1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/el3_runtime/context_mgmt.h>
17 #include <lib/utils.h>
18 #include <plat/common/platform.h>
19 
20 #include "psci_private.h"
21 
22 /*
23  * SPD power management operations, expected to be supplied by the registered
24  * SPD on successful SP initialization
25  */
26 const spd_pm_ops_t *psci_spd_pm;
27 
28 /*
29  * PSCI requested local power state map. This array is used to store the local
30  * power states requested by a CPU for power levels from level 1 to
31  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
32  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
33  * CPU are the same.
34  *
35  * During state coordination, the platform is passed an array containing the
36  * local states requested for a particular non cpu power domain by each cpu
37  * within the domain.
38  *
39  * TODO: Dense packing of the requested states will cause cache thrashing
40  * when multiple power domains write to it. If we allocate the requested
41  * states at each power level in a cache-line aligned per-domain memory,
42  * the cache thrashing can be avoided.
43  */
44 static plat_local_state_t
45 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
46 
47 unsigned int psci_plat_core_count;
48 
49 /*******************************************************************************
50  * Arrays that hold the platform's power domain tree information for state
51  * management of power domains.
52  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
53  * which is an ancestor of a CPU power domain.
54  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
55  ******************************************************************************/
56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
57 #if USE_COHERENT_MEM
58 __section("tzfw_coherent_mem")
59 #endif
60 ;
61 
62 /* Lock for PSCI state coordination */
63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
64 
65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
66 
67 /*******************************************************************************
68  * Pointer to functions exported by the platform to complete power mgmt. ops
69  ******************************************************************************/
70 const plat_psci_ops_t *psci_plat_pm_ops;
71 
72 /******************************************************************************
73  * Check that the maximum power level supported by the platform makes sense
74  *****************************************************************************/
75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
76 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
77 	assert_platform_max_pwrlvl_check);
78 
79 /*
80  * The plat_local_state used by the platform is one of these types: RUN,
81  * RETENTION and OFF. The platform can define further sub-states for each type
82  * apart from RUN. This categorization is done to verify the sanity of the
83  * psci_power_state passed by the platform and to print debug information. The
84  * categorization is done on the basis of the following conditions:
85  *
86  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
87  *
88  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
89  *    STATE_TYPE_RETN.
90  *
91  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
92  *    STATE_TYPE_OFF.
93  */
94 typedef enum plat_local_state_type {
95 	STATE_TYPE_RUN = 0,
96 	STATE_TYPE_RETN,
97 	STATE_TYPE_OFF
98 } plat_local_state_type_t;
99 
100 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)101 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
102 {
103 	if (state != 0U) {
104 		if (state > PLAT_MAX_RET_STATE) {
105 			return STATE_TYPE_OFF;
106 		} else {
107 			return STATE_TYPE_RETN;
108 		}
109 	} else {
110 		return STATE_TYPE_RUN;
111 	}
112 }
113 
114 /******************************************************************************
115  * Check that the maximum retention level supported by the platform is less
116  * than the maximum off level.
117  *****************************************************************************/
118 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
119 		assert_platform_max_off_and_retn_state_check);
120 
121 /******************************************************************************
122  * This function ensures that the power state parameter in a CPU_SUSPEND request
123  * is valid. If so, it returns the requested states for each power level.
124  *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)125 int psci_validate_power_state(unsigned int power_state,
126 			      psci_power_state_t *state_info)
127 {
128 	/* Check SBZ bits in power state are zero */
129 	if (psci_check_power_state(power_state) != 0U)
130 		return PSCI_E_INVALID_PARAMS;
131 
132 	assert(psci_plat_pm_ops->validate_power_state != NULL);
133 
134 	/* Validate the power_state using platform pm_ops */
135 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
136 }
137 
138 /******************************************************************************
139  * This function retrieves the `psci_power_state_t` for system suspend from
140  * the platform.
141  *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)142 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
143 {
144 	/*
145 	 * Assert that the required pm_ops hook is implemented to ensure that
146 	 * the capability detected during psci_setup() is valid.
147 	 */
148 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
149 
150 	/*
151 	 * Query the platform for the power_state required for system suspend
152 	 */
153 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
154 }
155 
156 /*******************************************************************************
157  * This function verifies that the all the other cores in the system have been
158  * turned OFF and the current CPU is the last running CPU in the system.
