1 /*
2 * PSA crypto layer on top of Mbed TLS crypto
3 */
4 /*
5 * Copyright The Mbed TLS Contributors
6 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
7 */
8
9 #include "common.h"
10
11 #if defined(MBEDTLS_PSA_CRYPTO_C)
12
13 #include "psa/crypto.h"
14
15 #include "psa_crypto_core.h"
16 #include "psa_crypto_driver_wrappers_no_static.h"
17 #include "psa_crypto_slot_management.h"
18 #include "psa_crypto_storage.h"
19 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
20 #include "psa_crypto_se.h"
21 #endif
22
23 #include <stdlib.h>
24 #include <string.h>
25 #include "mbedtls/platform.h"
26 #if defined(MBEDTLS_THREADING_C)
27 #include "mbedtls/threading.h"
28 #endif
29
30
31
32 /* Make sure we have distinct ranges of key identifiers for distinct
33 * purposes. */
34 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MIN < PSA_KEY_ID_USER_MAX,
35 "Empty user key ID range");
36 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN < PSA_KEY_ID_VENDOR_MAX,
37 "Empty vendor key ID range");
38 MBEDTLS_STATIC_ASSERT(MBEDTLS_PSA_KEY_ID_BUILTIN_MIN < MBEDTLS_PSA_KEY_ID_BUILTIN_MAX,
39 "Empty builtin key ID range");
40 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MIN < PSA_KEY_ID_VOLATILE_MAX,
41 "Empty volatile key ID range");
42
43 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MAX < PSA_KEY_ID_VENDOR_MIN ||
44 PSA_KEY_ID_VENDOR_MAX < PSA_KEY_ID_USER_MIN,
45 "Overlap between user key IDs and vendor key IDs");
46
47 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= MBEDTLS_PSA_KEY_ID_BUILTIN_MIN &&
48 MBEDTLS_PSA_KEY_ID_BUILTIN_MAX <= PSA_KEY_ID_VENDOR_MAX,
49 "Builtin key identifiers are not in the vendor range");
50
51 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= PSA_KEY_ID_VOLATILE_MIN &&
52 PSA_KEY_ID_VOLATILE_MAX <= PSA_KEY_ID_VENDOR_MAX,
53 "Volatile key identifiers are not in the vendor range");
54
55 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MAX < MBEDTLS_PSA_KEY_ID_BUILTIN_MIN ||
56 MBEDTLS_PSA_KEY_ID_BUILTIN_MAX < PSA_KEY_ID_VOLATILE_MIN,
57 "Overlap between builtin key IDs and volatile key IDs");
58
59
60
61 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
62
63 /* Dynamic key store.
64 *
65 * The key store consists of multiple slices.
66 *
67 * The volatile keys are stored in variable-sized tables called slices.
68 * Slices are allocated on demand and deallocated when possible.
69 * The size of slices increases exponentially, so the average overhead
70 * (number of slots that are allocated but not used) is roughly
71 * proportional to the number of keys (with a factor that grows
72 * when the key store is fragmented).
73 *
74 * One slice is dedicated to the cache of persistent and built-in keys.
75 * For simplicity, they are separated from volatile keys. This cache
76 * slice has a fixed size and has the slice index KEY_SLOT_CACHE_SLICE_INDEX,
77 * located after the slices for volatile keys.
78 */
79
80 /* Size of the last slice containing the cache of persistent and built-in keys. */
81 #define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT
82
83 /* Volatile keys are stored in slices 0 through
84 * (KEY_SLOT_VOLATILE_SLICE_COUNT - 1) inclusive.
85 * Each slice is twice the size of the previous slice.
86 * Volatile key identifiers encode the slice number as follows:
87 * bits 30..31: 0b10 (mandated by the PSA Crypto specification).
88 * bits 25..29: slice index (0...KEY_SLOT_VOLATILE_SLICE_COUNT-1)
89 * bits 0..24: slot index in slice
90 */
91 #define KEY_ID_SLOT_INDEX_WIDTH 25u
92 #define KEY_ID_SLICE_INDEX_WIDTH 5u
93
94 #define KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH 16u
95 #define KEY_SLOT_VOLATILE_SLICE_COUNT 22u
96 #define KEY_SLICE_COUNT (KEY_SLOT_VOLATILE_SLICE_COUNT + 1u)
97 #define KEY_SLOT_CACHE_SLICE_INDEX KEY_SLOT_VOLATILE_SLICE_COUNT
98
99
100 /* Check that the length of the largest slice (calculated as
101 * KEY_SLICE_LENGTH_MAX below) does not overflow size_t. We use
102 * an indirect method in case the calculation of KEY_SLICE_LENGTH_MAX
103 * itself overflows uintmax_t: if (BASE_LENGTH << c)
104 * overflows size_t then BASE_LENGTH > SIZE_MAX >> c.
