1 /**
2  * \file psa/crypto_se_driver.h
3  * \brief PSA external cryptoprocessor driver module
4  *
5  * This header declares types and function signatures for cryptography
6  * drivers that access key material via opaque references.
7  * This is meant for cryptoprocessors that have a separate key storage from the
8  * space in which the PSA Crypto implementation runs, typically secure
9  * elements (SEs).
10  *
11  * This file is part of the PSA Crypto Driver HAL (hardware abstraction layer),
12  * containing functions for driver developers to implement to enable hardware
13  * to be called in a standardized way by a PSA Cryptography API
14  * implementation. The functions comprising the driver HAL, which driver
15  * authors implement, are not intended to be called by application developers.
16  */
17 
18 /*
19  *  Copyright The Mbed TLS Contributors
20  *  SPDX-License-Identifier: Apache-2.0
21  *
22  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
23  *  not use this file except in compliance with the License.
24  *  You may obtain a copy of the License at
25  *
26  *  http://www.apache.org/licenses/LICENSE-2.0
27  *
28  *  Unless required by applicable law or agreed to in writing, software
29  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
30  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
31  *  See the License for the specific language governing permissions and
32  *  limitations under the License.
33  */
34 #ifndef PSA_CRYPTO_SE_DRIVER_H
35 #define PSA_CRYPTO_SE_DRIVER_H
36 
37 #include "crypto_driver_common.h"
38 
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42 
43 /** \defgroup se_init Secure element driver initialization
44  */
45 /**@{*/
46 
47 /** \brief Driver context structure
48  *
49  * Driver functions receive a pointer to this structure.
50  * Each registered driver has one instance of this structure.
51  *
52  * Implementations must include the fields specified here and
53  * may include other fields.
54  */
55 typedef struct {
56     /** A read-only pointer to the driver's persistent data.
57      *
58      * Drivers typically use this persistent data to keep track of
59      * which slot numbers are available. This is only a guideline:
60      * drivers may use the persistent data for any purpose, keeping
61      * in mind the restrictions on when the persistent data is saved
62      * to storage: the persistent data is only saved after calling
63      * certain functions that receive a writable pointer to the
64      * persistent data.
65      *
66      * The core allocates a memory buffer for the persistent data.
67      * The pointer is guaranteed to be suitably aligned for any data type,
68      * like a pointer returned by `malloc` (but the core can use any
69      * method to allocate the buffer, not necessarily `malloc`).
70      *
71      * The size of this buffer is in the \c persistent_data_size field of
72      * this structure.
73      *
74      * Before the driver is initialized for the first time, the content of
75      * the persistent data is all-bits-zero. After a driver upgrade, if the
76      * size of the persistent data has increased, the original data is padded
77      * on the right with zeros; if the size has decreased, the original data
78      * is truncated to the new size.
79      *
80      * This pointer is to read-only data. Only a few driver functions are
81      * allowed to modify the persistent data. These functions receive a
82      * writable pointer. These functions are:
83      * - psa_drv_se_t::p_init
84      * - psa_drv_se_key_management_t::p_allocate
85      * - psa_drv_se_key_management_t::p_destroy
86      *
87      * The PSA Cryptography core saves the persistent data from one
88      * session to the next. It does this before returning from API functions
89      * that call a driver method that is allowed to modify the persistent
90      * data, specifically:
91      * - psa_crypto_init() causes a call to psa_drv_se_t::p_init, and may call
92      *   psa_drv_se_key_management_t::p_destroy to complete an action
93      *   that was interrupted by a power failure.
94      * - Key creation functions cause a call to
95      *   psa_drv_se_key_management_t::p_allocate, and may cause a call to
96      *   psa_drv_se_key_management_t::p_destroy in case an error occurs.
97      * - psa_destroy_key() causes a call to
98      *   psa_drv_se_key_management_t::p_destroy.
99      */
100     const void *const persistent_data;
101 
102     /** The size of \c persistent_data in bytes.
103      *
104      * This is always equal to the value of the `persistent_data_size` field
105      * of the ::psa_drv_se_t structure when the driver is registered.
106      */
107     const size_t persistent_data_size;
108 
109     /** Driver transient data.
110      *
111      * The core initializes this value to 0 and does not read or modify it
112      * afterwards. The driver may store whatever it wants in this field.
113      */
114     uintptr_t transient_data;
115 } psa_drv_se_context_t;
116 
117 /** \brief A driver initialization function.
118  *
119  * \param[in,out] drv_context       The driver context structure.
120  * \param[in,out] persistent_data   A pointer to the persistent data
121  *                                  that allows writing.
122  * \param location                  The location value for which this driver
123  *                                  is registered. The driver will be invoked
124  *                                  for all keys whose lifetime is in this
125  *                                  location.
126  *
127  * \retval #PSA_SUCCESS
128  *         The driver is operational.
129  *         The core will update the persistent data in storage.
130  * \return
131  *         Any other return value prevents the driver from being used in
132  *         this session.
133  *         The core will NOT update the persistent data in storage.
134  */
135 typedef psa_status_t (*psa_drv_se_init_t)(psa_drv_se_context_t *drv_context,
136                                           void *persistent_data,
137                                           psa_key_location_t location);
138 
139 #if defined(__DOXYGEN_ONLY__) || !defined(MBEDTLS_PSA_CRYPTO_SE_C)
140 /* Mbed Crypto with secure element support enabled defines this type in
141  * crypto_types.h because it is also visible to applications through an
142  * implementation-specific extension.
143  * For the PSA Cryptography specification, this type is only visible
144  * via crypto_se_driver.h. */
145 /** An internal designation of a key slot between the core part of the
146  * PSA Crypto implementation and the driver. The meaning of this value
147  * is driver-dependent. */
148 typedef uint64_t psa_key_slot_number_t;
149 #endif /* __DOXYGEN_ONLY__ || !MBEDTLS_PSA_CRYPTO_SE_C */
150 
151 /**@}*/
152 
153 /** \defgroup se_mac Secure Element Message Authentication Codes
154  * Generation and authentication of Message Authentication Codes (MACs) using
155  * a secure element can be done either as a single function call (via the
156  * `psa_drv_se_mac_generate_t` or `psa_drv_se_mac_verify_t` functions), or in
157  * parts using the following sequence:
158  * - `psa_drv_se_mac_setup_t`
159  * - `psa_drv_se_mac_update_t`
160  * - `psa_drv_se_mac_update_t`
161  * - ...
162  * - `psa_drv_se_mac_finish_t` or `psa_drv_se_mac_finish_verify_t`
163  *
164  * If a previously started secure element MAC operation needs to be terminated,
165  * it should be done so by the `psa_drv_se_mac_abort_t`. Failure to do so may
166  * result in allocated resources not being freed or in other undefined
167  * behavior.
168  */
169 /**@{*/
170 /** \brief A function that starts a secure element  MAC operation for a PSA
171  * Crypto Driver implementation
172  *
173  * \param[in,out] drv_context   The driver context structure.
174  * \param[in,out] op_context    A structure that will contain the
175  *                              hardware-specific MAC context
176  * \param[in] key_slot          The slot of the key to be used for the
177  *                              operation
178  * \param[in] algorithm         The algorithm to be used to underly the MAC
179  *                              operation
180  *
181  * \retval  #PSA_SUCCESS
182  *          Success.
