 
217     // Enable the resus interrupt in clocks
218     clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;
219 
220     // Enable the clocks irq
221     irq_set_enabled(CLOCKS_IRQ, true);
222 
223     // 2 * clk_ref freq / clk_sys_min_freq;
224     // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
225     uint timeout = 2 * 3 * 1;
226 
227     // Enable resus with the maximum timeout
228     clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
229 }
230 
clock_gpio_init_int_frac16(uint gpio,uint src,uint32_t div_int,uint16_t div_frac16)231 void clock_gpio_init_int_frac16(uint gpio, uint src, uint32_t div_int, uint16_t div_frac16) {
232     // Bit messy but it's as much code to loop through a lookup
233     // table. The sources for each gpout generators are the same
234     // so just call with the sources from GP0
235     uint gpclk = 0;
236     if      (gpio == 21) gpclk = clk_gpout0;
237     else if (gpio == 23) gpclk = clk_gpout1;
238     else if (gpio == 24) gpclk = clk_gpout2;
239     else if (gpio == 25) gpclk = clk_gpout3;
240 #if !PICO_RP2040
241     else if (gpio == 13) gpclk = clk_gpout0;
242     else if (gpio == 15) gpclk = clk_gpout1;
243 #endif
244     else {
245         invalid_params_if(HARDWARE_CLOCKS, true);
246     }
247 
248     invalid_params_if(HARDWARE_CLOCKS, div_int >> REG_FIELD_WIDTH(CLOCKS_CLK_GPOUT0_DIV_INT));
249     // Set up the gpclk generator
250     clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) |
251                                  CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS;
252 #if REG_FIELD_WIDTH(CLOCKS_CLK_GPOUT0_DIV_FRAC) == 16
253     clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | (div_frac16 << CLOCKS_CLK_GPOUT0_DIV_FRAC_LSB);
254 #elif REG_FIELD_WIDTH(CLOCKS_CLK_GPOUT0_DIV_FRAC) == 8
255     clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | ((div_frac16>>8u) << CLOCKS_CLK_GPOUT0_DIV_FRAC_LSB);
256 #else
257 #error unsupported number of fractional bits
258 #endif
259 
260     // Set gpio pin to gpclock function
261     gpio_set_function(gpio, GPIO_FUNC_GPCK);
262 }
263 
264 static const uint8_t gpin0_src[CLK_COUNT] = {
265     CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0
266     CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1
267     CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2
268     CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3
269     CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_REF
270     CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_SYS
271     CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,   // CLK_PERI
272 #if !PICO_RP2040
273     CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,   // CLK_HSTX
274 #endif
275     CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_USB
276     CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_ADC
277 #if PICO_RP2040
278     CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0,    // CLK_RTC
279 #endif
280 };
281 
282 // Assert GPIN1 is GPIN0 + 1
283 static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
284 static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
285 static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
286 static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
287 static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
288 static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
289 static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1   == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0   + 1), "hw mismatch");
290 #if HAS_HSTX
291 static_assert(CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1   == (CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0   + 1), "hw mismatch");
292 #endif
293 static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
294 static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
295 #if HAS_RP2040_RTC
296 static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1    == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0    + 1), "hw mismatch");
297 #endif
298 
clock_configure_gpin(clock_handle_t clock,uint gpio,uint32_t src_freq,uint32_t freq)299 bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq) {
300     // Configure a clock to run from a GPIO input
301     uint gpin = 0;
302     if      (gpio == 20) gpin = 0;
303     else if (gpio == 22) gpin = 1;
304 #if PICO_RP2350
305     else if (gpio == 12) gpin = 0;
306     else if (gpio == 14) gpin = 1;
307 #endif
308     else {
309         invalid_params_if(HARDWARE_CLOCKS, true);
310     }
311 
312     // Work out sources. GPIN is always an auxsrc
313     uint src = 0;
314 
315     // GPIN1 == GPIN0 + 1
316     uint auxsrc = gpin0_src[clock] + gpin;
317 
318     if (has_glitchless_mux(clock)) {
319         // AUX src is always 1
320         src = 1;
321     }
322 
323     // Set the GPIO function
324     gpio_set_function(gpio, GPIO_FUNC_GPCK);
325 
326     // Now we have the src, auxsrc, and configured the gpio input
327     // call clock configure to run the clock from a gpio
328     return clock_configure(clock, src, auxsrc, src_freq, freq);
329 }
330 
331 // everything running off the USB oscillator
set_sys_clock_48mhz(void)332 void set_sys_clock_48mhz(void) {
333     if (!running_on_fpga()) {
334         // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB
335         // which has a source frequency of 48MHz
336         clock_configure_undivided(clk_sys,
337                         CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
338                         CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
339                         USB_CLK_HZ);
340 
341         // Turn off PLL sys for good measure
342         pll_deinit(pll_sys);
343 
344         // CLK peri is clocked from clk_sys so need to change clk_peri's freq
345         clock_configure_undivided(clk_peri,
346                         0,
347                         CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
348                         USB_CLK_HZ);
349     }
350 }
351 
352 // PICO_CONFIG: PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK, When the SYS clock PLL is changed keep the peripheral clock attached to it, type=bool, default=0, advanced=true, group=hardware_clocks
353 #ifndef PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK
354 // support old incorrect spelling too
355 #ifdef PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK
356 #define PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK
357 #else
358 // By default, when reconfiguring the system clock PLL settings after runtime initialization,
359 // the peripheral clock is switched to the 48MHz USB clock to ensure continuity of peripheral operation.
