1 /*
2 * PSA crypto layer on top of Mbed TLS crypto
3 */
4 /*
5 * Copyright The Mbed TLS Contributors
6 * SPDX-License-Identifier: Apache-2.0
7 *
8 * Licensed under the Apache License, Version 2.0 (the "License"); you may
9 * not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
16 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 */
20
21 #include "common.h"
22
23 #if defined(MBEDTLS_PSA_CRYPTO_C)
24
25 #if defined(MBEDTLS_PSA_CRYPTO_CONFIG)
26 #include "check_crypto_config.h"
27 #endif
28
29 #include "psa/crypto.h"
30
31 #include "psa_crypto_cipher.h"
32 #include "psa_crypto_core.h"
33 #include "psa_crypto_invasive.h"
34 #include "psa_crypto_driver_wrappers.h"
35 #include "psa_crypto_ecp.h"
36 #include "psa_crypto_hash.h"
37 #include "psa_crypto_mac.h"
38 #include "psa_crypto_rsa.h"
39 #include "psa_crypto_ecp.h"
40 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
41 #include "psa_crypto_se.h"
42 #endif
43 #include "psa_crypto_slot_management.h"
44 /* Include internal declarations that are useful for implementing persistently
45 * stored keys. */
46 #include "psa_crypto_storage.h"
47
48 #include "psa_crypto_random_impl.h"
49
50 #include <assert.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include "mbedtls/platform.h"
54 #if !defined(MBEDTLS_PLATFORM_C)
55 #define mbedtls_calloc calloc
56 #define mbedtls_free free
57 #endif
58
59 #include "mbedtls/aes.h"
60 #include "mbedtls/arc4.h"
61 #include "mbedtls/asn1.h"
62 #include "mbedtls/asn1write.h"
63 #include "mbedtls/bignum.h"
64 #include "mbedtls/blowfish.h"
65 #include "mbedtls/camellia.h"
66 #include "mbedtls/chacha20.h"
67 #include "mbedtls/chachapoly.h"
68 #include "mbedtls/cipher.h"
69 #include "mbedtls/ccm.h"
70 #include "mbedtls/cmac.h"
71 #include "mbedtls/des.h"
72 #include "mbedtls/ecdh.h"
73 #include "mbedtls/ecp.h"
74 #include "mbedtls/entropy.h"
75 #include "mbedtls/error.h"
76 #include "mbedtls/gcm.h"
77 #include "mbedtls/md2.h"
78 #include "mbedtls/md4.h"
79 #include "mbedtls/md5.h"
80 #include "mbedtls/md.h"
81 #include "mbedtls/md_internal.h"
82 #include "mbedtls/pk.h"
83 #include "mbedtls/pk_internal.h"
84 #include "mbedtls/platform_util.h"
85 #include "mbedtls/error.h"
86 #include "mbedtls/ripemd160.h"
87 #include "mbedtls/rsa.h"
88 #include "mbedtls/sha1.h"
89 #include "mbedtls/sha256.h"
90 #include "mbedtls/sha512.h"
91 #include "mbedtls/xtea.h"
92
93 #define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) )
94
95 /****************************************************************/
96 /* Global data, support functions and library management */
97 /****************************************************************/
98
key_type_is_raw_bytes(psa_key_type_t type)99 static int key_type_is_raw_bytes( psa_key_type_t type )
100 {
101 return( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) );
102 }
103
104 /* Values for psa_global_data_t::rng_state */
105 #define RNG_NOT_INITIALIZED 0
106 #define RNG_INITIALIZED 1
107 #define RNG_SEEDED 2
108
109 typedef struct
110 {
111 unsigned initialized : 1;
112 unsigned rng_state : 2;
113 mbedtls_psa_random_context_t rng;
114 } psa_global_data_t;
115
116 static psa_global_data_t global_data;
117
118 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
119 mbedtls_psa_drbg_context_t *const mbedtls_psa_random_state =
120 &global_data.rng.drbg;
121 #endif
122
123 #define GUARD_MODULE_INITIALIZED \
124 if( global_data.initialized == 0 ) \
125 return( PSA_ERROR_BAD_STATE );
126
mbedtls_to_psa_error(int ret)127 psa_status_t mbedtls_to_psa_error( int ret )
128 {
129 /* Mbed TLS error codes can combine a high-level error code and a
130 * low-level error code. The low-level error usually reflects the
131 * root cause better, so dispatch on that preferably. */
132 int low_level_ret = - ( -ret & 0x007f );
133 switch( low_level_ret != 0 ? low_level_ret : ret )
134 {
135 case 0:
136 return( PSA_SUCCESS );
137
138 case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH:
139 case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH:
140 case MBEDTLS_ERR_AES_FEATURE_UNAVAILABLE:
141 return( PSA_ERROR_NOT_SUPPORTED );
142 case MBEDTLS_ERR_AES_HW_ACCEL_FAILED:
143 return( PSA_ERROR_HARDWARE_FAILURE );
144
145 case MBEDTLS_ERR_ARC4_HW_ACCEL_FAILED:
146 return( PSA_ERROR_HARDWARE_FAILURE );
147
148 case MBEDTLS_ERR_ASN1_OUT_OF_DATA:
149 case MBEDTLS_ERR_ASN1_UNEXPECTED_TAG:
150 case MBEDTLS_ERR_ASN1_INVALID_LENGTH:
151 case MBEDTLS_ERR_ASN1_LENGTH_MISMATCH:
152 case MBEDTLS_ERR_ASN1_INVALID_DATA:
153 return( PSA_ERROR_INVALID_ARGUMENT );
154 case MBEDTLS_ERR_ASN1_ALLOC_FAILED:
155 return( PSA_ERROR_INSUFFICIENT_MEMORY );
156 case MBEDTLS_ERR_ASN1_BUF_TOO_SMALL:
157 return( PSA_ERROR_BUFFER_TOO_SMALL );
158
159 #if defined(MBEDTLS_ERR_BLOWFISH_BAD_INPUT_DATA)
160 case MBEDTLS_ERR_BLOWFISH_BAD_INPUT_DATA:
161 #elif defined(MBEDTLS_ERR_BLOWFISH_INVALID_KEY_LENGTH)
162 case MBEDTLS_ERR_BLOWFISH_INVALID_KEY_LENGTH:
163 #endif
164 case MBEDTLS_ERR_BLOWFISH_INVALID_INPUT_LENGTH:
165 return( PSA_ERROR_NOT_SUPPORTED );
166 case MBEDTLS_ERR_BLOWFISH_HW_ACCEL_FAILED:
167 return( PSA_ERROR_HARDWARE_FAILURE );
168
169 #if defined(MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA)
170 case MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA:
171 #elif defined(MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH)
172 case MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH:
173 #endif
174 case MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH:
175 return( PSA_ERROR_NOT_SUPPORTED );
176 case MBEDTLS_ERR_CAMELLIA_HW_ACCEL_FAILED:
177 return( PSA_ERROR_HARDWARE_FAILURE );
178
179 case MBEDTLS_ERR_CCM_BAD_INPUT:
180 return( PSA_ERROR_INVALID_ARGUMENT );
181 case MBEDTLS_ERR_CCM_AUTH_FAILED:
182 return( PSA_ERROR_INVALID_SIGNATURE );
183 case MBEDTLS_ERR_CCM_HW_ACCEL_FAILED:
184 return( PSA_ERROR_HARDWARE_FAILURE );
185
186 case MBEDTLS_ERR_CHACHA20_BAD_INPUT_DATA:
187 return( PSA_ERROR_INVALID_ARGUMENT );
188
189 case MBEDTLS_ERR_CHACHAPOLY_BAD_STATE:
190 return( PSA_ERROR_BAD_STATE );
191 case MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED:
192 return( PSA_ERROR_INVALID_SIGNATURE );
193
194 case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE:
195 return( PSA_ERROR_NOT_SUPPORTED );
196 case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA:
197 return( PSA_ERROR_INVALID_ARGUMENT );
198 case MBEDTLS_ERR_CIPHER_ALLOC_FAILED:
199 return( PSA_ERROR_INSUFFICIENT_MEMORY );
200 case MBEDTLS_ERR_CIPHER_INVALID_PADDING:
201 return( PSA_ERROR_INVALID_PADDING );
202 case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED:
203 return( PSA_ERROR_INVALID_ARGUMENT );
204 case MBEDTLS_ERR_CIPHER_AUTH_FAILED:
205 return( PSA_ERROR_INVALID_SIGNATURE );
206 case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT:
207 return( PSA_ERROR_CORRUPTION_DETECTED );
208 case MBEDTLS_ERR_CIPHER_HW_ACCEL_FAILED:
209 return( PSA_ERROR_HARDWARE_FAILURE );
210
211 case MBEDTLS_ERR_CMAC_HW_ACCEL_FAILED:
212 return( PSA_ERROR_HARDWARE_FAILURE );
213
214 #if !( defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) || \
215 defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE) )
216 /* Only check CTR_DRBG error codes if underlying mbedtls_xxx
217 * functions are passed a CTR_DRBG instance. */
218 case MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED:
219 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
220 case MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG:
221 case MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG:
222 return( PSA_ERROR_NOT_SUPPORTED );
223 case MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR:
224 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
225 #endif
226
227 case MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH:
228 return( PSA_ERROR_NOT_SUPPORTED );
229 case MBEDTLS_ERR_DES_HW_ACCEL_FAILED:
230 return( PSA_ERROR_HARDWARE_FAILURE );
231
232 case MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED:
233 case MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE:
234 case MBEDTLS_ERR_ENTROPY_SOURCE_FAILED:
235 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
236
237 case MBEDTLS_ERR_GCM_AUTH_FAILED:
238 return( PSA_ERROR_INVALID_SIGNATURE );
239 case MBEDTLS_ERR_GCM_BAD_INPUT:
240 return( PSA_ERROR_INVALID_ARGUMENT );
241 case MBEDTLS_ERR_GCM_HW_ACCEL_FAILED:
242 return( PSA_ERROR_HARDWARE_FAILURE );
243
244 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) && \
245 defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE)
246 /* Only check HMAC_DRBG error codes if underlying mbedtls_xxx
247 * functions are passed a HMAC_DRBG instance. */
248 case MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED:
249 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
250 case MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG:
251 case MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG:
252 return( PSA_ERROR_NOT_SUPPORTED );
253 case MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR:
254 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
255 #endif
256
257 case MBEDTLS_ERR_MD2_HW_ACCEL_FAILED:
258 case MBEDTLS_ERR_MD4_HW_ACCEL_FAILED:
259 case MBEDTLS_ERR_MD5_HW_ACCEL_FAILED:
260 return( PSA_ERROR_HARDWARE_FAILURE );
261
262 case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE:
263 return( PSA_ERROR_NOT_SUPPORTED );
264 case MBEDTLS_ERR_MD_BAD_INPUT_DATA:
265 return( PSA_ERROR_INVALID_ARGUMENT );
266 case MBEDTLS_ERR_MD_ALLOC_FAILED:
267 return( PSA_ERROR_INSUFFICIENT_MEMORY );
268 case MBEDTLS_ERR_MD_FILE_IO_ERROR:
269 return( PSA_ERROR_STORAGE_FAILURE );
270 case MBEDTLS_ERR_MD_HW_ACCEL_FAILED:
271 return( PSA_ERROR_HARDWARE_FAILURE );
272
273 case MBEDTLS_ERR_MPI_FILE_IO_ERROR:
274 return( PSA_ERROR_STORAGE_FAILURE );
275 case MBEDTLS_ERR_MPI_BAD_INPUT_DATA:
276 return( PSA_ERROR_INVALID_ARGUMENT );
277 case MBEDTLS_ERR_MPI_INVALID_CHARACTER:
278 return( PSA_ERROR_INVALID_ARGUMENT );
279 case MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL:
280 return( PSA_ERROR_BUFFER_TOO_SMALL );
281 case MBEDTLS_ERR_MPI_NEGATIVE_VALUE:
282 return( PSA_ERROR_INVALID_ARGUMENT );
283 case MBEDTLS_ERR_MPI_DIVISION_BY_ZERO:
284 return( PSA_ERROR_INVALID_ARGUMENT );
285 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
286 return( PSA_ERROR_INVALID_ARGUMENT );
287 case MBEDTLS_ERR_MPI_ALLOC_FAILED:
288 return( PSA_ERROR_INSUFFICIENT_MEMORY );
289
290 case MBEDTLS_ERR_PK_ALLOC_FAILED:
291 return( PSA_ERROR_INSUFFICIENT_MEMORY );
292 case MBEDTLS_ERR_PK_TYPE_MISMATCH:
293 case MBEDTLS_ERR_PK_BAD_INPUT_DATA:
294 return( PSA_ERROR_INVALID_ARGUMENT );
295 case MBEDTLS_ERR_PK_FILE_IO_ERROR:
296 return( PSA_ERROR_STORAGE_FAILURE );
297 case MBEDTLS_ERR_PK_KEY_INVALID_VERSION:
298 case MBEDTLS_ERR_PK_KEY_INVALID_FORMAT:
299 return( PSA_ERROR_INVALID_ARGUMENT );
300 case MBEDTLS_ERR_PK_UNKNOWN_PK_ALG:
301 return( PSA_ERROR_NOT_SUPPORTED );
302 case MBEDTLS_ERR_PK_PASSWORD_REQUIRED:
303 case MBEDTLS_ERR_PK_PASSWORD_MISMATCH:
304 return( PSA_ERROR_NOT_PERMITTED );
305 case MBEDTLS_ERR_PK_INVALID_PUBKEY:
306 return( PSA_ERROR_INVALID_ARGUMENT );
307 case MBEDTLS_ERR_PK_INVALID_ALG:
308 case MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE:
309 case MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE:
310 return( PSA_ERROR_NOT_SUPPORTED );
311 case MBEDTLS_ERR_PK_SIG_LEN_MISMATCH:
312 return( PSA_ERROR_INVALID_SIGNATURE );
313 case MBEDTLS_ERR_PK_HW_ACCEL_FAILED:
314 return( PSA_ERROR_HARDWARE_FAILURE );
315
316 case MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED:
317 return( PSA_ERROR_HARDWARE_FAILURE );
318 case MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED:
319 return( PSA_ERROR_NOT_SUPPORTED );
320
321 case MBEDTLS_ERR_RIPEMD160_HW_ACCEL_FAILED:
322 return( PSA_ERROR_HARDWARE_FAILURE );
323
324 case MBEDTLS_ERR_RSA_BAD_INPUT_DATA:
325 return( PSA_ERROR_INVALID_ARGUMENT );
326 case MBEDTLS_ERR_RSA_INVALID_PADDING:
327 return( PSA_ERROR_INVALID_PADDING );
328 case MBEDTLS_ERR_RSA_KEY_GEN_FAILED:
329 return( PSA_ERROR_HARDWARE_FAILURE );
330 case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED:
331 return( PSA_ERROR_INVALID_ARGUMENT );
332 case MBEDTLS_ERR_RSA_PUBLIC_FAILED:
333 case MBEDTLS_ERR_RSA_PRIVATE_FAILED:
334 return( PSA_ERROR_CORRUPTION_DETECTED );
335 case MBEDTLS_ERR_RSA_VERIFY_FAILED:
336 return( PSA_ERROR_INVALID_SIGNATURE );
337 case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE:
338 return( PSA_ERROR_BUFFER_TOO_SMALL );
339 case MBEDTLS_ERR_RSA_RNG_FAILED:
340 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
341 case MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION:
342 return( PSA_ERROR_NOT_SUPPORTED );
343 case MBEDTLS_ERR_RSA_HW_ACCEL_FAILED:
344 return( PSA_ERROR_HARDWARE_FAILURE );
345
346 case MBEDTLS_ERR_SHA1_HW_ACCEL_FAILED:
347 case MBEDTLS_ERR_SHA256_HW_ACCEL_FAILED:
348 case MBEDTLS_ERR_SHA512_HW_ACCEL_FAILED:
349 return( PSA_ERROR_HARDWARE_FAILURE );
350
351 case MBEDTLS_ERR_XTEA_INVALID_INPUT_LENGTH:
352 return( PSA_ERROR_INVALID_ARGUMENT );
353 case MBEDTLS_ERR_XTEA_HW_ACCEL_FAILED:
354 return( PSA_ERROR_HARDWARE_FAILURE );
355
356 case MBEDTLS_ERR_ECP_BAD_INPUT_DATA:
357 case MBEDTLS_ERR_ECP_INVALID_KEY:
358 return( PSA_ERROR_INVALID_ARGUMENT );
359 case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL:
360 return( PSA_ERROR_BUFFER_TOO_SMALL );
361 case MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE:
362 return( PSA_ERROR_NOT_SUPPORTED );
363 case MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH:
364 case MBEDTLS_ERR_ECP_VERIFY_FAILED:
365 return( PSA_ERROR_INVALID_SIGNATURE );
366 case MBEDTLS_ERR_ECP_ALLOC_FAILED:
367 return( PSA_ERROR_INSUFFICIENT_MEMORY );
368 case MBEDTLS_ERR_ECP_RANDOM_FAILED:
369 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
370 case MBEDTLS_ERR_ECP_HW_ACCEL_FAILED:
371 return( PSA_ERROR_HARDWARE_FAILURE );
372
373 case MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED:
374 return( PSA_ERROR_CORRUPTION_DETECTED );
375
376 default:
377 return( PSA_ERROR_GENERIC_ERROR );
378 }
379 }
380
381
382
383
384 /****************************************************************/
385 /* Key management */
386 /****************************************************************/
387
388 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
389 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) || \
390 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
391 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) || \
392 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
mbedtls_ecc_group_of_psa(psa_ecc_family_t curve,size_t bits,int bits_is_sloppy)393 mbedtls_ecp_group_id mbedtls_ecc_group_of_psa( psa_ecc_family_t curve,
394 size_t bits,
395 int bits_is_sloppy )
396 {
397 switch( curve )
398 {
399 case PSA_ECC_FAMILY_SECP_R1:
400 switch( bits )
401 {
402 #if defined(PSA_WANT_ECC_SECP_R1_192)
403 case 192:
404 return( MBEDTLS_ECP_DP_SECP192R1 );
405 #endif
406 #if defined(PSA_WANT_ECC_SECP_R1_224)
407 case 224:
408 return( MBEDTLS_ECP_DP_SECP224R1 );
409 #endif
410 #if defined(PSA_WANT_ECC_SECP_R1_256)
411 case 256:
412 return( MBEDTLS_ECP_DP_SECP256R1 );
413 #endif
414 #if defined(PSA_WANT_ECC_SECP_R1_384)
415 case 384:
416 return( MBEDTLS_ECP_DP_SECP384R1 );
417 #endif
418 #if defined(PSA_WANT_ECC_SECP_R1_521)
419 case 521:
420 return( MBEDTLS_ECP_DP_SECP521R1 );
421 case 528:
422 if( bits_is_sloppy )
423 return( MBEDTLS_ECP_DP_SECP521R1 );
424 break;
425 #endif
426 }
427 break;
428
429 case PSA_ECC_FAMILY_BRAINPOOL_P_R1:
430 switch( bits )
431 {
432 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_256)
433 case 256:
434 return( MBEDTLS_ECP_DP_BP256R1 );
435 #endif
436 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_384)
437 case 384:
438 return( MBEDTLS_ECP_DP_BP384R1 );
439 #endif
440 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_512)
441 case 512:
442 return( MBEDTLS_ECP_DP_BP512R1 );
443 #endif
444 }
445 break;
446
447 case PSA_ECC_FAMILY_MONTGOMERY:
448 switch( bits )
449 {
450 #if defined(PSA_WANT_ECC_MONTGOMERY_255)
451 case 255:
452 return( MBEDTLS_ECP_DP_CURVE25519 );
453 case 256:
454 if( bits_is_sloppy )
455 return( MBEDTLS_ECP_DP_CURVE25519 );
456 break;
457 #endif
458 #if defined(PSA_WANT_ECC_MONTGOMERY_448)
459 case 448:
460 return( MBEDTLS_ECP_DP_CURVE448 );
461 #endif
462 }
463 break;
464
465 case PSA_ECC_FAMILY_SECP_K1:
466 switch( bits )
467 {
468 #if defined(PSA_WANT_ECC_SECP_K1_192)
469 case 192:
470 return( MBEDTLS_ECP_DP_SECP192K1 );
471 #endif
472 #if defined(PSA_WANT_ECC_SECP_K1_224)
473 case 224:
474 return( MBEDTLS_ECP_DP_SECP224K1 );
475 #endif
476 #if defined(PSA_WANT_ECC_SECP_K1_256)
477 case 256:
478 return( MBEDTLS_ECP_DP_SECP256K1 );
479 #endif
480 }
481 break;
482 }
483
484 (void) bits_is_sloppy;
485 return( MBEDTLS_ECP_DP_NONE );
486 }
487 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
488 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) ||
489 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
490 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) ||
491 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH) */
492
validate_unstructured_key_bit_size(psa_key_type_t type,size_t bits)493 static psa_status_t validate_unstructured_key_bit_size( psa_key_type_t type,
494 size_t bits )
495 {
496 /* Check that the bit size is acceptable for the key type */
497 switch( type )
498 {
499 case PSA_KEY_TYPE_RAW_DATA:
500 case PSA_KEY_TYPE_HMAC:
501 case PSA_KEY_TYPE_DERIVE:
502 break;
503 #if defined(PSA_WANT_KEY_TYPE_AES)
504 case PSA_KEY_TYPE_AES:
505 if( bits != 128 && bits != 192 && bits != 256 )
506 return( PSA_ERROR_INVALID_ARGUMENT );
507 break;
508 #endif
509 #if defined(PSA_WANT_KEY_TYPE_ARIA)
510 case PSA_KEY_TYPE_ARIA:
511 if( bits != 128 && bits != 192 && bits != 256 )
512 return( PSA_ERROR_INVALID_ARGUMENT );
513 break;
514 #endif
515 #if defined(PSA_WANT_KEY_TYPE_CAMELLIA)
516 case PSA_KEY_TYPE_CAMELLIA:
517 if( bits != 128 && bits != 192 && bits != 256 )
518 return( PSA_ERROR_INVALID_ARGUMENT );
519 break;
520 #endif
521 #if defined(PSA_WANT_KEY_TYPE_DES)
522 case PSA_KEY_TYPE_DES:
523 if( bits != 64 && bits != 128 && bits != 192 )
524 return( PSA_ERROR_INVALID_ARGUMENT );
525 break;
526 #endif
527 #if defined(PSA_WANT_KEY_TYPE_ARC4)
528 case PSA_KEY_TYPE_ARC4:
529 if( bits < 8 || bits > 2048 )
530 return( PSA_ERROR_INVALID_ARGUMENT );
531 break;
532 #endif
533 #if defined(PSA_WANT_KEY_TYPE_CHACHA20)
534 case PSA_KEY_TYPE_CHACHA20:
535 if( bits != 256 )
536 return( PSA_ERROR_INVALID_ARGUMENT );
537 break;
538 #endif
539 default:
540 return( PSA_ERROR_NOT_SUPPORTED );
541 }
542 if( bits % 8 != 0 )
543 return( PSA_ERROR_INVALID_ARGUMENT );
544
545 return( PSA_SUCCESS );
546 }
547
548 /** Check whether a given key type is valid for use with a given MAC algorithm
549 *
550 * Upon successful return of this function, the behavior of #PSA_MAC_LENGTH
551 * when called with the validated \p algorithm and \p key_type is well-defined.