183  */
184 typedef psa_status_t (*psa_drv_se_mac_setup_t)(psa_drv_se_context_t *drv_context,
185                                                void *op_context,
186                                                psa_key_slot_number_t key_slot,
187                                                psa_algorithm_t algorithm);
188 
189 /** \brief A function that continues a previously started secure element MAC
190  * operation
191  *
192  * \param[in,out] op_context    A hardware-specific structure for the
193  *                              previously-established MAC operation to be
194  *                              updated
195  * \param[in] p_input           A buffer containing the message to be appended
196  *                              to the MAC operation
197  * \param[in] input_length      The size in bytes of the input message buffer
198  */
199 typedef psa_status_t (*psa_drv_se_mac_update_t)(void *op_context,
200                                                 const uint8_t *p_input,
201                                                 size_t input_length);
202 
203 /** \brief a function that completes a previously started secure element MAC
204  * operation by returning the resulting MAC.
205  *
206  * \param[in,out] op_context    A hardware-specific structure for the
207  *                              previously started MAC operation to be
208  *                              finished
209  * \param[out] p_mac            A buffer where the generated MAC will be
210  *                              placed
211  * \param[in] mac_size          The size in bytes of the buffer that has been
212  *                              allocated for the `output` buffer
213  * \param[out] p_mac_length     After completion, will contain the number of
214  *                              bytes placed in the `p_mac` buffer
215  *
216  * \retval  #PSA_SUCCESS
217  *          Success.
218  */
219 typedef psa_status_t (*psa_drv_se_mac_finish_t)(void *op_context,
220                                                 uint8_t *p_mac,
221                                                 size_t mac_size,
222                                                 size_t *p_mac_length);
223 
224 /** \brief A function that completes a previously started secure element MAC
225  * operation by comparing the resulting MAC against a provided value
226  *
227  * \param[in,out] op_context    A hardware-specific structure for the previously
228  *                              started MAC operation to be fiinished
229  * \param[in] p_mac             The MAC value against which the resulting MAC
230  *                              will be compared against
231  * \param[in] mac_length        The size in bytes of the value stored in `p_mac`
232  *
233  * \retval #PSA_SUCCESS
234  *         The operation completed successfully and the MACs matched each
235  *         other
236  * \retval #PSA_ERROR_INVALID_SIGNATURE
237  *         The operation completed successfully, but the calculated MAC did
238  *         not match the provided MAC
239  */
240 typedef psa_status_t (*psa_drv_se_mac_finish_verify_t)(void *op_context,
241                                                        const uint8_t *p_mac,
242                                                        size_t mac_length);
243 
244 /** \brief A function that aborts a previous started secure element MAC
245  * operation
246  *
247  * \param[in,out] op_context    A hardware-specific structure for the previously
248  *                              started MAC operation to be aborted
249  */
250 typedef psa_status_t (*psa_drv_se_mac_abort_t)(void *op_context);
251 
252 /** \brief A function that performs a secure element MAC operation in one
253  * command and returns the calculated MAC
254  *
255  * \param[in,out] drv_context   The driver context structure.
256  * \param[in] p_input           A buffer containing the message to be MACed
257  * \param[in] input_length      The size in bytes of `p_input`
258  * \param[in] key_slot          The slot of the key to be used
259  * \param[in] alg               The algorithm to be used to underlie the MAC
260  *                              operation
261  * \param[out] p_mac            A buffer where the generated MAC will be
262  *                              placed
263  * \param[in] mac_size          The size in bytes of the `p_mac` buffer
264  * \param[out] p_mac_length     After completion, will contain the number of
265  *                              bytes placed in the `output` buffer
266  *
267  * \retval #PSA_SUCCESS
268  *         Success.
269  */
270 typedef psa_status_t (*psa_drv_se_mac_generate_t)(psa_drv_se_context_t *drv_context,
271                                                   const uint8_t *p_input,
272                                                   size_t input_length,
273                                                   psa_key_slot_number_t key_slot,
274                                                   psa_algorithm_t alg,
275                                                   uint8_t *p_mac,
276                                                   size_t mac_size,
277                                                   size_t *p_mac_length);
278 
279 /** \brief A function that performs a secure element MAC operation in one
280  * command and compares the resulting MAC against a provided value
281  *
282  * \param[in,out] drv_context       The driver context structure.
283  * \param[in] p_input       A buffer containing the message to be MACed
284  * \param[in] input_length  The size in bytes of `input`
285  * \param[in] key_slot      The slot of the key to be used
286  * \param[in] alg           The algorithm to be used to underlie the MAC
287  *                          operation
288  * \param[in] p_mac         The MAC value against which the resulting MAC will
289  *                          be compared against
290  * \param[in] mac_length   The size in bytes of `mac`
291  *
292  * \retval #PSA_SUCCESS
293  *         The operation completed successfully and the MACs matched each
294  *         other
295  * \retval #PSA_ERROR_INVALID_SIGNATURE
296  *         The operation completed successfully, but the calculated MAC did
297  *         not match the provided MAC
298  */
299 typedef psa_status_t (*psa_drv_se_mac_verify_t)(psa_drv_se_context_t *drv_context,
300                                                 const uint8_t *p_input,
301                                                 size_t input_length,
302                                                 psa_key_slot_number_t key_slot,
303                                                 psa_algorithm_t alg,
304                                                 const uint8_t *p_mac,
305                                                 size_t mac_length);
306 
307 /** \brief A struct containing all of the function pointers needed to
308  * perform secure element MAC operations
309  *
310  * PSA Crypto API implementations should populate the table as appropriate
311  * upon startup.
312  *
313  * If one of the functions is not implemented (such as
314  * `psa_drv_se_mac_generate_t`), it should be set to NULL.
315  *
316  * Driver implementers should ensure that they implement all of the functions
317  * that make sense for their hardware, and that they provide a full solution
318  * (for example, if they support `p_setup`, they should also support
319  * `p_update` and at least one of `p_finish` or `p_finish_verify`).
320  *
321  */
322 typedef struct {
323     /**The size in bytes of the hardware-specific secure element MAC context
324      * structure
325     */
326     size_t                    context_size;
327     /** Function that performs a MAC setup operation
328      */
329     psa_drv_se_mac_setup_t          p_setup;
330     /** Function that performs a MAC update operation
331      */
332     psa_drv_se_mac_update_t         p_update;
333     /** Function that completes a MAC operation
334      */
335     psa_drv_se_mac_finish_t         p_finish;
336     /** Function that completes a MAC operation with a verify check
337      */
338     psa_drv_se_mac_finish_verify_t  p_finish_verify;
339     /** Function that aborts a previoustly started MAC operation
340      */
341     psa_drv_se_mac_abort_t          p_abort;
342     /** Function that performs a MAC operation in one call
343      */
344     psa_drv_se_mac_generate_t       p_mac;
345     /** Function that performs a MAC and verify operation in one call
346      */
347     psa_drv_se_mac_verify_t         p_mac_verify;
348 } psa_drv_se_mac_t;
349 /**@}*/
350 
351 /** \defgroup se_cipher Secure Element Symmetric Ciphers
352  *
353  * Encryption and Decryption using secure element keys in block modes other
354  * than ECB must be done in multiple parts, using the following flow:
355  * - `psa_drv_se_cipher_setup_t`
356  * - `psa_drv_se_cipher_set_iv_t` (optional depending upon block mode)
357  * - `psa_drv_se_cipher_update_t`
358  * - `psa_drv_se_cipher_update_t`
359  * - ...
360  * - `psa_drv_se_cipher_finish_t`
361  *
362  * If a previously started secure element Cipher operation needs to be
363  * terminated, it should be done so by the `psa_drv_se_cipher_abort_t`. Failure
364  * to do so may result in allocated resources not being freed or in other
365  * undefined behavior.
