1 /*
2  *  PSA crypto layer on top of Mbed TLS crypto
3  */
4 /*
5  *  Copyright The Mbed TLS Contributors
6  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
7  */
8 
9 #include "common.h"
10 
11 #if defined(MBEDTLS_PSA_CRYPTO_C)
12 
13 #include "psa/crypto.h"
14 
15 #include "psa_crypto_core.h"
16 #include "psa_crypto_driver_wrappers_no_static.h"
17 #include "psa_crypto_slot_management.h"
18 #include "psa_crypto_storage.h"
19 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
20 #include "psa_crypto_se.h"
21 #endif
22 
23 #include <stdlib.h>
24 #include <string.h>
25 #include "mbedtls/platform.h"
26 #if defined(MBEDTLS_THREADING_C)
27 #include "mbedtls/threading.h"
28 #endif
29 
30 
31 
32 /* Make sure we have distinct ranges of key identifiers for distinct
33  * purposes. */
34 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MIN < PSA_KEY_ID_USER_MAX,
35                       "Empty user key ID range");
36 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN < PSA_KEY_ID_VENDOR_MAX,
37                       "Empty vendor key ID range");
38 MBEDTLS_STATIC_ASSERT(MBEDTLS_PSA_KEY_ID_BUILTIN_MIN < MBEDTLS_PSA_KEY_ID_BUILTIN_MAX,
39                       "Empty builtin key ID range");
40 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MIN < PSA_KEY_ID_VOLATILE_MAX,
41                       "Empty volatile key ID range");
42 
43 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MAX < PSA_KEY_ID_VENDOR_MIN ||
44                       PSA_KEY_ID_VENDOR_MAX < PSA_KEY_ID_USER_MIN,
45                       "Overlap between user key IDs and vendor key IDs");
46 
47 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= MBEDTLS_PSA_KEY_ID_BUILTIN_MIN &&
48                       MBEDTLS_PSA_KEY_ID_BUILTIN_MAX <= PSA_KEY_ID_VENDOR_MAX,
49                       "Builtin key identifiers are not in the vendor range");
50 
51 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= PSA_KEY_ID_VOLATILE_MIN &&
52                       PSA_KEY_ID_VOLATILE_MAX <= PSA_KEY_ID_VENDOR_MAX,
53                       "Volatile key identifiers are not in the vendor range");
54 
55 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MAX < MBEDTLS_PSA_KEY_ID_BUILTIN_MIN ||
56                       MBEDTLS_PSA_KEY_ID_BUILTIN_MAX < PSA_KEY_ID_VOLATILE_MIN,
57                       "Overlap between builtin key IDs and volatile key IDs");
58 
59 
60 
61 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
62 
63 /* Dynamic key store.
64  *
65  * The key store consists of multiple slices.
66  *
67  * The volatile keys are stored in variable-sized tables called slices.
68  * Slices are allocated on demand and deallocated when possible.
69  * The size of slices increases exponentially, so the average overhead
70  * (number of slots that are allocated but not used) is roughly
71  * proportional to the number of keys (with a factor that grows
72  * when the key store is fragmented).
73  *
74  * One slice is dedicated to the cache of persistent and built-in keys.
75  * For simplicity, they are separated from volatile keys. This cache
76  * slice has a fixed size and has the slice index KEY_SLOT_CACHE_SLICE_INDEX,
77  * located after the slices for volatile keys.
78  */
79 
80 /* Size of the last slice containing the cache of persistent and built-in keys. */
81 #define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT
82 
83 /* Volatile keys are stored in slices 0 through
84  * (KEY_SLOT_VOLATILE_SLICE_COUNT - 1) inclusive.
85  * Each slice is twice the size of the previous slice.
86  * Volatile key identifiers encode the slice number as follows:
87  *     bits 30..31:  0b10 (mandated by the PSA Crypto specification).
88  *     bits 25..29:  slice index (0...KEY_SLOT_VOLATILE_SLICE_COUNT-1)
89  *     bits 0..24:   slot index in slice
90  */
91 #define KEY_ID_SLOT_INDEX_WIDTH 25u
92 #define KEY_ID_SLICE_INDEX_WIDTH 5u
93 
94 #define KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH 16u
95 #define KEY_SLOT_VOLATILE_SLICE_COUNT 22u
96 #define KEY_SLICE_COUNT (KEY_SLOT_VOLATILE_SLICE_COUNT + 1u)
97 #define KEY_SLOT_CACHE_SLICE_INDEX KEY_SLOT_VOLATILE_SLICE_COUNT
98 
99 
100 /* Check that the length of the largest slice (calculated as
101  * KEY_SLICE_LENGTH_MAX below) does not overflow size_t. We use
102  * an indirect method in case the calculation of KEY_SLICE_LENGTH_MAX
103  * itself overflows uintmax_t: if (BASE_LENGTH << c)
104  * overflows size_t then BASE_LENGTH > SIZE_MAX >> c.
