1 /*
2 * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/el3_runtime/context_mgmt.h>
17 #include <lib/utils.h>
18 #include <plat/common/platform.h>
19
20 #include "psci_private.h"
21
22 /*
23 * SPD power management operations, expected to be supplied by the registered
24 * SPD on successful SP initialization
25 */
26 const spd_pm_ops_t *psci_spd_pm;
27
28 /*
29 * PSCI requested local power state map. This array is used to store the local
30 * power states requested by a CPU for power levels from level 1 to
31 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
32 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
33 * CPU are the same.
34 *
35 * During state coordination, the platform is passed an array containing the
36 * local states requested for a particular non cpu power domain by each cpu
37 * within the domain.
38 *
39 * TODO: Dense packing of the requested states will cause cache thrashing
40 * when multiple power domains write to it. If we allocate the requested
41 * states at each power level in a cache-line aligned per-domain memory,
42 * the cache thrashing can be avoided.
43 */
44 static plat_local_state_t
45 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
46
47 unsigned int psci_plat_core_count;
48
49 /*******************************************************************************
50 * Arrays that hold the platform's power domain tree information for state
51 * management of power domains.
52 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
53 * which is an ancestor of a CPU power domain.
54 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
55 ******************************************************************************/
56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
57 #if USE_COHERENT_MEM
58 __section(".tzfw_coherent_mem")
59 #endif
60 ;
61
62 /* Lock for PSCI state coordination */
63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
64
65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
66
67 /*******************************************************************************
68 * Pointer to functions exported by the platform to complete power mgmt. ops
69 ******************************************************************************/
70 const plat_psci_ops_t *psci_plat_pm_ops;
71
72 /******************************************************************************
73 * Check that the maximum power level supported by the platform makes sense
74 *****************************************************************************/
75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
76 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
77 assert_platform_max_pwrlvl_check);
78
79 #if PSCI_OS_INIT_MODE
80 /*******************************************************************************
81 * The power state coordination mode used in CPU_SUSPEND.
82 * Defaults to platform-coordinated mode.
83 ******************************************************************************/
84 suspend_mode_t psci_suspend_mode = PLAT_COORD;
85 #endif
86
87 /*
88 * The plat_local_state used by the platform is one of these types: RUN,
89 * RETENTION and OFF. The platform can define further sub-states for each type
90 * apart from RUN. This categorization is done to verify the sanity of the
91 * psci_power_state passed by the platform and to print debug information. The
92 * categorization is done on the basis of the following conditions:
93 *
94 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
95 *
96 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
97 * STATE_TYPE_RETN.
98 *
99 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
100 * STATE_TYPE_OFF.
101 */
102 typedef enum plat_local_state_type {
103 STATE_TYPE_RUN = 0,
104 STATE_TYPE_RETN,
105 STATE_TYPE_OFF
106 } plat_local_state_type_t;
107
108 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)109 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
110 {
111 if (state != 0U) {
112 if (state > PLAT_MAX_RET_STATE) {
113 return STATE_TYPE_OFF;
114 } else {
115 return STATE_TYPE_RETN;
116 }
117 } else {
118 return STATE_TYPE_RUN;
119 }
120 }
121
122 /******************************************************************************
123 * Check that the maximum retention level supported by the platform is less
124 * than the maximum off level.
125 *****************************************************************************/
126 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
127 assert_platform_max_off_and_retn_state_check);
128
129 /******************************************************************************
130 * This function ensures that the power state parameter in a CPU_SUSPEND request
131 * is valid. If so, it returns the requested states for each power level.
132 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)133 int psci_validate_power_state(unsigned int power_state,
134 psci_power_state_t *state_info)
135 {
136 /* Check SBZ bits in power state are zero */
137 if (psci_check_power_state(power_state) != 0U)
138 return PSCI_E_INVALID_PARAMS;
139
140 assert(psci_plat_pm_ops->validate_power_state != NULL);
141
142 /* Validate the power_state using platform pm_ops */
143 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
144 }
145
146 /******************************************************************************
147 * This function retrieves the `psci_power_state_t` for system suspend from
148 * the platform.
149 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)150 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
151 {
152 /*
153 * Assert that the required pm_ops hook is implemented to ensure that
154 * the capability detected during psci_setup() is valid.
155 */
156 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
157
158 /*
159 * Query the platform for the power_state required for system suspend
160 */
161 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
162 }
163
164 #if PSCI_OS_INIT_MODE
165 /*******************************************************************************
166 * This function verifies that all the other cores at the 'end_pwrlvl' have been
167 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
168 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
169 * otherwise.