366  *
367  * In situations where a PSA Cryptographic API implementation is using a block
368  * mode not-supported by the underlying hardware or driver, it can construct
369  * the block mode itself, while calling the `psa_drv_se_cipher_ecb_t` function
370  * for the cipher operations.
371  */
372 /**@{*/
373 
374 /** \brief A function that provides the cipher setup function for a
375  * secure element driver
376  *
377  * \param[in,out] drv_context   The driver context structure.
378  * \param[in,out] op_context    A structure that will contain the
379  *                              hardware-specific cipher context.
380  * \param[in] key_slot          The slot of the key to be used for the
381  *                              operation
382  * \param[in] algorithm         The algorithm to be used in the cipher
383  *                              operation
384  * \param[in] direction         Indicates whether the operation is an encrypt
385  *                              or decrypt
386  *
387  * \retval #PSA_SUCCESS
388  * \retval #PSA_ERROR_NOT_SUPPORTED
389  */
390 typedef psa_status_t (*psa_drv_se_cipher_setup_t)(psa_drv_se_context_t *drv_context,
391                                                   void *op_context,
392                                                   psa_key_slot_number_t key_slot,
393                                                   psa_algorithm_t algorithm,
394                                                   psa_encrypt_or_decrypt_t direction);
395 
396 /** \brief A function that sets the initialization vector (if
397  * necessary) for an secure element cipher operation
398  *
399  * Rationale: The `psa_se_cipher_*` operation in the PSA Cryptographic API has
400  * two IV functions: one to set the IV, and one to generate it internally. The
401  * generate function is not necessary for the drivers to implement as the PSA
402  * Crypto implementation can do the generation using its RNG features.
403  *
404  * \param[in,out] op_context    A structure that contains the previously set up
405  *                              hardware-specific cipher context
406  * \param[in] p_iv              A buffer containing the initialization vector
407  * \param[in] iv_length         The size (in bytes) of the `p_iv` buffer
408  *
409  * \retval #PSA_SUCCESS
410  */
411 typedef psa_status_t (*psa_drv_se_cipher_set_iv_t)(void *op_context,
412                                                    const uint8_t *p_iv,
413                                                    size_t iv_length);
414 
415 /** \brief A function that continues a previously started secure element cipher
416  * operation
417  *
418  * \param[in,out] op_context        A hardware-specific structure for the
419  *                                  previously started cipher operation
420  * \param[in] p_input               A buffer containing the data to be
421  *                                  encrypted/decrypted
422  * \param[in] input_size            The size in bytes of the buffer pointed to
423  *                                  by `p_input`
424  * \param[out] p_output             The caller-allocated buffer where the
425  *                                  output will be placed
426  * \param[in] output_size           The allocated size in bytes of the
427  *                                  `p_output` buffer
428  * \param[out] p_output_length      After completion, will contain the number
429  *                                  of bytes placed in the `p_output` buffer
430  *
431  * \retval #PSA_SUCCESS
432  */
433 typedef psa_status_t (*psa_drv_se_cipher_update_t)(void *op_context,
434                                                    const uint8_t *p_input,
435                                                    size_t input_size,
436                                                    uint8_t *p_output,
437                                                    size_t output_size,
438                                                    size_t *p_output_length);
439 
440 /** \brief A function that completes a previously started secure element cipher
441  * operation
442  *
443  * \param[in,out] op_context    A hardware-specific structure for the
444  *                              previously started cipher operation
445  * \param[out] p_output         The caller-allocated buffer where the output
446  *                              will be placed
447  * \param[in] output_size       The allocated size in bytes of the `p_output`
448  *                              buffer
449  * \param[out] p_output_length  After completion, will contain the number of
450  *                              bytes placed in the `p_output` buffer
451  *
452  * \retval #PSA_SUCCESS
453  */
454 typedef psa_status_t (*psa_drv_se_cipher_finish_t)(void *op_context,
455                                                    uint8_t *p_output,
456                                                    size_t output_size,
457                                                    size_t *p_output_length);
458 
459 /** \brief A function that aborts a previously started secure element cipher
460  * operation
461  *
462  * \param[in,out] op_context    A hardware-specific structure for the
463  *                              previously started cipher operation
464  */
465 typedef psa_status_t (*psa_drv_se_cipher_abort_t)(void *op_context);
466 
467 /** \brief A function that performs the ECB block mode for secure element
468  * cipher operations
469  *
470  * Note: this function should only be used with implementations that do not
471  * provide a needed higher-level operation.
472  *
473  * \param[in,out] drv_context   The driver context structure.
474  * \param[in] key_slot          The slot of the key to be used for the operation
475  * \param[in] algorithm         The algorithm to be used in the cipher operation
476  * \param[in] direction         Indicates whether the operation is an encrypt or
477  *                              decrypt
478  * \param[in] p_input           A buffer containing the data to be
479  *                              encrypted/decrypted
480  * \param[in] input_size        The size in bytes of the buffer pointed to by
481  *                              `p_input`
482  * \param[out] p_output         The caller-allocated buffer where the output
483  *                              will be placed
484  * \param[in] output_size       The allocated size in bytes of the `p_output`
485  *                              buffer
486  *
487  * \retval #PSA_SUCCESS
488  * \retval #PSA_ERROR_NOT_SUPPORTED
489  */
490 typedef psa_status_t (*psa_drv_se_cipher_ecb_t)(psa_drv_se_context_t *drv_context,
491                                                 psa_key_slot_number_t key_slot,
492                                                 psa_algorithm_t algorithm,
493                                                 psa_encrypt_or_decrypt_t direction,
494                                                 const uint8_t *p_input,
495                                                 size_t input_size,
496                                                 uint8_t *p_output,
497                                                 size_t output_size);
498 
499 /**
500  * \brief A struct containing all of the function pointers needed to implement
501  * cipher operations using secure elements.
502  *
503  * PSA Crypto API implementations should populate instances of the table as
504  * appropriate upon startup or at build time.
505  *
506  * If one of the functions is not implemented (such as
507  * `psa_drv_se_cipher_ecb_t`), it should be set to NULL.
508  */
509 typedef struct {
510     /** The size in bytes of the hardware-specific secure element cipher
511      * context structure
512      */
513     size_t               context_size;
514     /** Function that performs a cipher setup operation */
515     psa_drv_se_cipher_setup_t  p_setup;
516     /** Function that sets a cipher IV (if necessary) */
517     psa_drv_se_cipher_set_iv_t p_set_iv;
518     /** Function that performs a cipher update operation */
519     psa_drv_se_cipher_update_t p_update;
520     /** Function that completes a cipher operation */
521     psa_drv_se_cipher_finish_t p_finish;
522     /** Function that aborts a cipher operation */
523     psa_drv_se_cipher_abort_t  p_abort;
524     /** Function that performs ECB mode for a cipher operation
525      * (Danger: ECB mode should not be used directly by clients of the PSA
526      * Crypto Client API)
527      */
528     psa_drv_se_cipher_ecb_t    p_ecb;
529 } psa_drv_se_cipher_t;
530 
531 /**@}*/
532 
533 /** \defgroup se_asymmetric Secure Element Asymmetric Cryptography
534  *
535  * Since the amount of data that can (or should) be encrypted or signed using
536  * asymmetric keys is limited by the key size, asymmetric key operations using
537  * keys in a secure element must be done in single function calls.
538  */
539 /**@{*/
540 
541 /**
542  * \brief A function that signs a hash or short message with a private key in
543  * a secure element
544  *
545  * \param[in,out] drv_context       The driver context structure.