552 *
553 * \param[in] algorithm The specific MAC algorithm (can be wildcard).
554 * \param[in] key_type The key type of the key to be used with the
555 * \p algorithm.
556 *
557 * \retval #PSA_SUCCESS
558 * The \p key_type is valid for use with the \p algorithm
559 * \retval #PSA_ERROR_INVALID_ARGUMENT
560 * The \p key_type is not valid for use with the \p algorithm
561 */
psa_mac_key_can_do(psa_algorithm_t algorithm,psa_key_type_t key_type)562 MBEDTLS_STATIC_TESTABLE psa_status_t psa_mac_key_can_do(
563 psa_algorithm_t algorithm,
564 psa_key_type_t key_type )
565 {
566 if( PSA_ALG_IS_HMAC( algorithm ) )
567 {
568 if( key_type == PSA_KEY_TYPE_HMAC )
569 return( PSA_SUCCESS );
570 }
571
572 if( PSA_ALG_IS_BLOCK_CIPHER_MAC( algorithm ) )
573 {
574 /* Check that we're calling PSA_BLOCK_CIPHER_BLOCK_LENGTH with a cipher
575 * key. */
576 if( ( key_type & PSA_KEY_TYPE_CATEGORY_MASK ) ==
577 PSA_KEY_TYPE_CATEGORY_SYMMETRIC )
578 {
579 /* PSA_BLOCK_CIPHER_BLOCK_LENGTH returns 1 for stream ciphers and
580 * the block length (larger than 1) for block ciphers. */
581 if( PSA_BLOCK_CIPHER_BLOCK_LENGTH( key_type ) > 1 )
582 return( PSA_SUCCESS );
583 }
584 }
585
586 return( PSA_ERROR_INVALID_ARGUMENT );
587 }
588
psa_allocate_buffer_to_slot(psa_key_slot_t * slot,size_t buffer_length)589 psa_status_t psa_allocate_buffer_to_slot( psa_key_slot_t *slot,
590 size_t buffer_length )
591 {
592 if( slot->key.data != NULL )
593 return( PSA_ERROR_ALREADY_EXISTS );
594
595 slot->key.data = mbedtls_calloc( 1, buffer_length );
596 if( slot->key.data == NULL )
597 return( PSA_ERROR_INSUFFICIENT_MEMORY );
598
599 slot->key.bytes = buffer_length;
600 return( PSA_SUCCESS );
601 }
602
psa_copy_key_material_into_slot(psa_key_slot_t * slot,const uint8_t * data,size_t data_length)603 psa_status_t psa_copy_key_material_into_slot( psa_key_slot_t *slot,
604 const uint8_t* data,
605 size_t data_length )
606 {
607 psa_status_t status = psa_allocate_buffer_to_slot( slot,
608 data_length );
609 if( status != PSA_SUCCESS )
610 return( status );
611
612 memcpy( slot->key.data, data, data_length );
613 return( PSA_SUCCESS );
614 }
615
psa_import_key_into_slot(const psa_key_attributes_t * attributes,const uint8_t * data,size_t data_length,uint8_t * key_buffer,size_t key_buffer_size,size_t * key_buffer_length,size_t * bits)616 psa_status_t psa_import_key_into_slot(
617 const psa_key_attributes_t *attributes,
618 const uint8_t *data, size_t data_length,
619 uint8_t *key_buffer, size_t key_buffer_size,
620 size_t *key_buffer_length, size_t *bits )
621 {
622 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
623 psa_key_type_t type = attributes->core.type;
624
625 /* zero-length keys are never supported. */
626 if( data_length == 0 )
627 return( PSA_ERROR_NOT_SUPPORTED );
628
629 if( key_type_is_raw_bytes( type ) )
630 {
631 *bits = PSA_BYTES_TO_BITS( data_length );
632
633 /* Ensure that the bytes-to-bits conversion hasn't overflown. */
634 if( data_length > SIZE_MAX / 8 )
635 return( PSA_ERROR_NOT_SUPPORTED );
636
637 /* Enforce a size limit, and in particular ensure that the bit
638 * size fits in its representation type. */
639 if( ( *bits ) > PSA_MAX_KEY_BITS )
640 return( PSA_ERROR_NOT_SUPPORTED );
641
642 status = validate_unstructured_key_bit_size( type, *bits );
643 if( status != PSA_SUCCESS )
644 return( status );
645
646 /* Copy the key material. */
647 memcpy( key_buffer, data, data_length );
648 *key_buffer_length = data_length;
649 (void)key_buffer_size;
650
651 return( PSA_SUCCESS );
652 }
653 else if( PSA_KEY_TYPE_IS_ASYMMETRIC( type ) )
654 {
655 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
656 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
657 if( PSA_KEY_TYPE_IS_ECC( type ) )
658 {
659 return( mbedtls_psa_ecp_import_key( attributes,
660 data, data_length,
661 key_buffer, key_buffer_size,
662 key_buffer_length,
663 bits ) );
664 }
665 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
666 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
667 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
668 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
669 if( PSA_KEY_TYPE_IS_RSA( type ) )
670 {
671 return( mbedtls_psa_rsa_import_key( attributes,
672 data, data_length,
673 key_buffer, key_buffer_size,
674 key_buffer_length,
675 bits ) );
676 }
677 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
678 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
679 }
680
681 return( PSA_ERROR_NOT_SUPPORTED );
682 }
683
684 /** Calculate the intersection of two algorithm usage policies.
685 *
686 * Return 0 (which allows no operation) on incompatibility.
687 */
psa_key_policy_algorithm_intersection(psa_key_type_t key_type,psa_algorithm_t alg1,psa_algorithm_t alg2)688 static psa_algorithm_t psa_key_policy_algorithm_intersection(
689 psa_key_type_t key_type,
690 psa_algorithm_t alg1,
691 psa_algorithm_t alg2 )
692 {
693 /* Common case: both sides actually specify the same policy. */
694 if( alg1 == alg2 )
695 return( alg1 );
696 /* If the policies are from the same hash-and-sign family, check
697 * if one is a wildcard. If so the other has the specific algorithm. */
698 if( PSA_ALG_IS_SIGN_HASH( alg1 ) &&
699 PSA_ALG_IS_SIGN_HASH( alg2 ) &&
700 ( alg1 & ~PSA_ALG_HASH_MASK ) == ( alg2 & ~PSA_ALG_HASH_MASK ) )
701 {
702 if( PSA_ALG_SIGN_GET_HASH( alg1 ) == PSA_ALG_ANY_HASH )
703 return( alg2 );
704 if( PSA_ALG_SIGN_GET_HASH( alg2 ) == PSA_ALG_ANY_HASH )
705 return( alg1 );
706 }
707 /* If the policies are from the same AEAD family, check whether
708 * one of them is a minimum-tag-length wildcard. Calculate the most
709 * restrictive tag length. */
710 if( PSA_ALG_IS_AEAD( alg1 ) && PSA_ALG_IS_AEAD( alg2 ) &&
711 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg1, 0 ) ==
712 PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg2, 0 ) ) )
713 {
714 size_t alg1_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg1 );
715 size_t alg2_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg2 );
716 size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
717
718 /* If both are wildcards, return most restrictive wildcard */
719 if( ( ( alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
720 ( ( alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
721 {
722 return( PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(
723 alg1, restricted_len ) );
724 }
725 /* If only one is a wildcard, return specific algorithm if compatible. */
726 if( ( ( alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
727 ( alg1_len <= alg2_len ) )
728 {
729 return( alg2 );
730 }
731 if( ( ( alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
732 ( alg2_len <= alg1_len ) )
733 {
734 return( alg1 );
735 }
736 }
737 /* If the policies are from the same MAC family, check whether one
738 * of them is a minimum-MAC-length policy. Calculate the most
739 * restrictive tag length. */
740 if( PSA_ALG_IS_MAC( alg1 ) && PSA_ALG_IS_MAC( alg2 ) &&
741 ( PSA_ALG_FULL_LENGTH_MAC( alg1 ) ==
742 PSA_ALG_FULL_LENGTH_MAC( alg2 ) ) )
743 {
744 /* Validate the combination of key type and algorithm. Since the base
745 * algorithm of alg1 and alg2 are the same, we only need this once. */
746 if( PSA_SUCCESS != psa_mac_key_can_do( alg1, key_type ) )
747 return( 0 );
748
749 /* Get the (exact or at-least) output lengths for both sides of the
750 * requested intersection. None of the currently supported algorithms
751 * have an output length dependent on the actual key size, so setting it
752 * to a bogus value of 0 is currently OK.
753 *
754 * Note that for at-least-this-length wildcard algorithms, the output
755 * length is set to the shortest allowed length, which allows us to
756 * calculate the most restrictive tag length for the intersection. */
757 size_t alg1_len = PSA_MAC_LENGTH( key_type, 0, alg1 );
758 size_t alg2_len = PSA_MAC_LENGTH( key_type, 0, alg2 );
759 size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
760
761 /* If both are wildcards, return most restrictive wildcard */
762 if( ( ( alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
763 ( ( alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
764 {
765 return( PSA_ALG_AT_LEAST_THIS_LENGTH_MAC( alg1, restricted_len ) );
766 }
767
768 /* If only one is an at-least-this-length policy, the intersection would
769 * be the other (fixed-length) policy as long as said fixed length is
770 * equal to or larger than the shortest allowed length. */
771 if( ( alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
772 {
773 return( ( alg1_len <= alg2_len ) ? alg2 : 0 );
774 }
775 if( ( alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
776 {
777 return( ( alg2_len <= alg1_len ) ? alg1 : 0 );
778 }
779
780 /* If none of them are wildcards, check whether they define the same tag
781 * length. This is still possible here when one is default-length and
782 * the other specific-length. Ensure to always return the
783 * specific-length version for the intersection. */
784 if( alg1_len == alg2_len )
785 return( PSA_ALG_TRUNCATED_MAC( alg1, alg1_len ) );
786 }
787 /* If the policies are incompatible, allow nothing. */
788 return( 0 );
789 }
790
psa_key_algorithm_permits(psa_key_type_t key_type,psa_algorithm_t policy_alg,psa_algorithm_t requested_alg)791 static int psa_key_algorithm_permits( psa_key_type_t key_type,
792 psa_algorithm_t policy_alg,
793 psa_algorithm_t requested_alg )
794 {
795 /* Common case: the policy only allows requested_alg. */
796 if( requested_alg == policy_alg )
797 return( 1 );
798 /* If policy_alg is a hash-and-sign with a wildcard for the hash,
799 * and requested_alg is the same hash-and-sign family with any hash,
800 * then requested_alg is compliant with policy_alg. */
801 if( PSA_ALG_IS_SIGN_HASH( requested_alg ) &&
802 PSA_ALG_SIGN_GET_HASH( policy_alg ) == PSA_ALG_ANY_HASH )
803 {
804 return( ( policy_alg & ~PSA_ALG_HASH_MASK ) ==
805 ( requested_alg & ~PSA_ALG_HASH_MASK ) );
806 }
807 /* If policy_alg is a wildcard AEAD algorithm of the same base as
808 * the requested algorithm, check the requested tag length to be
809 * equal-length or longer than the wildcard-specified length. */
810 if( PSA_ALG_IS_AEAD( policy_alg ) &&
811 PSA_ALG_IS_AEAD( requested_alg ) &&
812 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG( policy_alg, 0 ) ==
813 PSA_ALG_AEAD_WITH_SHORTENED_TAG( requested_alg, 0 ) ) &&
814 ( ( policy_alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
815 {
816 return( PSA_ALG_AEAD_GET_TAG_LENGTH( policy_alg ) <=
817 PSA_ALG_AEAD_GET_TAG_LENGTH( requested_alg ) );
818 }
819 /* If policy_alg is a MAC algorithm of the same base as the requested
820 * algorithm, check whether their MAC lengths are compatible. */
821 if( PSA_ALG_IS_MAC( policy_alg ) &&
822 PSA_ALG_IS_MAC( requested_alg ) &&
823 ( PSA_ALG_FULL_LENGTH_MAC( policy_alg ) ==
824 PSA_ALG_FULL_LENGTH_MAC( requested_alg ) ) )
825 {
826 /* Validate the combination of key type and algorithm. Since the policy
827 * and requested algorithms are the same, we only need this once. */
828 if( PSA_SUCCESS != psa_mac_key_can_do( policy_alg, key_type ) )
829 return( 0 );
830
831 /* Get both the requested output length for the algorithm which is to be
832 * verified, and the default output length for the base algorithm.
