1 /*
2 * QR Code generator library (C)
3 *
4 * Copyright (c) Project Nayuki. (MIT License)
5 * https://www.nayuki.io/page/qr-code-generator-library
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 * - The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 * - The Software is provided "as is", without warranty of any kind, express or
16 * implied, including but not limited to the warranties of merchantability,
17 * fitness for a particular purpose and noninfringement. In no event shall the
18 * authors or copyright holders be liable for any claim, damages or other
19 * liability, whether in an action of contract, tort or otherwise, arising from,
20 * out of or in connection with the Software or the use or other dealings in the
21 * Software.
22 */
23
24 #include "qrcodegen.h"
25 #include "../../misc/lv_assert.h"
26
27 #if LV_USE_QRCODE
28 #include <limits.h>
29 #include <stdlib.h>
30 #include <string.h>
31
32 #ifndef QRCODEGEN_TEST
33 #define testable static // Keep functions private
34 #else
35 #define testable // Expose private functions
36 #endif
37
38
39 /*---- Forward declarations for private functions ----*/
40
41 // Regarding all public and private functions defined in this source file:
42 // - They require all pointer/array arguments to be not null unless the array length is zero.
43 // - They only read input scalar/array arguments, write to output pointer/array
44 // arguments, and return scalar values; they are "pure" functions.
45 // - They don't read mutable global variables or write to any global variables.
46 // - They don't perform I/O, read the clock, print to console, etc.
47 // - They allocate a small and constant amount of stack memory.
48 // - They don't allocate or free any memory on the heap.
49 // - They don't recurse or mutually recurse. All the code
50 // could be inlined into the top-level public functions.
51 // - They run in at most quadratic time with respect to input arguments.
52 // Most functions run in linear time, and some in constant time.
53 // There are no unbounded loops or non-obvious termination conditions.
54 // - They are completely thread-safe if the caller does not give the
55 // same writable buffer to concurrent calls to these functions.
56
57 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int * bitLen);
58
59 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]);
60 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl);
61 testable int getNumRawDataModules(int ver);
62
63 testable void calcReedSolomonGenerator(int degree, uint8_t result[]);
64 testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen,
65 const uint8_t generator[], int degree, uint8_t result[]);
66 testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y);
67
68 testable void initializeFunctionModules(int version, uint8_t qrcode[]);
69 static void drawWhiteFunctionModules(uint8_t qrcode[], int version);
70 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]);
71 testable int getAlignmentPatternPositions(int version, uint8_t result[7]);
72 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]);
73
74 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]);
75 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask);
76 static long getPenaltyScore(const uint8_t qrcode[]);
77 static void addRunToHistory(unsigned char run, unsigned char history[7]);
78 static bool hasFinderLikePattern(const unsigned char runHistory[7]);
79
80 testable bool getModule(const uint8_t qrcode[], int x, int y);
81 testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack);
82 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack);
83 static bool getBit(int x, int i);
84
85 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars);
86 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version);
87 static int numCharCountBits(enum qrcodegen_Mode mode, int version);
88
89
90
91 /*---- Private tables of constants ----*/
92
93 // The set of all legal characters in alphanumeric mode, where each character
94 // value maps to the index in the string. For checking text and encoding segments.
95 static const char * ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
96
97 // For generating error correction codes.
98 testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = {
99 // Version: (note that index 0 is for padding, and is set to an illegal value)
100 //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
101 {-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low
102 {-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium
103 {-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile
104 {-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High
105 };
106
107 #define qrcodegen_REED_SOLOMON_DEGREE_MAX 30 // Based on the table above
108
109 // For generating error correction codes.
110 testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = {
111 // Version: (note that index 0 is for padding, and is set to an illegal value)
112 //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
113 {-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low
114 {-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium
115 {-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile
116 {-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High
117 };
118
119 // For automatic mask pattern selection.
120 static const int PENALTY_N1 = 3;
121 static const int PENALTY_N2 = 3;
122 static const int PENALTY_N3 = 40;
123 static const int PENALTY_N4 = 10;
124
125
126
127 /*---- High-level QR Code encoding functions ----*/
128
129 // Public function - see documentation comment in header file.
qrcodegen_encodeText(const char * text,uint8_t tempBuffer[],uint8_t qrcode[],enum qrcodegen_Ecc ecl,int minVersion,int maxVersion,enum qrcodegen_Mask mask,bool boostEcl)130 bool qrcodegen_encodeText(const char * text, uint8_t tempBuffer[], uint8_t qrcode[],
131 enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl)
132 {
133
134 size_t textLen = strlen(text);
135 if(textLen == 0)
136 return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
137 size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion);
138
139 struct qrcodegen_Segment seg;
140 if(qrcodegen_isNumeric(text)) {
141 if(qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen)
142 goto fail;
143 seg = qrcodegen_makeNumeric(text, tempBuffer);
144 }
145 else if(qrcodegen_isAlphanumeric(text)) {
146 if(qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen)
147 goto fail;
148 seg = qrcodegen_makeAlphanumeric(text, tempBuffer);
149 }
150 else {
151 if(textLen > bufLen)
152 goto fail;
153 for(size_t i = 0; i < textLen; i++)
154 tempBuffer[i] = (uint8_t)text[i];
155 seg.mode = qrcodegen_Mode_BYTE;
156 seg.bitLength = calcSegmentBitLength(seg.mode, textLen);
157 if(seg.bitLength == -1)
158 goto fail;
159 seg.numChars = (int)textLen;
160 seg.data = tempBuffer;
161 }
162 return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
163
164 fail:
165 qrcode[0] = 0; // Set size to invalid value for safety
166 return false;
167 }
168
169
170 // Public function - see documentation comment in header file.