546  * \param[in] key_slot              Key slot of an asymmetric key pair
547  * \param[in] alg                   A signature algorithm that is compatible
548  *                                  with the type of `key`
549  * \param[in] p_hash                The hash to sign
550  * \param[in] hash_length           Size of the `p_hash` buffer in bytes
551  * \param[out] p_signature          Buffer where the signature is to be written
552  * \param[in] signature_size        Size of the `p_signature` buffer in bytes
553  * \param[out] p_signature_length   On success, the number of bytes
554  *                                  that make up the returned signature value
555  *
556  * \retval #PSA_SUCCESS
557  */
558 typedef psa_status_t (*psa_drv_se_asymmetric_sign_t)(psa_drv_se_context_t *drv_context,
559                                                      psa_key_slot_number_t key_slot,
560                                                      psa_algorithm_t alg,
561                                                      const uint8_t *p_hash,
562                                                      size_t hash_length,
563                                                      uint8_t *p_signature,
564                                                      size_t signature_size,
565                                                      size_t *p_signature_length);
566 
567 /**
568  * \brief A function that verifies the signature a hash or short message using
569  * an asymmetric public key in a secure element
570  *
571  * \param[in,out] drv_context   The driver context structure.
572  * \param[in] key_slot          Key slot of a public key or an asymmetric key
573  *                              pair
574  * \param[in] alg               A signature algorithm that is compatible with
575  *                              the type of `key`
576  * \param[in] p_hash            The hash whose signature is to be verified
577  * \param[in] hash_length       Size of the `p_hash` buffer in bytes
578  * \param[in] p_signature       Buffer containing the signature to verify
579  * \param[in] signature_length  Size of the `p_signature` buffer in bytes
580  *
581  * \retval #PSA_SUCCESS
582  *         The signature is valid.
583  */
584 typedef psa_status_t (*psa_drv_se_asymmetric_verify_t)(psa_drv_se_context_t *drv_context,
585                                                        psa_key_slot_number_t key_slot,
586                                                        psa_algorithm_t alg,
587                                                        const uint8_t *p_hash,
588                                                        size_t hash_length,
589                                                        const uint8_t *p_signature,
590                                                        size_t signature_length);
591 
592 /**
593  * \brief A function that encrypts a short message with an asymmetric public
594  * key in a secure element
595  *
596  * \param[in,out] drv_context   The driver context structure.
597  * \param[in] key_slot          Key slot of a public key or an asymmetric key
598  *                              pair
599  * \param[in] alg               An asymmetric encryption algorithm that is
600  *                              compatible with the type of `key`
601  * \param[in] p_input           The message to encrypt
602  * \param[in] input_length      Size of the `p_input` buffer in bytes
603  * \param[in] p_salt            A salt or label, if supported by the
604  *                              encryption algorithm
605  *                              If the algorithm does not support a
606  *                              salt, pass `NULL`.
607  *                              If the algorithm supports an optional
608  *                              salt and you do not want to pass a salt,
609  *                              pass `NULL`.
610  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
611  *                              supported.
612  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
613  *                              If `p_salt` is `NULL`, pass 0.
614  * \param[out] p_output         Buffer where the encrypted message is to
615  *                              be written
616  * \param[in] output_size       Size of the `p_output` buffer in bytes
617  * \param[out] p_output_length  On success, the number of bytes that make up
618  *                              the returned output
619  *
620  * \retval #PSA_SUCCESS
621  */
622 typedef psa_status_t (*psa_drv_se_asymmetric_encrypt_t)(psa_drv_se_context_t *drv_context,
623                                                         psa_key_slot_number_t key_slot,
624                                                         psa_algorithm_t alg,
625                                                         const uint8_t *p_input,
626                                                         size_t input_length,
627                                                         const uint8_t *p_salt,
628                                                         size_t salt_length,
629                                                         uint8_t *p_output,
630                                                         size_t output_size,
631                                                         size_t *p_output_length);
632 
633 /**
634  * \brief A function that decrypts a short message with an asymmetric private
635  * key in a secure element.
636  *
637  * \param[in,out] drv_context   The driver context structure.
638  * \param[in] key_slot          Key slot of an asymmetric key pair
639  * \param[in] alg               An asymmetric encryption algorithm that is
640  *                              compatible with the type of `key`
641  * \param[in] p_input           The message to decrypt
642  * \param[in] input_length      Size of the `p_input` buffer in bytes
643  * \param[in] p_salt            A salt or label, if supported by the
644  *                              encryption algorithm
645  *                              If the algorithm does not support a
646  *                              salt, pass `NULL`.
647  *                              If the algorithm supports an optional
648  *                              salt and you do not want to pass a salt,
649  *                              pass `NULL`.
650  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
651  *                              supported.
652  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
653  *                              If `p_salt` is `NULL`, pass 0.
654  * \param[out] p_output         Buffer where the decrypted message is to
655  *                              be written
656  * \param[in] output_size       Size of the `p_output` buffer in bytes
657  * \param[out] p_output_length  On success, the number of bytes
658  *                              that make up the returned output
659  *
660  * \retval #PSA_SUCCESS
661  */
662 typedef psa_status_t (*psa_drv_se_asymmetric_decrypt_t)(psa_drv_se_context_t *drv_context,
663                                                         psa_key_slot_number_t key_slot,
664                                                         psa_algorithm_t alg,
665                                                         const uint8_t *p_input,
666                                                         size_t input_length,
667                                                         const uint8_t *p_salt,
668                                                         size_t salt_length,
669                                                         uint8_t *p_output,
670                                                         size_t output_size,
671                                                         size_t *p_output_length);
672 
673 /**
674  * \brief A struct containing all of the function pointers needed to implement
675  * asymmetric cryptographic operations using secure elements.
676  *
677  * PSA Crypto API implementations should populate instances of the table as
678  * appropriate upon startup or at build time.
679  *
680  * If one of the functions is not implemented, it should be set to NULL.
681  */
682 typedef struct {
683     /** Function that performs an asymmetric sign operation */
684     psa_drv_se_asymmetric_sign_t    p_sign;
685     /** Function that performs an asymmetric verify operation */
686     psa_drv_se_asymmetric_verify_t  p_verify;
687     /** Function that performs an asymmetric encrypt operation */
688     psa_drv_se_asymmetric_encrypt_t p_encrypt;
689     /** Function that performs an asymmetric decrypt operation */
690     psa_drv_se_asymmetric_decrypt_t p_decrypt;
691 } psa_drv_se_asymmetric_t;
692 
693 /**@}*/
694 
695 /** \defgroup se_aead Secure Element Authenticated Encryption with Additional Data
696  * Authenticated Encryption with Additional Data (AEAD) operations with secure
697  * elements must be done in one function call. While this creates a burden for
698  * implementers as there must be sufficient space in memory for the entire
699  * message, it prevents decrypted data from being made available before the
700  * authentication operation is complete and the data is known to be authentic.
701  */
702 /**@{*/
703 
704 /** \brief A function that performs a secure element authenticated encryption
705  * operation
706  *
707  * \param[in,out] drv_context           The driver context structure.
708  * \param[in] key_slot                  Slot containing the key to use.
709  * \param[in] algorithm                 The AEAD algorithm to compute
710  *                                      (\c PSA_ALG_XXX value such that
711  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
712  * \param[in] p_nonce                   Nonce or IV to use
713  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
714  * \param[in] p_additional_data         Additional data that will be
715  *                                      authenticated but not encrypted
716  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
717  * \param[in] p_plaintext               Data that will be authenticated and
718  *                                      encrypted
719  * \param[in] plaintext_length          Size of `p_plaintext` in bytes
720  * \param[out] p_ciphertext             Output buffer for the authenticated and
721  *                                      encrypted data. The additional data is
722  *                                      not part of this output. For algorithms
723  *                                      where the encrypted data and the
724  *                                      authentication tag are defined as
725  *                                      separate outputs, the authentication
726  *                                      tag is appended to the encrypted data.