833 * Note that none of the currently supported algorithms have an output
834 * length dependent on actual key size, so setting it to a bogus value
835 * of 0 is currently OK. */
836 size_t requested_output_length = PSA_MAC_LENGTH(
837 key_type, 0, requested_alg );
838 size_t default_output_length = PSA_MAC_LENGTH(
839 key_type, 0,
840 PSA_ALG_FULL_LENGTH_MAC( requested_alg ) );
841
842 /* If the policy is default-length, only allow an algorithm with
843 * a declared exact-length matching the default. */
844 if( PSA_MAC_TRUNCATED_LENGTH( policy_alg ) == 0 )
845 return( requested_output_length == default_output_length );
846
847 /* If the requested algorithm is default-length, allow it if the policy
848 * length exactly matches the default length. */
849 if( PSA_MAC_TRUNCATED_LENGTH( requested_alg ) == 0 &&
850 PSA_MAC_TRUNCATED_LENGTH( policy_alg ) == default_output_length )
851 {
852 return( 1 );
853 }
854
855 /* If policy_alg is an at-least-this-length wildcard MAC algorithm,
856 * check for the requested MAC length to be equal to or longer than the
857 * minimum allowed length. */
858 if( ( policy_alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
859 {
860 return( PSA_MAC_TRUNCATED_LENGTH( policy_alg ) <=
861 requested_output_length );
862 }
863 }
864 /* If policy_alg is a generic key agreement operation, then using it for
865 * a key derivation with that key agreement should also be allowed. This
866 * behaviour is expected to be defined in a future specification version. */
867 if( PSA_ALG_IS_RAW_KEY_AGREEMENT( policy_alg ) &&
868 PSA_ALG_IS_KEY_AGREEMENT( requested_alg ) )
869 {
870 return( PSA_ALG_KEY_AGREEMENT_GET_BASE( requested_alg ) ==
871 policy_alg );
872 }
873 /* If it isn't explicitly permitted, it's forbidden. */
874 return( 0 );
875 }
876
877 /** Test whether a policy permits an algorithm.
878 *
879 * The caller must test usage flags separately.
880 *
881 * \note This function requires providing the key type for which the policy is
882 * being validated, since some algorithm policy definitions (e.g. MAC)
883 * have different properties depending on what kind of cipher it is
884 * combined with.
885 *
886 * \retval PSA_SUCCESS When \p alg is a specific algorithm
887 * allowed by the \p policy.
888 * \retval PSA_ERROR_INVALID_ARGUMENT When \p alg is not a specific algorithm
889 * \retval PSA_ERROR_NOT_PERMITTED When \p alg is a specific algorithm, but
890 * the \p policy does not allow it.
891 */
psa_key_policy_permits(const psa_key_policy_t * policy,psa_key_type_t key_type,psa_algorithm_t alg)892 static psa_status_t psa_key_policy_permits( const psa_key_policy_t *policy,
893 psa_key_type_t key_type,
894 psa_algorithm_t alg )
895 {
896 /* '0' is not a valid algorithm */
897 if( alg == 0 )
898 return( PSA_ERROR_INVALID_ARGUMENT );
899
900 /* A requested algorithm cannot be a wildcard. */
901 if( PSA_ALG_IS_WILDCARD( alg ) )
902 return( PSA_ERROR_INVALID_ARGUMENT );
903
904 if( psa_key_algorithm_permits( key_type, policy->alg, alg ) ||
905 psa_key_algorithm_permits( key_type, policy->alg2, alg ) )
906 return( PSA_SUCCESS );
907 else
908 return( PSA_ERROR_NOT_PERMITTED );
909 }
910
911 /** Restrict a key policy based on a constraint.
912 *
913 * \note This function requires providing the key type for which the policy is
914 * being restricted, since some algorithm policy definitions (e.g. MAC)
915 * have different properties depending on what kind of cipher it is
916 * combined with.
917 *
918 * \param[in] key_type The key type for which to restrict the policy
919 * \param[in,out] policy The policy to restrict.
920 * \param[in] constraint The policy constraint to apply.
921 *
922 * \retval #PSA_SUCCESS
923 * \c *policy contains the intersection of the original value of
924 * \c *policy and \c *constraint.
925 * \retval #PSA_ERROR_INVALID_ARGUMENT
926 * \c key_type, \c *policy and \c *constraint are incompatible.
927 * \c *policy is unchanged.
928 */
psa_restrict_key_policy(psa_key_type_t key_type,psa_key_policy_t * policy,const psa_key_policy_t * constraint)929 static psa_status_t psa_restrict_key_policy(
930 psa_key_type_t key_type,
931 psa_key_policy_t *policy,
932 const psa_key_policy_t *constraint )
933 {
934 psa_algorithm_t intersection_alg =
935 psa_key_policy_algorithm_intersection( key_type, policy->alg,
936 constraint->alg );
937 psa_algorithm_t intersection_alg2 =
938 psa_key_policy_algorithm_intersection( key_type, policy->alg2,
939 constraint->alg2 );
940 if( intersection_alg == 0 && policy->alg != 0 && constraint->alg != 0 )
941 return( PSA_ERROR_INVALID_ARGUMENT );
942 if( intersection_alg2 == 0 && policy->alg2 != 0 && constraint->alg2 != 0 )
943 return( PSA_ERROR_INVALID_ARGUMENT );
944 policy->usage &= constraint->usage;
945 policy->alg = intersection_alg;
946 policy->alg2 = intersection_alg2;
947 return( PSA_SUCCESS );
948 }
949
950 /** Get the description of a key given its identifier and policy constraints
951 * and lock it.
952 *
953 * The key must have allow all the usage flags set in \p usage. If \p alg is
954 * nonzero, the key must allow operations with this algorithm. If \p alg is
955 * zero, the algorithm is not checked.
956 *
957 * In case of a persistent key, the function loads the description of the key
958 * into a key slot if not already done.
959 *
960 * On success, the returned key slot is locked. It is the responsibility of
961 * the caller to unlock the key slot when it does not access it anymore.
962 */
psa_get_and_lock_key_slot_with_policy(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot,psa_key_usage_t usage,psa_algorithm_t alg)963 static psa_status_t psa_get_and_lock_key_slot_with_policy(
964 mbedtls_svc_key_id_t key,
965 psa_key_slot_t **p_slot,
966 psa_key_usage_t usage,
967 psa_algorithm_t alg )
968 {
969 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
970 psa_key_slot_t *slot;
971
972 status = psa_get_and_lock_key_slot( key, p_slot );
973 if( status != PSA_SUCCESS )
974 return( status );
975 slot = *p_slot;
976
977 /* Enforce that usage policy for the key slot contains all the flags
978 * required by the usage parameter. There is one exception: public
979 * keys can always be exported, so we treat public key objects as
980 * if they had the export flag. */
981 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) )
982 usage &= ~PSA_KEY_USAGE_EXPORT;
983
984 if( ( slot->attr.policy.usage & usage ) != usage )
985 {
986 status = PSA_ERROR_NOT_PERMITTED;
987 goto error;
988 }
989
990 /* Enforce that the usage policy permits the requested algortihm. */
991 if( alg != 0 )
992 {
993 status = psa_key_policy_permits( &slot->attr.policy,
994 slot->attr.type,
995 alg );
996 if( status != PSA_SUCCESS )
997 goto error;
998 }
999
1000 return( PSA_SUCCESS );
1001
1002 error:
1003 *p_slot = NULL;
1004 psa_unlock_key_slot( slot );
1005
1006 return( status );
1007 }
1008
1009 /** Get a key slot containing a transparent key and lock it.
1010 *
1011 * A transparent key is a key for which the key material is directly
1012 * available, as opposed to a key in a secure element and/or to be used
1013 * by a secure element.
1014 *
1015 * This is a temporary function that may be used instead of
1016 * psa_get_and_lock_key_slot_with_policy() when there is no opaque key support
1017 * for a cryptographic operation.
1018 *
1019 * On success, the returned key slot is locked. It is the responsibility of the
1020 * caller to unlock the key slot when it does not access it anymore.
1021 */
psa_get_and_lock_transparent_key_slot_with_policy(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot,psa_key_usage_t usage,psa_algorithm_t alg)1022 static psa_status_t psa_get_and_lock_transparent_key_slot_with_policy(
1023 mbedtls_svc_key_id_t key,
1024 psa_key_slot_t **p_slot,
1025 psa_key_usage_t usage,
1026 psa_algorithm_t alg )
1027 {
1028 psa_status_t status = psa_get_and_lock_key_slot_with_policy( key, p_slot,
1029 usage, alg );
1030 if( status != PSA_SUCCESS )
1031 return( status );
1032
1033 if( psa_key_lifetime_is_external( (*p_slot)->attr.lifetime ) )
1034 {
1035 psa_unlock_key_slot( *p_slot );
1036 *p_slot = NULL;
1037 return( PSA_ERROR_NOT_SUPPORTED );
1038 }
1039
1040 return( PSA_SUCCESS );
1041 }
1042
psa_remove_key_data_from_memory(psa_key_slot_t * slot)1043 psa_status_t psa_remove_key_data_from_memory( psa_key_slot_t *slot )
1044 {
1045 /* Data pointer will always be either a valid pointer or NULL in an
1046 * initialized slot, so we can just free it. */
1047 if( slot->key.data != NULL )
1048 mbedtls_platform_zeroize( slot->key.data, slot->key.bytes);
1049
1050 mbedtls_free( slot->key.data );
1051 slot->key.data = NULL;
1052 slot->key.bytes = 0;
1053
1054 return( PSA_SUCCESS );
1055 }
1056
1057 /** Completely wipe a slot in memory, including its policy.
1058 * Persistent storage is not affected. */
psa_wipe_key_slot(psa_key_slot_t * slot)1059 psa_status_t psa_wipe_key_slot( psa_key_slot_t *slot )
1060 {
1061 psa_status_t status = psa_remove_key_data_from_memory( slot );
1062
1063 /*
1064 * As the return error code may not be handled in case of multiple errors,
1065 * do our best to report an unexpected lock counter: if available
1066 * call MBEDTLS_PARAM_FAILED that may terminate execution (if called as
1067 * part of the execution of a test suite this will stop the test suite
1068 * execution).