qrcodegen_encodeBinary(uint8_t dataAndTemp[],size_t dataLen,uint8_t qrcode[],enum qrcodegen_Ecc ecl,int minVersion,int maxVersion,enum qrcodegen_Mask mask,bool boostEcl)171 bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[],
172 enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl)
173 {
174
175 struct qrcodegen_Segment seg;
176 seg.mode = qrcodegen_Mode_BYTE;
177 seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
178 if(seg.bitLength == -1) {
179 qrcode[0] = 0; // Set size to invalid value for safety
180 return false;
181 }
182 seg.numChars = (int)dataLen;
183 seg.data = dataAndTemp;
184 return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode);
185 }
186
187
188 // Appends the given number of low-order bits of the given value to the given byte-based
189 // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits.
appendBitsToBuffer(unsigned int val,int numBits,uint8_t buffer[],int * bitLen)190 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int * bitLen)
191 {
192 LV_ASSERT(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0);
193 for(int i = numBits - 1; i >= 0; i--, (*bitLen)++)
194 buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
195 }
196
197
198
199 /*---- Low-level QR Code encoding functions ----*/
200
201 // Public function - see documentation comment in header file.
qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[],size_t len,enum qrcodegen_Ecc ecl,uint8_t tempBuffer[],uint8_t qrcode[])202 bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len,
203 enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[])
204 {
205 return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl,
206 qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, -1, true, tempBuffer, qrcode);
207 }
208
209
210 // Public function - see documentation comment in header file.
qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[],size_t len,enum qrcodegen_Ecc ecl,int minVersion,int maxVersion,int mask,bool boostEcl,uint8_t tempBuffer[],uint8_t qrcode[])211 bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl,
212 int minVersion, int maxVersion, int mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[])
213 {
214 LV_ASSERT(segs != NULL || len == 0);
215 LV_ASSERT(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX);
216 LV_ASSERT(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7);
217
218 // Find the minimal version number to use
219 int version, dataUsedBits;
220 for(version = minVersion; ; version++) {
221 int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available
222 dataUsedBits = getTotalBits(segs, len, version);
223 if(dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
224 break; // This version number is found to be suitable
225 if(version >= maxVersion) { // All versions in the range could not fit the given data
226 qrcode[0] = 0; // Set size to invalid value for safety
227 return false;
228 }
229 }
230 LV_ASSERT(dataUsedBits != -1);
231
232 // Increase the error correction level while the data still fits in the current version number
233 for(int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { // From low to high
234 if(boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8)
235 ecl = (enum qrcodegen_Ecc)i;
236 }
237
238 // Concatenate all segments to create the data bit string
239 memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0]));
240 int bitLen = 0;
241 for(size_t i = 0; i < len; i++) {
242 const struct qrcodegen_Segment * seg = &segs[i];
243 appendBitsToBuffer((int)seg->mode, 4, qrcode, &bitLen);
244 appendBitsToBuffer(seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen);
245 for(int j = 0; j < seg->bitLength; j++)
246 appendBitsToBuffer((seg->data[j >> 3] >> (7 - (j & 7))) & 1, 1, qrcode, &bitLen);
247 }
248 LV_ASSERT(bitLen == dataUsedBits);
249
250 // Add terminator and pad up to a byte if applicable
251 int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;
252 LV_ASSERT(bitLen <= dataCapacityBits);
253 int terminatorBits = dataCapacityBits - bitLen;
254 if(terminatorBits > 4)
255 terminatorBits = 4;
256 appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen);
257 appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen);
258 LV_ASSERT(bitLen % 8 == 0);
259
260 // Pad with alternating bytes until data capacity is reached
261 for(uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
262 appendBitsToBuffer(padByte, 8, qrcode, &bitLen);
263
264 // Draw function and data codeword modules
265 addEccAndInterleave(qrcode, version, ecl, tempBuffer);
266 initializeFunctionModules(version, qrcode);
267 drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode);
268 drawWhiteFunctionModules(qrcode, version);
269 initializeFunctionModules(version, tempBuffer);
270
271 // Handle masking
272 if(mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask
273 long minPenalty = LONG_MAX;
274 for(int i = 0; i < 8; i++) {
275 enum qrcodegen_Mask msk = (enum qrcodegen_Mask)i;
276 applyMask(tempBuffer, qrcode, msk);
277 drawFormatBits(ecl, msk, qrcode);
278 long penalty = getPenaltyScore(qrcode);
279 if(penalty < minPenalty) {
280 mask = msk;
281 minPenalty = penalty;
282 }
283 applyMask(tempBuffer, qrcode, msk); // Undoes the mask due to XOR
284 }
285 }
286 LV_ASSERT(0 <= (int)mask && (int)mask <= 7);
287 applyMask(tempBuffer, qrcode, mask);
288 drawFormatBits(ecl, mask, qrcode);
289 return true;
290 }
291
292
293
294 /*---- Error correction code generation functions ----*/
295
296 // Appends error correction bytes to each block of the given data array, then interleaves
297 // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains
298 // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will
299 // be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
addEccAndInterleave(uint8_t data[],int version,enum qrcodegen_Ecc ecl,uint8_t result[])300 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[])
301 {
302 // Calculate parameter numbers
303 LV_ASSERT(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX);
304 int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version];
305 int blockEccLen = ECC_CODEWORDS_PER_BLOCK [(int)ecl][version];
306 int rawCodewords = getNumRawDataModules(version) / 8;
307 int dataLen = getNumDataCodewords(version, ecl);
308 int numShortBlocks = numBlocks - rawCodewords % numBlocks;
309 int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
310
311 // Split data into blocks, calculate ECC, and interleave
312 // (not concatenate) the bytes into a single sequence
313 uint8_t generator[qrcodegen_REED_SOLOMON_DEGREE_MAX];
314 calcReedSolomonGenerator(blockEccLen, generator);
315 const uint8_t * dat = data;
316 for(int i = 0; i < numBlocks; i++) {
317 int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1);
318 uint8_t * ecc = &data[dataLen]; // Temporary storage
319 calcReedSolomonRemainder(dat, datLen, generator, blockEccLen, ecc);
320 for(int j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data
321 if(j == shortBlockDataLen)
322 k -= numShortBlocks;
323 result[k] = dat[j];
324 }
325 for(int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC
326 result[k] = ecc[j];
327 dat += datLen;
328 }
329 }
330
331
332 // Returns the number of 8-bit codewords that can be used for storing data (not ECC),
333 // for the given version number and error correction level. The result is in the range [9, 2956].