105  */
106 #if (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH >              \
107      SIZE_MAX >> (KEY_SLOT_VOLATILE_SLICE_COUNT - 1))
108 #error "Maximum slice length overflows size_t"
109 #endif
110 
111 #if KEY_ID_SLICE_INDEX_WIDTH + KEY_ID_SLOT_INDEX_WIDTH > 30
112 #error "Not enough room in volatile key IDs for slice index and slot index"
113 #endif
114 #if KEY_SLOT_VOLATILE_SLICE_COUNT > (1 << KEY_ID_SLICE_INDEX_WIDTH)
115 #error "Too many slices to fit the slice index in a volatile key ID"
116 #endif
117 #define KEY_SLICE_LENGTH_MAX                                            \
118     (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << (KEY_SLOT_VOLATILE_SLICE_COUNT - 1))
119 #if KEY_SLICE_LENGTH_MAX > 1 << KEY_ID_SLOT_INDEX_WIDTH
120 #error "Not enough room in volatile key IDs for a slot index in the largest slice"
121 #endif
122 #if KEY_ID_SLICE_INDEX_WIDTH > 8
123 #error "Slice index does not fit in uint8_t for psa_key_slot_t::slice_index"
124 #endif
125 
126 
127 /* Calculate the volatile key id to use for a given slot.
128  * This function assumes valid parameter values. */
volatile_key_id_of_index(size_t slice_idx,size_t slot_idx)129 static psa_key_id_t volatile_key_id_of_index(size_t slice_idx,
130                                              size_t slot_idx)
131 {
132     /* We assert above that the slice and slot indexes fit in separate
133      * bit-fields inside psa_key_id_t, which is a 32-bit type per the
134      * PSA Cryptography specification. */
135     return (psa_key_id_t) (0x40000000u |
136                            (slice_idx << KEY_ID_SLOT_INDEX_WIDTH) |
137                            slot_idx);
138 }
139 
140 /* Calculate the slice containing the given volatile key.
141  * This function assumes valid parameter values. */
slice_index_of_volatile_key_id(psa_key_id_t key_id)142 static size_t slice_index_of_volatile_key_id(psa_key_id_t key_id)
143 {
144     size_t mask = (1LU << KEY_ID_SLICE_INDEX_WIDTH) - 1;
145     return (key_id >> KEY_ID_SLOT_INDEX_WIDTH) & mask;
146 }
147 
148 /* Calculate the index of the slot containing the given volatile key.
149  * This function assumes valid parameter values. */
slot_index_of_volatile_key_id(psa_key_id_t key_id)150 static size_t slot_index_of_volatile_key_id(psa_key_id_t key_id)
151 {
152     return key_id & ((1LU << KEY_ID_SLOT_INDEX_WIDTH) - 1);
153 }
154 
155 /* In global_data.first_free_slot_index, use this special value to
156  * indicate that the slice is full. */
157 #define FREE_SLOT_INDEX_NONE ((size_t) -1)
158 
159 #if defined(MBEDTLS_TEST_HOOKS)
psa_key_slot_volatile_slice_count(void)160 size_t psa_key_slot_volatile_slice_count(void)
161 {
162     return KEY_SLOT_VOLATILE_SLICE_COUNT;
163 }
164 #endif
165 
166 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
167 
168 /* Static key store.
169  *
170  * All the keys (volatile or persistent) are in a single slice.
171  * We only use slices as a concept to allow some differences between
172  * static and dynamic key store management to be buried in auxiliary
173  * functions.
174  */
175 
176 #define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT
177 #define KEY_SLICE_COUNT 1u
178 #define KEY_SLOT_CACHE_SLICE_INDEX 0
179 
180 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
181 
182 
183 typedef struct {
184 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
185     psa_key_slot_t *key_slices[KEY_SLICE_COUNT];
186     size_t first_free_slot_index[KEY_SLOT_VOLATILE_SLICE_COUNT];
187 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
188     psa_key_slot_t key_slots[MBEDTLS_PSA_KEY_SLOT_COUNT];
189 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
190     uint8_t key_slots_initialized;
191 } psa_global_data_t;
192 
193 static psa_global_data_t global_data;
194 
psa_get_key_slots_initialized(void)195 static uint8_t psa_get_key_slots_initialized(void)
196 {
197     uint8_t initialized;
198 
199 #if defined(MBEDTLS_THREADING_C)
200     mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
201 #endif /* defined(MBEDTLS_THREADING_C) */
202 
203     initialized = global_data.key_slots_initialized;
204 
205 #if defined(MBEDTLS_THREADING_C)
206     mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
207 #endif /* defined(MBEDTLS_THREADING_C) */
208 
209     return initialized;
210 }
211 
212 
213 
214 /** The length of the given slice in the key slot table.
215  *
216  * \param slice_idx     The slice number. It must satisfy
217  *                      0 <= slice_idx < KEY_SLICE_COUNT.
218  *
219  * \return              The number of elements in the given slice.
220  */
221 static inline size_t key_slice_length(size_t slice_idx);
222 
223 /** Get a pointer to the slot where the given volatile key is located.
224  *
225  * \param key_id        The key identifier. It must be a valid volatile key
226  *                      identifier.
227  * \return              A pointer to the only slot that the given key
228  *                      can be in. Note that the slot may be empty or
229  *                      contain a different key.
230  */
231 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id);
232 
233 /** Get a pointer to an entry in the persistent key cache.
234  *
235  * \param slot_idx      The index in the table. It must satisfy
236  *                      0 <= slot_idx < PERSISTENT_KEY_CACHE_COUNT.
237  * \return              A pointer to the slot containing the given
238  *                      persistent key cache entry.
239  */
240 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx);
241 
242 /** Get a pointer to a slot given by slice and index.
243  *
244  * \param slice_idx     The slice number. It must satisfy
245  *                      0 <= slice_idx < KEY_SLICE_COUNT.
246  * \param slot_idx      An index in the given slice. It must satisfy
247  *                      0 <= slot_idx < key_slice_length(slice_idx).