105 */
106 #if (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH > \
107 SIZE_MAX >> (KEY_SLOT_VOLATILE_SLICE_COUNT - 1))
108 #error "Maximum slice length overflows size_t"
109 #endif
110
111 #if KEY_ID_SLICE_INDEX_WIDTH + KEY_ID_SLOT_INDEX_WIDTH > 30
112 #error "Not enough room in volatile key IDs for slice index and slot index"
113 #endif
114 #if KEY_SLOT_VOLATILE_SLICE_COUNT > (1 << KEY_ID_SLICE_INDEX_WIDTH)
115 #error "Too many slices to fit the slice index in a volatile key ID"
116 #endif
117 #define KEY_SLICE_LENGTH_MAX \
118 (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << (KEY_SLOT_VOLATILE_SLICE_COUNT - 1))
119 #if KEY_SLICE_LENGTH_MAX > 1 << KEY_ID_SLOT_INDEX_WIDTH
120 #error "Not enough room in volatile key IDs for a slot index in the largest slice"
121 #endif
122 #if KEY_ID_SLICE_INDEX_WIDTH > 8
123 #error "Slice index does not fit in uint8_t for psa_key_slot_t::slice_index"
124 #endif
125
126
127 /* Calculate the volatile key id to use for a given slot.
128 * This function assumes valid parameter values. */
volatile_key_id_of_index(size_t slice_idx,size_t slot_idx)129 static psa_key_id_t volatile_key_id_of_index(size_t slice_idx,
130 size_t slot_idx)
131 {
132 /* We assert above that the slice and slot indexes fit in separate
133 * bit-fields inside psa_key_id_t, which is a 32-bit type per the
134 * PSA Cryptography specification. */
135 return (psa_key_id_t) (0x40000000u |
136 (slice_idx << KEY_ID_SLOT_INDEX_WIDTH) |
137 slot_idx);
138 }
139
140 /* Calculate the slice containing the given volatile key.
141 * This function assumes valid parameter values. */
slice_index_of_volatile_key_id(psa_key_id_t key_id)142 static size_t slice_index_of_volatile_key_id(psa_key_id_t key_id)
143 {
144 size_t mask = (1LU << KEY_ID_SLICE_INDEX_WIDTH) - 1;
145 return (key_id >> KEY_ID_SLOT_INDEX_WIDTH) & mask;
146 }
147
148 /* Calculate the index of the slot containing the given volatile key.
149 * This function assumes valid parameter values. */
slot_index_of_volatile_key_id(psa_key_id_t key_id)150 static size_t slot_index_of_volatile_key_id(psa_key_id_t key_id)
151 {
152 return key_id & ((1LU << KEY_ID_SLOT_INDEX_WIDTH) - 1);
153 }
154
155 /* In global_data.first_free_slot_index, use this special value to
156 * indicate that the slice is full. */
157 #define FREE_SLOT_INDEX_NONE ((size_t) -1)
158
159 #if defined(MBEDTLS_TEST_HOOKS)
psa_key_slot_volatile_slice_count(void)160 size_t psa_key_slot_volatile_slice_count(void)
161 {
162 return KEY_SLOT_VOLATILE_SLICE_COUNT;
163 }
164 #endif
165
166 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
167
168 /* Static key store.
169 *
170 * All the keys (volatile or persistent) are in a single slice.
171 * We only use slices as a concept to allow some differences between
172 * static and dynamic key store management to be buried in auxiliary
173 * functions.
174 */
175
176 #define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT
177 #define KEY_SLICE_COUNT 1u
178 #define KEY_SLOT_CACHE_SLICE_INDEX 0
179
180 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
181
182
183 typedef struct {
184 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
185 psa_key_slot_t *key_slices[KEY_SLICE_COUNT];
186 size_t first_free_slot_index[KEY_SLOT_VOLATILE_SLICE_COUNT];
187 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
188 psa_key_slot_t key_slots[MBEDTLS_PSA_KEY_SLOT_COUNT];
189 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
190 uint8_t key_slots_initialized;
191 } psa_global_data_t;
192
193 static psa_global_data_t global_data;
194
psa_get_key_slots_initialized(void)195 static uint8_t psa_get_key_slots_initialized(void)
196 {
197 uint8_t initialized;
198
199 #if defined(MBEDTLS_THREADING_C)
200 mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
201 #endif /* defined(MBEDTLS_THREADING_C) */
202
203 initialized = global_data.key_slots_initialized;
204
205 #if defined(MBEDTLS_THREADING_C)
206 mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
207 #endif /* defined(MBEDTLS_THREADING_C) */
208
209 return initialized;
210 }
211
212
213
214 /** The length of the given slice in the key slot table.
215 *
216 * \param slice_idx The slice number. It must satisfy
217 * 0 <= slice_idx < KEY_SLICE_COUNT.
218 *
219 * \return The number of elements in the given slice.
220 */
221 static inline size_t key_slice_length(size_t slice_idx);
222
223 /** Get a pointer to the slot where the given volatile key is located.
224 *
225 * \param key_id The key identifier. It must be a valid volatile key
226 * identifier.
227 * \return A pointer to the only slot that the given key
228 * can be in. Note that the slot may be empty or
229 * contain a different key.
230 */
231 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id);
232
233 /** Get a pointer to an entry in the persistent key cache.
234 *
235 * \param slot_idx The index in the table. It must satisfy
236 * 0 <= slot_idx < PERSISTENT_KEY_CACHE_COUNT.
237 * \return A pointer to the slot containing the given
238 * persistent key cache entry.
239 */
240 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx);
241
242 /** Get a pointer to a slot given by slice and index.
243 *
244 * \param slice_idx The slice number. It must satisfy
245 * 0 <= slice_idx < KEY_SLICE_COUNT.
246 * \param slot_idx An index in the given slice. It must satisfy
247 * 0 <= slot_idx < key_slice_length(slice_idx).