1069 */
1070 if( slot->lock_count != 1 )
1071 {
1072 #ifdef MBEDTLS_CHECK_PARAMS
1073 MBEDTLS_PARAM_FAILED( slot->lock_count == 1 );
1074 #endif
1075 status = PSA_ERROR_CORRUPTION_DETECTED;
1076 }
1077
1078 /* Multipart operations may still be using the key. This is safe
1079 * because all multipart operation objects are independent from
1080 * the key slot: if they need to access the key after the setup
1081 * phase, they have a copy of the key. Note that this means that
1082 * key material can linger until all operations are completed. */
1083 /* At this point, key material and other type-specific content has
1084 * been wiped. Clear remaining metadata. We can call memset and not
1085 * zeroize because the metadata is not particularly sensitive. */
1086 memset( slot, 0, sizeof( *slot ) );
1087 return( status );
1088 }
1089
psa_destroy_key(mbedtls_svc_key_id_t key)1090 psa_status_t psa_destroy_key( mbedtls_svc_key_id_t key )
1091 {
1092 psa_key_slot_t *slot;
1093 psa_status_t status; /* status of the last operation */
1094 psa_status_t overall_status = PSA_SUCCESS;
1095 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1096 psa_se_drv_table_entry_t *driver;
1097 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1098
1099 if( mbedtls_svc_key_id_is_null( key ) )
1100 return( PSA_SUCCESS );
1101
1102 /*
1103 * Get the description of the key in a key slot. In case of a persistent
1104 * key, this will load the key description from persistent memory if not
1105 * done yet. We cannot avoid this loading as without it we don't know if
1106 * the key is operated by an SE or not and this information is needed by
1107 * the current implementation.
1108 */
1109 status = psa_get_and_lock_key_slot( key, &slot );
1110 if( status != PSA_SUCCESS )
1111 return( status );
1112
1113 /*
1114 * If the key slot containing the key description is under access by the
1115 * library (apart from the present access), the key cannot be destroyed
1116 * yet. For the time being, just return in error. Eventually (to be
1117 * implemented), the key should be destroyed when all accesses have
1118 * stopped.
1119 */
1120 if( slot->lock_count > 1 )
1121 {
1122 psa_unlock_key_slot( slot );
1123 return( PSA_ERROR_GENERIC_ERROR );
1124 }
1125
1126 if( PSA_KEY_LIFETIME_IS_READ_ONLY( slot->attr.lifetime ) )
1127 {
1128 /* Refuse the destruction of a read-only key (which may or may not work
1129 * if we attempt it, depending on whether the key is merely read-only
1130 * by policy or actually physically read-only).
1131 * Just do the best we can, which is to wipe the copy in memory
1132 * (done in this function's cleanup code). */
1133 overall_status = PSA_ERROR_NOT_PERMITTED;
1134 goto exit;
1135 }
1136
1137 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1138 driver = psa_get_se_driver_entry( slot->attr.lifetime );
1139 if( driver != NULL )
1140 {
1141 /* For a key in a secure element, we need to do three things:
1142 * remove the key file in internal storage, destroy the
1143 * key inside the secure element, and update the driver's
1144 * persistent data. Start a transaction that will encompass these
1145 * three actions. */
1146 psa_crypto_prepare_transaction( PSA_CRYPTO_TRANSACTION_DESTROY_KEY );
1147 psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
1148 psa_crypto_transaction.key.slot = psa_key_slot_get_slot_number( slot );
1149 psa_crypto_transaction.key.id = slot->attr.id;
1150 status = psa_crypto_save_transaction( );
1151 if( status != PSA_SUCCESS )
1152 {
1153 (void) psa_crypto_stop_transaction( );
1154 /* We should still try to destroy the key in the secure
1155 * element and the key metadata in storage. This is especially
1156 * important if the error is that the storage is full.
1157 * But how to do it exactly without risking an inconsistent
1158 * state after a reset?
1159 * https://github.com/ARMmbed/mbed-crypto/issues/215
1160 */
1161 overall_status = status;
1162 goto exit;
1163 }
1164
1165 status = psa_destroy_se_key( driver,
1166 psa_key_slot_get_slot_number( slot ) );
1167 if( overall_status == PSA_SUCCESS )
1168 overall_status = status;
1169 }
1170 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1171
1172 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
1173 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1174 {
1175 status = psa_destroy_persistent_key( slot->attr.id );
1176 if( overall_status == PSA_SUCCESS )
1177 overall_status = status;
1178
1179 /* TODO: other slots may have a copy of the same key. We should
1180 * invalidate them.
1181 * https://github.com/ARMmbed/mbed-crypto/issues/214
1182 */
1183 }
1184 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
1185
1186 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1187 if( driver != NULL )
1188 {
1189 status = psa_save_se_persistent_data( driver );
1190 if( overall_status == PSA_SUCCESS )
1191 overall_status = status;
1192 status = psa_crypto_stop_transaction( );
1193 if( overall_status == PSA_SUCCESS )
1194 overall_status = status;
1195 }
1196 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1197
1198 exit:
1199 status = psa_wipe_key_slot( slot );
1200 /* Prioritize CORRUPTION_DETECTED from wiping over a storage error */
1201 if( status != PSA_SUCCESS )
1202 overall_status = status;
1203 return( overall_status );
1204 }
1205
1206 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1207 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
psa_get_rsa_public_exponent(const mbedtls_rsa_context * rsa,psa_key_attributes_t * attributes)1208 static psa_status_t psa_get_rsa_public_exponent(
1209 const mbedtls_rsa_context *rsa,
1210 psa_key_attributes_t *attributes )
1211 {
1212 mbedtls_mpi mpi;
1213 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1214 uint8_t *buffer = NULL;
1215 size_t buflen;
1216 mbedtls_mpi_init( &mpi );
1217
1218 ret = mbedtls_rsa_export( rsa, NULL, NULL, NULL, NULL, &mpi );
1219 if( ret != 0 )
1220 goto exit;
1221 if( mbedtls_mpi_cmp_int( &mpi, 65537 ) == 0 )
1222 {
1223 /* It's the default value, which is reported as an empty string,
1224 * so there's nothing to do. */
1225 goto exit;
1226 }
1227
1228 buflen = mbedtls_mpi_size( &mpi );
1229 buffer = mbedtls_calloc( 1, buflen );
1230 if( buffer == NULL )
1231 {
1232 ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
1233 goto exit;
1234 }
1235 ret = mbedtls_mpi_write_binary( &mpi, buffer, buflen );
1236 if( ret != 0 )
1237 goto exit;
1238 attributes->domain_parameters = buffer;
1239 attributes->domain_parameters_size = buflen;
1240
1241 exit:
1242 mbedtls_mpi_free( &mpi );
1243 if( ret != 0 )
1244 mbedtls_free( buffer );
1245 return( mbedtls_to_psa_error( ret ) );
1246 }
1247 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1248 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1249
1250 /** Retrieve all the publicly-accessible attributes of a key.
1251 */
psa_get_key_attributes(mbedtls_svc_key_id_t key,psa_key_attributes_t * attributes)1252 psa_status_t psa_get_key_attributes( mbedtls_svc_key_id_t key,
1253 psa_key_attributes_t *attributes )
1254 {
1255 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1256 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1257 psa_key_slot_t *slot;
1258
1259 psa_reset_key_attributes( attributes );
1260
1261 status = psa_get_and_lock_key_slot_with_policy( key, &slot, 0, 0 );
1262 if( status != PSA_SUCCESS )
1263 return( status );
1264
1265 attributes->core = slot->attr;
1266 attributes->core.flags &= ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY |
1267 MBEDTLS_PSA_KA_MASK_DUAL_USE );
1268
1269 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1270 if( psa_get_se_driver_entry( slot->attr.lifetime ) != NULL )
1271 psa_set_key_slot_number( attributes,
1272 psa_key_slot_get_slot_number( slot ) );
1273 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1274
1275 switch( slot->attr.type )
1276 {
1277 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1278 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1279 case PSA_KEY_TYPE_RSA_KEY_PAIR:
1280 case PSA_KEY_TYPE_RSA_PUBLIC_KEY:
1281 /* TODO: reporting the public exponent for opaque keys
1282 * is not yet implemented.
1283 * https://github.com/ARMmbed/mbed-crypto/issues/216
1284 */
1285 if( ! psa_key_lifetime_is_external( slot->attr.lifetime ) )
1286 {
1287 mbedtls_rsa_context *rsa = NULL;
1288
1289 status = mbedtls_psa_rsa_load_representation(
1290 slot->attr.type,
1291 slot->key.data,
1292 slot->key.bytes,
1293 &rsa );
1294 if( status != PSA_SUCCESS )
1295 break;
1296
1297 status = psa_get_rsa_public_exponent( rsa,
1298 attributes );
1299 mbedtls_rsa_free( rsa );
1300 mbedtls_free( rsa );
1301 }
1302 break;
1303 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1304 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1305 default:
1306 /* Nothing else to do. */
1307 break;
1308 }
1309
1310 if( status != PSA_SUCCESS )
1311 psa_reset_key_attributes( attributes );
1312
1313 unlock_status = psa_unlock_key_slot( slot );
1314
1315 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1316 }
1317
1318 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
psa_get_key_slot_number(const psa_key_attributes_t * attributes,psa_key_slot_number_t * slot_number)1319 psa_status_t psa_get_key_slot_number(
1320 const psa_key_attributes_t *attributes,
1321 psa_key_slot_number_t *slot_number )
1322 {
1323 if( attributes->core.flags & MBEDTLS_PSA_KA_FLAG_HAS_SLOT_NUMBER )
1324 {
1325 *slot_number = attributes->slot_number;
1326 return( PSA_SUCCESS );
1327 }
1328 else
1329 return( PSA_ERROR_INVALID_ARGUMENT );
1330 }
1331 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1332
psa_export_key_buffer_internal(const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1333 static psa_status_t psa_export_key_buffer_internal( const uint8_t *key_buffer,
1334 size_t key_buffer_size,
1335 uint8_t *data,
1336 size_t data_size,
1337 size_t *data_length )
1338 {
1339 if( key_buffer_size > data_size )
1340 return( PSA_ERROR_BUFFER_TOO_SMALL );
1341 memcpy( data, key_buffer, key_buffer_size );
1342 memset( data + key_buffer_size, 0,
1343 data_size - key_buffer_size );
1344 *data_length = key_buffer_size;
1345 return( PSA_SUCCESS );
1346 }
1347
psa_export_key_internal(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1348 psa_status_t psa_export_key_internal(
1349 const psa_key_attributes_t *attributes,
1350 const uint8_t *key_buffer, size_t key_buffer_size,
1351 uint8_t *data, size_t data_size, size_t *data_length )
1352 {
1353 psa_key_type_t type = attributes->core.type;
1354
1355 if( key_type_is_raw_bytes( type ) ||
1356 PSA_KEY_TYPE_IS_RSA( type ) ||
1357 PSA_KEY_TYPE_IS_ECC( type ) )
1358 {
1359 return( psa_export_key_buffer_internal(
1360 key_buffer, key_buffer_size,
1361 data, data_size, data_length ) );
1362 }
1363 else
1364 {
1365 /* This shouldn't happen in the reference implementation, but
1366 it is valid for a special-purpose implementation to omit
1367 support for exporting certain key types. */
1368 return( PSA_ERROR_NOT_SUPPORTED );
1369 }
1370 }
1371
psa_export_key(mbedtls_svc_key_id_t key,uint8_t * data,size_t data_size,size_t * data_length)1372 psa_status_t psa_export_key( mbedtls_svc_key_id_t key,
1373 uint8_t *data,
1374 size_t data_size,
1375 size_t *data_length )
1376 {
1377 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1378 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1379 psa_key_slot_t *slot;
1380
1381 /* Reject a zero-length output buffer now, since this can never be a
1382 * valid key representation. This way we know that data must be a valid
1383 * pointer and we can do things like memset(data, ..., data_size). */
1384 if( data_size == 0 )
1385 return( PSA_ERROR_BUFFER_TOO_SMALL );
1386
1387 /* Set the key to empty now, so that even when there are errors, we always
1388 * set data_length to a value between 0 and data_size. On error, setting
1389 * the key to empty is a good choice because an empty key representation is
1390 * unlikely to be accepted anywhere. */
1391 *data_length = 0;
1392
1393 /* Export requires the EXPORT flag. There is an exception for public keys,
1394 * which don't require any flag, but
1395 * psa_get_and_lock_key_slot_with_policy() takes care of this.