727  * \param[in] ciphertext_size           Size of the `p_ciphertext` buffer in
728  *                                      bytes
729  * \param[out] p_ciphertext_length      On success, the size of the output in
730  *                                      the `p_ciphertext` buffer
731  *
732  * \retval #PSA_SUCCESS
733  *         Success.
734  */
735 typedef psa_status_t (*psa_drv_se_aead_encrypt_t)(psa_drv_se_context_t *drv_context,
736                                                   psa_key_slot_number_t key_slot,
737                                                   psa_algorithm_t algorithm,
738                                                   const uint8_t *p_nonce,
739                                                   size_t nonce_length,
740                                                   const uint8_t *p_additional_data,
741                                                   size_t additional_data_length,
742                                                   const uint8_t *p_plaintext,
743                                                   size_t plaintext_length,
744                                                   uint8_t *p_ciphertext,
745                                                   size_t ciphertext_size,
746                                                   size_t *p_ciphertext_length);
747 
748 /** A function that peforms a secure element authenticated decryption operation
749  *
750  * \param[in,out] drv_context           The driver context structure.
751  * \param[in] key_slot                  Slot containing the key to use
752  * \param[in] algorithm                 The AEAD algorithm to compute
753  *                                      (\c PSA_ALG_XXX value such that
754  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
755  * \param[in] p_nonce                   Nonce or IV to use
756  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
757  * \param[in] p_additional_data         Additional data that has been
758  *                                      authenticated but not encrypted
759  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
760  * \param[in] p_ciphertext              Data that has been authenticated and
761  *                                      encrypted.
762  *                                      For algorithms where the encrypted data
763  *                                      and the authentication tag are defined
764  *                                      as separate inputs, the buffer must
765  *                                      contain the encrypted data followed by
766  *                                      the authentication tag.
767  * \param[in] ciphertext_length         Size of `p_ciphertext` in bytes
768  * \param[out] p_plaintext              Output buffer for the decrypted data
769  * \param[in] plaintext_size            Size of the `p_plaintext` buffer in
770  *                                      bytes
771  * \param[out] p_plaintext_length       On success, the size of the output in
772  *                                      the `p_plaintext` buffer
773  *
774  * \retval #PSA_SUCCESS
775  *         Success.
776  */
777 typedef psa_status_t (*psa_drv_se_aead_decrypt_t)(psa_drv_se_context_t *drv_context,
778                                                   psa_key_slot_number_t key_slot,
779                                                   psa_algorithm_t algorithm,
780                                                   const uint8_t *p_nonce,
781                                                   size_t nonce_length,
782                                                   const uint8_t *p_additional_data,
783                                                   size_t additional_data_length,
784                                                   const uint8_t *p_ciphertext,
785                                                   size_t ciphertext_length,
786                                                   uint8_t *p_plaintext,
787                                                   size_t plaintext_size,
788                                                   size_t *p_plaintext_length);
789 
790 /**
791  * \brief A struct containing all of the function pointers needed to implement
792  * secure element Authenticated Encryption with Additional Data operations
793  *
794  * PSA Crypto API implementations should populate instances of the table as
795  * appropriate upon startup.
796  *
797  * If one of the functions is not implemented, it should be set to NULL.
798  */
799 typedef struct {
800     /** Function that performs the AEAD encrypt operation */
801     psa_drv_se_aead_encrypt_t p_encrypt;
802     /** Function that performs the AEAD decrypt operation */
803     psa_drv_se_aead_decrypt_t p_decrypt;
804 } psa_drv_se_aead_t;
805 /**@}*/
806 
807 /** \defgroup se_key_management Secure Element Key Management
808  * Currently, key management is limited to importing keys in the clear,
809  * destroying keys, and exporting keys in the clear.
810  * Whether a key may be exported is determined by the key policies in place
811  * on the key slot.
812  */
813 /**@{*/
814 
815 /** An enumeration indicating how a key is created.
816  */
817 typedef enum
818 {
819     PSA_KEY_CREATION_IMPORT, /**< During psa_import_key() */
820     PSA_KEY_CREATION_GENERATE, /**< During psa_generate_key() */
821     PSA_KEY_CREATION_DERIVE, /**< During psa_key_derivation_output_key() */
822     PSA_KEY_CREATION_COPY, /**< During psa_copy_key() */
823 
824 #ifndef __DOXYGEN_ONLY__
825     /** A key is being registered with mbedtls_psa_register_se_key().
826      *
827      * The core only passes this value to
828      * psa_drv_se_key_management_t::p_validate_slot_number, not to
829      * psa_drv_se_key_management_t::p_allocate. The call to
830      * `p_validate_slot_number` is not followed by any other call to the
831      * driver: the key is considered successfully registered if the call to
832      * `p_validate_slot_number` succeeds, or if `p_validate_slot_number` is
833      * null.
834      *
835      * With this creation method, the driver must return #PSA_SUCCESS if
836      * the given attributes are compatible with the existing key in the slot,
837      * and #PSA_ERROR_DOES_NOT_EXIST if the driver can determine that there
838      * is no key with the specified slot number.
839      *
840      * This is an Mbed Crypto extension.
841      */
842     PSA_KEY_CREATION_REGISTER,
843 #endif
844 } psa_key_creation_method_t;
845 
846 /** \brief A function that allocates a slot for a key.
847  *
848  * To create a key in a specific slot in a secure element, the core
849  * first calls this function to determine a valid slot number,
850  * then calls a function to create the key material in that slot.
851  * In nominal conditions (that is, if no error occurs),
852  * the effect of a call to a key creation function in the PSA Cryptography
853  * API with a lifetime that places the key in a secure element is the
854  * following:
855  * -# The core calls psa_drv_se_key_management_t::p_allocate
856  *    (or in some implementations
857  *    psa_drv_se_key_management_t::p_validate_slot_number). The driver
858  *    selects (or validates) a suitable slot number given the key attributes
859  *    and the state of the secure element.
860  * -# The core calls a key creation function in the driver.
861  *
862  * The key creation functions in the PSA Cryptography API are:
863  * - psa_import_key(), which causes
864  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_IMPORT
865  *   then a call to psa_drv_se_key_management_t::p_import.
866  * - psa_generate_key(), which causes
867  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_GENERATE
868  *   then a call to psa_drv_se_key_management_t::p_import.
869  * - psa_key_derivation_output_key(), which causes
870  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_DERIVE
871  *   then a call to psa_drv_se_key_derivation_t::p_derive.
872  * - psa_copy_key(), which causes
873  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_COPY
874  *   then a call to psa_drv_se_key_management_t::p_export.
875  *
876  * In case of errors, other behaviors are possible.
877  * - If the PSA Cryptography subsystem dies after the first step,
878  *   for example because the device has lost power abruptly,
879  *   the second step may never happen, or may happen after a reset
880  *   and re-initialization. Alternatively, after a reset and
881  *   re-initialization, the core may call
882  *   psa_drv_se_key_management_t::p_destroy on the slot number that
883  *   was allocated (or validated) instead of calling a key creation function.
884  * - If an error occurs, the core may call
885  *   psa_drv_se_key_management_t::p_destroy on the slot number that
886  *   was allocated (or validated) instead of calling a key creation function.