getNumDataCodewords(int version,enum qrcodegen_Ecc ecl)334 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl)
335 {
336 int v = version, e = (int)ecl;
337 LV_ASSERT(0 <= e && e < 4);
338 return getNumRawDataModules(v) / 8
339 - ECC_CODEWORDS_PER_BLOCK [e][v]
340 * NUM_ERROR_CORRECTION_BLOCKS[e][v];
341 }
342
343
344 // Returns the number of data bits that can be stored in a QR Code of the given version number, after
345 // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
346 // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
getNumRawDataModules(int ver)347 testable int getNumRawDataModules(int ver)
348 {
349 LV_ASSERT(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX);
350 int result = (16 * ver + 128) * ver + 64;
351 if(ver >= 2) {
352 int numAlign = ver / 7 + 2;
353 result -= (25 * numAlign - 10) * numAlign - 55;
354 if(ver >= 7)
355 result -= 36;
356 }
357 return result;
358 }
359
360
361
362 /*---- Reed-Solomon ECC generator functions ----*/
363
364 // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree].
calcReedSolomonGenerator(int degree,uint8_t result[])365 testable void calcReedSolomonGenerator(int degree, uint8_t result[])
366 {
367 // Start with the monomial x^0
368 LV_ASSERT(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
369 memset(result, 0, degree * sizeof(result[0]));
370 result[degree - 1] = 1;
371
372 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
373 // drop the highest term, and store the rest of the coefficients in order of descending powers.
374 // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
375 uint8_t root = 1;
376 for(int i = 0; i < degree; i++) {
377 // Multiply the current product by (x - r^i)
378 for(int j = 0; j < degree; j++) {
379 result[j] = finiteFieldMultiply(result[j], root);
380 if(j + 1 < degree)
381 result[j] ^= result[j + 1];
382 }
383 root = finiteFieldMultiply(root, 0x02);
384 }
385 }
386
387
388 // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all
389 // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree].
calcReedSolomonRemainder(const uint8_t data[],int dataLen,const uint8_t generator[],int degree,uint8_t result[])390 testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen,
391 const uint8_t generator[], int degree, uint8_t result[])
392 {
393
394 // Perform polynomial division
395 LV_ASSERT(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
396 memset(result, 0, degree * sizeof(result[0]));
397 for(int i = 0; i < dataLen; i++) {
398 uint8_t factor = data[i] ^ result[0];
399 memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0]));
400 result[degree - 1] = 0;
401 for(int j = 0; j < degree; j++)
402 result[j] ^= finiteFieldMultiply(generator[j], factor);
403 }
404 }
405
406 #undef qrcodegen_REED_SOLOMON_DEGREE_MAX
407
408
409 // Returns the product of the two given field elements modulo GF(2^8/0x11D).
410 // All inputs are valid. This could be implemented as a 256*256 lookup table.
finiteFieldMultiply(uint8_t x,uint8_t y)411 testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y)
412 {
413 // Russian peasant multiplication
414 uint8_t z = 0;
415 for(int i = 7; i >= 0; i--) {
416 z = (z << 1) ^ ((z >> 7) * 0x11D);
417 z ^= ((y >> i) & 1) * x;
418 }
419 return z;
420 }
421
422
423
424 /*---- Drawing function modules ----*/
425
426 // Clears the given QR Code grid with white modules for the given
427 // version's size, then marks every function module as black.