159  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
160  * otherwise.
161  ******************************************************************************/
psci_is_last_on_cpu(void)162 unsigned int psci_is_last_on_cpu(void)
163 {
164 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
165 
166 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count;
167 			cpu_idx++) {
168 		if (cpu_idx == my_idx) {
169 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
170 			continue;
171 		}
172 
173 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
174 			return 0;
175 	}
176 
177 	return 1;
178 }
179 
180 /*******************************************************************************
181  * Routine to return the maximum power level to traverse to after a cpu has
182  * been physically powered up. It is expected to be called immediately after
183  * reset from assembler code.
184  ******************************************************************************/
get_power_on_target_pwrlvl(void)185 static unsigned int get_power_on_target_pwrlvl(void)
186 {
187 	unsigned int pwrlvl;
188 
189 	/*
190 	 * Assume that this cpu was suspended and retrieve its target power
191 	 * level. If it is invalid then it could only have been turned off
192 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
193 	 * cpu can be turned off to.
194 	 */
195 	pwrlvl = psci_get_suspend_pwrlvl();
196 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
197 		pwrlvl = PLAT_MAX_PWR_LVL;
198 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
199 	return pwrlvl;
200 }
201 
202 /******************************************************************************
203  * Helper function to update the requested local power state array. This array
204  * does not store the requested state for the CPU power level. Hence an
205  * assertion is added to prevent us from accessing the CPU power level.
206  *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)207 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
208 					 unsigned int cpu_idx,
209 					 plat_local_state_t req_pwr_state)
210 {
211 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
212 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
213 			(cpu_idx < psci_plat_core_count)) {
214 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
215 	}
216 }
217 
218 /******************************************************************************
219  * This function initializes the psci_req_local_pwr_states.
220  *****************************************************************************/
psci_init_req_local_pwr_states(void)221 void __init psci_init_req_local_pwr_states(void)
222 {
223 	/* Initialize the requested state of all non CPU power domains as OFF */
224 	unsigned int pwrlvl;
225 	unsigned int core;
226 
227 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
228 		for (core = 0; core < psci_plat_core_count; core++) {
229 			psci_req_local_pwr_states[pwrlvl][core] =
230 				PLAT_MAX_OFF_STATE;
231 		}
232 	}
233 }
234 
235 /******************************************************************************
236  * Helper function to return a reference to an array containing the local power
237  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
238  * array will be the number of cpu power domains of which this power domain is
239  * an ancestor. These requested states will be used to determine a suitable
240  * target state for this power domain during psci state coordination. An
241  * assertion is added to prevent us from accessing the CPU power level.
242  *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)243 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
244 							 unsigned int cpu_idx)
245 {
246 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
247 
248 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
249 			(cpu_idx < psci_plat_core_count)) {
250 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
251 	} else
252 		return NULL;
253 }
254 
255 /*
256  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
257  * memory.
258  *
259  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
260  * it's accessed by both cached and non-cached participants. To serve the common
261  * minimum, perform a cache flush before read and after write so that non-cached
262  * participants operate on latest data in main memory.
263  *
264  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
265  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
266  * In both cases, no cache operations are required.
267  */
268 
269 /*
270  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
271  * after any required cache maintenance operation.
272  */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)273 static plat_local_state_t get_non_cpu_pd_node_local_state(
274 		unsigned int parent_idx)
275 {
276 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
277 	flush_dcache_range(
278 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
279 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
280 #endif
281 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
282 }
283 
284 /*
285  * Update local state of non-CPU power domain node from a cached CPU; perform
286  * any required cache maintenance operation afterwards.
287  */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)288 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
289 		plat_local_state_t state)
290 {
291 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
292 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
293 	flush_dcache_range(
294 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
295 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
296 #endif
297 }
298 
299 /******************************************************************************
300  * Helper function to return the current local power state of each power domain
301  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
302  * function will be called after a cpu is powered on to find the local state
303  * each power domain has emerged from.
304  *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)305 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
306 				      psci_power_state_t *target_state)
307 {
308 	unsigned int parent_idx, lvl;
309 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
310 
311 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
312 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
313 
314 	/* Copy the local power state from node to state_info */
315 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
316 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
317 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
318 	}
319 
320 	/* Set the the higher levels to RUN */
321 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
322 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
323 }
324 
325 /******************************************************************************
326  * Helper function to set the target local power state that each power domain
327  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
328  * enter. This function will be called after coordination of requested power
329  * states has been done for each power level.