170 ******************************************************************************/
psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)171 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
172 {
173 unsigned int my_idx, lvl, parent_idx;
174 unsigned int cpu_start_idx, ncpus, cpu_idx;
175 plat_local_state_t local_state;
176
177 if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
178 return true;
179 }
180
181 my_idx = plat_my_core_pos();
182
183 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
184 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
185 }
186
187 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
188 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
189
190 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
191 cpu_idx++) {
192 local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
193 if (cpu_idx == my_idx) {
194 assert(is_local_state_run(local_state) != 0);
195 continue;
196 }
197
198 if (is_local_state_run(local_state) != 0) {
199 return false;
200 }
201 }
202
203 return true;
204 }
205 #endif
206
207 /*******************************************************************************
208 * This function verifies that all the other cores in the system have been
209 * turned OFF and the current CPU is the last running CPU in the system.
210 * Returns true, if the current CPU is the last ON CPU or false otherwise.
211 ******************************************************************************/
psci_is_last_on_cpu(void)212 bool psci_is_last_on_cpu(void)
213 {
214 unsigned int cpu_idx, my_idx = plat_my_core_pos();
215
216 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
217 if (cpu_idx == my_idx) {
218 assert(psci_get_aff_info_state() == AFF_STATE_ON);
219 continue;
220 }
221
222 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
223 VERBOSE("core=%u other than current core=%u %s\n",
224 cpu_idx, my_idx, "running in the system");
225 return false;
226 }
227 }
228
229 return true;
230 }
231
232 /*******************************************************************************
233 * This function verifies that all cores in the system have been turned ON.
234 * Returns true, if all CPUs are ON or false otherwise.
235 ******************************************************************************/
psci_are_all_cpus_on(void)236 static bool psci_are_all_cpus_on(void)
237 {
238 unsigned int cpu_idx;
239
240 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
241 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
242 return false;
243 }
244 }
245
246 return true;
247 }
248
249 /*******************************************************************************
250 * Routine to return the maximum power level to traverse to after a cpu has
251 * been physically powered up. It is expected to be called immediately after
252 * reset from assembler code.
253 ******************************************************************************/
get_power_on_target_pwrlvl(void)254 static unsigned int get_power_on_target_pwrlvl(void)
255 {
256 unsigned int pwrlvl;
257
258 /*
259 * Assume that this cpu was suspended and retrieve its target power
260 * level. If it is invalid then it could only have been turned off
261 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
262 * cpu can be turned off to.
263 */
264 pwrlvl = psci_get_suspend_pwrlvl();
265 if (pwrlvl == PSCI_INVALID_PWR_LVL)
266 pwrlvl = PLAT_MAX_PWR_LVL;
267 assert(pwrlvl < PSCI_INVALID_PWR_LVL);
268 return pwrlvl;
269 }
270
271 /******************************************************************************
272 * Helper function to update the requested local power state array. This array
273 * does not store the requested state for the CPU power level. Hence an
274 * assertion is added to prevent us from accessing the CPU power level.
275 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)276 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
277 unsigned int cpu_idx,
278 plat_local_state_t req_pwr_state)
279 {
280 assert(pwrlvl > PSCI_CPU_PWR_LVL);
281 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
282 (cpu_idx < psci_plat_core_count)) {
283 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
284 }
285 }
286
287 /******************************************************************************
288 * This function initializes the psci_req_local_pwr_states.
289 *****************************************************************************/
psci_init_req_local_pwr_states(void)290 void __init psci_init_req_local_pwr_states(void)
291 {
292 /* Initialize the requested state of all non CPU power domains as OFF */
293 unsigned int pwrlvl;
294 unsigned int core;
295
296 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
297 for (core = 0; core < psci_plat_core_count; core++) {
298 psci_req_local_pwr_states[pwrlvl][core] =
299 PLAT_MAX_OFF_STATE;
300 }
301 }
302 }
303
304 /******************************************************************************
305 * Helper function to return a reference to an array containing the local power
306 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
307 * array will be the number of cpu power domains of which this power domain is
308 * an ancestor. These requested states will be used to determine a suitable
309 * target state for this power domain during psci state coordination. An
310 * assertion is added to prevent us from accessing the CPU power level.
311 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)312 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
313 unsigned int cpu_idx)
314 {
315 assert(pwrlvl > PSCI_CPU_PWR_LVL);
316
317 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
318 (cpu_idx < psci_plat_core_count)) {
319 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
320 } else
321 return NULL;
322 }
323
324 #if PSCI_OS_INIT_MODE
325 /******************************************************************************
326 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
327 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
328 * local power states (state_info).