248  *
249  * \return              A pointer to the given slot.
250  */
251 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx);
252 
253 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
254 
255 #if defined(MBEDTLS_TEST_HOOKS)
256 size_t (*mbedtls_test_hook_psa_volatile_key_slice_length)(size_t slice_idx) = NULL;
257 #endif
258 
key_slice_length(size_t slice_idx)259 static inline size_t key_slice_length(size_t slice_idx)
260 {
261     if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) {
262         return PERSISTENT_KEY_CACHE_COUNT;
263     } else {
264 #if defined(MBEDTLS_TEST_HOOKS)
265         if (mbedtls_test_hook_psa_volatile_key_slice_length != NULL) {
266             return mbedtls_test_hook_psa_volatile_key_slice_length(slice_idx);
267         }
268 #endif
269         return KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << slice_idx;
270     }
271 }
272 
get_volatile_key_slot(psa_key_id_t key_id)273 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id)
274 {
275     size_t slice_idx = slice_index_of_volatile_key_id(key_id);
276     if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) {
277         return NULL;
278     }
279     size_t slot_idx = slot_index_of_volatile_key_id(key_id);
280     if (slot_idx >= key_slice_length(slice_idx)) {
281         return NULL;
282     }
283     psa_key_slot_t *slice = global_data.key_slices[slice_idx];
284     if (slice == NULL) {
285         return NULL;
286     }
287     return &slice[slot_idx];
288 }
289 
get_persistent_key_slot(size_t slot_idx)290 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx)
291 {
292     return &global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX][slot_idx];
293 }
294 
get_key_slot(size_t slice_idx,size_t slot_idx)295 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx)
296 {
297     return &global_data.key_slices[slice_idx][slot_idx];
298 }
299 
300 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
301 
key_slice_length(size_t slice_idx)302 static inline size_t key_slice_length(size_t slice_idx)
303 {
304     (void) slice_idx;
305     return ARRAY_LENGTH(global_data.key_slots);
306 }
307 
get_volatile_key_slot(psa_key_id_t key_id)308 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id)
309 {
310     MBEDTLS_STATIC_ASSERT(ARRAY_LENGTH(global_data.key_slots) <=
311                           PSA_KEY_ID_VOLATILE_MAX - PSA_KEY_ID_VOLATILE_MIN + 1,
312                           "The key slot array is larger than the volatile key ID range");
313     return &global_data.key_slots[key_id - PSA_KEY_ID_VOLATILE_MIN];
314 }
315 
get_persistent_key_slot(size_t slot_idx)316 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx)
317 {
318     return &global_data.key_slots[slot_idx];
319 }
320 
get_key_slot(size_t slice_idx,size_t slot_idx)321 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx)
322 {
323     (void) slice_idx;
324     return &global_data.key_slots[slot_idx];
325 }
326 
327 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
328 
329 
330 
psa_is_valid_key_id(mbedtls_svc_key_id_t key,int vendor_ok)331 int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok)
332 {
333     psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
334 
335     if ((PSA_KEY_ID_USER_MIN <= key_id) &&
336         (key_id <= PSA_KEY_ID_USER_MAX)) {
337         return 1;
338     }
339 
340     if (vendor_ok &&
341         (PSA_KEY_ID_VENDOR_MIN <= key_id) &&
342         (key_id <= PSA_KEY_ID_VENDOR_MAX)) {
343         return 1;
344     }
345 
346     return 0;
347 }
348 
349 /** Get the description in memory of a key given its identifier and lock it.
350  *
351  * The descriptions of volatile keys and loaded persistent keys are
352  * stored in key slots. This function returns a pointer to the key slot
353  * containing the description of a key given its identifier.
354  *
355  * The function searches the key slots containing the description of the key
356  * with \p key identifier. The function does only read accesses to the key
357  * slots. The function does not load any persistent key thus does not access
358  * any storage.
359  *
360  * For volatile key identifiers, only one key slot is queried as a volatile
361  * key with identifier key_id can only be stored in slot of index
362  * ( key_id - #PSA_KEY_ID_VOLATILE_MIN ).
363  *
364  * On success, the function locks the key slot. It is the responsibility of
365  * the caller to unlock the key slot when it does not access it anymore.
366  *
367  * If multi-threading is enabled, the caller must hold the
368  * global key slot mutex.
369  *
370  * \param key           Key identifier to query.
371  * \param[out] p_slot   On success, `*p_slot` contains a pointer to the
372  *                      key slot containing the description of the key
373  *                      identified by \p key.
374  *
375  * \retval #PSA_SUCCESS
376  *         The pointer to the key slot containing the description of the key
377  *         identified by \p key was returned.
378  * \retval #PSA_ERROR_INVALID_HANDLE
379  *         \p key is not a valid key identifier.
380  * \retval #PSA_ERROR_DOES_NOT_EXIST
381  *         There is no key with key identifier \p key in the key slots.