330  *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)331 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
332 					const psci_power_state_t *target_state)
333 {
334 	unsigned int parent_idx, lvl;
335 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
336 
337 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
338 
339 	/*
340 	 * Need to flush as local_state might be accessed with Data Cache
341 	 * disabled during power on
342 	 */
343 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
344 
345 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
346 
347 	/* Copy the local_state from state_info */
348 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
349 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
350 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
351 	}
352 }
353 
354 
355 /*******************************************************************************
356  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
357  ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)358 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
359 				      unsigned int end_lvl,
360 				      unsigned int *node_index)
361 {
362 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
363 	unsigned int i;
364 	unsigned int *node = node_index;
365 
366 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
367 		*node = parent_node;
368 		node++;
369 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
370 	}
371 }
372 
373 /******************************************************************************
374  * This function is invoked post CPU power up and initialization. It sets the
375  * affinity info state, target power state and requested power state for the
376  * current CPU and all its ancestor power domains to RUN.
377  *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)378 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
379 {
380 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
381 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
382 
383 	/* Reset the local_state to RUN for the non cpu power domains. */
384 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
385 		set_non_cpu_pd_node_local_state(parent_idx,
386 				PSCI_LOCAL_STATE_RUN);
387 		psci_set_req_local_pwr_state(lvl,
388 					     cpu_idx,
389 					     PSCI_LOCAL_STATE_RUN);
390 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
391 	}
392 
393 	/* Set the affinity info state to ON */
394 	psci_set_aff_info_state(AFF_STATE_ON);
395 
396 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
397 	psci_flush_cpu_data(psci_svc_cpu_data);
398 }
399 
400 /******************************************************************************
401  * This function is passed the local power states requested for each power
402  * domain (state_info) between the current CPU domain and its ancestors until
403  * the target power level (end_pwrlvl). It updates the array of requested power
404  * states with this information.
405  *
406  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
407  * retrieves the states requested by all the cpus of which the power domain at
408  * that level is an ancestor. It passes this information to the platform to
409  * coordinate and return the target power state. If the target state for a level
410  * is RUN then subsequent levels are not considered. At the CPU level, state
411  * coordination is not required. Hence, the requested and the target states are
412  * the same.
413  *
414  * The 'state_info' is updated with the target state for each level between the
415  * CPU and the 'end_pwrlvl' and returned to the caller.
416  *
417  * This function will only be invoked with data cache enabled and while
418  * powering down a core.
419  *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)420 void psci_do_state_coordination(unsigned int end_pwrlvl,
421 				psci_power_state_t *state_info)
422 {
423 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
424 	unsigned int start_idx;
425 	unsigned int ncpus;
426 	plat_local_state_t target_state, *req_states;
427 
428 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
429 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
430 
431 	/* For level 0, the requested state will be equivalent
432 	   to target state */
433 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
434 
435 		/* First update the requested power state */
436 		psci_set_req_local_pwr_state(lvl, cpu_idx,
437 					     state_info->pwr_domain_state[lvl]);
438 
439 		/* Get the requested power states for this power level */
440 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
441 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
442 
443 		/*
444 		 * Let the platform coordinate amongst the requested states at
445 		 * this power level and return the target local power state.
446 		 */
447 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
448 		target_state = plat_get_target_pwr_state(lvl,
449 							 req_states,
450 							 ncpus);
451 
452 		state_info->pwr_domain_state[lvl] = target_state;
453 
454 		/* Break early if the negotiated target power state is RUN */
455 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
456 			break;
457 
458 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
459 	}
460 
461 	/*
462 	 * This is for cases when we break out of the above loop early because
463 	 * the target power state is RUN at a power level < end_pwlvl.
464 	 * We update the requested power state from state_info and then
465 	 * set the target state as RUN.
466 	 */
467 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
468 		psci_set_req_local_pwr_state(lvl, cpu_idx,
469 					     state_info->pwr_domain_state[lvl]);
470 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
471 
472 	}
473 
474 	/* Update the target state in the power domain nodes */
475 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
476 }
477 
478 /******************************************************************************
479  * This function validates a suspend request by making sure that if a standby
480  * state is requested then no power level is turned off and the highest power
481  * level is placed in a standby/retention state.