1396 */
1397 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
1398 PSA_KEY_USAGE_EXPORT, 0 );
1399 if( status != PSA_SUCCESS )
1400 return( status );
1401
1402 psa_key_attributes_t attributes = {
1403 .core = slot->attr
1404 };
1405 status = psa_driver_wrapper_export_key( &attributes,
1406 slot->key.data, slot->key.bytes,
1407 data, data_size, data_length );
1408
1409 unlock_status = psa_unlock_key_slot( slot );
1410
1411 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1412 }
1413
psa_export_public_key_internal(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1414 psa_status_t psa_export_public_key_internal(
1415 const psa_key_attributes_t *attributes,
1416 const uint8_t *key_buffer,
1417 size_t key_buffer_size,
1418 uint8_t *data,
1419 size_t data_size,
1420 size_t *data_length )
1421 {
1422 psa_key_type_t type = attributes->core.type;
1423
1424 if( PSA_KEY_TYPE_IS_RSA( type ) || PSA_KEY_TYPE_IS_ECC( type ) )
1425 {
1426 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
1427 {
1428 /* Exporting public -> public */
1429 return( psa_export_key_buffer_internal(
1430 key_buffer, key_buffer_size,
1431 data, data_size, data_length ) );
1432 }
1433
1434 if( PSA_KEY_TYPE_IS_RSA( type ) )
1435 {
1436 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1437 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1438 return( mbedtls_psa_rsa_export_public_key( attributes,
1439 key_buffer,
1440 key_buffer_size,
1441 data,
1442 data_size,
1443 data_length ) );
1444 #else
1445 /* We don't know how to convert a private RSA key to public. */
1446 return( PSA_ERROR_NOT_SUPPORTED );
1447 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1448 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1449 }
1450 else
1451 {
1452 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
1453 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
1454 return( mbedtls_psa_ecp_export_public_key( attributes,
1455 key_buffer,
1456 key_buffer_size,
1457 data,
1458 data_size,
1459 data_length ) );
1460 #else
1461 /* We don't know how to convert a private ECC key to public */
1462 return( PSA_ERROR_NOT_SUPPORTED );
1463 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
1464 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
1465 }
1466 }
1467 else
1468 {
1469 /* This shouldn't happen in the reference implementation, but
1470 it is valid for a special-purpose implementation to omit
1471 support for exporting certain key types. */
1472 return( PSA_ERROR_NOT_SUPPORTED );
1473 }
1474 }
1475
psa_export_public_key(mbedtls_svc_key_id_t key,uint8_t * data,size_t data_size,size_t * data_length)1476 psa_status_t psa_export_public_key( mbedtls_svc_key_id_t key,
1477 uint8_t *data,
1478 size_t data_size,
1479 size_t *data_length )
1480 {
1481 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1482 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1483 psa_key_slot_t *slot;
1484
1485 /* Reject a zero-length output buffer now, since this can never be a
1486 * valid key representation. This way we know that data must be a valid
1487 * pointer and we can do things like memset(data, ..., data_size). */
1488 if( data_size == 0 )
1489 return( PSA_ERROR_BUFFER_TOO_SMALL );
1490
1491 /* Set the key to empty now, so that even when there are errors, we always
1492 * set data_length to a value between 0 and data_size. On error, setting
1493 * the key to empty is a good choice because an empty key representation is
1494 * unlikely to be accepted anywhere. */
1495 *data_length = 0;
1496
1497 /* Exporting a public key doesn't require a usage flag. */
1498 status = psa_get_and_lock_key_slot_with_policy( key, &slot, 0, 0 );
1499 if( status != PSA_SUCCESS )
1500 return( status );
1501
1502 if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( slot->attr.type ) )
1503 {
1504 status = PSA_ERROR_INVALID_ARGUMENT;
1505 goto exit;
1506 }
1507
1508 psa_key_attributes_t attributes = {
1509 .core = slot->attr
1510 };
1511 status = psa_driver_wrapper_export_public_key(
1512 &attributes, slot->key.data, slot->key.bytes,
1513 data, data_size, data_length );
1514
1515 exit:
1516 unlock_status = psa_unlock_key_slot( slot );
1517
1518 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1519 }
1520
1521 #if defined(static_assert)
1522 static_assert( ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_DUAL_USE ) == 0,
1523 "One or more key attribute flag is listed as both external-only and dual-use" );
1524 static_assert( ( PSA_KA_MASK_INTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_DUAL_USE ) == 0,
1525 "One or more key attribute flag is listed as both internal-only and dual-use" );
1526 static_assert( ( PSA_KA_MASK_INTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY ) == 0,
1527 "One or more key attribute flag is listed as both internal-only and external-only" );
1528 #endif
1529
1530 /** Validate that a key policy is internally well-formed.
1531 *
1532 * This function only rejects invalid policies. It does not validate the
1533 * consistency of the policy with respect to other attributes of the key
1534 * such as the key type.
1535 */
psa_validate_key_policy(const psa_key_policy_t * policy)1536 static psa_status_t psa_validate_key_policy( const psa_key_policy_t *policy )
1537 {
1538 if( ( policy->usage & ~( PSA_KEY_USAGE_EXPORT |
1539 PSA_KEY_USAGE_COPY |
1540 PSA_KEY_USAGE_ENCRYPT |
1541 PSA_KEY_USAGE_DECRYPT |
1542 PSA_KEY_USAGE_SIGN_MESSAGE |
1543 PSA_KEY_USAGE_VERIFY_MESSAGE |
1544 PSA_KEY_USAGE_SIGN_HASH |
1545 PSA_KEY_USAGE_VERIFY_HASH |
1546 PSA_KEY_USAGE_DERIVE ) ) != 0 )
1547 return( PSA_ERROR_INVALID_ARGUMENT );
1548
1549 return( PSA_SUCCESS );
1550 }
1551
1552 /** Validate the internal consistency of key attributes.
1553 *
1554 * This function only rejects invalid attribute values. If does not
1555 * validate the consistency of the attributes with any key data that may
1556 * be involved in the creation of the key.
1557 *
1558 * Call this function early in the key creation process.
1559 *
1560 * \param[in] attributes Key attributes for the new key.
1561 * \param[out] p_drv On any return, the driver for the key, if any.
1562 * NULL for a transparent key.
1563 *
1564 */
psa_validate_key_attributes(const psa_key_attributes_t * attributes,psa_se_drv_table_entry_t ** p_drv)1565 static psa_status_t psa_validate_key_attributes(
1566 const psa_key_attributes_t *attributes,
1567 psa_se_drv_table_entry_t **p_drv )
1568 {
1569 psa_status_t status = PSA_ERROR_INVALID_ARGUMENT;
1570 psa_key_lifetime_t lifetime = psa_get_key_lifetime( attributes );
1571 mbedtls_svc_key_id_t key = psa_get_key_id( attributes );
1572
1573 status = psa_validate_key_location( lifetime, p_drv );
1574 if( status != PSA_SUCCESS )
1575 return( status );
1576
1577 status = psa_validate_key_persistence( lifetime );
1578 if( status != PSA_SUCCESS )
1579 return( status );
1580
1581 if ( PSA_KEY_LIFETIME_IS_VOLATILE( lifetime ) )
1582 {
1583 if( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( key ) != 0 )
1584 return( PSA_ERROR_INVALID_ARGUMENT );
1585 }
1586 else
1587 {
1588 if( !psa_is_valid_key_id( psa_get_key_id( attributes ), 0 ) )
1589 return( PSA_ERROR_INVALID_ARGUMENT );
1590 }
1591
1592 status = psa_validate_key_policy( &attributes->core.policy );
1593 if( status != PSA_SUCCESS )
1594 return( status );
1595
1596 /* Refuse to create overly large keys.
1597 * Note that this doesn't trigger on import if the attributes don't
1598 * explicitly specify a size (so psa_get_key_bits returns 0), so
1599 * psa_import_key() needs its own checks. */
1600 if( psa_get_key_bits( attributes ) > PSA_MAX_KEY_BITS )
1601 return( PSA_ERROR_NOT_SUPPORTED );
1602
1603 /* Reject invalid flags. These should not be reachable through the API. */
1604 if( attributes->core.flags & ~ ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY |
1605 MBEDTLS_PSA_KA_MASK_DUAL_USE ) )
1606 return( PSA_ERROR_INVALID_ARGUMENT );
1607
1608 return( PSA_SUCCESS );
1609 }
1610
1611 /** Prepare a key slot to receive key material.
1612 *
1613 * This function allocates a key slot and sets its metadata.
1614 *
1615 * If this function fails, call psa_fail_key_creation().
1616 *
1617 * This function is intended to be used as follows:
1618 * -# Call psa_start_key_creation() to allocate a key slot, prepare
1619 * it with the specified attributes, and in case of a volatile key assign it
1620 * a volatile key identifier.
1621 * -# Populate the slot with the key material.
1622 * -# Call psa_finish_key_creation() to finalize the creation of the slot.
1623 * In case of failure at any step, stop the sequence and call
1624 * psa_fail_key_creation().
1625 *
1626 * On success, the key slot is locked. It is the responsibility of the caller
1627 * to unlock the key slot when it does not access it anymore.
1628 *
1629 * \param method An identification of the calling function.
1630 * \param[in] attributes Key attributes for the new key.
1631 * \param[out] p_slot On success, a pointer to the prepared slot.
1632 * \param[out] p_drv On any return, the driver for the key, if any.
1633 * NULL for a transparent key.
1634 *
1635 * \retval #PSA_SUCCESS
1636 * The key slot is ready to receive key material.
1637 * \return If this function fails, the key slot is an invalid state.
1638 * You must call psa_fail_key_creation() to wipe and free the slot.
1639 */
psa_start_key_creation(psa_key_creation_method_t method,const psa_key_attributes_t * attributes,psa_key_slot_t ** p_slot,psa_se_drv_table_entry_t ** p_drv)1640 static psa_status_t psa_start_key_creation(
1641 psa_key_creation_method_t method,
1642 const psa_key_attributes_t *attributes,
1643 psa_key_slot_t **p_slot,
1644 psa_se_drv_table_entry_t **p_drv )
1645 {
1646 psa_status_t status;
1647 psa_key_id_t volatile_key_id;
1648 psa_key_slot_t *slot;
1649
1650 (void) method;
1651 *p_drv = NULL;
1652
1653 status = psa_validate_key_attributes( attributes, p_drv );
1654 if( status != PSA_SUCCESS )
1655 return( status );
1656
1657 status = psa_get_empty_key_slot( &volatile_key_id, p_slot );
1658 if( status != PSA_SUCCESS )
1659 return( status );
1660 slot = *p_slot;
1661
1662 /* We're storing the declared bit-size of the key. It's up to each
1663 * creation mechanism to verify that this information is correct.