382  */
psa_get_and_lock_key_slot_in_memory(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot)383 static psa_status_t psa_get_and_lock_key_slot_in_memory(
384     mbedtls_svc_key_id_t key, psa_key_slot_t **p_slot)
385 {
386     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
387     psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
388     size_t slot_idx;
389     psa_key_slot_t *slot = NULL;
390 
391     if (psa_key_id_is_volatile(key_id)) {
392         slot = get_volatile_key_slot(key_id);
393 
394         /* Check if both the PSA key identifier key_id and the owner
395          * identifier of key match those of the key slot. */
396         if (slot != NULL &&
397             slot->state == PSA_SLOT_FULL &&
398             mbedtls_svc_key_id_equal(key, slot->attr.id)) {
399             status = PSA_SUCCESS;
400         } else {
401             status = PSA_ERROR_DOES_NOT_EXIST;
402         }
403     } else {
404         if (!psa_is_valid_key_id(key, 1)) {
405             return PSA_ERROR_INVALID_HANDLE;
406         }
407 
408         for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) {
409             slot = get_persistent_key_slot(slot_idx);
410             /* Only consider slots which are in a full state. */
411             if ((slot->state == PSA_SLOT_FULL) &&
412                 (mbedtls_svc_key_id_equal(key, slot->attr.id))) {
413                 break;
414             }
415         }
416         status = (slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT) ?
417                  PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST;
418     }
419 
420     if (status == PSA_SUCCESS) {
421         status = psa_register_read(slot);
422         if (status == PSA_SUCCESS) {
423             *p_slot = slot;
424         }
425     }
426 
427     return status;
428 }
429 
psa_initialize_key_slots(void)430 psa_status_t psa_initialize_key_slots(void)
431 {
432 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
433     global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] =
434         mbedtls_calloc(PERSISTENT_KEY_CACHE_COUNT,
435                        sizeof(*global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX]));
436     if (global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] == NULL) {
437         return PSA_ERROR_INSUFFICIENT_MEMORY;
438     }
439 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
440     /* Nothing to do: program startup and psa_wipe_all_key_slots() both
441      * guarantee that the key slots are initialized to all-zero, which
442      * means that all the key slots are in a valid, empty state. The global
443      * data mutex is already held when calling this function, so no need to
444      * lock it here, to set the flag. */
445 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
446 
447     global_data.key_slots_initialized = 1;
448     return PSA_SUCCESS;
449 }
450 
psa_wipe_all_key_slots(void)451 void psa_wipe_all_key_slots(void)
452 {
453     for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) {
454 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
455         if (global_data.key_slices[slice_idx] == NULL) {
456             continue;
457         }
458 #endif  /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
459         for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) {
460             psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx);
461 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
462             /* When MBEDTLS_PSA_KEY_STORE_DYNAMIC is disabled, calling
463              * psa_wipe_key_slot() on an unused slot is useless, but it
464              * happens to work (because we flip the state to PENDING_DELETION).
465              *
466              * When MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled,
467              * psa_wipe_key_slot() needs to have a valid slice_index
468              * field, but that value might not be correct in a
469              * free slot, so we must not call it.
470              *
471              * Bypass the call to psa_wipe_key_slot() if the slot is empty,
472              * but only if MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, to save
473              * a few bytes of code size otherwise.
474              */
475             if (slot->state == PSA_SLOT_EMPTY) {
476                 continue;
477             }
478 #endif
479             slot->var.occupied.registered_readers = 1;
480             slot->state = PSA_SLOT_PENDING_DELETION;
481             (void) psa_wipe_key_slot(slot);
482         }
483 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
484         mbedtls_free(global_data.key_slices[slice_idx]);
485         global_data.key_slices[slice_idx] = NULL;
486 #endif  /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
487     }
488 
489 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
490     for (size_t slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) {
491         global_data.first_free_slot_index[slice_idx] = 0;
492     }
493 #endif  /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
494 
495     /* The global data mutex is already held when calling this function. */
496     global_data.key_slots_initialized = 0;
497 }
498 
499 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
500 
psa_allocate_volatile_key_slot(psa_key_id_t * key_id,psa_key_slot_t ** p_slot)501 static psa_status_t psa_allocate_volatile_key_slot(psa_key_id_t *key_id,
502                                                    psa_key_slot_t **p_slot)
503 {
504     size_t slice_idx;
505     for (slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) {
506         if (global_data.first_free_slot_index[slice_idx] != FREE_SLOT_INDEX_NONE) {
507             break;
508         }
509     }
510     if (slice_idx == KEY_SLOT_VOLATILE_SLICE_COUNT) {
511         return PSA_ERROR_INSUFFICIENT_MEMORY;
512     }
513 
514     if (global_data.key_slices[slice_idx] == NULL) {
515         global_data.key_slices[slice_idx] =
516             mbedtls_calloc(key_slice_length(slice_idx),
517                            sizeof(psa_key_slot_t));
518         if (global_data.key_slices[slice_idx] == NULL) {
519             return PSA_ERROR_INSUFFICIENT_MEMORY;
520         }
521     }
522     psa_key_slot_t *slice = global_data.key_slices[slice_idx];
523 
524     size_t slot_idx = global_data.first_free_slot_index[slice_idx];
525     *key_id = volatile_key_id_of_index(slice_idx, slot_idx);
526 
527     psa_key_slot_t *slot = &slice[slot_idx];
528     size_t next_free = slot_idx + 1 + slot->var.free.next_free_relative_to_next;
529     if (next_free >= key_slice_length(slice_idx)) {
530         next_free = FREE_SLOT_INDEX_NONE;
531     }
532     global_data.first_free_slot_index[slice_idx] = next_free;
533     /* The .next_free field is not meaningful when the slot is not free,
534      * so give it the same content as freshly initialized memory. */
535     slot->var.free.next_free_relative_to_next = 0;
536 
537     psa_status_t status = psa_key_slot_state_transition(slot,
538                                                         PSA_SLOT_EMPTY,
539                                                         PSA_SLOT_FILLING);
540     if (status != PSA_SUCCESS) {
541         /* The only reason for failure is if the slot state was not empty.