initializeFunctionModules(int version,uint8_t qrcode[])428 testable void initializeFunctionModules(int version, uint8_t qrcode[])
429 {
430 // Initialize QR Code
431 int qrsize = version * 4 + 17;
432 memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0]));
433 qrcode[0] = (uint8_t)qrsize;
434
435 // Fill horizontal and vertical timing patterns
436 fillRectangle(6, 0, 1, qrsize, qrcode);
437 fillRectangle(0, 6, qrsize, 1, qrcode);
438
439 // Fill 3 finder patterns (all corners except bottom right) and format bits
440 fillRectangle(0, 0, 9, 9, qrcode);
441 fillRectangle(qrsize - 8, 0, 8, 9, qrcode);
442 fillRectangle(0, qrsize - 8, 9, 8, qrcode);
443
444 // Fill numerous alignment patterns
445 uint8_t alignPatPos[7];
446 int numAlign = getAlignmentPatternPositions(version, alignPatPos);
447 for(int i = 0; i < numAlign; i++) {
448 for(int j = 0; j < numAlign; j++) {
449 // Don't draw on the three finder corners
450 if(!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)))
451 fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
452 }
453 }
454
455 // Fill version blocks
456 if(version >= 7) {
457 fillRectangle(qrsize - 11, 0, 3, 6, qrcode);
458 fillRectangle(0, qrsize - 11, 6, 3, qrcode);
459 }
460 }
461
462
463 // Draws white function modules and possibly some black modules onto the given QR Code, without changing
464 // non-function modules. This does not draw the format bits. This requires all function modules to be previously
465 // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules.
drawWhiteFunctionModules(uint8_t qrcode[],int version)466 static void drawWhiteFunctionModules(uint8_t qrcode[], int version)
467 {
468 // Draw horizontal and vertical timing patterns
469 int qrsize = qrcodegen_getSize(qrcode);
470 for(int i = 7; i < qrsize - 7; i += 2) {
471 setModule(qrcode, 6, i, false);
472 setModule(qrcode, i, 6, false);
473 }
474
475 // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
476 for(int dy = -4; dy <= 4; dy++) {
477 for(int dx = -4; dx <= 4; dx++) {
478 int dist = abs(dx);
479 if(abs(dy) > dist)
480 dist = abs(dy);
481 if(dist == 2 || dist == 4) {
482 setModuleBounded(qrcode, 3 + dx, 3 + dy, false);
483 setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false);
484 setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false);
485 }
486 }
487 }
488
489 // Draw numerous alignment patterns
490 uint8_t alignPatPos[7];
491 int numAlign = getAlignmentPatternPositions(version, alignPatPos);
492 for(int i = 0; i < numAlign; i++) {
493 for(int j = 0; j < numAlign; j++) {
494 if((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
495 continue; // Don't draw on the three finder corners
496 for(int dy = -1; dy <= 1; dy++) {
497 for(int dx = -1; dx <= 1; dx++)
498 setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0);
499 }
500 }
501 }
502
503 // Draw version blocks
504 if(version >= 7) {
505 // Calculate error correction code and pack bits
506 int rem = version; // version is uint6, in the range [7, 40]
507 for(int i = 0; i < 12; i++)
508 rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
509 long bits = (long)version << 12 | rem; // uint18
510 LV_ASSERT(bits >> 18 == 0);
511
512 // Draw two copies
513 for(int i = 0; i < 6; i++) {
514 for(int j = 0; j < 3; j++) {
515 int k = qrsize - 11 + j;
516 setModule(qrcode, k, i, (bits & 1) != 0);
517 setModule(qrcode, i, k, (bits & 1) != 0);
518 bits >>= 1;
519 }
520 }
521 }
522 }
523
524
525 // Draws two copies of the format bits (with its own error correction code) based
526 // on the given mask and error correction level. This always draws all modules of
527 // the format bits, unlike drawWhiteFunctionModules() which might skip black modules.
drawFormatBits(enum qrcodegen_Ecc ecl,enum qrcodegen_Mask mask,uint8_t qrcode[])528 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[])
529 {
530 // Calculate error correction code and pack bits
531 LV_ASSERT(0 <= (int)mask && (int)mask <= 7);
532 static const int table[] = {1, 0, 3, 2};
533 int data = table[(int)ecl] << 3 | (int)mask; // errCorrLvl is uint2, mask is uint3
534 int rem = data;
535 for(int i = 0; i < 10; i++)
536 rem = (rem << 1) ^ ((rem >> 9) * 0x537);
537 int bits = (data << 10 | rem) ^ 0x5412; // uint15
538 LV_ASSERT(bits >> 15 == 0);
539
540 // Draw first copy
541 for(int i = 0; i <= 5; i++)
542 setModule(qrcode, 8, i, getBit(bits, i));
543 setModule(qrcode, 8, 7, getBit(bits, 6));
544 setModule(qrcode, 8, 8, getBit(bits, 7));
545 setModule(qrcode, 7, 8, getBit(bits, 8));
546 for(int i = 9; i < 15; i++)
547 setModule(qrcode, 14 - i, 8, getBit(bits, i));
548
549 // Draw second copy
550 int qrsize = qrcodegen_getSize(qrcode);
551 for(int i = 0; i < 8; i++)
552 setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i));
553 for(int i = 8; i < 15; i++)
554 setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i));
555 setModule(qrcode, 8, qrsize - 8, true); // Always black
556 }
557
558
559 // Calculates and stores an ascending list of positions of alignment patterns
560 // for this version number, returning the length of the list (in the range [0,7]).
561 // Each position is in the range [0,177), and are used on both the x and y axes.