482  *
483  * It also ensures that the state level X will enter is not shallower than the
484  * state level X + 1 will enter.
485  *
486  * This validation will be enabled only for DEBUG builds as the platform is
487  * expected to perform these validations as well.
488  *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)489 int psci_validate_suspend_req(const psci_power_state_t *state_info,
490 			      unsigned int is_power_down_state)
491 {
492 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
493 	plat_local_state_t state;
494 	plat_local_state_type_t req_state_type, deepest_state_type;
495 	int i;
496 
497 	/* Find the target suspend power level */
498 	target_lvl = psci_find_target_suspend_lvl(state_info);
499 	if (target_lvl == PSCI_INVALID_PWR_LVL)
500 		return PSCI_E_INVALID_PARAMS;
501 
502 	/* All power domain levels are in a RUN state to begin with */
503 	deepest_state_type = STATE_TYPE_RUN;
504 
505 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
506 		state = state_info->pwr_domain_state[i];
507 		req_state_type = find_local_state_type(state);
508 
509 		/*
510 		 * While traversing from the highest power level to the lowest,
511 		 * the state requested for lower levels has to be the same or
512 		 * deeper i.e. equal to or greater than the state at the higher
513 		 * levels. If this condition is true, then the requested state
514 		 * becomes the deepest state encountered so far.
515 		 */
516 		if (req_state_type < deepest_state_type)
517 			return PSCI_E_INVALID_PARAMS;
518 		deepest_state_type = req_state_type;
519 	}
520 
521 	/* Find the highest off power level */
522 	max_off_lvl = psci_find_max_off_lvl(state_info);
523 
524 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
525 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
526 	if (target_lvl != max_off_lvl)
527 		max_retn_lvl = target_lvl;
528 
529 	/*
530 	 * If this is not a request for a power down state then max off level
531 	 * has to be invalid and max retention level has to be a valid power
532 	 * level.
533 	 */
534 	if ((is_power_down_state == 0U) &&
535 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
536 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
537 		return PSCI_E_INVALID_PARAMS;
538 
539 	return PSCI_E_SUCCESS;
540 }
541 
542 /******************************************************************************
543  * This function finds the highest power level which will be powered down
544  * amongst all the power levels specified in the 'state_info' structure
545  *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)546 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
547 {
548 	int i;
549 
550 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
551 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
552 			return (unsigned int) i;
553 	}
554 
555 	return PSCI_INVALID_PWR_LVL;
556 }
557 
558 /******************************************************************************
559  * This functions finds the level of the highest power domain which will be
560  * placed in a low power state during a suspend operation.
561  *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)562 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
563 {
564 	int i;
565 
566 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
567 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
568 			return (unsigned int) i;
569 	}
570 
571 	return PSCI_INVALID_PWR_LVL;
572 }
573 
574 /*******************************************************************************
575  * This function is passed the highest level in the topology tree that the
576  * operation should be applied to and a list of node indexes. It picks up locks
577  * from the node index list in order of increasing power domain level in the
578  * range specified.
579  ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)580 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
581 				   const unsigned int *parent_nodes)
582 {
583 	unsigned int parent_idx;
584 	unsigned int level;
585 
586 	/* No locking required for level 0. Hence start locking from level 1 */
587 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
588 		parent_idx = parent_nodes[level - 1U];
589 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
590 	}
591 }
592 
593 /*******************************************************************************
594  * This function is passed the highest level in the topology tree that the
595  * operation should be applied to and a list of node indexes. It releases the
596  * locks in order of decreasing power domain level in the range specified.
597  ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)598 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
599 				   const unsigned int *parent_nodes)
600 {
601 	unsigned int parent_idx;
602 	unsigned int level;
603 
604 	/* Unlock top down. No unlocking required for level 0. */
605 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
606 		parent_idx = parent_nodes[level - 1U];
607 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
608 	}
609 }
610 
611 /*******************************************************************************
612  * Simple routine to determine whether a mpidr is valid or not.
613  ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)614 int psci_validate_mpidr(u_register_t mpidr)
615 {
616 	if (plat_core_pos_by_mpidr(mpidr) < 0)
617 		return PSCI_E_INVALID_PARAMS;
618 
619 	return PSCI_E_SUCCESS;
620 }
621 
622 /*******************************************************************************
623  * This function determines the full entrypoint information for the requested
624  * PSCI entrypoint on power on/resume and returns it.
