1 /*
2 * Copyright (c) 2018 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <kernel.h>
8 #include <stdio.h>
9 #include <sys/atomic.h>
10 #include <ksched.h>
11 #include <wait_q.h>
12 #include <posix/pthread.h>
13 #include <sys/slist.h>
14
15 #define PTHREAD_INIT_FLAGS PTHREAD_CANCEL_ENABLE
16 #define PTHREAD_CANCELED ((void *) -1)
17
18 PTHREAD_MUTEX_DEFINE(pthread_key_lock);
19
20 static const pthread_attr_t init_pthread_attrs = {
21 .priority = 0,
22 .stack = NULL,
23 .stacksize = 0,
24 .flags = PTHREAD_INIT_FLAGS,
25 .delayedstart = 0,
26 #if defined(CONFIG_PREEMPT_ENABLED)
27 .schedpolicy = SCHED_RR,
28 #else
29 .schedpolicy = SCHED_FIFO,
30 #endif
31 .detachstate = PTHREAD_CREATE_JOINABLE,
32 .initialized = true,
33 };
34
35 static struct posix_thread posix_thread_pool[CONFIG_MAX_PTHREAD_COUNT];
36 PTHREAD_MUTEX_DEFINE(pthread_pool_lock);
37
is_posix_prio_valid(uint32_t priority,int policy)38 static bool is_posix_prio_valid(uint32_t priority, int policy)
39 {
40 if (priority >= sched_get_priority_min(policy) &&
41 priority <= sched_get_priority_max(policy)) {
42 return true;
43 }
44
45 return false;
46 }
47
zephyr_to_posix_priority(int32_t z_prio,int * policy)48 static uint32_t zephyr_to_posix_priority(int32_t z_prio, int *policy)
49 {
50 uint32_t prio;
51
52 if (z_prio < 0) {
53 *policy = SCHED_FIFO;
54 prio = -1 * (z_prio + 1);
55 __ASSERT_NO_MSG(prio < CONFIG_NUM_COOP_PRIORITIES);
56 } else {
57 *policy = SCHED_RR;
58 prio = (CONFIG_NUM_PREEMPT_PRIORITIES - z_prio - 1);
59 __ASSERT_NO_MSG(prio < CONFIG_NUM_PREEMPT_PRIORITIES);
60 }
61
62 return prio;
63 }
64
posix_to_zephyr_priority(uint32_t priority,int policy)65 static int32_t posix_to_zephyr_priority(uint32_t priority, int policy)
66 {
67 int32_t prio;
68
69 if (policy == SCHED_FIFO) {
70 /* Zephyr COOP priority starts from -1 */
71 __ASSERT_NO_MSG(priority < CONFIG_NUM_COOP_PRIORITIES);
72 prio = -1 * (priority + 1);
73 } else {
74 __ASSERT_NO_MSG(priority < CONFIG_NUM_PREEMPT_PRIORITIES);
75 prio = (CONFIG_NUM_PREEMPT_PRIORITIES - priority - 1);
76 }
77
78 return prio;
79 }
80
81 /**
82 * @brief Set scheduling parameter attributes in thread attributes object.
83 *
84 * See IEEE 1003.1
85 */
pthread_attr_setschedparam(pthread_attr_t * attr,const struct sched_param * schedparam)86 int pthread_attr_setschedparam(pthread_attr_t *attr,
87 const struct sched_param *schedparam)
88 {
89 int priority = schedparam->sched_priority;
90
91 if ((attr == NULL) || (attr->initialized == 0U) ||
92 (is_posix_prio_valid(priority, attr->schedpolicy) == false)) {
93 return EINVAL;
94 }
95
96 attr->priority = priority;
97 return 0;
98 }
99
100 /**
101 * @brief Set stack attributes in thread attributes object.
102 *
103 * See IEEE 1003.1
104 */
pthread_attr_setstack(pthread_attr_t * attr,void * stackaddr,size_t stacksize)105 int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
106 size_t stacksize)
107 {
108 if (stackaddr == NULL) {
109 return EACCES;
110 }
111
112 attr->stack = stackaddr;
113 attr->stacksize = stacksize;
114 return 0;
115 }
116
zephyr_thread_wrapper(void * arg1,void * arg2,void * arg3)117 static void zephyr_thread_wrapper(void *arg1, void *arg2, void *arg3)
118 {
119 void * (*fun_ptr)(void *) = arg3;
120
121 fun_ptr(arg1);
122 pthread_exit(NULL);
123 }
124
125 /**
126 * @brief Create a new thread.