542          * This indicates that something has gone horribly wrong.
543          * In this case, we leave the slot out of the free list, and stop
544          * modifying it. This minimizes any further corruption. The slot
545          * is a memory leak, but that's a lesser evil. */
546         return status;
547     }
548 
549     *p_slot = slot;
550     /* We assert at compile time that the slice index fits in uint8_t. */
551     slot->slice_index = (uint8_t) slice_idx;
552     return PSA_SUCCESS;
553 }
554 
psa_free_key_slot(size_t slice_idx,psa_key_slot_t * slot)555 psa_status_t psa_free_key_slot(size_t slice_idx,
556                                psa_key_slot_t *slot)
557 {
558 
559     if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) {
560         /* This is a cache entry. We don't maintain a free list, so
561          * there's nothing to do. */
562         return PSA_SUCCESS;
563     }
564     if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) {
565         return PSA_ERROR_CORRUPTION_DETECTED;
566     }
567 
568     psa_key_slot_t *slice = global_data.key_slices[slice_idx];
569     psa_key_slot_t *slice_end = slice + key_slice_length(slice_idx);
570     if (slot < slice || slot >= slice_end) {
571         /* The slot isn't actually in the slice! We can't detect that
572          * condition for sure, because the pointer comparison itself is
573          * undefined behavior in that case. That same condition makes the
574          * subtraction to calculate the slot index also UB.
575          * Give up now to avoid causing further corruption.
576          */
577         return PSA_ERROR_CORRUPTION_DETECTED;
578     }
579     size_t slot_idx = slot - slice;
580 
581     size_t next_free = global_data.first_free_slot_index[slice_idx];
582     if (next_free >= key_slice_length(slice_idx)) {
583         /* The slot was full. The newly freed slot thus becomes the
584          * end of the free list. */
585         next_free = key_slice_length(slice_idx);
586     }
587     global_data.first_free_slot_index[slice_idx] = slot_idx;
588     slot->var.free.next_free_relative_to_next =
589         (int32_t) next_free - (int32_t) slot_idx - 1;
590 
591     return PSA_SUCCESS;
592 }
593 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
594 
psa_reserve_free_key_slot(psa_key_id_t * volatile_key_id,psa_key_slot_t ** p_slot)595 psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id,
596                                        psa_key_slot_t **p_slot)
597 {
598     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
599     size_t slot_idx;
600     psa_key_slot_t *selected_slot, *unused_persistent_key_slot;
601 
602     if (!psa_get_key_slots_initialized()) {
603         status = PSA_ERROR_BAD_STATE;
604         goto error;
605     }
606 
607 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
608     if (volatile_key_id != NULL) {
609         return psa_allocate_volatile_key_slot(volatile_key_id, p_slot);
610     }
611 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
612 
613     /* With a dynamic key store, allocate an entry in the cache slice,
614      * applicable only to non-volatile keys that get cached in RAM.
615      * With a static key store, allocate an entry in the sole slice,
616      * applicable to all keys. */
617     selected_slot = unused_persistent_key_slot = NULL;
618     for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) {
619         psa_key_slot_t *slot = get_key_slot(KEY_SLOT_CACHE_SLICE_INDEX, slot_idx);
620         if (slot->state == PSA_SLOT_EMPTY) {
621             selected_slot = slot;
622             break;
623         }
624 
625         if ((unused_persistent_key_slot == NULL) &&
626             (slot->state == PSA_SLOT_FULL) &&
627             (!psa_key_slot_has_readers(slot)) &&
628             (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime))) {
629             unused_persistent_key_slot = slot;
630         }
631     }
632 
633     /*
634      * If there is no unused key slot and there is at least one unlocked key
635      * slot containing the description of a persistent key, recycle the first
636      * such key slot we encountered. If we later need to operate on the
637      * persistent key we are evicting now, we will reload its description from
638      * storage.