625  ******************************************************************************/
626 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)627 static int psci_get_ns_ep_info(entry_point_info_t *ep,
628 			       uintptr_t entrypoint,
629 			       u_register_t context_id)
630 {
631 	u_register_t ep_attr, sctlr;
632 	unsigned int daif, ee, mode;
633 	u_register_t ns_scr_el3 = read_scr_el3();
634 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
635 
636 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
637 		read_sctlr_el2() : ns_sctlr_el1;
638 	ee = 0;
639 
640 	ep_attr = NON_SECURE | EP_ST_DISABLE;
641 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
642 		ep_attr |= EP_EE_BIG;
643 		ee = 1;
644 	}
645 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
646 
647 	ep->pc = entrypoint;
648 	zeromem(&ep->args, sizeof(ep->args));
649 	ep->args.arg0 = context_id;
650 
651 	/*
652 	 * Figure out whether the cpu enters the non-secure address space
653 	 * in aarch32 or aarch64
654 	 */
655 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
656 
657 		/*
658 		 * Check whether a Thumb entry point has been provided for an
659 		 * aarch64 EL
660 		 */
661 		if ((entrypoint & 0x1UL) != 0UL)
662 			return PSCI_E_INVALID_ADDRESS;
663 
664 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
665 
666 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
667 				   DISABLE_ALL_EXCEPTIONS);
668 	} else {
669 
670 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
671 			MODE32_hyp : MODE32_svc;
672 
673 		/*
674 		 * TODO: Choose async. exception bits if HYP mode is not
675 		 * implemented according to the values of SCR.{AW, FW} bits
676 		 */
677 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
678 
679 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
680 				       daif);
681 	}
682 
683 	return PSCI_E_SUCCESS;
684 }
685 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)686 static int psci_get_ns_ep_info(entry_point_info_t *ep,
687 			       uintptr_t entrypoint,
688 			       u_register_t context_id)
689 {
690 	u_register_t ep_attr;
691 	unsigned int aif, ee, mode;
692 	u_register_t scr = read_scr();
693 	u_register_t ns_sctlr, sctlr;
694 
695 	/* Switch to non secure state */
696 	write_scr(scr | SCR_NS_BIT);
697 	isb();
698 	ns_sctlr = read_sctlr();
699 
700 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
701 
702 	/* Return to original state */
703 	write_scr(scr);
704 	isb();
705 	ee = 0;
706 
707 	ep_attr = NON_SECURE | EP_ST_DISABLE;
708 	if (sctlr & SCTLR_EE_BIT) {
709 		ep_attr |= EP_EE_BIG;
710 		ee = 1;
711 	}
712 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
713 
714 	ep->pc = entrypoint;
715 	zeromem(&ep->args, sizeof(ep->args));
716 	ep->args.arg0 = context_id;
717 
718 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
719 
720 	/*
721 	 * TODO: Choose async. exception bits if HYP mode is not
722 	 * implemented according to the values of SCR.{AW, FW} bits
723 	 */
724 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
725 
726 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
727 
728 	return PSCI_E_SUCCESS;
729 }
730 
731 #endif /* __aarch64__ */
732 
733 /*******************************************************************************
734  * This function validates the entrypoint with the platform layer if the
735  * appropriate pm_ops hook is exported by the platform and returns the
736  * 'entry_point_info'.
737  ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)738 int psci_validate_entry_point(entry_point_info_t *ep,
739 			      uintptr_t entrypoint,
740 			      u_register_t context_id)
741 {
742 	int rc;
743 
744 	/* Validate the entrypoint using platform psci_ops */
745 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
746 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
747 		if (rc != PSCI_E_SUCCESS)
748 			return PSCI_E_INVALID_ADDRESS;
749 	}
750 
751 	/*
752 	 * Verify and derive the re-entry information for
753 	 * the non-secure world from the non-secure state from
754 	 * where this call originated.
755 	 */
756 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
757 	return rc;
758 }
759 
760 /*******************************************************************************
761  * Generic handler which is called when a cpu is physically powered on. It
762  * traverses the node information and finds the highest power level powered
763  * off and performs generic, architectural, platform setup and state management
764  * to power on that power level and power levels below it.