248 *
249 * \return A pointer to the given slot.
250 */
251 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx);
252
253 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
254
255 #if defined(MBEDTLS_TEST_HOOKS)
256 size_t (*mbedtls_test_hook_psa_volatile_key_slice_length)(size_t slice_idx) = NULL;
257 #endif
258
key_slice_length(size_t slice_idx)259 static inline size_t key_slice_length(size_t slice_idx)
260 {
261 if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) {
262 return PERSISTENT_KEY_CACHE_COUNT;
263 } else {
264 #if defined(MBEDTLS_TEST_HOOKS)
265 if (mbedtls_test_hook_psa_volatile_key_slice_length != NULL) {
266 return mbedtls_test_hook_psa_volatile_key_slice_length(slice_idx);
267 }
268 #endif
269 return KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << slice_idx;
270 }
271 }
272
get_volatile_key_slot(psa_key_id_t key_id)273 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id)
274 {
275 size_t slice_idx = slice_index_of_volatile_key_id(key_id);
276 if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) {
277 return NULL;
278 }
279 size_t slot_idx = slot_index_of_volatile_key_id(key_id);
280 if (slot_idx >= key_slice_length(slice_idx)) {
281 return NULL;
282 }
283 psa_key_slot_t *slice = global_data.key_slices[slice_idx];
284 if (slice == NULL) {
285 return NULL;
286 }
287 return &slice[slot_idx];
288 }
289
get_persistent_key_slot(size_t slot_idx)290 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx)
291 {
292 return &global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX][slot_idx];
293 }
294
get_key_slot(size_t slice_idx,size_t slot_idx)295 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx)
296 {
297 return &global_data.key_slices[slice_idx][slot_idx];
298 }
299
300 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
301
key_slice_length(size_t slice_idx)302 static inline size_t key_slice_length(size_t slice_idx)
303 {
304 (void) slice_idx;
305 return ARRAY_LENGTH(global_data.key_slots);
306 }
307
get_volatile_key_slot(psa_key_id_t key_id)308 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id)
309 {
310 MBEDTLS_STATIC_ASSERT(ARRAY_LENGTH(global_data.key_slots) <=
311 PSA_KEY_ID_VOLATILE_MAX - PSA_KEY_ID_VOLATILE_MIN + 1,
312 "The key slot array is larger than the volatile key ID range");
313 return &global_data.key_slots[key_id - PSA_KEY_ID_VOLATILE_MIN];
314 }
315
get_persistent_key_slot(size_t slot_idx)316 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx)
317 {
318 return &global_data.key_slots[slot_idx];
319 }
320
get_key_slot(size_t slice_idx,size_t slot_idx)321 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx)
322 {
323 (void) slice_idx;
324 return &global_data.key_slots[slot_idx];
325 }
326
327 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
328
329
330
psa_is_valid_key_id(mbedtls_svc_key_id_t key,int vendor_ok)331 int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok)
332 {
333 psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
334
335 if ((PSA_KEY_ID_USER_MIN <= key_id) &&
336 (key_id <= PSA_KEY_ID_USER_MAX)) {
337 return 1;
338 }
339
340 if (vendor_ok &&
341 (PSA_KEY_ID_VENDOR_MIN <= key_id) &&
342 (key_id <= PSA_KEY_ID_VENDOR_MAX)) {
343 return 1;
344 }
345
346 return 0;
347 }
348
349 /** Get the description in memory of a key given its identifier and lock it.
350 *
351 * The descriptions of volatile keys and loaded persistent keys are
352 * stored in key slots. This function returns a pointer to the key slot
353 * containing the description of a key given its identifier.
354 *
355 * The function searches the key slots containing the description of the key
356 * with \p key identifier. The function does only read accesses to the key
357 * slots. The function does not load any persistent key thus does not access
358 * any storage.
359 *
360 * For volatile key identifiers, only one key slot is queried as a volatile
361 * key with identifier key_id can only be stored in slot of index
362 * ( key_id - #PSA_KEY_ID_VOLATILE_MIN ).
363 *
364 * On success, the function locks the key slot. It is the responsibility of
365 * the caller to unlock the key slot when it does not access it anymore.
366 *
367 * If multi-threading is enabled, the caller must hold the
368 * global key slot mutex.
369 *
370 * \param key Key identifier to query.
371 * \param[out] p_slot On success, `*p_slot` contains a pointer to the
372 * key slot containing the description of the key
373 * identified by \p key.
374 *
375 * \retval #PSA_SUCCESS
376 * The pointer to the key slot containing the description of the key
377 * identified by \p key was returned.
378 * \retval #PSA_ERROR_INVALID_HANDLE
379 * \p key is not a valid key identifier.
380 * \retval #PSA_ERROR_DOES_NOT_EXIST
381 * There is no key with key identifier \p key in the key slots.