887  *
888  * Errors and system resets also have an impact on the driver's persistent
889  * data. If a reset happens before the overall key creation process is
890  * completed (before or after the second step above), it is unspecified
891  * whether the persistent data after the reset is identical to what it
892  * was before or after the call to `p_allocate` (or `p_validate_slot_number`).
893  *
894  * \param[in,out] drv_context       The driver context structure.
895  * \param[in,out] persistent_data   A pointer to the persistent data
896  *                                  that allows writing.
897  * \param[in] attributes            Attributes of the key.
898  * \param method                    The way in which the key is being created.
899  * \param[out] key_slot             Slot where the key will be stored.
900  *                                  This must be a valid slot for a key of the
901  *                                  chosen type. It must be unoccupied.
902  *
903  * \retval #PSA_SUCCESS
904  *         Success.
905  *         The core will record \c *key_slot as the key slot where the key
906  *         is stored and will update the persistent data in storage.
907  * \retval #PSA_ERROR_NOT_SUPPORTED
908  * \retval #PSA_ERROR_INSUFFICIENT_STORAGE
909  */
910 typedef psa_status_t (*psa_drv_se_allocate_key_t)(
911     psa_drv_se_context_t *drv_context,
912     void *persistent_data,
913     const psa_key_attributes_t *attributes,
914     psa_key_creation_method_t method,
915     psa_key_slot_number_t *key_slot);
916 
917 /** \brief A function that determines whether a slot number is valid
918  * for a key.
919  *
920  * To create a key in a specific slot in a secure element, the core
921  * first calls this function to validate the choice of slot number,
922  * then calls a function to create the key material in that slot.
923  * See the documentation of #psa_drv_se_allocate_key_t for more details.
924  *
925  * As of the PSA Cryptography API specification version 1.0, there is no way
926  * for applications to trigger a call to this function. However some
927  * implementations offer the capability to create or declare a key in
928  * a specific slot via implementation-specific means, generally for the
929  * sake of initial device provisioning or onboarding. Such a mechanism may
930  * be added to a future version of the PSA Cryptography API specification.
931  *
932  * This function may update the driver's persistent data through
933  * \p persistent_data. The core will save the updated persistent data at the
934  * end of the key creation process. See the description of
935  * ::psa_drv_se_allocate_key_t for more information.
936  *
937  * \param[in,out] drv_context   The driver context structure.
938  * \param[in,out] persistent_data   A pointer to the persistent data
939  *                                  that allows writing.
940  * \param[in] attributes        Attributes of the key.
941  * \param method                The way in which the key is being created.
942  * \param[in] key_slot          Slot where the key is to be stored.
943  *
944  * \retval #PSA_SUCCESS
945  *         The given slot number is valid for a key with the given
946  *         attributes.
947  * \retval #PSA_ERROR_INVALID_ARGUMENT
948  *         The given slot number is not valid for a key with the
949  *         given attributes. This includes the case where the slot
950  *         number is not valid at all.
951  * \retval #PSA_ERROR_ALREADY_EXISTS
952  *         There is already a key with the specified slot number.
953  *         Drivers may choose to return this error from the key
954  *         creation function instead.
955  */
956 typedef psa_status_t (*psa_drv_se_validate_slot_number_t)(
957     psa_drv_se_context_t *drv_context,
958     void *persistent_data,
959     const psa_key_attributes_t *attributes,
960     psa_key_creation_method_t method,
961     psa_key_slot_number_t key_slot);
962 
963 /** \brief A function that imports a key into a secure element in binary format
964  *
965  * This function can support any output from psa_export_key(). Refer to the
966  * documentation of psa_export_key() for the format for each key type.
967  *
968  * \param[in,out] drv_context   The driver context structure.
969  * \param key_slot              Slot where the key will be stored.
970  *                              This must be a valid slot for a key of the
971  *                              chosen type. It must be unoccupied.
972  * \param[in] attributes        The key attributes, including the lifetime,
973  *                              the key type and the usage policy.
974  *                              Drivers should not access the key size stored
975  *                              in the attributes: it may not match the
976  *                              data passed in \p data.
977  *                              Drivers can call psa_get_key_lifetime(),
978  *                              psa_get_key_type(),
979  *                              psa_get_key_usage_flags() and
980  *                              psa_get_key_algorithm() to access this
981  *                              information.
982  * \param[in] data              Buffer containing the key data.
983  * \param[in] data_length       Size of the \p data buffer in bytes.
984  * \param[out] bits             On success, the key size in bits. The driver
985  *                              must determine this value after parsing the
986  *                              key according to the key type.
987  *                              This value is not used if the function fails.
988  *
989  * \retval #PSA_SUCCESS
990  *         Success.
991  */
992 typedef psa_status_t (*psa_drv_se_import_key_t)(
993     psa_drv_se_context_t *drv_context,
994     psa_key_slot_number_t key_slot,
995     const psa_key_attributes_t *attributes,
996     const uint8_t *data,
997     size_t data_length,
998     size_t *bits);
999 
1000 /**
1001  * \brief A function that destroys a secure element key and restore the slot to
1002  * its default state
1003  *
1004  * This function destroys the content of the key from a secure element.
1005  * Implementations shall make a best effort to ensure that any previous content
1006  * of the slot is unrecoverable.
1007  *
1008  * This function returns the specified slot to its default state.
1009  *
1010  * \param[in,out] drv_context       The driver context structure.
1011  * \param[in,out] persistent_data   A pointer to the persistent data
1012  *                                  that allows writing.
1013  * \param key_slot                  The key slot to erase.
1014  *
1015  * \retval #PSA_SUCCESS
1016  *         The slot's content, if any, has been erased.
1017  */
1018 typedef psa_status_t (*psa_drv_se_destroy_key_t)(
1019     psa_drv_se_context_t *drv_context,
1020     void *persistent_data,
1021     psa_key_slot_number_t key_slot);
1022 
1023 /**
1024  * \brief A function that exports a secure element key in binary format
1025  *
1026  * The output of this function can be passed to psa_import_key() to
1027  * create an equivalent object.
1028  *
1029  * If a key is created with `psa_import_key()` and then exported with
1030  * this function, it is not guaranteed that the resulting data is
1031  * identical: the implementation may choose a different representation
1032  * of the same key if the format permits it.
1033  *
1034  * This function should generate output in the same format that
1035  * `psa_export_key()` does. Refer to the
1036  * documentation of `psa_export_key()` for the format for each key type.
1037  *
1038  * \param[in,out] drv_context   The driver context structure.
1039  * \param[in] key               Slot whose content is to be exported. This must
1040  *                              be an occupied key slot.
1041  * \param[out] p_data           Buffer where the key data is to be written.
1042  * \param[in] data_size         Size of the `p_data` buffer in bytes.
1043  * \param[out] p_data_length    On success, the number of bytes
1044  *                              that make up the key data.
1045  *
1046  * \retval #PSA_SUCCESS
1047  * \retval #PSA_ERROR_DOES_NOT_EXIST
1048  * \retval #PSA_ERROR_NOT_PERMITTED
1049  * \retval #PSA_ERROR_NOT_SUPPORTED
1050  * \retval #PSA_ERROR_COMMUNICATION_FAILURE
1051  * \retval #PSA_ERROR_HARDWARE_FAILURE
1052  * \retval #PSA_ERROR_CORRUPTION_DETECTED
1053  */
1054 typedef psa_status_t (*psa_drv_se_export_key_t)(psa_drv_se_context_t *drv_context,
1055                                                 psa_key_slot_number_t key,
1056                                                 uint8_t *p_data,
1057                                                 size_t data_size,
1058                                                 size_t *p_data_length);
1059 
1060 /**
1061  * \brief A function that generates a symmetric or asymmetric key on a secure
1062  * element
1063  *
1064  * If \p type is asymmetric (#PSA_KEY_TYPE_IS_ASYMMETRIC(\p type) = 1),
1065  * the driver may export the public key at the time of generation,
1066  * in the format documented for psa_export_public_key() by writing it
1067  * to the \p pubkey buffer.