329 *****************************************************************************/
psci_update_req_local_pwr_states(unsigned int end_pwrlvl,unsigned int cpu_idx,psci_power_state_t * state_info,plat_local_state_t * prev)330 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
331 unsigned int cpu_idx,
332 psci_power_state_t *state_info,
333 plat_local_state_t *prev)
334 {
335 unsigned int lvl;
336 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
337 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
338 #else
339 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
340 #endif
341 plat_local_state_t req_state;
342
343 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
344 /* Save the previous requested local power state */
345 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
346
347 /* Update the new requested local power state */
348 if (lvl <= end_pwrlvl) {
349 req_state = state_info->pwr_domain_state[lvl];
350 } else {
351 req_state = state_info->pwr_domain_state[end_pwrlvl];
352 }
353 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
354 }
355 }
356
357 /******************************************************************************
358 * Helper function to restore the previously saved requested local power states
359 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
360 *****************************************************************************/
psci_restore_req_local_pwr_states(unsigned int cpu_idx,plat_local_state_t * prev)361 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
362 plat_local_state_t *prev)
363 {
364 unsigned int lvl;
365 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
366 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
367 #else
368 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
369 #endif
370
371 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
372 /* Restore the previous requested local power state */
373 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
374 }
375 }
376 #endif
377
378 /*
379 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
380 * memory.
381 *
382 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
383 * it's accessed by both cached and non-cached participants. To serve the common
384 * minimum, perform a cache flush before read and after write so that non-cached
385 * participants operate on latest data in main memory.
386 *
387 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
388 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
389 * In both cases, no cache operations are required.
390 */
391
392 /*
393 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
394 * after any required cache maintenance operation.
395 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)396 static plat_local_state_t get_non_cpu_pd_node_local_state(
397 unsigned int parent_idx)
398 {
399 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
400 flush_dcache_range(
401 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
402 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
403 #endif
404 return psci_non_cpu_pd_nodes[parent_idx].local_state;
405 }
406
407 /*
408 * Update local state of non-CPU power domain node from a cached CPU; perform
409 * any required cache maintenance operation afterwards.
410 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)411 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
412 plat_local_state_t state)
413 {
414 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
415 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
416 flush_dcache_range(
417 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
418 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
419 #endif
420 }
421
422 /******************************************************************************
423 * Helper function to return the current local power state of each power domain
424 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
425 * function will be called after a cpu is powered on to find the local state
426 * each power domain has emerged from.
427 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)428 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
429 psci_power_state_t *target_state)
430 {
431 unsigned int parent_idx, lvl;
432 plat_local_state_t *pd_state = target_state->pwr_domain_state;
433
434 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
435 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
436
437 /* Copy the local power state from node to state_info */
438 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
439 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
440 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
441 }
442
443 /* Set the the higher levels to RUN */
444 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
445 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
446 }
447
448 /******************************************************************************
449 * Helper function to set the target local power state that each power domain
450 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
451 * enter. This function will be called after coordination of requested power
452 * states has been done for each power level.
453 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)454 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
455 const psci_power_state_t *target_state)
456 {
457 unsigned int parent_idx, lvl;
458 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
459
460 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
461
462 /*
463 * Need to flush as local_state might be accessed with Data Cache
464 * disabled during power on
465 */
466 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
467
468 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
469
470 /* Copy the local_state from state_info */
471 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
472 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
473 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
474 }
475 }
476
477 /*******************************************************************************
478 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
479 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)480 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
481 unsigned int end_lvl,
482 unsigned int *node_index)
483 {
484 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
485 unsigned int i;
486 unsigned int *node = node_index;
487
488 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
489 *node = parent_node;
490 node++;
491 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
492 }
493 }
494
495 /******************************************************************************
496 * This function is invoked post CPU power up and initialization. It sets the
497 * affinity info state, target power state and requested power state for the
498 * current CPU and all its ancestor power domains to RUN.
499 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)500 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
501 {
502 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
503 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
504
505 /* Reset the local_state to RUN for the non cpu power domains. */
506 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
507 set_non_cpu_pd_node_local_state(parent_idx,
508 PSCI_LOCAL_STATE_RUN);
509 psci_set_req_local_pwr_state(lvl,
510 cpu_idx,
511 PSCI_LOCAL_STATE_RUN);
512 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
513 }
514
515 /* Set the affinity info state to ON */
516 psci_set_aff_info_state(AFF_STATE_ON);
517
518 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
519 psci_flush_cpu_data(psci_svc_cpu_data);
520 }
521
522 /******************************************************************************
523 * This function is used in platform-coordinated mode.