382 */
psa_get_and_lock_key_slot_in_memory(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot)383 static psa_status_t psa_get_and_lock_key_slot_in_memory(
384 mbedtls_svc_key_id_t key, psa_key_slot_t **p_slot)
385 {
386 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
387 psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
388 size_t slot_idx;
389 psa_key_slot_t *slot = NULL;
390
391 if (psa_key_id_is_volatile(key_id)) {
392 slot = get_volatile_key_slot(key_id);
393
394 /* Check if both the PSA key identifier key_id and the owner
395 * identifier of key match those of the key slot. */
396 if (slot != NULL &&
397 slot->state == PSA_SLOT_FULL &&
398 mbedtls_svc_key_id_equal(key, slot->attr.id)) {
399 status = PSA_SUCCESS;
400 } else {
401 status = PSA_ERROR_DOES_NOT_EXIST;
402 }
403 } else {
404 if (!psa_is_valid_key_id(key, 1)) {
405 return PSA_ERROR_INVALID_HANDLE;
406 }
407
408 for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) {
409 slot = get_persistent_key_slot(slot_idx);
410 /* Only consider slots which are in a full state. */
411 if ((slot->state == PSA_SLOT_FULL) &&
412 (mbedtls_svc_key_id_equal(key, slot->attr.id))) {
413 break;
414 }
415 }
416 status = (slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT) ?
417 PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST;
418 }
419
420 if (status == PSA_SUCCESS) {
421 status = psa_register_read(slot);
422 if (status == PSA_SUCCESS) {
423 *p_slot = slot;
424 }
425 }
426
427 return status;
428 }
429
psa_initialize_key_slots(void)430 psa_status_t psa_initialize_key_slots(void)
431 {
432 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
433 global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] =
434 mbedtls_calloc(PERSISTENT_KEY_CACHE_COUNT,
435 sizeof(*global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX]));
436 if (global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] == NULL) {
437 return PSA_ERROR_INSUFFICIENT_MEMORY;
438 }
439 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
440 /* Nothing to do: program startup and psa_wipe_all_key_slots() both
441 * guarantee that the key slots are initialized to all-zero, which
442 * means that all the key slots are in a valid, empty state. The global
443 * data mutex is already held when calling this function, so no need to
444 * lock it here, to set the flag. */
445 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
446
447 global_data.key_slots_initialized = 1;
448 return PSA_SUCCESS;
449 }
450
psa_wipe_all_key_slots(void)451 void psa_wipe_all_key_slots(void)
452 {
453 for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) {
454 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
455 if (global_data.key_slices[slice_idx] == NULL) {
456 continue;
457 }
458 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
459 for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) {
460 psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx);
461 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
462 /* When MBEDTLS_PSA_KEY_STORE_DYNAMIC is disabled, calling
463 * psa_wipe_key_slot() on an unused slot is useless, but it
464 * happens to work (because we flip the state to PENDING_DELETION).
465 *
466 * When MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled,
467 * psa_wipe_key_slot() needs to have a valid slice_index
468 * field, but that value might not be correct in a
469 * free slot, so we must not call it.
470 *
471 * Bypass the call to psa_wipe_key_slot() if the slot is empty,
472 * but only if MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, to save
473 * a few bytes of code size otherwise.
474 */
475 if (slot->state == PSA_SLOT_EMPTY) {
476 continue;
477 }
478 #endif
479 slot->var.occupied.registered_readers = 1;
480 slot->state = PSA_SLOT_PENDING_DELETION;
481 (void) psa_wipe_key_slot(slot);
482 }
483 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
484 mbedtls_free(global_data.key_slices[slice_idx]);
485 global_data.key_slices[slice_idx] = NULL;
486 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
487 }
488
489 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
490 for (size_t slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) {
491 global_data.first_free_slot_index[slice_idx] = 0;
492 }
493 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
494
495 /* The global data mutex is already held when calling this function. */
496 global_data.key_slots_initialized = 0;
497 }
498
499 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
500
psa_allocate_volatile_key_slot(psa_key_id_t * key_id,psa_key_slot_t ** p_slot)501 static psa_status_t psa_allocate_volatile_key_slot(psa_key_id_t *key_id,
502 psa_key_slot_t **p_slot)
503 {
504 size_t slice_idx;
505 for (slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) {
506 if (global_data.first_free_slot_index[slice_idx] != FREE_SLOT_INDEX_NONE) {
507 break;
508 }
509 }
510 if (slice_idx == KEY_SLOT_VOLATILE_SLICE_COUNT) {
511 return PSA_ERROR_INSUFFICIENT_MEMORY;
512 }
513
514 if (global_data.key_slices[slice_idx] == NULL) {
515 global_data.key_slices[slice_idx] =
516 mbedtls_calloc(key_slice_length(slice_idx),
517 sizeof(psa_key_slot_t));
518 if (global_data.key_slices[slice_idx] == NULL) {
519 return PSA_ERROR_INSUFFICIENT_MEMORY;
520 }
521 }
522 psa_key_slot_t *slice = global_data.key_slices[slice_idx];
523
524 size_t slot_idx = global_data.first_free_slot_index[slice_idx];
525 *key_id = volatile_key_id_of_index(slice_idx, slot_idx);
526
527 psa_key_slot_t *slot = &slice[slot_idx];
528 size_t next_free = slot_idx + 1 + slot->var.free.next_free_relative_to_next;
529 if (next_free >= key_slice_length(slice_idx)) {
530 next_free = FREE_SLOT_INDEX_NONE;
531 }
532 global_data.first_free_slot_index[slice_idx] = next_free;
533 /* The .next_free field is not meaningful when the slot is not free,
534 * so give it the same content as freshly initialized memory. */
535 slot->var.free.next_free_relative_to_next = 0;
536
537 psa_status_t status = psa_key_slot_state_transition(slot,
538 PSA_SLOT_EMPTY,
539 PSA_SLOT_FILLING);
540 if (status != PSA_SUCCESS) {
541 /* The only reason for failure is if the slot state was not empty.