765  * e.g. For a cpu that's been powered on, it will call the platform specific
766  * code to enable the gic cpu interface and for a cluster it will enable
767  * coherency at the interconnect level in addition to gic cpu interface.
768  ******************************************************************************/
psci_warmboot_entrypoint(void)769 void psci_warmboot_entrypoint(void)
770 {
771 	unsigned int end_pwrlvl;
772 	unsigned int cpu_idx = plat_my_core_pos();
773 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
774 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
775 
776 	/*
777 	 * Verify that we have been explicitly turned ON or resumed from
778 	 * suspend.
779 	 */
780 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
781 		ERROR("Unexpected affinity info state.\n");
782 		panic();
783 	}
784 
785 	/*
786 	 * Get the maximum power domain level to traverse to after this cpu
787 	 * has been physically powered up.
788 	 */
789 	end_pwrlvl = get_power_on_target_pwrlvl();
790 
791 	/* Get the parent nodes */
792 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
793 
794 	/*
795 	 * This function acquires the lock corresponding to each power level so
796 	 * that by the time all locks are taken, the system topology is snapshot
797 	 * and state management can be done safely.
798 	 */
799 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
800 
801 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
802 
803 #if ENABLE_PSCI_STAT
804 	plat_psci_stat_accounting_stop(&state_info);
805 #endif
806 
807 	/*
808 	 * This CPU could be resuming from suspend or it could have just been
809 	 * turned on. To distinguish between these 2 cases, we examine the
810 	 * affinity state of the CPU:
811 	 *  - If the affinity state is ON_PENDING then it has just been
812 	 *    turned on.
813 	 *  - Else it is resuming from suspend.
814 	 *
815 	 * Depending on the type of warm reset identified, choose the right set
816 	 * of power management handler and perform the generic, architecture
817 	 * and platform specific handling.
818 	 */
819 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
820 		psci_cpu_on_finish(cpu_idx, &state_info);
821 	else
822 		psci_cpu_suspend_finish(cpu_idx, &state_info);
823 
824 	/*
825 	 * Set the requested and target state of this CPU and all the higher
826 	 * power domains which are ancestors of this CPU to run.
827 	 */
828 	psci_set_pwr_domains_to_run(end_pwrlvl);
829 
830 #if ENABLE_PSCI_STAT
831 	/*
832 	 * Update PSCI stats.
833 	 * Caches are off when writing stats data on the power down path.
834 	 * Since caches are now enabled, it's necessary to do cache
835 	 * maintenance before reading that same data.
836 	 */
837 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
838 #endif
839 
840 	/*
841 	 * This loop releases the lock corresponding to each power level
842 	 * in the reverse order to which they were acquired.
843 	 */
844 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
845 }
846 
847 /*******************************************************************************
848  * This function initializes the set of hooks that PSCI invokes as part of power
849  * management operation. The power management hooks are expected to be provided
850  * by the SPD, after it finishes all its initialization
851  ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)852 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
853 {
854 	assert(pm != NULL);
855 	psci_spd_pm = pm;
856 
857 	if (pm->svc_migrate != NULL)
858 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
859 
860 	if (pm->svc_migrate_info != NULL)
861 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
862 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
863 }
864 
865 /*******************************************************************************
866  * This function invokes the migrate info hook in the spd_pm_ops. It performs
867  * the necessary return value validation. If the Secure Payload is UP and
868  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
869  * is resident through the mpidr parameter. Else the value of the parameter on
870  * return is undefined.