524 *
525 * This function is passed the local power states requested for each power
526 * domain (state_info) between the current CPU domain and its ancestors until
527 * the target power level (end_pwrlvl). It updates the array of requested power
528 * states with this information.
529 *
530 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
531 * retrieves the states requested by all the cpus of which the power domain at
532 * that level is an ancestor. It passes this information to the platform to
533 * coordinate and return the target power state. If the target state for a level
534 * is RUN then subsequent levels are not considered. At the CPU level, state
535 * coordination is not required. Hence, the requested and the target states are
536 * the same.
537 *
538 * The 'state_info' is updated with the target state for each level between the
539 * CPU and the 'end_pwrlvl' and returned to the caller.
540 *
541 * This function will only be invoked with data cache enabled and while
542 * powering down a core.
543 *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)544 void psci_do_state_coordination(unsigned int end_pwrlvl,
545 psci_power_state_t *state_info)
546 {
547 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
548 unsigned int start_idx;
549 unsigned int ncpus;
550 plat_local_state_t target_state, *req_states;
551
552 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
553 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
554
555 /* For level 0, the requested state will be equivalent
556 to target state */
557 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
558
559 /* First update the requested power state */
560 psci_set_req_local_pwr_state(lvl, cpu_idx,
561 state_info->pwr_domain_state[lvl]);
562
563 /* Get the requested power states for this power level */
564 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
565 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
566
567 /*
568 * Let the platform coordinate amongst the requested states at
569 * this power level and return the target local power state.
570 */
571 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
572 target_state = plat_get_target_pwr_state(lvl,
573 req_states,
574 ncpus);
575
576 state_info->pwr_domain_state[lvl] = target_state;
577
578 /* Break early if the negotiated target power state is RUN */
579 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
580 break;
581
582 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
583 }
584
585 /*
586 * This is for cases when we break out of the above loop early because
587 * the target power state is RUN at a power level < end_pwlvl.
588 * We update the requested power state from state_info and then
589 * set the target state as RUN.
590 */
591 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
592 psci_set_req_local_pwr_state(lvl, cpu_idx,
593 state_info->pwr_domain_state[lvl]);
594 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
595
596 }
597 }
598
599 #if PSCI_OS_INIT_MODE
600 /******************************************************************************
601 * This function is used in OS-initiated mode.
602 *
603 * This function is passed the local power states requested for each power
604 * domain (state_info) between the current CPU domain and its ancestors until
605 * the target power level (end_pwrlvl), and ensures the requested power states
606 * are valid. It updates the array of requested power states with this
607 * information.
608 *
609 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
610 * retrieves the states requested by all the cpus of which the power domain at
611 * that level is an ancestor. It passes this information to the platform to
612 * coordinate and return the target power state. If the requested state does
613 * not match the target state, the request is denied.
614 *
615 * The 'state_info' is not modified.
616 *
617 * This function will only be invoked with data cache enabled and while
618 * powering down a core.
619 *****************************************************************************/
psci_validate_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)620 int psci_validate_state_coordination(unsigned int end_pwrlvl,
621 psci_power_state_t *state_info)
622 {
623 int rc = PSCI_E_SUCCESS;
624 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
625 unsigned int start_idx;
626 unsigned int ncpus;
627 plat_local_state_t target_state, *req_states;
628 plat_local_state_t prev[PLAT_MAX_PWR_LVL];
629
630 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
631 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
632
633 /*
634 * Save a copy of the previous requested local power states and update
635 * the new requested local power states.
636 */
637 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
638
639 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
640 /* Get the requested power states for this power level */
641 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
642 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
643
644 /*
645 * Let the platform coordinate amongst the requested states at
646 * this power level and return the target local power state.
647 */
648 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
649 target_state = plat_get_target_pwr_state(lvl,
650 req_states,
651 ncpus);
652
653 /*
654 * Verify that the requested power state matches the target
655 * local power state.
656 */
657 if (state_info->pwr_domain_state[lvl] != target_state) {
658 if (target_state == PSCI_LOCAL_STATE_RUN) {
659 rc = PSCI_E_DENIED;
660 } else {
661 rc = PSCI_E_INVALID_PARAMS;
662 }
663 goto exit;
664 }
665 }
666
667 /*
668 * Verify that the current core is the last running core at the
669 * specified power level.
670 */
671 lvl = state_info->last_at_pwrlvl;
672 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
673 rc = PSCI_E_DENIED;
674 }
675
676 exit:
677 if (rc != PSCI_E_SUCCESS) {
678 /* Restore the previous requested local power states. */
679 psci_restore_req_local_pwr_states(cpu_idx, prev);
680 return rc;
681 }
682
683 return rc;
684 }
685 #endif
686
687 /******************************************************************************
688 * This function validates a suspend request by making sure that if a standby
689 * state is requested then no power level is turned off and the highest power
690 * level is placed in a standby/retention state.