542 * This indicates that something has gone horribly wrong.
543 * In this case, we leave the slot out of the free list, and stop
544 * modifying it. This minimizes any further corruption. The slot
545 * is a memory leak, but that's a lesser evil. */
546 return status;
547 }
548
549 *p_slot = slot;
550 /* We assert at compile time that the slice index fits in uint8_t. */
551 slot->slice_index = (uint8_t) slice_idx;
552 return PSA_SUCCESS;
553 }
554
psa_free_key_slot(size_t slice_idx,psa_key_slot_t * slot)555 psa_status_t psa_free_key_slot(size_t slice_idx,
556 psa_key_slot_t *slot)
557 {
558
559 if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) {
560 /* This is a cache entry. We don't maintain a free list, so
561 * there's nothing to do. */
562 return PSA_SUCCESS;
563 }
564 if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) {
565 return PSA_ERROR_CORRUPTION_DETECTED;
566 }
567
568 psa_key_slot_t *slice = global_data.key_slices[slice_idx];
569 psa_key_slot_t *slice_end = slice + key_slice_length(slice_idx);
570 if (slot < slice || slot >= slice_end) {
571 /* The slot isn't actually in the slice! We can't detect that
572 * condition for sure, because the pointer comparison itself is
573 * undefined behavior in that case. That same condition makes the
574 * subtraction to calculate the slot index also UB.
575 * Give up now to avoid causing further corruption.
576 */
577 return PSA_ERROR_CORRUPTION_DETECTED;
578 }
579 size_t slot_idx = slot - slice;
580
581 size_t next_free = global_data.first_free_slot_index[slice_idx];
582 if (next_free >= key_slice_length(slice_idx)) {
583 /* The slot was full. The newly freed slot thus becomes the
584 * end of the free list. */
585 next_free = key_slice_length(slice_idx);
586 }
587 global_data.first_free_slot_index[slice_idx] = slot_idx;
588 slot->var.free.next_free_relative_to_next =
589 (int32_t) next_free - (int32_t) slot_idx - 1;
590
591 return PSA_SUCCESS;
592 }
593 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
594
psa_reserve_free_key_slot(psa_key_id_t * volatile_key_id,psa_key_slot_t ** p_slot)595 psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id,
596 psa_key_slot_t **p_slot)
597 {
598 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
599 size_t slot_idx;
600 psa_key_slot_t *selected_slot, *unused_persistent_key_slot;
601
602 if (!psa_get_key_slots_initialized()) {
603 status = PSA_ERROR_BAD_STATE;
604 goto error;
605 }
606
607 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
608 if (volatile_key_id != NULL) {
609 return psa_allocate_volatile_key_slot(volatile_key_id, p_slot);
610 }
611 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
612
613 /* With a dynamic key store, allocate an entry in the cache slice,
614 * applicable only to non-volatile keys that get cached in RAM.
615 * With a static key store, allocate an entry in the sole slice,
616 * applicable to all keys. */
617 selected_slot = unused_persistent_key_slot = NULL;
618 for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) {
619 psa_key_slot_t *slot = get_key_slot(KEY_SLOT_CACHE_SLICE_INDEX, slot_idx);
620 if (slot->state == PSA_SLOT_EMPTY) {
621 selected_slot = slot;
622 break;
623 }
624
625 if ((unused_persistent_key_slot == NULL) &&
626 (slot->state == PSA_SLOT_FULL) &&
627 (!psa_key_slot_has_readers(slot)) &&
628 (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime))) {
629 unused_persistent_key_slot = slot;
630 }
631 }
632
633 /*
634 * If there is no unused key slot and there is at least one unlocked key
635 * slot containing the description of a persistent key, recycle the first
636 * such key slot we encountered. If we later need to operate on the
637 * persistent key we are evicting now, we will reload its description from
638 * storage.