639      */
640     if ((selected_slot == NULL) &&
641         (unused_persistent_key_slot != NULL)) {
642         selected_slot = unused_persistent_key_slot;
643         psa_register_read(selected_slot);
644         status = psa_wipe_key_slot(selected_slot);
645         if (status != PSA_SUCCESS) {
646             goto error;
647         }
648     }
649 
650     if (selected_slot != NULL) {
651         status = psa_key_slot_state_transition(selected_slot, PSA_SLOT_EMPTY,
652                                                PSA_SLOT_FILLING);
653         if (status != PSA_SUCCESS) {
654             goto error;
655         }
656 
657 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
658         selected_slot->slice_index = KEY_SLOT_CACHE_SLICE_INDEX;
659 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
660 
661 #if !defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
662         if (volatile_key_id != NULL) {
663             /* Refresh slot_idx, for when the slot is not the original
664              * selected_slot but rather unused_persistent_key_slot.  */
665             slot_idx = selected_slot - global_data.key_slots;
666             *volatile_key_id = PSA_KEY_ID_VOLATILE_MIN + slot_idx;
667         }
668 #endif
669         *p_slot = selected_slot;
670 
671         return PSA_SUCCESS;
672     }
673     status = PSA_ERROR_INSUFFICIENT_MEMORY;
674 
675 error:
676     *p_slot = NULL;
677 
678     return status;
679 }
680 
681 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
psa_load_persistent_key_into_slot(psa_key_slot_t * slot)682 static psa_status_t psa_load_persistent_key_into_slot(psa_key_slot_t *slot)
683 {
684     psa_status_t status = PSA_SUCCESS;
685     uint8_t *key_data = NULL;
686     size_t key_data_length = 0;
687 
688     status = psa_load_persistent_key(&slot->attr,
689                                      &key_data, &key_data_length);
690     if (status != PSA_SUCCESS) {
691         goto exit;
692     }
693 
694 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
695     /* Special handling is required for loading keys associated with a
696      * dynamically registered SE interface. */
697     const psa_drv_se_t *drv;
698     psa_drv_se_context_t *drv_context;
699     if (psa_get_se_driver(slot->attr.lifetime, &drv, &drv_context)) {
700         psa_se_key_data_storage_t *data;
701 
702         if (key_data_length != sizeof(*data)) {
703             status = PSA_ERROR_DATA_INVALID;
704             goto exit;
705         }
706         data = (psa_se_key_data_storage_t *) key_data;
707         status = psa_copy_key_material_into_slot(
708             slot, data->slot_number, sizeof(data->slot_number));
709         goto exit;
710     }
711 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
712 
713     status = psa_copy_key_material_into_slot(slot, key_data, key_data_length);
714     if (status != PSA_SUCCESS) {
715         goto exit;
716     }
717 
718 exit:
719     psa_free_persistent_key_data(key_data, key_data_length);
720     return status;
721 }
722 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
723 
724 #if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
725 
psa_load_builtin_key_into_slot(psa_key_slot_t * slot)726 static psa_status_t psa_load_builtin_key_into_slot(psa_key_slot_t *slot)
727 {
728     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
729     psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
730     psa_key_lifetime_t lifetime = PSA_KEY_LIFETIME_VOLATILE;
731     psa_drv_slot_number_t slot_number = 0;
732     size_t key_buffer_size = 0;
733     size_t key_buffer_length = 0;
734 
735     if (!psa_key_id_is_builtin(
736             MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id))) {
737         return PSA_ERROR_DOES_NOT_EXIST;
738     }
739 
740     /* Check the platform function to see whether this key actually exists */
741     status = mbedtls_psa_platform_get_builtin_key(
742         slot->attr.id, &lifetime, &slot_number);
743     if (status != PSA_SUCCESS) {
744         return status;
745     }
746 
747     /* Set required key attributes to ensure get_builtin_key can retrieve the
748      * full attributes. */
749     psa_set_key_id(&attributes, slot->attr.id);
750     psa_set_key_lifetime(&attributes, lifetime);
751 
752     /* Get the full key attributes from the driver in order to be able to
753      * calculate the required buffer size. */
754     status = psa_driver_wrapper_get_builtin_key(
755         slot_number, &attributes,
756         NULL, 0, NULL);
757     if (status != PSA_ERROR_BUFFER_TOO_SMALL) {
758         /* Builtin keys cannot be defined by the attributes alone */
759         if (status == PSA_SUCCESS) {
760             status = PSA_ERROR_CORRUPTION_DETECTED;
761         }
762         return status;
763     }
764 
765     /* If the key should exist according to the platform, then ask the driver
766      * what its expected size is. */
767     status = psa_driver_wrapper_get_key_buffer_size(&attributes,
768                                                     &key_buffer_size);
769     if (status != PSA_SUCCESS) {
770         return status;
771     }
772 
773     /* Allocate a buffer of the required size and load the builtin key directly
774      * into the (now properly sized) slot buffer. */
775     status = psa_allocate_buffer_to_slot(slot, key_buffer_size);
776     if (status != PSA_SUCCESS) {
777         return status;
778     }
779 
780     status = psa_driver_wrapper_get_builtin_key(
781         slot_number, &attributes,
782         slot->key.data, slot->key.bytes, &key_buffer_length);
783     if (status != PSA_SUCCESS) {
784         goto exit;
785     }
786 
787     /* Copy actual key length and core attributes into the slot on success */
788     slot->key.bytes = key_buffer_length;
789     slot->attr = attributes;
790 exit:
791     if (status != PSA_SUCCESS) {
792         psa_remove_key_data_from_memory(slot);
793     }
794     return status;
795 }
796 #endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
797 
psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot)798 psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,
799                                        psa_key_slot_t **p_slot)
800 {
801     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
802 
803     *p_slot = NULL;
804     if (!psa_get_key_slots_initialized()) {
805         return PSA_ERROR_BAD_STATE;
806     }
807 
808 #if defined(MBEDTLS_THREADING_C)
809     /* We need to set status as success, otherwise CORRUPTION_DETECTED
810      * would be returned if the lock fails. */
811     status = PSA_SUCCESS;
812     /* If the key is persistent and not loaded, we cannot unlock the mutex
813      * between checking if the key is loaded and setting the slot as FULL,
814      * as otherwise another thread may load and then destroy the key
815      * in the meantime. */
816     PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
817                               &mbedtls_threading_key_slot_mutex));
818 #endif
819     /*
820      * On success, the pointer to the slot is passed directly to the caller
821      * thus no need to unlock the key slot here.