562 // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
getAlignmentPatternPositions(int version,uint8_t result[7])563 testable int getAlignmentPatternPositions(int version, uint8_t result[7])
564 {
565 if(version == 1)
566 return 0;
567 int numAlign = version / 7 + 2;
568 int step = (version == 32) ? 26 :
569 (version * 4 + numAlign * 2 + 1) / (numAlign * 2 - 2) * 2;
570 for(int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step)
571 result[i] = pos;
572 result[0] = 6;
573 return numAlign;
574 }
575
576
577 // Sets every pixel in the range [left : left + width] * [top : top + height] to black.
fillRectangle(int left,int top,int width,int height,uint8_t qrcode[])578 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[])
579 {
580 for(int dy = 0; dy < height; dy++) {
581 for(int dx = 0; dx < width; dx++)
582 setModule(qrcode, left + dx, top + dy, true);
583 }
584 }
585
586
587
588 /*---- Drawing data modules and masking ----*/
589
590 // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
591 // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits).
drawCodewords(const uint8_t data[],int dataLen,uint8_t qrcode[])592 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[])
593 {
594 int qrsize = qrcodegen_getSize(qrcode);
595 int i = 0; // Bit index into the data
596 // Do the funny zigzag scan
597 for(int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair
598 if(right == 6)
599 right = 5;
600 for(int vert = 0; vert < qrsize; vert++) { // Vertical counter
601 for(int j = 0; j < 2; j++) {
602 int x = right - j; // Actual x coordinate
603 bool upward = ((right + 1) & 2) == 0;
604 int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate
605 if(!getModule(qrcode, x, y) && i < dataLen * 8) {
606 bool black = getBit(data[i >> 3], 7 - (i & 7));
607 setModule(qrcode, x, y, black);
608 i++;
609 }
610 // If this QR Code has any remainder bits (0 to 7), they were assigned as
611 // 0/false/white by the constructor and are left unchanged by this method
612 }
613 }
614 }
615 LV_ASSERT(i == dataLen * 8);
616 }
617
618
619 // XORs the codeword modules in this QR Code with the given mask pattern.
620 // The function modules must be marked and the codeword bits must be drawn
621 // before masking. Due to the arithmetic of XOR, calling applyMask() with
622 // the same mask value a second time will undo the mask. A final well-formed
623 // QR Code needs exactly one (not zero, two, etc.) mask applied.
applyMask(const uint8_t functionModules[],uint8_t qrcode[],enum qrcodegen_Mask mask)624 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask)
625 {
626 LV_ASSERT(0 <= (int)mask && (int)mask <= 7); // Disallows qrcodegen_Mask_AUTO
627 int qrsize = qrcodegen_getSize(qrcode);
628 for(int y = 0; y < qrsize; y++) {
629 for(int x = 0; x < qrsize; x++) {
630 if(getModule(functionModules, x, y))
631 continue;
632 bool invert;
633 switch((int)mask) {
634 case 0:
635 invert = (x + y) % 2 == 0;
636 break;
637 case 1:
638 invert = y % 2 == 0;
639 break;
640 case 2:
641 invert = x % 3 == 0;
642 break;
643 case 3:
644 invert = (x + y) % 3 == 0;
645 break;
646 case 4:
647 invert = (x / 3 + y / 2) % 2 == 0;
648 break;
649 case 5:
650 invert = x * y % 2 + x * y % 3 == 0;
651 break;
652 case 6:
653 invert = (x * y % 2 + x * y % 3) % 2 == 0;
654 break;
655 case 7:
656 invert = ((x + y) % 2 + x * y % 3) % 2 == 0;
657 break;
658 default:
659 LV_ASSERT(false);
660 return;
661 }
662 bool val = getModule(qrcode, x, y);
663 setModule(qrcode, x, y, val ^ invert);
664 }
665 }
666 }
667
668
669 // Calculates and returns the penalty score based on state of the given QR Code's current modules.
670 // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
getPenaltyScore(const uint8_t qrcode[])671 static long getPenaltyScore(const uint8_t qrcode[])
672 {
673 int qrsize = qrcodegen_getSize(qrcode);
674 long result = 0;
675
676 // Adjacent modules in row having same color, and finder-like patterns
677 for(int y = 0; y < qrsize; y++) {
678 unsigned char runHistory[7] = {0};
679 bool color = false;
680 unsigned char runX = 0;
681 for(int x = 0; x < qrsize; x++) {
682 if(getModule(qrcode, x, y) == color) {
683 runX++;
684 if(runX == 5)
685 result += PENALTY_N1;
686 else if(runX > 5)
687 result++;
688 }
689 else {
690 addRunToHistory(runX, runHistory);
691 if(!color && hasFinderLikePattern(runHistory))
692 result += PENALTY_N3;
693 color = getModule(qrcode, x, y);
694 runX = 1;
695 }
696 }
697 addRunToHistory(runX, runHistory);
698 if(color)
699 addRunToHistory(0, runHistory); // Dummy run of white
700 if(hasFinderLikePattern(runHistory))
701 result += PENALTY_N3;
702 }
703 // Adjacent modules in column having same color, and finder-like patterns
704 for(int x = 0; x < qrsize; x++) {
705 unsigned char runHistory[7] = {0};
706 bool color = false;
707 unsigned char runY = 0;
708 for(int y = 0; y < qrsize; y++) {
709 if(getModule(qrcode, x, y) == color) {
710 runY++;
711 if(runY == 5)
712 result += PENALTY_N1;
713 else if(runY > 5)
714 result++;
715 }
716 else {
717 addRunToHistory(runY, runHistory);
718 if(!color && hasFinderLikePattern(runHistory))
719 result += PENALTY_N3;
720 color = getModule(qrcode, x, y);
721 runY = 1;
722 }
723 }
724 addRunToHistory(runY, runHistory);
725 if(color)
726 addRunToHistory(0, runHistory); // Dummy run of white
727 if(hasFinderLikePattern(runHistory))
728 result += PENALTY_N3;
729 }
730
731 // 2*2 blocks of modules having same color
732 for(int y = 0; y < qrsize - 1; y++) {
733 for(int x = 0; x < qrsize - 1; x++) {
734 bool color = getModule(qrcode, x, y);
735 if(color == getModule(qrcode, x + 1, y) &&
736 color == getModule(qrcode, x, y + 1) &&
737 color == getModule(qrcode, x + 1, y + 1))
738 result += PENALTY_N2;
739 }
740 }
741
742 // Balance of black and white modules
743 int black = 0;
744 for(int y = 0; y < qrsize; y++) {
745 for(int x = 0; x < qrsize; x++) {
746 if(getModule(qrcode, x, y))
747 black++;
748 }
749 }
750 int total = qrsize * qrsize; // Note that size is odd, so black/total != 1/2
751 // Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
752 int k = (int)((labs(black * 20L - total * 10L) + total - 1) / total) - 1;
753 result += k * PENALTY_N4;
754 return result;
755 }
756
757
758 // Inserts the given value to the front of the given array, which shifts over the
759 // existing values and deletes the last value. A helper function for getPenaltyScore().