639 */
640 if ((selected_slot == NULL) &&
641 (unused_persistent_key_slot != NULL)) {
642 selected_slot = unused_persistent_key_slot;
643 psa_register_read(selected_slot);
644 status = psa_wipe_key_slot(selected_slot);
645 if (status != PSA_SUCCESS) {
646 goto error;
647 }
648 }
649
650 if (selected_slot != NULL) {
651 status = psa_key_slot_state_transition(selected_slot, PSA_SLOT_EMPTY,
652 PSA_SLOT_FILLING);
653 if (status != PSA_SUCCESS) {
654 goto error;
655 }
656
657 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
658 selected_slot->slice_index = KEY_SLOT_CACHE_SLICE_INDEX;
659 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
660
661 #if !defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
662 if (volatile_key_id != NULL) {
663 /* Refresh slot_idx, for when the slot is not the original
664 * selected_slot but rather unused_persistent_key_slot. */
665 slot_idx = selected_slot - global_data.key_slots;
666 *volatile_key_id = PSA_KEY_ID_VOLATILE_MIN + slot_idx;
667 }
668 #endif
669 *p_slot = selected_slot;
670
671 return PSA_SUCCESS;
672 }
673 status = PSA_ERROR_INSUFFICIENT_MEMORY;
674
675 error:
676 *p_slot = NULL;
677
678 return status;
679 }
680
681 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
psa_load_persistent_key_into_slot(psa_key_slot_t * slot)682 static psa_status_t psa_load_persistent_key_into_slot(psa_key_slot_t *slot)
683 {
684 psa_status_t status = PSA_SUCCESS;
685 uint8_t *key_data = NULL;
686 size_t key_data_length = 0;
687
688 status = psa_load_persistent_key(&slot->attr,
689 &key_data, &key_data_length);
690 if (status != PSA_SUCCESS) {
691 goto exit;
692 }
693
694 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
695 /* Special handling is required for loading keys associated with a
696 * dynamically registered SE interface. */
697 const psa_drv_se_t *drv;
698 psa_drv_se_context_t *drv_context;
699 if (psa_get_se_driver(slot->attr.lifetime, &drv, &drv_context)) {
700 psa_se_key_data_storage_t *data;
701
702 if (key_data_length != sizeof(*data)) {
703 status = PSA_ERROR_DATA_INVALID;
704 goto exit;
705 }
706 data = (psa_se_key_data_storage_t *) key_data;
707 status = psa_copy_key_material_into_slot(
708 slot, data->slot_number, sizeof(data->slot_number));
709 goto exit;
710 }
711 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
712
713 status = psa_copy_key_material_into_slot(slot, key_data, key_data_length);
714 if (status != PSA_SUCCESS) {
715 goto exit;
716 }
717
718 exit:
719 psa_free_persistent_key_data(key_data, key_data_length);
720 return status;
721 }
722 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
723
724 #if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
725
psa_load_builtin_key_into_slot(psa_key_slot_t * slot)726 static psa_status_t psa_load_builtin_key_into_slot(psa_key_slot_t *slot)
727 {
728 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
729 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
730 psa_key_lifetime_t lifetime = PSA_KEY_LIFETIME_VOLATILE;
731 psa_drv_slot_number_t slot_number = 0;
732 size_t key_buffer_size = 0;
733 size_t key_buffer_length = 0;
734
735 if (!psa_key_id_is_builtin(
736 MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id))) {
737 return PSA_ERROR_DOES_NOT_EXIST;
738 }
739
740 /* Check the platform function to see whether this key actually exists */
741 status = mbedtls_psa_platform_get_builtin_key(
742 slot->attr.id, &lifetime, &slot_number);
743 if (status != PSA_SUCCESS) {
744 return status;
745 }
746
747 /* Set required key attributes to ensure get_builtin_key can retrieve the
748 * full attributes. */
749 psa_set_key_id(&attributes, slot->attr.id);
750 psa_set_key_lifetime(&attributes, lifetime);
751
752 /* Get the full key attributes from the driver in order to be able to
753 * calculate the required buffer size. */
754 status = psa_driver_wrapper_get_builtin_key(
755 slot_number, &attributes,
756 NULL, 0, NULL);
757 if (status != PSA_ERROR_BUFFER_TOO_SMALL) {
758 /* Builtin keys cannot be defined by the attributes alone */
759 if (status == PSA_SUCCESS) {
760 status = PSA_ERROR_CORRUPTION_DETECTED;
761 }
762 return status;
763 }
764
765 /* If the key should exist according to the platform, then ask the driver
766 * what its expected size is. */
767 status = psa_driver_wrapper_get_key_buffer_size(&attributes,
768 &key_buffer_size);
769 if (status != PSA_SUCCESS) {
770 return status;
771 }
772
773 /* Allocate a buffer of the required size and load the builtin key directly
774 * into the (now properly sized) slot buffer. */
775 status = psa_allocate_buffer_to_slot(slot, key_buffer_size);
776 if (status != PSA_SUCCESS) {
777 return status;
778 }
779
780 status = psa_driver_wrapper_get_builtin_key(
781 slot_number, &attributes,
782 slot->key.data, slot->key.bytes, &key_buffer_length);
783 if (status != PSA_SUCCESS) {
784 goto exit;
785 }
786
787 /* Copy actual key length and core attributes into the slot on success */
788 slot->key.bytes = key_buffer_length;
789 slot->attr = attributes;
790 exit:
791 if (status != PSA_SUCCESS) {
792 psa_remove_key_data_from_memory(slot);
793 }
794 return status;
795 }
796 #endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
797
psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot)798 psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,
799 psa_key_slot_t **p_slot)
800 {
801 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
802
803 *p_slot = NULL;
804 if (!psa_get_key_slots_initialized()) {
805 return PSA_ERROR_BAD_STATE;
806 }
807
808 #if defined(MBEDTLS_THREADING_C)
809 /* We need to set status as success, otherwise CORRUPTION_DETECTED
810 * would be returned if the lock fails. */
811 status = PSA_SUCCESS;
812 /* If the key is persistent and not loaded, we cannot unlock the mutex
813 * between checking if the key is loaded and setting the slot as FULL,
814 * as otherwise another thread may load and then destroy the key
815 * in the meantime. */
816 PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
817 &mbedtls_threading_key_slot_mutex));
818 #endif
819 /*
820 * On success, the pointer to the slot is passed directly to the caller
821 * thus no need to unlock the key slot here.