127 *
128 * Pthread attribute should not be NULL. API will return Error on NULL
129 * attribute value.
130 *
131 * See IEEE 1003.1
132 */
pthread_create(pthread_t * newthread,const pthread_attr_t * attr,void * (* threadroutine)(void *),void * arg)133 int pthread_create(pthread_t *newthread, const pthread_attr_t *attr,
134 void *(*threadroutine)(void *), void *arg)
135 {
136 int32_t prio;
137 uint32_t pthread_num;
138 pthread_condattr_t cond_attr;
139 struct posix_thread *thread;
140
141 /*
142 * FIXME: Pthread attribute must be non-null and it provides stack
143 * pointer and stack size. So even though POSIX 1003.1 spec accepts
144 * attrib as NULL but zephyr needs it initialized with valid stack.
145 */
146 if ((attr == NULL) || (attr->initialized == 0U)
147 || (attr->stack == NULL) || (attr->stacksize == 0)) {
148 return EINVAL;
149 }
150
151 pthread_mutex_lock(&pthread_pool_lock);
152 for (pthread_num = 0;
153 pthread_num < CONFIG_MAX_PTHREAD_COUNT; pthread_num++) {
154 thread = &posix_thread_pool[pthread_num];
155 if (thread->state == PTHREAD_EXITED || thread->state == PTHREAD_TERMINATED) {
156 thread->state = PTHREAD_JOINABLE;
157 break;
158 }
159 }
160 pthread_mutex_unlock(&pthread_pool_lock);
161
162 if (pthread_num >= CONFIG_MAX_PTHREAD_COUNT) {
163 return EAGAIN;
164 }
165
166 prio = posix_to_zephyr_priority(attr->priority, attr->schedpolicy);
167
168 thread = &posix_thread_pool[pthread_num];
169 /*
170 * Ignore return value, as we know that Zephyr implementation
171 * cannot fail.
172 */
173 (void)pthread_mutex_init(&thread->state_lock, NULL);
174 (void)pthread_mutex_init(&thread->cancel_lock, NULL);
175
176 pthread_mutex_lock(&thread->cancel_lock);
177 thread->cancel_state = (1 << _PTHREAD_CANCEL_POS) & attr->flags;
178 thread->cancel_pending = 0;
179 pthread_mutex_unlock(&thread->cancel_lock);
180
181 pthread_mutex_lock(&thread->state_lock);
182 thread->state = attr->detachstate;
183 pthread_mutex_unlock(&thread->state_lock);
184
185 pthread_cond_init(&thread->state_cond, &cond_attr);
186 sys_slist_init(&thread->key_list);
187
188 *newthread = (pthread_t) k_thread_create(&thread->thread, attr->stack,
189 attr->stacksize,
190 (k_thread_entry_t)
191 zephyr_thread_wrapper,
192 (void *)arg, NULL,
193 threadroutine, prio,
194 (~K_ESSENTIAL & attr->flags),
195 K_MSEC(attr->delayedstart));
196 return 0;
197 }
198
199
200 /**
201 * @brief Set cancelability State.
202 *
203 * See IEEE 1003.1
204 */
pthread_setcancelstate(int state,int * oldstate)205 int pthread_setcancelstate(int state, int *oldstate)
206 {
207 struct posix_thread *pthread = (struct posix_thread *) pthread_self();
208
209 if (state != PTHREAD_CANCEL_ENABLE &&
210 state != PTHREAD_CANCEL_DISABLE) {
211 return EINVAL;
212 }
213
214 *oldstate = pthread->cancel_state;
215
216 pthread_mutex_lock(&pthread->cancel_lock);
217 pthread->cancel_state = state;
218 pthread_mutex_unlock(&pthread->cancel_lock);
219
220 if (state == PTHREAD_CANCEL_ENABLE && pthread->cancel_pending) {
221 pthread_exit((void *)PTHREAD_CANCELED);
222 }
223
224 return 0;
225 }
226
227 /**
228 * @brief Cancel execution of a thread.