691 *
692 * It also ensures that the state level X will enter is not shallower than the
693 * state level X + 1 will enter.
694 *
695 * This validation will be enabled only for DEBUG builds as the platform is
696 * expected to perform these validations as well.
697 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)698 int psci_validate_suspend_req(const psci_power_state_t *state_info,
699 unsigned int is_power_down_state)
700 {
701 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
702 plat_local_state_t state;
703 plat_local_state_type_t req_state_type, deepest_state_type;
704 int i;
705
706 /* Find the target suspend power level */
707 target_lvl = psci_find_target_suspend_lvl(state_info);
708 if (target_lvl == PSCI_INVALID_PWR_LVL)
709 return PSCI_E_INVALID_PARAMS;
710
711 /* All power domain levels are in a RUN state to begin with */
712 deepest_state_type = STATE_TYPE_RUN;
713
714 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
715 state = state_info->pwr_domain_state[i];
716 req_state_type = find_local_state_type(state);
717
718 /*
719 * While traversing from the highest power level to the lowest,
720 * the state requested for lower levels has to be the same or
721 * deeper i.e. equal to or greater than the state at the higher
722 * levels. If this condition is true, then the requested state
723 * becomes the deepest state encountered so far.
724 */
725 if (req_state_type < deepest_state_type)
726 return PSCI_E_INVALID_PARAMS;
727 deepest_state_type = req_state_type;
728 }
729
730 /* Find the highest off power level */
731 max_off_lvl = psci_find_max_off_lvl(state_info);
732
733 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
734 max_retn_lvl = PSCI_INVALID_PWR_LVL;
735 if (target_lvl != max_off_lvl)
736 max_retn_lvl = target_lvl;
737
738 /*
739 * If this is not a request for a power down state then max off level
740 * has to be invalid and max retention level has to be a valid power
741 * level.
742 */
743 if ((is_power_down_state == 0U) &&
744 ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
745 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
746 return PSCI_E_INVALID_PARAMS;
747
748 return PSCI_E_SUCCESS;
749 }
750
751 /******************************************************************************
752 * This function finds the highest power level which will be powered down
753 * amongst all the power levels specified in the 'state_info' structure
754 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)755 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
756 {
757 int i;
758
759 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
760 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
761 return (unsigned int) i;
762 }
763
764 return PSCI_INVALID_PWR_LVL;
765 }
766
767 /******************************************************************************
768 * This functions finds the level of the highest power domain which will be
769 * placed in a low power state during a suspend operation.
770 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)771 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
772 {
773 int i;
774
775 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
776 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
777 return (unsigned int) i;
778 }
779
780 return PSCI_INVALID_PWR_LVL;
781 }
782
783 /*******************************************************************************
784 * This function is passed the highest level in the topology tree that the
785 * operation should be applied to and a list of node indexes. It picks up locks
786 * from the node index list in order of increasing power domain level in the
787 * range specified.
788 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)789 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
790 const unsigned int *parent_nodes)
791 {
792 unsigned int parent_idx;
793 unsigned int level;
794
795 /* No locking required for level 0. Hence start locking from level 1 */
796 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
797 parent_idx = parent_nodes[level - 1U];
798 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
799 }
800 }
801
802 /*******************************************************************************
803 * This function is passed the highest level in the topology tree that the
804 * operation should be applied to and a list of node indexes. It releases the
805 * locks in order of decreasing power domain level in the range specified.
806 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)807 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
808 const unsigned int *parent_nodes)
809 {
810 unsigned int parent_idx;
811 unsigned int level;
812
813 /* Unlock top down. No unlocking required for level 0. */
814 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
815 parent_idx = parent_nodes[level - 1U];
816 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
817 }
818 }
819
820 /*******************************************************************************
821 * This function determines the full entrypoint information for the requested
822 * PSCI entrypoint on power on/resume and returns it.