822 */
823 status = psa_get_and_lock_key_slot_in_memory(key, p_slot);
824 if (status != PSA_ERROR_DOES_NOT_EXIST) {
825 #if defined(MBEDTLS_THREADING_C)
826 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
827 &mbedtls_threading_key_slot_mutex));
828 #endif
829 return status;
830 }
831
832 /* Loading keys from storage requires support for such a mechanism */
833 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
834 defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
835
836 status = psa_reserve_free_key_slot(NULL, p_slot);
837 if (status != PSA_SUCCESS) {
838 #if defined(MBEDTLS_THREADING_C)
839 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
840 &mbedtls_threading_key_slot_mutex));
841 #endif
842 return status;
843 }
844
845 (*p_slot)->attr.id = key;
846 (*p_slot)->attr.lifetime = PSA_KEY_LIFETIME_PERSISTENT;
847
848 status = PSA_ERROR_DOES_NOT_EXIST;
849 #if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
850 /* Load keys in the 'builtin' range through their own interface */
851 status = psa_load_builtin_key_into_slot(*p_slot);
852 #endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
853
854 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
855 if (status == PSA_ERROR_DOES_NOT_EXIST) {
856 status = psa_load_persistent_key_into_slot(*p_slot);
857 }
858 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
859
860 if (status != PSA_SUCCESS) {
861 psa_wipe_key_slot(*p_slot);
862
863 /* If the key does not exist, we need to return
864 * PSA_ERROR_INVALID_HANDLE. */
865 if (status == PSA_ERROR_DOES_NOT_EXIST) {
866 status = PSA_ERROR_INVALID_HANDLE;
867 }
868 } else {
869 /* Add implicit usage flags. */
870 psa_extend_key_usage_flags(&(*p_slot)->attr.policy.usage);
871
872 psa_key_slot_state_transition((*p_slot), PSA_SLOT_FILLING,
873 PSA_SLOT_FULL);
874 status = psa_register_read(*p_slot);
875 }
876
877 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
878 status = PSA_ERROR_INVALID_HANDLE;
879 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
880
881 if (status != PSA_SUCCESS) {
882 *p_slot = NULL;
883 }
884 #if defined(MBEDTLS_THREADING_C)
885 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
886 &mbedtls_threading_key_slot_mutex));
887 #endif
888 return status;
889 }
890
psa_unregister_read(psa_key_slot_t * slot)891 psa_status_t psa_unregister_read(psa_key_slot_t *slot)
892 {
893 if (slot == NULL) {
894 return PSA_SUCCESS;
895 }
896 if ((slot->state != PSA_SLOT_FULL) &&
897 (slot->state != PSA_SLOT_PENDING_DELETION)) {
898 return PSA_ERROR_CORRUPTION_DETECTED;
899 }
900
901 /* If we are the last reader and the slot is marked for deletion,
902 * we must wipe the slot here. */
903 if ((slot->state == PSA_SLOT_PENDING_DELETION) &&
904 (slot->var.occupied.registered_readers == 1)) {
905 return psa_wipe_key_slot(slot);
906 }
907
908 if (psa_key_slot_has_readers(slot)) {
909 slot->var.occupied.registered_readers--;
910 return PSA_SUCCESS;
911 }
912
913 /*
914 * As the return error code may not be handled in case of multiple errors,
915 * do our best to report if there are no registered readers. Assert with
916 * MBEDTLS_TEST_HOOK_TEST_ASSERT that there are registered readers:
917 * if the MBEDTLS_TEST_HOOKS configuration option is enabled and
918 * the function is called as part of the execution of a test suite, the
919 * execution of the test suite is stopped in error if the assertion fails.
920 */
921 MBEDTLS_TEST_HOOK_TEST_ASSERT(psa_key_slot_has_readers(slot));
922 return PSA_ERROR_CORRUPTION_DETECTED;
923 }
924
psa_unregister_read_under_mutex(psa_key_slot_t * slot)925 psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot)
926 {
927 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
928 #if defined(MBEDTLS_THREADING_C)
929 /* We need to set status as success, otherwise CORRUPTION_DETECTED
930 * would be returned if the lock fails. */
931 status = PSA_SUCCESS;
932 PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
933 &mbedtls_threading_key_slot_mutex));
934 #endif
935 status = psa_unregister_read(slot);
936 #if defined(MBEDTLS_THREADING_C)
937 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
938 &mbedtls_threading_key_slot_mutex));
939 #endif
940 return status;
941 }
942
psa_validate_key_location(psa_key_lifetime_t lifetime,psa_se_drv_table_entry_t ** p_drv)943 psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime,
944 psa_se_drv_table_entry_t **p_drv)
945 {
946 if (psa_key_lifetime_is_external(lifetime)) {
947 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
948 /* Check whether a driver is registered against this lifetime */
949 psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime);
950 if (driver != NULL) {
951 if (p_drv != NULL) {
952 *p_drv = driver;
953 }
954 return PSA_SUCCESS;
955 }
956 #else /* MBEDTLS_PSA_CRYPTO_SE_C */
957 (void) p_drv;
958 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
959
960 /* Key location for external keys gets checked by the wrapper */
961 return PSA_SUCCESS;
962 } else {
963 /* Local/internal keys are always valid */
964 return PSA_SUCCESS;
965 }
966 }
967
psa_validate_key_persistence(psa_key_lifetime_t lifetime)968 psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime)
969 {
970 if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) {