addRunToHistory(unsigned char run,unsigned char history[7])760 static void addRunToHistory(unsigned char run, unsigned char history[7])
761 {
762 memmove(&history[1], &history[0], 6 * sizeof(history[0]));
763 history[0] = run;
764 }
765
766
767 // Tests whether the given run history has the pattern of ratio 1:1:3:1:1 in the middle, and
768 // surrounded by at least 4 on either or both ends. A helper function for getPenaltyScore().
769 // Must only be called immediately after a run of white modules has ended.
hasFinderLikePattern(const unsigned char runHistory[7])770 static bool hasFinderLikePattern(const unsigned char runHistory[7])
771 {
772 unsigned char n = runHistory[1];
773 // The maximum QR Code size is 177, hence the run length n <= 177.
774 // Arithmetic is promoted to int, so n*4 will not overflow.
775 return n > 0 && runHistory[2] == n && runHistory[4] == n && runHistory[5] == n
776 && runHistory[3] == n * 3 && (runHistory[0] >= n * 4 || runHistory[6] >= n * 4);
777 }
778
779
780
781 /*---- Basic QR Code information ----*/
782
783 // Public function - see documentation comment in header file.
qrcodegen_getSize(const uint8_t qrcode[])784 int qrcodegen_getSize(const uint8_t qrcode[])
785 {
786 LV_ASSERT(qrcode != NULL);
787 int result = qrcode[0];
788 LV_ASSERT((qrcodegen_VERSION_MIN * 4 + 17) <= result
789 && result <= (qrcodegen_VERSION_MAX * 4 + 17));
790 return result;
791 }
792
793
794 // Public function - see documentation comment in header file.
qrcodegen_getModule(const uint8_t qrcode[],int x,int y)795 bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y)
796 {
797 LV_ASSERT(qrcode != NULL);
798 int qrsize = qrcode[0];
799 return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y);
800 }
801
802
803 // Gets the module at the given coordinates, which must be in bounds.
getModule(const uint8_t qrcode[],int x,int y)804 testable bool getModule(const uint8_t qrcode[], int x, int y)
805 {
806 int qrsize = qrcode[0];
807 LV_ASSERT(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
808 int index = y * qrsize + x;
809 return getBit(qrcode[(index >> 3) + 1], index & 7);
810 }
811
812
813 // Sets the module at the given coordinates, which must be in bounds.
setModule(uint8_t qrcode[],int x,int y,bool isBlack)814 testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack)
815 {
816 int qrsize = qrcode[0];
817 LV_ASSERT(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
818 int index = y * qrsize + x;
819 int bitIndex = index & 7;
820 int byteIndex = (index >> 3) + 1;
821 if(isBlack)
822 qrcode[byteIndex] |= 1 << bitIndex;
823 else
824 qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
825 }
826
827
828 // Sets the module at the given coordinates, doing nothing if out of bounds.
setModuleBounded(uint8_t qrcode[],int x,int y,bool isBlack)829 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack)
830 {
831 int qrsize = qrcode[0];
832 if(0 <= x && x < qrsize && 0 <= y && y < qrsize)
833 setModule(qrcode, x, y, isBlack);
834 }
835
836
837 // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14.
getBit(int x,int i)838 static bool getBit(int x, int i)
839 {
840 return ((x >> i) & 1) != 0;
841 }
842
843
844
845 /*---- Segment handling ----*/
846
847 // Public function - see documentation comment in header file.
qrcodegen_isAlphanumeric(const char * text)848 bool qrcodegen_isAlphanumeric(const char * text)
849 {
850 LV_ASSERT(text != NULL);
851 for(; *text != '\0'; text++) {
852 if(strchr(ALPHANUMERIC_CHARSET, *text) == NULL)
853 return false;
854 }
855 return true;
856 }
857
858
859 // Public function - see documentation comment in header file.