823 ******************************************************************************/
824 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)825 static int psci_get_ns_ep_info(entry_point_info_t *ep,
826 uintptr_t entrypoint,
827 u_register_t context_id)
828 {
829 u_register_t ep_attr, sctlr;
830 unsigned int daif, ee, mode;
831 u_register_t ns_scr_el3 = read_scr_el3();
832 u_register_t ns_sctlr_el1 = read_sctlr_el1();
833
834 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
835 read_sctlr_el2() : ns_sctlr_el1;
836 ee = 0;
837
838 ep_attr = NON_SECURE | EP_ST_DISABLE;
839 if ((sctlr & SCTLR_EE_BIT) != 0U) {
840 ep_attr |= EP_EE_BIG;
841 ee = 1;
842 }
843 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
844
845 ep->pc = entrypoint;
846 zeromem(&ep->args, sizeof(ep->args));
847 ep->args.arg0 = context_id;
848
849 /*
850 * Figure out whether the cpu enters the non-secure address space
851 * in aarch32 or aarch64
852 */
853 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
854
855 /*
856 * Check whether a Thumb entry point has been provided for an
857 * aarch64 EL
858 */
859 if ((entrypoint & 0x1UL) != 0UL)
860 return PSCI_E_INVALID_ADDRESS;
861
862 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
863
864 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
865 DISABLE_ALL_EXCEPTIONS);
866 } else {
867
868 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
869 MODE32_hyp : MODE32_svc;
870
871 /*
872 * TODO: Choose async. exception bits if HYP mode is not
873 * implemented according to the values of SCR.{AW, FW} bits
874 */
875 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
876
877 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
878 daif);
879 }
880
881 return PSCI_E_SUCCESS;
882 }
883 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)884 static int psci_get_ns_ep_info(entry_point_info_t *ep,
885 uintptr_t entrypoint,
886 u_register_t context_id)
887 {
888 u_register_t ep_attr;
889 unsigned int aif, ee, mode;
890 u_register_t scr = read_scr();
891 u_register_t ns_sctlr, sctlr;
892
893 /* Switch to non secure state */
894 write_scr(scr | SCR_NS_BIT);
895 isb();
896 ns_sctlr = read_sctlr();
897
898 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
899
900 /* Return to original state */
901 write_scr(scr);
902 isb();
903 ee = 0;
904
905 ep_attr = NON_SECURE | EP_ST_DISABLE;
906 if (sctlr & SCTLR_EE_BIT) {
907 ep_attr |= EP_EE_BIG;
908 ee = 1;
909 }
910 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
911
912 ep->pc = entrypoint;
913 zeromem(&ep->args, sizeof(ep->args));
914 ep->args.arg0 = context_id;
915
916 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
917
918 /*
919 * TODO: Choose async. exception bits if HYP mode is not
920 * implemented according to the values of SCR.{AW, FW} bits
921 */
922 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
923
924 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
925
926 return PSCI_E_SUCCESS;
927 }
928
929 #endif /* __aarch64__ */
930
931 /*******************************************************************************
932 * This function validates the entrypoint with the platform layer if the
933 * appropriate pm_ops hook is exported by the platform and returns the
934 * 'entry_point_info'.
935 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)936 int psci_validate_entry_point(entry_point_info_t *ep,
937 uintptr_t entrypoint,
938 u_register_t context_id)
939 {
940 int rc;
941
942 /* Validate the entrypoint using platform psci_ops */
943 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
944 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
945 if (rc != PSCI_E_SUCCESS)
946 return PSCI_E_INVALID_ADDRESS;
947 }
948
949 /*
950 * Verify and derive the re-entry information for
951 * the non-secure world from the non-secure state from
952 * where this call originated.
953 */
954 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
955 return rc;
956 }
957
958 /*******************************************************************************
959 * Generic handler which is called when a cpu is physically powered on. It
960 * traverses the node information and finds the highest power level powered
961 * off and performs generic, architectural, platform setup and state management
962 * to power on that power level and power levels below it.
963 * e.g. For a cpu that's been powered on, it will call the platform specific
964 * code to enable the gic cpu interface and for a cluster it will enable
965 * coherency at the interconnect level in addition to gic cpu interface.
966 ******************************************************************************/
psci_warmboot_entrypoint(void)967 void psci_warmboot_entrypoint(void)
968 {
969 unsigned int end_pwrlvl;
970 unsigned int cpu_idx = plat_my_core_pos();
971 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
972 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
973
974 /* Init registers that never change for the lifetime of TF-A */
975 cm_manage_extensions_el3();
976
977 /*
978 * Verify that we have been explicitly turned ON or resumed from
979 * suspend.
980 */
981 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
982 ERROR("Unexpected affinity info state.\n");
983 panic();
984 }
985
986 /*
987 * Get the maximum power domain level to traverse to after this cpu
988 * has been physically powered up.
989 */
990 end_pwrlvl = get_power_on_target_pwrlvl();
991
992 /* Get the parent nodes */
993 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
994
995 /*
996 * This function acquires the lock corresponding to each power level so
997 * that by the time all locks are taken, the system topology is snapshot
998 * and state management can be done safely.