971 /* Volatile keys are always supported */
972 return PSA_SUCCESS;
973 } else {
974 /* Persistent keys require storage support */
975 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
976 if (PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)) {
977 return PSA_ERROR_INVALID_ARGUMENT;
978 } else {
979 return PSA_SUCCESS;
980 }
981 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
982 return PSA_ERROR_NOT_SUPPORTED;
983 #endif /* !MBEDTLS_PSA_CRYPTO_STORAGE_C */
984 }
985 }
986
psa_open_key(mbedtls_svc_key_id_t key,psa_key_handle_t * handle)987 psa_status_t psa_open_key(mbedtls_svc_key_id_t key, psa_key_handle_t *handle)
988 {
989 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
990 defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
991 psa_status_t status;
992 psa_key_slot_t *slot;
993
994 status = psa_get_and_lock_key_slot(key, &slot);
995 if (status != PSA_SUCCESS) {
996 *handle = PSA_KEY_HANDLE_INIT;
997 if (status == PSA_ERROR_INVALID_HANDLE) {
998 status = PSA_ERROR_DOES_NOT_EXIST;
999 }
1000
1001 return status;
1002 }
1003
1004 *handle = key;
1005
1006 return psa_unregister_read_under_mutex(slot);
1007
1008 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
1009 (void) key;
1010 *handle = PSA_KEY_HANDLE_INIT;
1011 return PSA_ERROR_NOT_SUPPORTED;
1012 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
1013 }
1014
psa_close_key(psa_key_handle_t handle)1015 psa_status_t psa_close_key(psa_key_handle_t handle)
1016 {
1017 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1018 psa_key_slot_t *slot;
1019
1020 if (psa_key_handle_is_null(handle)) {
1021 return PSA_SUCCESS;
1022 }
1023
1024 #if defined(MBEDTLS_THREADING_C)
1025 /* We need to set status as success, otherwise CORRUPTION_DETECTED
1026 * would be returned if the lock fails. */
1027 status = PSA_SUCCESS;
1028 PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
1029 &mbedtls_threading_key_slot_mutex));
1030 #endif
1031 status = psa_get_and_lock_key_slot_in_memory(handle, &slot);
1032 if (status != PSA_SUCCESS) {
1033 if (status == PSA_ERROR_DOES_NOT_EXIST) {
1034 status = PSA_ERROR_INVALID_HANDLE;
1035 }
1036 #if defined(MBEDTLS_THREADING_C)
1037 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1038 &mbedtls_threading_key_slot_mutex));
1039 #endif
1040 return status;
1041 }
1042
1043 if (slot->var.occupied.registered_readers == 1) {
1044 status = psa_wipe_key_slot(slot);
1045 } else {
1046 status = psa_unregister_read(slot);
1047 }
1048 #if defined(MBEDTLS_THREADING_C)
1049 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1050 &mbedtls_threading_key_slot_mutex));
1051 #endif
1052
1053 return status;
1054 }
1055
psa_purge_key(mbedtls_svc_key_id_t key)1056 psa_status_t psa_purge_key(mbedtls_svc_key_id_t key)
1057 {
1058 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1059 psa_key_slot_t *slot;
1060
1061 #if defined(MBEDTLS_THREADING_C)
1062 /* We need to set status as success, otherwise CORRUPTION_DETECTED
1063 * would be returned if the lock fails. */
1064 status = PSA_SUCCESS;
1065 PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
1066 &mbedtls_threading_key_slot_mutex));
1067 #endif
1068 status = psa_get_and_lock_key_slot_in_memory(key, &slot);
1069 if (status != PSA_SUCCESS) {
1070 #if defined(MBEDTLS_THREADING_C)
1071 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1072 &mbedtls_threading_key_slot_mutex));
1073 #endif
1074 return status;
1075 }
1076
1077 if ((!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) &&
1078 (slot->var.occupied.registered_readers == 1)) {
1079 status = psa_wipe_key_slot(slot);
1080 } else {
1081 status = psa_unregister_read(slot);
1082 }
1083 #if defined(MBEDTLS_THREADING_C)
1084 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
1085 &mbedtls_threading_key_slot_mutex));
1086 #endif
1087
1088 return status;
1089 }
1090
mbedtls_psa_get_stats(mbedtls_psa_stats_t * stats)1091 void mbedtls_psa_get_stats(mbedtls_psa_stats_t *stats)
1092 {
1093 memset(stats, 0, sizeof(*stats));
1094
1095 for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) {
1096 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
1097 if (global_data.key_slices[slice_idx] == NULL) {
1098 continue;
1099 }
1100 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
1101 for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) {
1102 const psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx);
1103 if (slot->state == PSA_SLOT_EMPTY) {
1104 ++stats->empty_slots;
1105 continue;
1106 }
1107 if (psa_key_slot_has_readers(slot)) {
1108 ++stats->locked_slots;
1109 }
1110 if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
1111 ++stats->volatile_slots;
1112 } else {
1113 psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
1114 ++stats->persistent_slots;
1115 if (id > stats->max_open_internal_key_id) {
1116 stats->max_open_internal_key_id = id;
1117 }
1118 }
1119 if (PSA_KEY_LIFETIME_GET_LOCATION(slot->attr.lifetime) !=
1120 PSA_KEY_LOCATION_LOCAL_STORAGE) {
1121 psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
1122 ++stats->external_slots;
1123 if (id > stats->max_open_external_key_id) {
1124 stats->max_open_external_key_id = id;
1125 }
1126 }
1127 }
1128 }
1129 }
1130
1131 #endif /* MBEDTLS_PSA_CRYPTO_C */
1132