360 // Setting this value to 1 changes the behavior to have the peripheral clock re-configured
361 // to the system clock at it's new frequency.
362 #define PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK 0
363 #endif
364 #endif
365 
set_sys_clock_pll(uint32_t vco_freq,uint post_div1,uint post_div2)366 void set_sys_clock_pll(uint32_t vco_freq, uint post_div1, uint post_div2) {
367     if (!running_on_fpga()) {
368         clock_configure_undivided(clk_sys,
369                         CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
370                         CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
371                         USB_CLK_HZ);
372 
373         pll_init(pll_sys, PLL_SYS_REFDIV, vco_freq, post_div1, post_div2);
374         uint32_t freq = vco_freq / (post_div1 * post_div2);
375 
376         // Configure clocks
377         // CLK_REF is the XOSC source
378         clock_configure_undivided(clk_ref,
379                         CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC,
380                         0, // No aux mux
381                         XOSC_HZ);
382 
383         // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz
384         clock_configure_undivided(clk_sys,
385                         CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
386                         CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
387                         freq);
388 
389 #if PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK
390         clock_configure_undivided(clk_peri,
391                         0,
392                         CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
393                         freq);
394 #else
395         clock_configure_undivided(clk_peri,
396                         0, // Only AUX mux on ADC
397                         CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
398                         USB_CLK_HZ);
399 #endif
400     }
401 }
402 
check_sys_clock_hz(uint32_t freq_hz,uint * vco_out,uint * postdiv1_out,uint * postdiv2_out)403 bool check_sys_clock_hz(uint32_t freq_hz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) {
404     uint reference_freq_hz = XOSC_HZ / PLL_SYS_REFDIV;
405     for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) {
406         uint vco_hz = fbdiv * reference_freq_hz;
407         if (vco_hz < PICO_PLL_VCO_MIN_FREQ_HZ || vco_hz > PICO_PLL_VCO_MAX_FREQ_HZ) continue;
408         for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) {
409             for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) {
410                 uint out = vco_hz / (postdiv1 * postdiv2);
411                 if (out == freq_hz && !(vco_hz % (postdiv1 * postdiv2))) {
412                     *vco_out = vco_hz;
413                     *postdiv1_out = postdiv1;
414                     *postdiv2_out = postdiv2;
415                     return true;
416                 }
417             }
418         }
419     }
420     return false;
421 }
422 
423 // Note this impl is kept to preserve previous rounding behavior, vs calling check_sys_clock_hz
check_sys_clock_khz(uint32_t freq_khz,uint * vco_out,uint * postdiv1_out,uint * postdiv2_out)424 bool check_sys_clock_khz(uint32_t freq_khz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) {
425     uint reference_freq_khz = (XOSC_HZ / PICO_KHZ) / PLL_SYS_REFDIV;
426     for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) {
427         uint vco_khz = fbdiv * reference_freq_khz;
428         if (vco_khz < PICO_PLL_VCO_MIN_FREQ_HZ / PICO_KHZ || vco_khz > PICO_PLL_VCO_MAX_FREQ_HZ / PICO_KHZ) continue;
429         for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) {
430             for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) {
431                 uint out = vco_khz / (postdiv1 * postdiv2);
432                 if (out == freq_khz && !(vco_khz % (postdiv1 * postdiv2))) {
433                     *vco_out = vco_khz * PICO_KHZ;
434                     *postdiv1_out = postdiv1;
435                     *postdiv2_out = postdiv2;
436                     return true;
437                 }
438             }
439         }
440     }
441     return false;
442 }
443