999 */
1000 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1001
1002 psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1003
1004 #if ENABLE_PSCI_STAT
1005 plat_psci_stat_accounting_stop(&state_info);
1006 #endif
1007
1008 /*
1009 * This CPU could be resuming from suspend or it could have just been
1010 * turned on. To distinguish between these 2 cases, we examine the
1011 * affinity state of the CPU:
1012 * - If the affinity state is ON_PENDING then it has just been
1013 * turned on.
1014 * - Else it is resuming from suspend.
1015 *
1016 * Depending on the type of warm reset identified, choose the right set
1017 * of power management handler and perform the generic, architecture
1018 * and platform specific handling.
1019 */
1020 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1021 psci_cpu_on_finish(cpu_idx, &state_info);
1022 else
1023 psci_cpu_suspend_finish(cpu_idx, &state_info);
1024
1025 /*
1026 * Generic management: Now we just need to retrieve the
1027 * information that we had stashed away during the cpu_on
1028 * call to set this cpu on its way.
1029 */
1030 cm_prepare_el3_exit_ns();
1031
1032 /*
1033 * Set the requested and target state of this CPU and all the higher
1034 * power domains which are ancestors of this CPU to run.
1035 */
1036 psci_set_pwr_domains_to_run(end_pwrlvl);
1037
1038 #if ENABLE_PSCI_STAT
1039 /*
1040 * Update PSCI stats.
1041 * Caches are off when writing stats data on the power down path.
1042 * Since caches are now enabled, it's necessary to do cache
1043 * maintenance before reading that same data.
1044 */
1045 psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1046 #endif
1047
1048 /*
1049 * This loop releases the lock corresponding to each power level
1050 * in the reverse order to which they were acquired.
1051 */
1052 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1053 }
1054
1055 /*******************************************************************************
1056 * This function initializes the set of hooks that PSCI invokes as part of power
1057 * management operation. The power management hooks are expected to be provided
1058 * by the SPD, after it finishes all its initialization
1059 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)1060 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1061 {
1062 assert(pm != NULL);
1063 psci_spd_pm = pm;
1064
1065 if (pm->svc_migrate != NULL)
1066 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1067
1068 if (pm->svc_migrate_info != NULL)
1069 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1070 | define_psci_cap(PSCI_MIG_INFO_TYPE);
1071 }
1072
1073 /*******************************************************************************
1074 * This function invokes the migrate info hook in the spd_pm_ops. It performs
1075 * the necessary return value validation. If the Secure Payload is UP and
1076 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1077 * is resident through the mpidr parameter. Else the value of the parameter on
1078 * return is undefined.
1079 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)1080 int psci_spd_migrate_info(u_register_t *mpidr)
1081 {
1082 int rc;
1083
1084 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1085 return PSCI_E_NOT_SUPPORTED;
1086
1087 rc = psci_spd_pm->svc_migrate_info(mpidr);
1088
1089 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1090 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1091
1092 return rc;
1093 }
1094
1095
1096 /*******************************************************************************
1097 * This function prints the state of all power domains present in the
1098 * system
1099 ******************************************************************************/
psci_print_power_domain_map(void)1100 void psci_print_power_domain_map(void)
1101 {
1102 #if LOG_LEVEL >= LOG_LEVEL_INFO
1103 unsigned int idx;
1104 plat_local_state_t state;
1105 plat_local_state_type_t state_type;
1106
1107 /* This array maps to the PSCI_STATE_X definitions in psci.h */
1108 static const char * const psci_state_type_str[] = {
1109 "ON",
1110 "RETENTION",
1111 "OFF",
1112 };
1113
1114 INFO("PSCI Power Domain Map:\n");
1115 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1116 idx++) {
1117 state_type = find_local_state_type(
1118 psci_non_cpu_pd_nodes[idx].local_state);
1119 INFO(" Domain Node : Level %u, parent_node %u,"
1120 " State %s (0x%x)\n",
1121 psci_non_cpu_pd_nodes[idx].level,
1122 psci_non_cpu_pd_nodes[idx].parent_node,
1123 psci_state_type_str[state_type],
1124 psci_non_cpu_pd_nodes[idx].local_state);
1125 }
1126
1127 for (idx = 0; idx < psci_plat_core_count; idx++) {
1128 state = psci_get_cpu_local_state_by_idx(idx);
1129 state_type = find_local_state_type(state);
1130 INFO(" CPU Node : MPID 0x%llx, parent_node %u,"
1131 " State %s (0x%x)\n",
1132 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1133 psci_cpu_pd_nodes[idx].parent_node,
1134 psci_state_type_str[state_type],
1135 psci_get_cpu_local_state_by_idx(idx));
1136 }
1137 #endif
1138 }
1139
1140 /******************************************************************************
1141 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1142 * have ever been powered up would have set its MPDIR value to something other
1143 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1144 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1145 * meaningful only when called on the primary CPU during early boot.