871  ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)872 int psci_spd_migrate_info(u_register_t *mpidr)
873 {
874 	int rc;
875 
876 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
877 		return PSCI_E_NOT_SUPPORTED;
878 
879 	rc = psci_spd_pm->svc_migrate_info(mpidr);
880 
881 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
882 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
883 
884 	return rc;
885 }
886 
887 
888 /*******************************************************************************
889  * This function prints the state of all power domains present in the
890  * system
891  ******************************************************************************/
psci_print_power_domain_map(void)892 void psci_print_power_domain_map(void)
893 {
894 #if LOG_LEVEL >= LOG_LEVEL_INFO
895 	unsigned int idx;
896 	plat_local_state_t state;
897 	plat_local_state_type_t state_type;
898 
899 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
900 	static const char * const psci_state_type_str[] = {
901 		"ON",
902 		"RETENTION",
903 		"OFF",
904 	};
905 
906 	INFO("PSCI Power Domain Map:\n");
907 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
908 							idx++) {
909 		state_type = find_local_state_type(
910 				psci_non_cpu_pd_nodes[idx].local_state);
911 		INFO("  Domain Node : Level %u, parent_node %u,"
912 				" State %s (0x%x)\n",
913 				psci_non_cpu_pd_nodes[idx].level,
914 				psci_non_cpu_pd_nodes[idx].parent_node,
915 				psci_state_type_str[state_type],
916 				psci_non_cpu_pd_nodes[idx].local_state);
917 	}
918 
919 	for (idx = 0; idx < psci_plat_core_count; idx++) {
920 		state = psci_get_cpu_local_state_by_idx(idx);
921 		state_type = find_local_state_type(state);
922 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
923 				" State %s (0x%x)\n",
924 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
925 				psci_cpu_pd_nodes[idx].parent_node,
926 				psci_state_type_str[state_type],
927 				psci_get_cpu_local_state_by_idx(idx));
928 	}
929 #endif
930 }
931 
932 /******************************************************************************
933  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
934  * have ever been powered up would have set its MPDIR value to something other
935  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
936  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
937  * meaningful only when called on the primary CPU during early boot.
938  *****************************************************************************/
psci_secondaries_brought_up(void)939 int psci_secondaries_brought_up(void)
940 {
941 	unsigned int idx, n_valid = 0U;
942 
943 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
944 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
945 			n_valid++;
946 	}
947 
948 	assert(n_valid > 0U);
949 
950 	return (n_valid > 1U) ? 1 : 0;
951 }
952 
953 /*******************************************************************************
954  * Initiate power down sequence, by calling power down operations registered for
955  * this CPU.
956  ******************************************************************************/
psci_do_pwrdown_sequence(unsigned int power_level)957 void psci_do_pwrdown_sequence(unsigned int power_level)
958 {
959 #if HW_ASSISTED_COHERENCY
960 	/*
961 	 * With hardware-assisted coherency, the CPU drivers only initiate the
962 	 * power down sequence, without performing cache-maintenance operations
963 	 * in software. Data caches enabled both before and after this call.
964 	 */
965 	prepare_cpu_pwr_dwn(power_level);
966 #else
967 	/*
968 	 * Without hardware-assisted coherency, the CPU drivers disable data
969 	 * caches, then perform cache-maintenance operations in software.
970 	 *
971 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
972 	 * sequence, but that function will return with data caches disabled.
973 	 * We must ensure that the stack memory is flushed out to memory before
974 	 * we start popping from it again.
975 	 */
976 	psci_do_pwrdown_cache_maintenance(power_level);
977 #endif
978 }
979 
980 /*******************************************************************************
981  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
982  * online PE. Caller can pass suitable method to stop a remote core.
983  *
984  * 'wait_ms' is the timeout value in milliseconds for the other cores to
985  * transition to power down state. Passing '0' makes it non-blocking.
986  *
987  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
988  * given timeout.
989  ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))990 int psci_stop_other_cores(unsigned int wait_ms,
991 				   void (*stop_func)(u_register_t mpidr))
992 {
993 	unsigned int idx, this_cpu_idx;
994 
995 	this_cpu_idx = plat_my_core_pos();
996 
997 	/* Invoke stop_func for each core */
998 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
999 		/* skip current CPU */
1000 		if (idx == this_cpu_idx) {
1001 			continue;
1002 		}
1003 
1004 		/* Check if the CPU is ON */
1005 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1006 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1007 		}
1008 	}
1009 
1010 	/* Need to wait for other cores to shutdown */
1011 	if (wait_ms != 0U) {
1012 		while ((wait_ms-- != 0U) && (psci_is_last_on_cpu() != 0U)) {
1013 			mdelay(1U);
1014 		}
1015 
1016 		if (psci_is_last_on_cpu() != 0U) {
1017 			WARN("Failed to stop all cores!\n");
1018 			psci_print_power_domain_map();
1019 			return PSCI_E_DENIED;
1020 		}
1021 	}
1022 
1023 	return PSCI_E_SUCCESS;
1024 }
1025