229 *
230 * See IEEE 1003.1
231 */
pthread_cancel(pthread_t pthread)232 int pthread_cancel(pthread_t pthread)
233 {
234 struct posix_thread *thread = (struct posix_thread *) pthread;
235 int cancel_state;
236
237 if ((thread == NULL) || (thread->state == PTHREAD_TERMINATED)) {
238 return ESRCH;
239 }
240
241 pthread_mutex_lock(&thread->cancel_lock);
242 thread->cancel_pending = 1;
243 cancel_state = thread->cancel_state;
244 pthread_mutex_unlock(&thread->cancel_lock);
245
246 if (cancel_state == PTHREAD_CANCEL_ENABLE) {
247 pthread_mutex_lock(&thread->state_lock);
248 if (thread->state == PTHREAD_DETACHED) {
249 thread->state = PTHREAD_TERMINATED;
250 } else {
251 thread->retval = PTHREAD_CANCELED;
252 thread->state = PTHREAD_EXITED;
253 pthread_cond_broadcast(&thread->state_cond);
254 }
255 pthread_mutex_unlock(&thread->state_lock);
256
257 k_thread_abort((k_tid_t) thread);
258 }
259
260 return 0;
261 }
262
263 /**
264 * @brief Set thread scheduling policy and parameters.
265 *
266 * See IEEE 1003.1
267 */
pthread_setschedparam(pthread_t pthread,int policy,const struct sched_param * param)268 int pthread_setschedparam(pthread_t pthread, int policy,
269 const struct sched_param *param)
270 {
271 k_tid_t thread = (k_tid_t)pthread;
272 int new_prio;
273
274 if (thread == NULL) {
275 return ESRCH;
276 }
277
278 if (policy != SCHED_RR && policy != SCHED_FIFO) {
279 return EINVAL;
280 }
281
282 if (is_posix_prio_valid(param->sched_priority, policy) == false) {
283 return EINVAL;
284 }
285
286 new_prio = posix_to_zephyr_priority(param->sched_priority, policy);
287
288 k_thread_priority_set(thread, new_prio);
289 return 0;
290 }
291
292 /**
293 * @brief Initialise threads attribute object
294 *
295 * See IEEE 1003.1
296 */
pthread_attr_init(pthread_attr_t * attr)297 int pthread_attr_init(pthread_attr_t *attr)
298 {
299
300 if (attr == NULL) {
301 return ENOMEM;
302 }
303
304 (void)memcpy(attr, &init_pthread_attrs, sizeof(pthread_attr_t));
305
306 return 0;
307 }
308
309 /**
310 * @brief Get thread scheduling policy and parameters
311 *
312 * See IEEE 1003.1
313 */
pthread_getschedparam(pthread_t pthread,int * policy,struct sched_param * param)314 int pthread_getschedparam(pthread_t pthread, int *policy,
315 struct sched_param *param)
316 {
317 struct posix_thread *thread = (struct posix_thread *) pthread;
318 uint32_t priority;
319
320 if ((thread == NULL) || (thread->state == PTHREAD_TERMINATED)) {
321 return ESRCH;
322 }
323
324 priority = k_thread_priority_get((k_tid_t) thread);
325
326 param->sched_priority = zephyr_to_posix_priority(priority, policy);
327 return 0;
328 }
329
330 /**
331 * @brief Dynamic package initialization
332 *
333 * See IEEE 1003.1
334 */
pthread_once(pthread_once_t * once,void (* init_func)(void))335 int pthread_once(pthread_once_t *once, void (*init_func)(void))
336 {
337 pthread_mutex_lock(&pthread_key_lock);
338
339 if (*once == PTHREAD_ONCE_INIT) {
340 pthread_mutex_unlock(&pthread_key_lock);
341 return 0;
342 }
343
344 init_func();
345 *once = PTHREAD_ONCE_INIT;
346
347 pthread_mutex_unlock(&pthread_key_lock);
348
349 return 0;
350 }
351
352 /**
353 * @brief Terminate calling thread.