1068  * This is optional, intended for secure elements that output the
1069  * public key at generation time and that cannot export the public key
1070  * later. Drivers that do not need this feature should leave
1071  * \p *pubkey_length set to 0 and should
1072  * implement the psa_drv_key_management_t::p_export_public function.
1073  * Some implementations do not support this feature, in which case
1074  * \p pubkey is \c NULL and \p pubkey_size is 0.
1075  *
1076  * \param[in,out] drv_context   The driver context structure.
1077  * \param key_slot              Slot where the key will be stored.
1078  *                              This must be a valid slot for a key of the
1079  *                              chosen type. It must be unoccupied.
1080  * \param[in] attributes        The key attributes, including the lifetime,
1081  *                              the key type and size, and the usage policy.
1082  *                              Drivers can call psa_get_key_lifetime(),
1083  *                              psa_get_key_type(), psa_get_key_bits(),
1084  *                              psa_get_key_usage_flags() and
1085  *                              psa_get_key_algorithm() to access this
1086  *                              information.
1087  * \param[out] pubkey           A buffer where the driver can write the
1088  *                              public key, when generating an asymmetric
1089  *                              key pair.
1090  *                              This is \c NULL when generating a symmetric
1091  *                              key or if the core does not support
1092  *                              exporting the public key at generation time.
1093  * \param pubkey_size           The size of the `pubkey` buffer in bytes.
1094  *                              This is 0 when generating a symmetric
1095  *                              key or if the core does not support
1096  *                              exporting the public key at generation time.
1097  * \param[out] pubkey_length    On entry, this is always 0.
1098  *                              On success, the number of bytes written to
1099  *                              \p pubkey. If this is 0 or unchanged on return,
1100  *                              the core will not read the \p pubkey buffer,
1101  *                              and will instead call the driver's
1102  *                              psa_drv_key_management_t::p_export_public
1103  *                              function to export the public key when needed.
1104  */
1105 typedef psa_status_t (*psa_drv_se_generate_key_t)(
1106     psa_drv_se_context_t *drv_context,
1107     psa_key_slot_number_t key_slot,
1108     const psa_key_attributes_t *attributes,
1109     uint8_t *pubkey, size_t pubkey_size, size_t *pubkey_length);
1110 
1111 /**
1112  * \brief A struct containing all of the function pointers needed to for secure
1113  * element key management
1114  *
1115  * PSA Crypto API implementations should populate instances of the table as
1116  * appropriate upon startup or at build time.
1117  *
1118  * If one of the functions is not implemented, it should be set to NULL.
1119  */
1120 typedef struct {
1121     /** Function that allocates a slot for a key. */
1122     psa_drv_se_allocate_key_t   p_allocate;
1123     /** Function that checks the validity of a slot for a key. */
1124     psa_drv_se_validate_slot_number_t p_validate_slot_number;
1125     /** Function that performs a key import operation */
1126     psa_drv_se_import_key_t     p_import;
1127     /** Function that performs a generation */
1128     psa_drv_se_generate_key_t   p_generate;
1129     /** Function that performs a key destroy operation */
1130     psa_drv_se_destroy_key_t    p_destroy;
1131     /** Function that performs a key export operation */
1132     psa_drv_se_export_key_t     p_export;
1133     /** Function that performs a public key export operation */
1134     psa_drv_se_export_key_t     p_export_public;
1135 } psa_drv_se_key_management_t;
1136 
1137 /**@}*/
1138 
1139 /** \defgroup driver_derivation Secure Element Key Derivation and Agreement
1140  * Key derivation is the process of generating new key material using an
1141  * existing key and additional parameters, iterating through a basic
1142  * cryptographic function, such as a hash.
1143  * Key agreement is a part of cryptographic protocols that allows two parties
1144  * to agree on the same key value, but starting from different original key
1145  * material.
1146  * The flows are similar, and the PSA Crypto Driver Model uses the same functions
1147  * for both of the flows.
1148  *
1149  * There are two different final functions for the flows,
1150  * `psa_drv_se_key_derivation_derive` and `psa_drv_se_key_derivation_export`.
1151  * `psa_drv_se_key_derivation_derive` is used when the key material should be
1152  * placed in a slot on the hardware and not exposed to the caller.
1153  * `psa_drv_se_key_derivation_export` is used when the key material should be
1154  * returned to the PSA Cryptographic API implementation.
1155  *
1156  * Different key derivation algorithms require a different number of inputs.
1157  * Instead of having an API that takes as input variable length arrays, which
1158  * can be problemmatic to manage on embedded platforms, the inputs are passed
1159  * to the driver via a function, `psa_drv_se_key_derivation_collateral`, that
1160  * is called multiple times with different `collateral_id`s. Thus, for a key
1161  * derivation algorithm that required 3 paramter inputs, the flow would look
1162  * something like:
1163  * ~~~~~~~~~~~~~{.c}
1164  * psa_drv_se_key_derivation_setup(kdf_algorithm, source_key, dest_key_size_bytes);
1165  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_0,
1166  *                                      p_collateral_0,
1167  *                                      collateral_0_size);
1168  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_1,
1169  *                                      p_collateral_1,
1170  *                                      collateral_1_size);
1171  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_2,
1172  *                                      p_collateral_2,
1173  *                                      collateral_2_size);
1174  * psa_drv_se_key_derivation_derive();
1175  * ~~~~~~~~~~~~~
1176  *
1177  * key agreement example:
1178  * ~~~~~~~~~~~~~{.c}
1179  * psa_drv_se_key_derivation_setup(alg, source_key. dest_key_size_bytes);
1180  * psa_drv_se_key_derivation_collateral(DHE_PUBKEY, p_pubkey, pubkey_size);
1181  * psa_drv_se_key_derivation_export(p_session_key,
1182  *                                  session_key_size,
1183  *                                  &session_key_length);
1184  * ~~~~~~~~~~~~~
1185  */
1186 /**@{*/
1187 
1188 /** \brief A function that Sets up a secure element key derivation operation by
1189  * specifying the algorithm and the source key sot
1190  *
1191  * \param[in,out] drv_context   The driver context structure.