qrcodegen_isNumeric(const char * text)860 bool qrcodegen_isNumeric(const char * text)
861 {
862 LV_ASSERT(text != NULL);
863 for(; *text != '\0'; text++) {
864 if(*text < '0' || *text > '9')
865 return false;
866 }
867 return true;
868 }
869
870
871 // Public function - see documentation comment in header file.
qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode,size_t numChars)872 size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars)
873 {
874 int temp = calcSegmentBitLength(mode, numChars);
875 if(temp == -1)
876 return SIZE_MAX;
877 LV_ASSERT(0 <= temp && temp <= INT16_MAX);
878 return ((size_t)temp + 7) / 8;
879 }
880
881
882 // Returns the number of data bits needed to represent a segment
883 // containing the given number of characters using the given mode. Notes:
884 // - Returns -1 on failure, i.e. numChars > INT16_MAX or
885 // the number of needed bits exceeds INT16_MAX (i.e. 32767).
886 // - Otherwise, all valid results are in the range [0, INT16_MAX].
887 // - For byte mode, numChars measures the number of bytes, not Unicode code points.
888 // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned.
889 // An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
calcSegmentBitLength(enum qrcodegen_Mode mode,size_t numChars)890 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars)
891 {
892 // All calculations are designed to avoid overflow on all platforms
893 if(numChars > (unsigned int)INT16_MAX)
894 return -1;
895 long result = (long)numChars;
896 if(mode == qrcodegen_Mode_NUMERIC)
897 result = (result * 10 + 2) / 3; // ceil(10/3 * n)
898 else if(mode == qrcodegen_Mode_ALPHANUMERIC)
899 result = (result * 11 + 1) / 2; // ceil(11/2 * n)
900 else if(mode == qrcodegen_Mode_BYTE)
901 result *= 8;
902 else if(mode == qrcodegen_Mode_KANJI)
903 result *= 13;
904 else if(mode == qrcodegen_Mode_ECI && numChars == 0)
905 result = 3 * 8;
906 else { // Invalid argument
907 LV_ASSERT(false);
908 return -1;
909 }
910 LV_ASSERT(result >= 0);
911 if((unsigned int)result > (unsigned int)INT16_MAX)
912 return -1;
913 return (int)result;
914 }
915
916
917 // Public function - see documentation comment in header file.
qrcodegen_makeBytes(const uint8_t data[],size_t len,uint8_t buf[])918 struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[])
919 {
920 LV_ASSERT(data != NULL || len == 0);
921 struct qrcodegen_Segment result;
922 result.mode = qrcodegen_Mode_BYTE;
923 result.bitLength = calcSegmentBitLength(result.mode, len);
924 LV_ASSERT(result.bitLength != -1);
925 result.numChars = (int)len;
926 if(len > 0)
927 memcpy(buf, data, len * sizeof(buf[0]));
928 result.data = buf;
929 return result;
930 }
931
932
933 // Public function - see documentation comment in header file.
qrcodegen_makeNumeric(const char * digits,uint8_t buf[])934 struct qrcodegen_Segment qrcodegen_makeNumeric(const char * digits, uint8_t buf[])
935 {
936 LV_ASSERT(digits != NULL);
937 struct qrcodegen_Segment result;
938 size_t len = strlen(digits);
939 result.mode = qrcodegen_Mode_NUMERIC;
940 int bitLen = calcSegmentBitLength(result.mode, len);
941 LV_ASSERT(bitLen != -1);
942 result.numChars = (int)len;
943 if(bitLen > 0)
944 memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0]));
945 result.bitLength = 0;
946
947 unsigned int accumData = 0;
948 int accumCount = 0;
949 for(; *digits != '\0'; digits++) {
950 char c = *digits;
951 LV_ASSERT('0' <= c && c <= '9');
952 accumData = accumData * 10 + (unsigned int)(c - '0');
953 accumCount++;
954 if(accumCount == 3) {
955 appendBitsToBuffer(accumData, 10, buf, &result.bitLength);
956 accumData = 0;
957 accumCount = 0;
958 }
959 }
960 if(accumCount > 0) // 1 or 2 digits remaining
961 appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength);
962 LV_ASSERT(result.bitLength == bitLen);
963 result.data = buf;
964 return result;
965 }
966
967
968 // Public function - see documentation comment in header file.
qrcodegen_makeAlphanumeric(const char * text,uint8_t buf[])969 struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char * text, uint8_t buf[])
970 {
971 LV_ASSERT(text != NULL);
972 struct qrcodegen_Segment result;
973 size_t len = strlen(text);
974 result.mode = qrcodegen_Mode_ALPHANUMERIC;
975 int bitLen = calcSegmentBitLength(result.mode, len);
976 LV_ASSERT(bitLen != -1);
977 result.numChars = (int)len;
978 if(bitLen > 0)
979 memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0]));
980 result.bitLength = 0;
981
982 unsigned int accumData = 0;
983 int accumCount = 0;
984 for(; *text != '\0'; text++) {
985 const char * temp = strchr(ALPHANUMERIC_CHARSET, *text);
986 LV_ASSERT(temp != NULL);
987 accumData = accumData * 45 + (unsigned int)(temp - ALPHANUMERIC_CHARSET);
988 accumCount++;
989 if(accumCount == 2) {
990 appendBitsToBuffer(accumData, 11, buf, &result.bitLength);
991 accumData = 0;
992 accumCount = 0;
993 }
994 }
995 if(accumCount > 0) // 1 character remaining
996 appendBitsToBuffer(accumData, 6, buf, &result.bitLength);
997 LV_ASSERT(result.bitLength == bitLen);
998 result.data = buf;
999 return result;
1000 }
1001
1002
1003 // Public function - see documentation comment in header file.