822      */
823     status = psa_get_and_lock_key_slot_in_memory(key, p_slot);
824     if (status != PSA_ERROR_DOES_NOT_EXIST) {
825 #if defined(MBEDTLS_THREADING_C)
826         PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
827                                   &mbedtls_threading_key_slot_mutex));
828 #endif
829         return status;
830     }
831 
832     /* Loading keys from storage requires support for such a mechanism */
833 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
834     defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
835 
836     status = psa_reserve_free_key_slot(NULL, p_slot);
837     if (status != PSA_SUCCESS) {
838 #if defined(MBEDTLS_THREADING_C)
839         PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
840                                   &mbedtls_threading_key_slot_mutex));
841 #endif
842         return status;
843     }
844 
845     (*p_slot)->attr.id = key;
846     (*p_slot)->attr.lifetime = PSA_KEY_LIFETIME_PERSISTENT;
847 
848     status = PSA_ERROR_DOES_NOT_EXIST;
849 #if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
850     /* Load keys in the 'builtin' range through their own interface */
851     status = psa_load_builtin_key_into_slot(*p_slot);
852 #endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
853 
854 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
855     if (status == PSA_ERROR_DOES_NOT_EXIST) {
856         status = psa_load_persistent_key_into_slot(*p_slot);
857     }
858 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
859 
860     if (status != PSA_SUCCESS) {
861         psa_wipe_key_slot(*p_slot);
862 
863         /* If the key does not exist, we need to return
864          * PSA_ERROR_INVALID_HANDLE. */
865         if (status == PSA_ERROR_DOES_NOT_EXIST) {
866             status = PSA_ERROR_INVALID_HANDLE;
867         }
868     } else {
869         /* Add implicit usage flags. */
870         psa_extend_key_usage_flags(&(*p_slot)->attr.policy.usage);
871 
872         psa_key_slot_state_transition((*p_slot), PSA_SLOT_FILLING,
873                                       PSA_SLOT_FULL);
874         status = psa_register_read(*p_slot);
875     }
876 
877 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
878     status = PSA_ERROR_INVALID_HANDLE;
879 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
880 
881     if (status != PSA_SUCCESS) {
882         *p_slot = NULL;
883     }
884 #if defined(MBEDTLS_THREADING_C)
885     PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
886                               &mbedtls_threading_key_slot_mutex));
887 #endif
888     return status;
889 }
890 
psa_unregister_read(psa_key_slot_t * slot)891 psa_status_t psa_unregister_read(psa_key_slot_t *slot)
892 {
893     if (slot == NULL) {
894         return PSA_SUCCESS;
895     }
896     if ((slot->state != PSA_SLOT_FULL) &&
897         (slot->state != PSA_SLOT_PENDING_DELETION)) {
898         return PSA_ERROR_CORRUPTION_DETECTED;
899     }
900 
901     /* If we are the last reader and the slot is marked for deletion,
902      * we must wipe the slot here. */
903     if ((slot->state == PSA_SLOT_PENDING_DELETION) &&
904         (slot->var.occupied.registered_readers == 1)) {
905         return psa_wipe_key_slot(slot);
906     }
907 
908     if (psa_key_slot_has_readers(slot)) {
909         slot->var.occupied.registered_readers--;
910         return PSA_SUCCESS;
911     }
912 
913     /*
914      * As the return error code may not be handled in case of multiple errors,
915      * do our best to report if there are no registered readers. Assert with
916      * MBEDTLS_TEST_HOOK_TEST_ASSERT that there are registered readers:
917      * if the MBEDTLS_TEST_HOOKS configuration option is enabled and
918      * the function is called as part of the execution of a test suite, the
919      * execution of the test suite is stopped in error if the assertion fails.
920      */
921     MBEDTLS_TEST_HOOK_TEST_ASSERT(psa_key_slot_has_readers(slot));
922     return PSA_ERROR_CORRUPTION_DETECTED;
923 }
924 
psa_unregister_read_under_mutex(psa_key_slot_t * slot)925 psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot)
926 {
927     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
928 #if defined(MBEDTLS_THREADING_C)
929     /* We need to set status as success, otherwise CORRUPTION_DETECTED
930      * would be returned if the lock fails. */
931     status = PSA_SUCCESS;
932     PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
933                               &mbedtls_threading_key_slot_mutex));
934 #endif
935     status = psa_unregister_read(slot);
936 #if defined(MBEDTLS_THREADING_C)
937     PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
938                               &mbedtls_threading_key_slot_mutex));
939 #endif
940     return status;
941 }
942 
psa_validate_key_location(psa_key_lifetime_t lifetime,psa_se_drv_table_entry_t ** p_drv)943 psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime,
944                                        psa_se_drv_table_entry_t **p_drv)
945 {
946     if (psa_key_lifetime_is_external(lifetime)) {
947 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
948         /* Check whether a driver is registered against this lifetime */
949         psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime);
950         if (driver != NULL) {
951             if (p_drv != NULL) {
952                 *p_drv = driver;
953             }
954             return PSA_SUCCESS;
955         }
956 #else /* MBEDTLS_PSA_CRYPTO_SE_C */
957         (void) p_drv;
958 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
959 
960         /* Key location for external keys gets checked by the wrapper */
961         return PSA_SUCCESS;
962     } else {
963         /* Local/internal keys are always valid */
964         return PSA_SUCCESS;
965     }
966 }
967 
psa_validate_key_persistence(psa_key_lifetime_t lifetime)968 psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime)
969 {
970     if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) {
971         /* Volatile keys are always supported */
972         return PSA_SUCCESS;
973     } else {