1192  * \param[in,out] op_context    A hardware-specific structure containing any
1193  *                              context information for the implementation
1194  * \param[in] kdf_alg           The algorithm to be used for the key derivation
1195  * \param[in] source_key        The key to be used as the source material for
1196  *                              the key derivation
1197  *
1198  * \retval #PSA_SUCCESS
1199  */
1200 typedef psa_status_t (*psa_drv_se_key_derivation_setup_t)(psa_drv_se_context_t *drv_context,
1201                                                           void *op_context,
1202                                                           psa_algorithm_t kdf_alg,
1203                                                           psa_key_slot_number_t source_key);
1204 
1205 /** \brief A function that provides collateral (parameters) needed for a secure
1206  * element key derivation or key agreement operation
1207  *
1208  * Since many key derivation algorithms require multiple parameters, it is
1209  * expeced that this function may be called multiple times for the same
1210  * operation, each with a different algorithm-specific `collateral_id`
1211  *
1212  * \param[in,out] op_context    A hardware-specific structure containing any
1213  *                              context information for the implementation
1214  * \param[in] collateral_id     An ID for the collateral being provided
1215  * \param[in] p_collateral      A buffer containing the collateral data
1216  * \param[in] collateral_size   The size in bytes of the collateral
1217  *
1218  * \retval #PSA_SUCCESS
1219  */
1220 typedef psa_status_t (*psa_drv_se_key_derivation_collateral_t)(void *op_context,
1221                                                                uint32_t collateral_id,
1222                                                                const uint8_t *p_collateral,
1223                                                                size_t collateral_size);
1224 
1225 /** \brief A function that performs the final secure element key derivation
1226  * step and place the generated key material in a slot
1227  *
1228  * \param[in,out] op_context    A hardware-specific structure containing any
1229  *                              context information for the implementation
1230  * \param[in] dest_key          The slot where the generated key material
1231  *                              should be placed
1232  *
1233  * \retval #PSA_SUCCESS
1234  */
1235 typedef psa_status_t (*psa_drv_se_key_derivation_derive_t)(void *op_context,
1236                                                           psa_key_slot_number_t dest_key);
1237 
1238 /** \brief A function that performs the final step of a secure element key
1239  * agreement and place the generated key material in a buffer
1240  *
1241  * \param[out] p_output         Buffer in which to place the generated key
1242  *                              material
1243  * \param[in] output_size       The size in bytes of `p_output`
1244  * \param[out] p_output_length  Upon success, contains the number of bytes of
1245  *                              key material placed in `p_output`
1246  *
1247  * \retval #PSA_SUCCESS
1248  */
1249 typedef psa_status_t (*psa_drv_se_key_derivation_export_t)(void *op_context,
1250                                                            uint8_t *p_output,
1251                                                            size_t output_size,
1252                                                            size_t *p_output_length);
1253 
1254 /**
1255  * \brief A struct containing all of the function pointers needed to for secure
1256  * element key derivation and agreement
1257  *
1258  * PSA Crypto API implementations should populate instances of the table as
1259  * appropriate upon startup.
1260  *
1261  * If one of the functions is not implemented, it should be set to NULL.
1262  */
1263 typedef struct {
1264     /** The driver-specific size of the key derivation context */
1265     size_t                           context_size;
1266     /** Function that performs a key derivation setup */
1267     psa_drv_se_key_derivation_setup_t      p_setup;
1268     /** Function that sets key derivation collateral */
1269     psa_drv_se_key_derivation_collateral_t p_collateral;
1270     /** Function that performs a final key derivation step */
1271     psa_drv_se_key_derivation_derive_t     p_derive;
1272     /** Function that perforsm a final key derivation or agreement and
1273      * exports the key */
1274     psa_drv_se_key_derivation_export_t     p_export;
1275 } psa_drv_se_key_derivation_t;
1276 
1277 /**@}*/
1278 
1279 /** \defgroup se_registration Secure element driver registration
1280  */
1281 /**@{*/
1282 
1283 /** A structure containing pointers to all the entry points of a
1284  * secure element driver.
1285  *
1286  * Future versions of this specification may add extra substructures at
1287  * the end of this structure.
1288  */
1289 typedef struct {
1290     /** The version of the driver HAL that this driver implements.
1291      * This is a protection against loading driver binaries built against
1292      * a different version of this specification.
1293      * Use #PSA_DRV_SE_HAL_VERSION.
1294      */
1295     uint32_t hal_version;
1296 
1297     /** The size of the driver's persistent data in bytes.
1298      *
1299      * This can be 0 if the driver does not need persistent data.
1300      *
1301      * See the documentation of psa_drv_se_context_t::persistent_data
1302      * for more information about why and how a driver can use
1303      * persistent data.
1304      */
1305     size_t persistent_data_size;
1306 
1307     /** The driver initialization function.
1308      *
1309      * This function is called once during the initialization of the
1310      * PSA Cryptography subsystem, before any other function of the
1311      * driver is called. If this function returns a failure status,
1312      * the driver will be unusable, at least until the next system reset.
1313      *
1314      * If this field is \c NULL, it is equivalent to a function that does
1315      * nothing and returns #PSA_SUCCESS.
1316      */
1317     psa_drv_se_init_t p_init;
1318 
1319     const psa_drv_se_key_management_t *key_management;
1320     const psa_drv_se_mac_t *mac;
1321     const psa_drv_se_cipher_t *cipher;
1322     const psa_drv_se_aead_t *aead;
1323     const psa_drv_se_asymmetric_t *asymmetric;
1324     const psa_drv_se_key_derivation_t *derivation;
1325 } psa_drv_se_t;
1326 
1327 /** The current version of the secure element driver HAL.
1328  */
1329 /* 0.0.0 patchlevel 5 */
1330 #define PSA_DRV_SE_HAL_VERSION 0x00000005
1331 
1332 /** Register an external cryptoprocessor (secure element) driver.
1333  *
1334  * This function is only intended to be used by driver code, not by
1335  * application code. In implementations with separation between the
1336  * PSA cryptography module and applications, this function should
1337  * only be available to callers that run in the same memory space as
1338  * the cryptography module, and should not be exposed to applications
1339  * running in a different memory space.
1340  *
1341  * This function may be called before psa_crypto_init(). It is
1342  * implementation-defined whether this function may be called
1343  * after psa_crypto_init().
1344  *
1345  * \note Implementations store metadata about keys including the lifetime
1346  *       value, which contains the driver's location indicator. Therefore,
1347  *       from one instantiation of the PSA Cryptography
1348  *       library to the next one, if there is a key in storage with a certain
1349  *       lifetime value, you must always register the same driver (or an
1350  *       updated version that communicates with the same secure element)
1351  *       with the same location value.
1352  *
1353  * \param location      The location value through which this driver will
1354  *                      be exposed to applications.
1355  *                      This driver will be used for all keys such that
1356  *                      `location == #PSA_KEY_LIFETIME_GET_LOCATION( lifetime )`.
1357  *                      The value #PSA_KEY_LOCATION_LOCAL_STORAGE is reserved
1358  *                      and may not be used for drivers. Implementations
1359  *                      may reserve other values.
1360  * \param[in] methods   The method table of the driver. This structure must
1361  *                      remain valid for as long as the cryptography
1362  *                      module keeps running. It is typically a global
1363  *                      constant.
1364  *
1365  * \return #PSA_SUCCESS
1366  *         The driver was successfully registered. Applications can now
1367  *         use \p lifetime to access keys through the methods passed to
1368  *         this function.
1369  * \return #PSA_ERROR_BAD_STATE
1370  *         This function was called after the initialization of the
1371  *         cryptography module, and this implementation does not support
1372  *         driver registration at this stage.
1373  * \return #PSA_ERROR_ALREADY_EXISTS
1374  *         There is already a registered driver for this value of \p lifetime.
1375  * \return #PSA_ERROR_INVALID_ARGUMENT
1376  *         \p lifetime is a reserved value.
1377  * \return #PSA_ERROR_NOT_SUPPORTED
1378  *         `methods->hal_version` is not supported by this implementation.
1379  * \return #PSA_ERROR_INSUFFICIENT_MEMORY
1380  * \return #PSA_ERROR_NOT_PERMITTED
1381  */
1382 psa_status_t psa_register_se_driver(
1383     psa_key_location_t location,
1384     const psa_drv_se_t *methods);
1385 
1386 /**@}*/
1387 
1388 #ifdef __cplusplus
1389 }
1390 #endif
1391 
1392 #endif /* PSA_CRYPTO_SE_DRIVER_H */
1393