1146 *****************************************************************************/
psci_secondaries_brought_up(void)1147 int psci_secondaries_brought_up(void)
1148 {
1149 unsigned int idx, n_valid = 0U;
1150
1151 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1152 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1153 n_valid++;
1154 }
1155
1156 assert(n_valid > 0U);
1157
1158 return (n_valid > 1U) ? 1 : 0;
1159 }
1160
1161 /*******************************************************************************
1162 * Initiate power down sequence, by calling power down operations registered for
1163 * this CPU.
1164 ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)1165 void psci_pwrdown_cpu(unsigned int power_level)
1166 {
1167 #if HW_ASSISTED_COHERENCY
1168 /*
1169 * With hardware-assisted coherency, the CPU drivers only initiate the
1170 * power down sequence, without performing cache-maintenance operations
1171 * in software. Data caches enabled both before and after this call.
1172 */
1173 prepare_cpu_pwr_dwn(power_level);
1174 #else
1175 /*
1176 * Without hardware-assisted coherency, the CPU drivers disable data
1177 * caches, then perform cache-maintenance operations in software.
1178 *
1179 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1180 * sequence, but that function will return with data caches disabled.
1181 * We must ensure that the stack memory is flushed out to memory before
1182 * we start popping from it again.
1183 */
1184 psci_do_pwrdown_cache_maintenance(power_level);
1185 #endif
1186 }
1187
1188 /*******************************************************************************
1189 * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1190 * online PE. Caller can pass suitable method to stop a remote core.
1191 *
1192 * 'wait_ms' is the timeout value in milliseconds for the other cores to
1193 * transition to power down state. Passing '0' makes it non-blocking.
1194 *
1195 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1196 * given timeout.
1197 ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))1198 int psci_stop_other_cores(unsigned int wait_ms,
1199 void (*stop_func)(u_register_t mpidr))
1200 {
1201 unsigned int idx, this_cpu_idx;
1202
1203 this_cpu_idx = plat_my_core_pos();
1204
1205 /* Invoke stop_func for each core */
1206 for (idx = 0U; idx < psci_plat_core_count; idx++) {
1207 /* skip current CPU */
1208 if (idx == this_cpu_idx) {
1209 continue;
1210 }
1211
1212 /* Check if the CPU is ON */
1213 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1214 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1215 }
1216 }
1217
1218 /* Need to wait for other cores to shutdown */
1219 if (wait_ms != 0U) {
1220 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1221 mdelay(1U);
1222 }
1223
1224 if (!psci_is_last_on_cpu()) {
1225 WARN("Failed to stop all cores!\n");
1226 psci_print_power_domain_map();
1227 return PSCI_E_DENIED;
1228 }
1229 }
1230
1231 return PSCI_E_SUCCESS;
1232 }
1233
1234 /*******************************************************************************
1235 * This function verifies that all the other cores in the system have been
1236 * turned OFF and the current CPU is the last running CPU in the system.
1237 * Returns true if the current CPU is the last ON CPU or false otherwise.
1238 *
1239 * This API has following differences with psci_is_last_on_cpu
1240 * 1. PSCI states are locked
1241 ******************************************************************************/
psci_is_last_on_cpu_safe(void)1242 bool psci_is_last_on_cpu_safe(void)
1243 {
1244 unsigned int this_core = plat_my_core_pos();
1245 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1246
1247 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1248
1249 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1250
1251 if (!psci_is_last_on_cpu()) {
1252 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1253 return false;
1254 }
1255
1256 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1257
1258 return true;
1259 }
1260
1261 /*******************************************************************************
1262 * This function verifies that all cores in the system have been turned ON.
1263 * Returns true, if all CPUs are ON or false otherwise.
1264 *
1265 * This API has following differences with psci_are_all_cpus_on
1266 * 1. PSCI states are locked
1267 ******************************************************************************/
psci_are_all_cpus_on_safe(void)1268 bool psci_are_all_cpus_on_safe(void)
1269 {
1270 unsigned int this_core = plat_my_core_pos();
1271 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1272
1273 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1274
1275 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1276
1277 if (!psci_are_all_cpus_on()) {
1278 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1279 return false;
1280 }
1281
1282 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1283
1284 return true;
1285 }
1286