qrcodegen_makeEci(long assignVal,uint8_t buf[])1004 struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[])
1005 {
1006 struct qrcodegen_Segment result;
1007 result.mode = qrcodegen_Mode_ECI;
1008 result.numChars = 0;
1009 result.bitLength = 0;
1010 if(assignVal < 0) {
1011 LV_ASSERT(false);
1012 }
1013 else if(assignVal < (1 << 7)) {
1014 memset(buf, 0, 1 * sizeof(buf[0]));
1015 appendBitsToBuffer(assignVal, 8, buf, &result.bitLength);
1016 }
1017 else if(assignVal < (1 << 14)) {
1018 memset(buf, 0, 2 * sizeof(buf[0]));
1019 appendBitsToBuffer(2, 2, buf, &result.bitLength);
1020 appendBitsToBuffer(assignVal, 14, buf, &result.bitLength);
1021 }
1022 else if(assignVal < 1000000L) {
1023 memset(buf, 0, 3 * sizeof(buf[0]));
1024 appendBitsToBuffer(6, 3, buf, &result.bitLength);
1025 appendBitsToBuffer(assignVal >> 10, 11, buf, &result.bitLength);
1026 appendBitsToBuffer(assignVal & 0x3FF, 10, buf, &result.bitLength);
1027 }
1028 else {
1029 LV_ASSERT(false);
1030 }
1031 result.data = buf;
1032 return result;
1033 }
1034
1035
1036 // Calculates the number of bits needed to encode the given segments at the given version.
1037 // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too
1038 // many characters to fit its length field, or the total bits exceeds INT16_MAX.
getTotalBits(const struct qrcodegen_Segment segs[],size_t len,int version)1039 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version)
1040 {
1041 LV_ASSERT(segs != NULL || len == 0);
1042 long result = 0;
1043 for(size_t i = 0; i < len; i++) {
1044 int numChars = segs[i].numChars;
1045 int bitLength = segs[i].bitLength;
1046 LV_ASSERT(0 <= numChars && numChars <= INT16_MAX);
1047 LV_ASSERT(0 <= bitLength && bitLength <= INT16_MAX);
1048 int ccbits = numCharCountBits(segs[i].mode, version);
1049 LV_ASSERT(0 <= ccbits && ccbits <= 16);
1050 if(numChars >= (1L << ccbits))
1051 return -1; // The segment's length doesn't fit the field's bit width
1052 result += 4L + ccbits + bitLength;
1053 if(result > INT16_MAX)
1054 return -1; // The sum might overflow an int type
1055 }
1056 LV_ASSERT(0 <= result && result <= INT16_MAX);
1057 return (int)result;
1058 }
1059
1060
1061 // Returns the bit width of the character count field for a segment in the given mode
1062 // in a QR Code at the given version number. The result is in the range [0, 16].
numCharCountBits(enum qrcodegen_Mode mode,int version)1063 static int numCharCountBits(enum qrcodegen_Mode mode, int version)
1064 {
1065 LV_ASSERT(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX);
1066 int i = (version + 7) / 17;
1067 switch(mode) {
1068 case qrcodegen_Mode_NUMERIC : {
1069 static const int temp[] = {10, 12, 14};
1070 return temp[i];
1071 }
1072 case qrcodegen_Mode_ALPHANUMERIC: {
1073 static const int temp[] = { 9, 11, 13};
1074 return temp[i];
1075 }
1076 case qrcodegen_Mode_BYTE : {
1077 static const int temp[] = { 8, 16, 16};
1078 return temp[i];
1079 }
1080 case qrcodegen_Mode_KANJI : {
1081 static const int temp[] = { 8, 10, 12};
1082 return temp[i];
1083 }
1084 case qrcodegen_Mode_ECI :
1085 return 0;
1086 default:
1087 LV_ASSERT(false);
1088 return -1; // Dummy value
1089 }
1090 }
1091
qrcodegen_getMinFitVersion(enum qrcodegen_Ecc ecl,size_t dataLen)1092 int qrcodegen_getMinFitVersion(enum qrcodegen_Ecc ecl, size_t dataLen)
1093 {
1094 struct qrcodegen_Segment seg;
1095 seg.mode = qrcodegen_Mode_BYTE;
1096 seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
1097 seg.numChars = (int)dataLen;
1098
1099 for(int version = qrcodegen_VERSION_MIN; version <= qrcodegen_VERSION_MAX; version++) {
1100 int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available
1101 int dataUsedBits = getTotalBits(&seg, 1, version);
1102 if(dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
1103 return version;
1104 }
1105 return -1;
1106 }
1107
qrcodegen_version2size(int version)1108 int qrcodegen_version2size(int version)
1109 {
1110 if(version < qrcodegen_VERSION_MIN || version > qrcodegen_VERSION_MAX) {
1111 return -1;
1112 }
1113
1114 return ((version - 1) * 4 + 21);
1115 }
1116 #endif
1117