354 *
355 * See IEEE 1003.1
356 */
pthread_exit(void * retval)357 void pthread_exit(void *retval)
358 {
359 struct posix_thread *self = (struct posix_thread *)pthread_self();
360 pthread_key_obj *key_obj;
361 pthread_thread_data *thread_spec_data;
362 sys_snode_t *node_l;
363
364 /* Make a thread as cancelable before exiting */
365 pthread_mutex_lock(&self->cancel_lock);
366 if (self->cancel_state == PTHREAD_CANCEL_DISABLE) {
367 self->cancel_state = PTHREAD_CANCEL_ENABLE;
368 }
369
370 pthread_mutex_unlock(&self->cancel_lock);
371
372 pthread_mutex_lock(&self->state_lock);
373 if (self->state == PTHREAD_JOINABLE) {
374 self->retval = retval;
375 self->state = PTHREAD_EXITED;
376 self->retval = retval;
377 pthread_cond_broadcast(&self->state_cond);
378 } else {
379 self->state = PTHREAD_TERMINATED;
380 }
381
382 SYS_SLIST_FOR_EACH_NODE(&self->key_list, node_l) {
383 thread_spec_data = (pthread_thread_data *)node_l;
384 if (thread_spec_data != NULL) {
385 key_obj = thread_spec_data->key;
386 if (key_obj->destructor != NULL) {
387 (key_obj->destructor)(thread_spec_data->spec_data);
388 }
389 }
390 }
391
392 pthread_mutex_unlock(&self->state_lock);
393 k_thread_abort((k_tid_t)self);
394 }
395
396 /**
397 * @brief Wait for a thread termination.
398 *
399 * See IEEE 1003.1
400 */
pthread_join(pthread_t thread,void ** status)401 int pthread_join(pthread_t thread, void **status)
402 {
403 struct posix_thread *pthread = (struct posix_thread *) thread;
404 int ret = 0;
405
406 if (pthread == NULL) {
407 return ESRCH;
408 }
409
410 if (pthread == pthread_self()) {
411 return EDEADLK;
412 }
413
414 pthread_mutex_lock(&pthread->state_lock);
415
416 if (pthread->state == PTHREAD_JOINABLE) {
417 pthread_cond_wait(&pthread->state_cond, &pthread->state_lock);
418 }
419
420 if (pthread->state == PTHREAD_EXITED) {
421 if (status != NULL) {
422 *status = pthread->retval;
423 }
424 } else if (pthread->state == PTHREAD_DETACHED) {
425 ret = EINVAL;
426 } else {
427 ret = ESRCH;
428 }
429
430 pthread_mutex_unlock(&pthread->state_lock);
431 return ret;
432 }
433
434 /**
435 * @brief Detach a thread.
436 *
437 * See IEEE 1003.1
438 */
pthread_detach(pthread_t thread)439 int pthread_detach(pthread_t thread)
440 {
441 struct posix_thread *pthread = (struct posix_thread *) thread;
442 int ret = 0;
443
444 if (pthread == NULL) {
445 return ESRCH;
446 }
447
448 pthread_mutex_lock(&pthread->state_lock);
449
450 switch (pthread->state) {
451 case PTHREAD_JOINABLE:
452 pthread->state = PTHREAD_DETACHED;
453 /* Broadcast the condition.
454 * This will make threads waiting to join this thread continue.
455 */
456 pthread_cond_broadcast(&pthread->state_cond);
457 break;
458 case PTHREAD_EXITED:
459 pthread->state = PTHREAD_TERMINATED;
460 /* THREAD has already exited.
461 * Pthread remained to provide exit status.
462 */
463 break;
464 case PTHREAD_TERMINATED:
465 ret = ESRCH;
466 break;
467 default:
468 ret = EINVAL;
469 break;
470 }
471
472 pthread_mutex_unlock(&pthread->state_lock);
473 return ret;
474 }
475
476 /**
477 * @brief Get detach state attribute in thread attributes object.
478 *
479 * See IEEE 1003.1
480 */
pthread_attr_getdetachstate(const pthread_attr_t * attr,int * detachstate)481 int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate)
482 {
483 if ((attr == NULL) || (attr->initialized == 0U)) {
484 return EINVAL;
485 }
486
487 *detachstate = attr->detachstate;
488 return 0;
489 }
490
491 /**
492 * @brief Set detach state attribute in thread attributes object.
493 *
494 * See IEEE 1003.1
495 */
pthread_attr_setdetachstate(pthread_attr_t * attr,int detachstate)496 int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
497 {
498 if ((attr == NULL) || (attr->initialized == 0U) ||
499 (detachstate != PTHREAD_CREATE_DETACHED &&
500 detachstate != PTHREAD_CREATE_JOINABLE)) {
501 return EINVAL;
502 }
503
504 attr->detachstate = detachstate;
505 return 0;
506 }
507
508
509 /**
510 * @brief Get scheduling policy attribute in Thread attributes.