1664 * It's automatically correct for mechanisms that use the bit-size as
1665 * an input (generate, device) but not for those where the bit-size
1666 * is optional (import, copy). In case of a volatile key, assign it the
1667 * volatile key identifier associated to the slot returned to contain its
1668 * definition. */
1669
1670 slot->attr = attributes->core;
1671 if( PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1672 {
1673 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1674 slot->attr.id = volatile_key_id;
1675 #else
1676 slot->attr.id.key_id = volatile_key_id;
1677 #endif
1678 }
1679
1680 /* Erase external-only flags from the internal copy. To access
1681 * external-only flags, query `attributes`. Thanks to the check
1682 * in psa_validate_key_attributes(), this leaves the dual-use
1683 * flags and any internal flag that psa_get_empty_key_slot()
1684 * may have set. */
1685 slot->attr.flags &= ~MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY;
1686
1687 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1688 /* For a key in a secure element, we need to do three things
1689 * when creating or registering a persistent key:
1690 * create the key file in internal storage, create the
1691 * key inside the secure element, and update the driver's
1692 * persistent data. This is done by starting a transaction that will
1693 * encompass these three actions.
1694 * For registering a volatile key, we just need to find an appropriate
1695 * slot number inside the SE. Since the key is designated volatile, creating
1696 * a transaction is not required. */
1697 /* The first thing to do is to find a slot number for the new key.
1698 * We save the slot number in persistent storage as part of the
1699 * transaction data. It will be needed to recover if the power
1700 * fails during the key creation process, to clean up on the secure
1701 * element side after restarting. Obtaining a slot number from the
1702 * secure element driver updates its persistent state, but we do not yet
1703 * save the driver's persistent state, so that if the power fails,
1704 * we can roll back to a state where the key doesn't exist. */
1705 if( *p_drv != NULL )
1706 {
1707 psa_key_slot_number_t slot_number;
1708 status = psa_find_se_slot_for_key( attributes, method, *p_drv,
1709 &slot_number );
1710 if( status != PSA_SUCCESS )
1711 return( status );
1712
1713 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( attributes->core.lifetime ) )
1714 {
1715 psa_crypto_prepare_transaction( PSA_CRYPTO_TRANSACTION_CREATE_KEY );
1716 psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
1717 psa_crypto_transaction.key.slot = slot_number;
1718 psa_crypto_transaction.key.id = slot->attr.id;
1719 status = psa_crypto_save_transaction( );
1720 if( status != PSA_SUCCESS )
1721 {
1722 (void) psa_crypto_stop_transaction( );
1723 return( status );
1724 }
1725 }
1726
1727 status = psa_copy_key_material_into_slot(
1728 slot, (uint8_t *)( &slot_number ), sizeof( slot_number ) );
1729 }
1730
1731 if( *p_drv == NULL && method == PSA_KEY_CREATION_REGISTER )
1732 {
1733 /* Key registration only makes sense with a secure element. */
1734 return( PSA_ERROR_INVALID_ARGUMENT );
1735 }
1736 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1737
1738 return( PSA_SUCCESS );
1739 }
1740
1741 /** Finalize the creation of a key once its key material has been set.
1742 *
1743 * This entails writing the key to persistent storage.
1744 *
1745 * If this function fails, call psa_fail_key_creation().
1746 * See the documentation of psa_start_key_creation() for the intended use
1747 * of this function.
1748 *
1749 * If the finalization succeeds, the function unlocks the key slot (it was
1750 * locked by psa_start_key_creation()) and the key slot cannot be accessed
1751 * anymore as part of the key creation process.
1752 *
1753 * \param[in,out] slot Pointer to the slot with key material.
1754 * \param[in] driver The secure element driver for the key,
1755 * or NULL for a transparent key.
1756 * \param[out] key On success, identifier of the key. Note that the
1757 * key identifier is also stored in the key slot.
1758 *
1759 * \retval #PSA_SUCCESS
1760 * The key was successfully created.
1761 * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
1762 * \retval #PSA_ERROR_INSUFFICIENT_STORAGE
1763 * \retval #PSA_ERROR_ALREADY_EXISTS
1764 * \retval #PSA_ERROR_DATA_INVALID
1765 * \retval #PSA_ERROR_DATA_CORRUPT
1766 * \retval #PSA_ERROR_STORAGE_FAILURE
1767 *
1768 * \return If this function fails, the key slot is an invalid state.
1769 * You must call psa_fail_key_creation() to wipe and free the slot.
1770 */
psa_finish_key_creation(psa_key_slot_t * slot,psa_se_drv_table_entry_t * driver,mbedtls_svc_key_id_t * key)1771 static psa_status_t psa_finish_key_creation(
1772 psa_key_slot_t *slot,
1773 psa_se_drv_table_entry_t *driver,
1774 mbedtls_svc_key_id_t *key)
1775 {
1776 psa_status_t status = PSA_SUCCESS;
1777 (void) slot;
1778 (void) driver;
1779
1780 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
1781 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1782 {
1783 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1784 if( driver != NULL )
1785 {
1786 psa_se_key_data_storage_t data;
1787 psa_key_slot_number_t slot_number =
1788 psa_key_slot_get_slot_number( slot ) ;
1789
1790 #if defined(static_assert)
1791 static_assert( sizeof( slot_number ) ==
1792 sizeof( data.slot_number ),
1793 "Slot number size does not match psa_se_key_data_storage_t" );
1794 #endif
1795 memcpy( &data.slot_number, &slot_number, sizeof( slot_number ) );
1796 status = psa_save_persistent_key( &slot->attr,
1797 (uint8_t*) &data,
1798 sizeof( data ) );
1799 }
1800 else
1801 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1802 {
1803 /* Key material is saved in export representation in the slot, so
1804 * just pass the slot buffer for storage. */
1805 status = psa_save_persistent_key( &slot->attr,
1806 slot->key.data,
1807 slot->key.bytes );
1808 }
1809 }
1810 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
1811
1812 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1813 /* Finish the transaction for a key creation. This does not
1814 * happen when registering an existing key. Detect this case
1815 * by checking whether a transaction is in progress (actual
1816 * creation of a persistent key in a secure element requires a transaction,
1817 * but registration or volatile key creation doesn't use one). */
1818 if( driver != NULL &&
1819 psa_crypto_transaction.unknown.type == PSA_CRYPTO_TRANSACTION_CREATE_KEY )
1820 {
1821 status = psa_save_se_persistent_data( driver );
1822 if( status != PSA_SUCCESS )
1823 {
1824 psa_destroy_persistent_key( slot->attr.id );
1825 return( status );
1826 }
1827 status = psa_crypto_stop_transaction( );
1828 }
1829 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1830
1831 if( status == PSA_SUCCESS )
1832 {
1833 *key = slot->attr.id;
1834 status = psa_unlock_key_slot( slot );
1835 if( status != PSA_SUCCESS )
1836 *key = MBEDTLS_SVC_KEY_ID_INIT;
1837 }
1838
1839 return( status );
1840 }
1841
1842 /** Abort the creation of a key.
1843 *
1844 * You may call this function after calling psa_start_key_creation(),
1845 * or after psa_finish_key_creation() fails. In other circumstances, this
1846 * function may not clean up persistent storage.
1847 * See the documentation of psa_start_key_creation() for the intended use
1848 * of this function.
1849 *
1850 * \param[in,out] slot Pointer to the slot with key material.
1851 * \param[in] driver The secure element driver for the key,
1852 * or NULL for a transparent key.
1853 */
psa_fail_key_creation(psa_key_slot_t * slot,psa_se_drv_table_entry_t * driver)1854 static void psa_fail_key_creation( psa_key_slot_t *slot,
1855 psa_se_drv_table_entry_t *driver )
1856 {
1857 (void) driver;
1858
1859 if( slot == NULL )
1860 return;
1861
1862 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1863 /* TODO: If the key has already been created in the secure
1864 * element, and the failure happened later (when saving metadata
1865 * to internal storage), we need to destroy the key in the secure
1866 * element.
1867 * https://github.com/ARMmbed/mbed-crypto/issues/217
1868 */
1869
1870 /* Abort the ongoing transaction if any (there may not be one if
1871 * the creation process failed before starting one, or if the
1872 * key creation is a registration of a key in a secure element).
1873 * Earlier functions must already have done what it takes to undo any
1874 * partial creation. All that's left is to update the transaction data
1875 * itself. */
1876 (void) psa_crypto_stop_transaction( );
1877 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1878
1879 psa_wipe_key_slot( slot );
1880 }
1881
1882 /** Validate optional attributes during key creation.
1883 *
1884 * Some key attributes are optional during key creation. If they are
1885 * specified in the attributes structure, check that they are consistent
1886 * with the data in the slot.
1887 *
1888 * This function should be called near the end of key creation, after
1889 * the slot in memory is fully populated but before saving persistent data.
1890 */
psa_validate_optional_attributes(const psa_key_slot_t * slot,const psa_key_attributes_t * attributes)1891 static psa_status_t psa_validate_optional_attributes(
1892 const psa_key_slot_t *slot,
1893 const psa_key_attributes_t *attributes )
1894 {
1895 if( attributes->core.type != 0 )
1896 {
1897 if( attributes->core.type != slot->attr.type )
1898 return( PSA_ERROR_INVALID_ARGUMENT );
1899 }
1900
1901 if( attributes->domain_parameters_size != 0 )
1902 {
1903 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1904 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1905 if( PSA_KEY_TYPE_IS_RSA( slot->attr.type ) )
1906 {
1907 mbedtls_rsa_context *rsa = NULL;
1908 mbedtls_mpi actual, required;
1909 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1910
1911 psa_status_t status = mbedtls_psa_rsa_load_representation(
1912 slot->attr.type,
1913 slot->key.data,
1914 slot->key.bytes,
1915 &rsa );
1916 if( status != PSA_SUCCESS )
1917 return( status );
1918
1919 mbedtls_mpi_init( &actual );
1920 mbedtls_mpi_init( &required );
1921 ret = mbedtls_rsa_export( rsa,
1922 NULL, NULL, NULL, NULL, &actual );
1923 mbedtls_rsa_free( rsa );
1924 mbedtls_free( rsa );
1925 if( ret != 0 )
1926 goto rsa_exit;
1927 ret = mbedtls_mpi_read_binary( &required,
1928 attributes->domain_parameters,
1929 attributes->domain_parameters_size );
1930 if( ret != 0 )
1931 goto rsa_exit;
1932 if( mbedtls_mpi_cmp_mpi( &actual, &required ) != 0 )
1933 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1934 rsa_exit:
1935 mbedtls_mpi_free( &actual );
1936 mbedtls_mpi_free( &required );
1937 if( ret != 0)
1938 return( mbedtls_to_psa_error( ret ) );
1939 }
1940 else
1941 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1942 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1943 {
1944 return( PSA_ERROR_INVALID_ARGUMENT );
1945 }
1946 }
1947
1948 if( attributes->core.bits != 0 )
1949 {
1950 if( attributes->core.bits != slot->attr.bits )
1951 return( PSA_ERROR_INVALID_ARGUMENT );
1952 }
1953
1954 return( PSA_SUCCESS );
1955 }
1956
psa_import_key(const psa_key_attributes_t * attributes,const uint8_t * data,size_t data_length,mbedtls_svc_key_id_t * key)1957 psa_status_t psa_import_key( const psa_key_attributes_t *attributes,
1958 const uint8_t *data,
1959 size_t data_length,
1960 mbedtls_svc_key_id_t *key )
1961 {
1962 psa_status_t status;
1963 psa_key_slot_t *slot = NULL;
1964 psa_se_drv_table_entry_t *driver = NULL;
1965 size_t bits;
1966
1967 *key = MBEDTLS_SVC_KEY_ID_INIT;
1968
1969 /* Reject zero-length symmetric keys (including raw data key objects).