974         /* Persistent keys require storage support */
975 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
976         if (PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)) {
977             return PSA_ERROR_INVALID_ARGUMENT;
978         } else {
979             return PSA_SUCCESS;
980         }
981 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
982         return PSA_ERROR_NOT_SUPPORTED;
983 #endif /* !MBEDTLS_PSA_CRYPTO_STORAGE_C */
984     }
985 }
986 
psa_open_key(mbedtls_svc_key_id_t key,psa_key_handle_t * handle)987 psa_status_t psa_open_key(mbedtls_svc_key_id_t key, psa_key_handle_t *handle)
988 {
989 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
990     defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
991     psa_status_t status;
992     psa_key_slot_t *slot;
993 
994     status = psa_get_and_lock_key_slot(key, &slot);
995     if (status != PSA_SUCCESS) {
996         *handle = PSA_KEY_HANDLE_INIT;
997         if (status == PSA_ERROR_INVALID_HANDLE) {
998             status = PSA_ERROR_DOES_NOT_EXIST;
999         }
1000 
1001         return status;
1002     }
1003 
1004     *handle = key;
1005 
1006     return psa_unregister_read_under_mutex(slot);
1007 
1008 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
1009     (void) key;
1010     *handle = PSA_KEY_HANDLE_INIT;
1011     return PSA_ERROR_NOT_SUPPORTED;
1012 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
1013 }
1014 
psa_close_key(psa_key_handle_t handle)1015 psa_status_t psa_close_key(psa_key_handle_t handle)
1016 {
1017     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1018     psa_key_slot_t *slot;
1019 
1020     if (psa_key_handle_is_null(handle)) {
1021         return PSA_SUCCESS;
1022     }
1023 
1024 #if defined(MBEDTLS_THREADING_C)
1025     /* We need to set status as success, otherwise CORRUPTION_DETECTED
1026      * would be returned if the lock fails. */
1027     status = PSA_SUCCESS;
1028     PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
1029                               &mbedtls_threading_key_slot_mutex));
1030 #endif
1031     status = psa_get_and_lock_key_slot_in_memory(handle, &slot);
1032     if (status != PSA_SUCCESS) {
1033         if (status == PSA_ERROR_DOES_NOT_EXIST) {
1034             status = PSA_ERROR_INVALID_HANDLE;
1035         }
1036 #if defined(MBEDTLS_THREADING_C)
1037         PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1038                                   &mbedtls_threading_key_slot_mutex));
1039 #endif
1040         return status;
1041     }
1042 
1043     if (slot->var.occupied.registered_readers == 1) {
1044         status = psa_wipe_key_slot(slot);
1045     } else {
1046         status = psa_unregister_read(slot);
1047     }
1048 #if defined(MBEDTLS_THREADING_C)
1049     PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1050                               &mbedtls_threading_key_slot_mutex));
1051 #endif
1052 
1053     return status;
1054 }
1055 
psa_purge_key(mbedtls_svc_key_id_t key)1056 psa_status_t psa_purge_key(mbedtls_svc_key_id_t key)
1057 {
1058     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1059     psa_key_slot_t *slot;
1060 
1061 #if defined(MBEDTLS_THREADING_C)
1062     /* We need to set status as success, otherwise CORRUPTION_DETECTED
1063      * would be returned if the lock fails. */
1064     status = PSA_SUCCESS;
1065     PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
1066                               &mbedtls_threading_key_slot_mutex));
1067 #endif
1068     status = psa_get_and_lock_key_slot_in_memory(key, &slot);
1069     if (status != PSA_SUCCESS) {
1070 #if defined(MBEDTLS_THREADING_C)
1071         PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1072                                   &mbedtls_threading_key_slot_mutex));
1073 #endif
1074         return status;
1075     }
1076 
1077     if ((!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) &&
1078         (slot->var.occupied.registered_readers == 1)) {
1079         status = psa_wipe_key_slot(slot);
1080     } else {
1081         status = psa_unregister_read(slot);
1082     }
1083 #if defined(MBEDTLS_THREADING_C)
1084     PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1085                               &mbedtls_threading_key_slot_mutex));
1086 #endif
1087 
1088     return status;
1089 }
1090 
mbedtls_psa_get_stats(mbedtls_psa_stats_t * stats)1091 void mbedtls_psa_get_stats(mbedtls_psa_stats_t *stats)
1092 {
1093     memset(stats, 0, sizeof(*stats));
1094 
1095     for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) {
1096 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
1097         if (global_data.key_slices[slice_idx] == NULL) {
1098             continue;
1099         }
1100 #endif  /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
1101         for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) {
1102             const psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx);
1103             if (slot->state == PSA_SLOT_EMPTY) {
1104                 ++stats->empty_slots;
1105                 continue;
1106             }
1107             if (psa_key_slot_has_readers(slot)) {
1108                 ++stats->locked_slots;
1109             }
1110             if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
1111                 ++stats->volatile_slots;
1112             } else {
1113                 psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
1114                 ++stats->persistent_slots;
1115                 if (id > stats->max_open_internal_key_id) {
1116                     stats->max_open_internal_key_id = id;
1117                 }
1118             }
1119             if (PSA_KEY_LIFETIME_GET_LOCATION(slot->attr.lifetime) !=
1120                 PSA_KEY_LOCATION_LOCAL_STORAGE) {
1121                 psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
1122                 ++stats->external_slots;
1123                 if (id > stats->max_open_external_key_id) {
1124                     stats->max_open_external_key_id = id;
1125                 }
1126             }
1127         }
1128     }
1129 }
1130 
1131 #endif /* MBEDTLS_PSA_CRYPTO_C */
1132