511 *
512 * See IEEE 1003.1
513 */
pthread_attr_getschedpolicy(const pthread_attr_t * attr,int * policy)514 int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy)
515 {
516 if ((attr == NULL) || (attr->initialized == 0U)) {
517 return EINVAL;
518 }
519
520 *policy = attr->schedpolicy;
521 return 0;
522 }
523
524
525 /**
526 * @brief Set scheduling policy attribute in Thread attributes object.
527 *
528 * See IEEE 1003.1
529 */
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)530 int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy)
531 {
532 if ((attr == NULL) || (attr->initialized == 0U) ||
533 (policy != SCHED_RR && policy != SCHED_FIFO)) {
534 return EINVAL;
535 }
536
537 attr->schedpolicy = policy;
538 return 0;
539 }
540
541 /**
542 * @brief Get stack size attribute in thread attributes object.
543 *
544 * See IEEE 1003.1
545 */
pthread_attr_getstacksize(const pthread_attr_t * attr,size_t * stacksize)546 int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize)
547 {
548 if ((attr == NULL) || (attr->initialized == 0U)) {
549 return EINVAL;
550 }
551
552 *stacksize = attr->stacksize;
553 return 0;
554
555 }
556
557 /**
558 * @brief Get stack attributes in thread attributes object.
559 *
560 * See IEEE 1003.1
561 */
pthread_attr_getstack(const pthread_attr_t * attr,void ** stackaddr,size_t * stacksize)562 int pthread_attr_getstack(const pthread_attr_t *attr,
563 void **stackaddr, size_t *stacksize)
564 {
565 if ((attr == NULL) || (attr->initialized == 0U)) {
566 return EINVAL;
567 }
568
569 *stackaddr = attr->stack;
570 *stacksize = attr->stacksize;
571 return 0;
572 }
573
574 /**
575 * @brief Get thread attributes object scheduling parameters.
576 *
577 * See IEEE 1003.1
578 */
pthread_attr_getschedparam(const pthread_attr_t * attr,struct sched_param * schedparam)579 int pthread_attr_getschedparam(const pthread_attr_t *attr,
580 struct sched_param *schedparam)
581 {
582 if ((attr == NULL) || (attr->initialized == 0U)) {
583 return EINVAL;
584 }
585
586 schedparam->sched_priority = attr->priority;
587 return 0;
588 }
589
590 /**
591 * @brief Destroy thread attributes object.
592 *
593 * See IEEE 1003.1
594 */
pthread_attr_destroy(pthread_attr_t * attr)595 int pthread_attr_destroy(pthread_attr_t *attr)
596 {
597 if ((attr != NULL) && (attr->initialized != 0U)) {
598 attr->initialized = false;
599 return 0;
600 }
601
602 return EINVAL;
603 }
604
pthread_setname_np(pthread_t thread,const char * name)605 int pthread_setname_np(pthread_t thread, const char *name)
606 {
607 #ifdef CONFIG_THREAD_NAME
608 k_tid_t kthread = (k_tid_t)thread;
609
610 if (kthread == NULL) {
611 return ESRCH;
612 }
613
614 if (name == NULL) {
615 return EINVAL;
616 }
617
618 return k_thread_name_set(kthread, name);
619 #else
620 ARG_UNUSED(thread);
621 ARG_UNUSED(name);
622 return 0;
623 #endif
624 }
625
pthread_getname_np(pthread_t thread,char * name,size_t len)626 int pthread_getname_np(pthread_t thread, char *name, size_t len)
627 {
628 #ifdef CONFIG_THREAD_NAME
629 k_tid_t kthread = (k_tid_t)thread;
630
631 if (kthread == NULL) {
632 return ESRCH;
633 }
634
635 if (name == NULL) {
636 return EINVAL;
637 }
638
639 memset(name, '\0', len);
640 return k_thread_name_copy(kthread, name, len-1);
641 #else
642 ARG_UNUSED(thread);
643 ARG_UNUSED(name);
644 ARG_UNUSED(len);
645 return 0;
646 #endif
647 }
648