1970 * This also rejects any key which might be encoded as an empty string,
1971 * which is never valid. */
1972 if( data_length == 0 )
1973 return( PSA_ERROR_INVALID_ARGUMENT );
1974
1975 status = psa_start_key_creation( PSA_KEY_CREATION_IMPORT, attributes,
1976 &slot, &driver );
1977 if( status != PSA_SUCCESS )
1978 goto exit;
1979
1980 /* In the case of a transparent key or an opaque key stored in local
1981 * storage (thus not in the case of generating a key in a secure element
1982 * or cryptoprocessor with storage), we have to allocate a buffer to
1983 * hold the generated key material. */
1984 if( slot->key.data == NULL )
1985 {
1986 status = psa_allocate_buffer_to_slot( slot, data_length );
1987 if( status != PSA_SUCCESS )
1988 goto exit;
1989 }
1990
1991 bits = slot->attr.bits;
1992 status = psa_driver_wrapper_import_key( attributes,
1993 data, data_length,
1994 slot->key.data,
1995 slot->key.bytes,
1996 &slot->key.bytes, &bits );
1997 if( status != PSA_SUCCESS )
1998 goto exit;
1999
2000 if( slot->attr.bits == 0 )
2001 slot->attr.bits = (psa_key_bits_t) bits;
2002 else if( bits != slot->attr.bits )
2003 {
2004 status = PSA_ERROR_INVALID_ARGUMENT;
2005 goto exit;
2006 }
2007
2008 status = psa_validate_optional_attributes( slot, attributes );
2009 if( status != PSA_SUCCESS )
2010 goto exit;
2011
2012 status = psa_finish_key_creation( slot, driver, key );
2013 exit:
2014 if( status != PSA_SUCCESS )
2015 psa_fail_key_creation( slot, driver );
2016
2017 return( status );
2018 }
2019
2020 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
mbedtls_psa_register_se_key(const psa_key_attributes_t * attributes)2021 psa_status_t mbedtls_psa_register_se_key(
2022 const psa_key_attributes_t *attributes )
2023 {
2024 psa_status_t status;
2025 psa_key_slot_t *slot = NULL;
2026 psa_se_drv_table_entry_t *driver = NULL;
2027 mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
2028
2029 /* Leaving attributes unspecified is not currently supported.
2030 * It could make sense to query the key type and size from the
2031 * secure element, but not all secure elements support this
2032 * and the driver HAL doesn't currently support it. */
2033 if( psa_get_key_type( attributes ) == PSA_KEY_TYPE_NONE )
2034 return( PSA_ERROR_NOT_SUPPORTED );
2035 if( psa_get_key_bits( attributes ) == 0 )
2036 return( PSA_ERROR_NOT_SUPPORTED );
2037
2038 status = psa_start_key_creation( PSA_KEY_CREATION_REGISTER, attributes,
2039 &slot, &driver );
2040 if( status != PSA_SUCCESS )
2041 goto exit;
2042
2043 status = psa_finish_key_creation( slot, driver, &key );
2044
2045 exit:
2046 if( status != PSA_SUCCESS )
2047 psa_fail_key_creation( slot, driver );
2048
2049 /* Registration doesn't keep the key in RAM. */
2050 psa_close_key( key );
2051 return( status );
2052 }
2053 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
2054
psa_copy_key_material(const psa_key_slot_t * source,psa_key_slot_t * target)2055 static psa_status_t psa_copy_key_material( const psa_key_slot_t *source,
2056 psa_key_slot_t *target )
2057 {
2058 psa_status_t status = psa_copy_key_material_into_slot( target,
2059 source->key.data,
2060 source->key.bytes );
2061 if( status != PSA_SUCCESS )
2062 return( status );
2063
2064 target->attr.type = source->attr.type;
2065 target->attr.bits = source->attr.bits;
2066
2067 return( PSA_SUCCESS );
2068 }
2069
psa_copy_key(mbedtls_svc_key_id_t source_key,const psa_key_attributes_t * specified_attributes,mbedtls_svc_key_id_t * target_key)2070 psa_status_t psa_copy_key( mbedtls_svc_key_id_t source_key,
2071 const psa_key_attributes_t *specified_attributes,
2072 mbedtls_svc_key_id_t *target_key )
2073 {
2074 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2075 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2076 psa_key_slot_t *source_slot = NULL;
2077 psa_key_slot_t *target_slot = NULL;
2078 psa_key_attributes_t actual_attributes = *specified_attributes;
2079 psa_se_drv_table_entry_t *driver = NULL;
2080
2081 *target_key = MBEDTLS_SVC_KEY_ID_INIT;
2082
2083 status = psa_get_and_lock_transparent_key_slot_with_policy(
2084 source_key, &source_slot, PSA_KEY_USAGE_COPY, 0 );
2085 if( status != PSA_SUCCESS )
2086 goto exit;
2087
2088 status = psa_validate_optional_attributes( source_slot,
2089 specified_attributes );
2090 if( status != PSA_SUCCESS )
2091 goto exit;
2092
2093 status = psa_restrict_key_policy( source_slot->attr.type,
2094 &actual_attributes.core.policy,
2095 &source_slot->attr.policy );
2096 if( status != PSA_SUCCESS )
2097 goto exit;
2098
2099 status = psa_start_key_creation( PSA_KEY_CREATION_COPY, &actual_attributes,
2100 &target_slot, &driver );
2101 if( status != PSA_SUCCESS )
2102 goto exit;
2103
2104 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
2105 if( driver != NULL )
2106 {
2107 /* Copying to a secure element is not implemented yet. */
2108 status = PSA_ERROR_NOT_SUPPORTED;
2109 goto exit;
2110 }
2111 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
2112
2113 if( psa_key_lifetime_is_external( actual_attributes.core.lifetime ) )
2114 {
2115 /*
2116 * Copying through an opaque driver is not implemented yet, consider
2117 * a lifetime with an external location as an invalid parameter for
2118 * now.
2119 */
2120 status = PSA_ERROR_INVALID_ARGUMENT;
2121 goto exit;
2122 }
2123
2124 status = psa_copy_key_material( source_slot, target_slot );
2125 if( status != PSA_SUCCESS )
2126 goto exit;
2127
2128 status = psa_finish_key_creation( target_slot, driver, target_key );
2129 exit:
2130 if( status != PSA_SUCCESS )
2131 psa_fail_key_creation( target_slot, driver );
2132
2133 unlock_status = psa_unlock_key_slot( source_slot );
2134
2135 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2136 }
2137
2138
2139
2140 /****************************************************************/
2141 /* Message digests */
2142 /****************************************************************/
2143
psa_hash_abort(psa_hash_operation_t * operation)2144 psa_status_t psa_hash_abort( psa_hash_operation_t *operation )
2145 {
2146 /* Aborting a non-active operation is allowed */
2147 if( operation->id == 0 )
2148 return( PSA_SUCCESS );
2149
2150 psa_status_t status = psa_driver_wrapper_hash_abort( operation );
2151 operation->id = 0;
2152
2153 return( status );
2154 }
2155
psa_hash_setup(psa_hash_operation_t * operation,psa_algorithm_t alg)2156 psa_status_t psa_hash_setup( psa_hash_operation_t *operation,
2157 psa_algorithm_t alg )
2158 {
2159 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2160
2161 /* A context must be freshly initialized before it can be set up. */
2162 if( operation->id != 0 )
2163 {
2164 status = PSA_ERROR_BAD_STATE;
2165 goto exit;
2166 }
2167
2168 if( !PSA_ALG_IS_HASH( alg ) )
2169 {
2170 status = PSA_ERROR_INVALID_ARGUMENT;
2171 goto exit;
2172 }
2173
2174 /* Ensure all of the context is zeroized, since PSA_HASH_OPERATION_INIT only
2175 * directly zeroes the int-sized dummy member of the context union. */
2176 memset( &operation->ctx, 0, sizeof( operation->ctx ) );
2177
2178 status = psa_driver_wrapper_hash_setup( operation, alg );
2179
2180 exit:
2181 if( status != PSA_SUCCESS )
2182 psa_hash_abort( operation );
2183
2184 return status;
2185 }
2186
psa_hash_update(psa_hash_operation_t * operation,const uint8_t * input,size_t input_length)2187 psa_status_t psa_hash_update( psa_hash_operation_t *operation,
2188 const uint8_t *input,
2189 size_t input_length )
2190 {
2191 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2192
2193 if( operation->id == 0 )
2194 {
2195 status = PSA_ERROR_BAD_STATE;
2196 goto exit;
2197 }
2198
2199 /* Don't require hash implementations to behave correctly on a
2200 * zero-length input, which may have an invalid pointer. */
2201 if( input_length == 0 )
2202 return( PSA_SUCCESS );
2203
2204 status = psa_driver_wrapper_hash_update( operation, input, input_length );
2205
2206 exit:
2207 if( status != PSA_SUCCESS )
2208 psa_hash_abort( operation );
2209
2210 return( status );
2211 }
2212
psa_hash_finish(psa_hash_operation_t * operation,uint8_t * hash,size_t hash_size,size_t * hash_length)2213 psa_status_t psa_hash_finish( psa_hash_operation_t *operation,
2214 uint8_t *hash,
2215 size_t hash_size,
2216 size_t *hash_length )
2217 {
2218 *hash_length = 0;
2219 if( operation->id == 0 )
2220 return( PSA_ERROR_BAD_STATE );
2221
2222 psa_status_t status = psa_driver_wrapper_hash_finish(
2223 operation, hash, hash_size, hash_length );
2224 psa_hash_abort( operation );
2225 return( status );
2226 }
2227
psa_hash_verify(psa_hash_operation_t * operation,const uint8_t * hash,size_t hash_length)2228 psa_status_t psa_hash_verify( psa_hash_operation_t *operation,
2229 const uint8_t *hash,
2230 size_t hash_length )
2231 {
2232 uint8_t actual_hash[PSA_HASH_MAX_SIZE];
2233 size_t actual_hash_length;
2234 psa_status_t status = psa_hash_finish(
2235 operation,
2236 actual_hash, sizeof( actual_hash ),
2237 &actual_hash_length );
2238
2239 if( status != PSA_SUCCESS )
2240 goto exit;
2241
2242 if( actual_hash_length != hash_length )
2243 {
2244 status = PSA_ERROR_INVALID_SIGNATURE;
2245 goto exit;
2246 }
2247
2248 if( mbedtls_psa_safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
2249 status = PSA_ERROR_INVALID_SIGNATURE;
2250
2251 exit:
2252 mbedtls_platform_zeroize( actual_hash, sizeof( actual_hash ) );
2253 if( status != PSA_SUCCESS )
2254 psa_hash_abort(operation);
2255
2256 return( status );
2257 }
2258
psa_hash_compute(psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * hash,size_t hash_size,size_t * hash_length)2259 psa_status_t psa_hash_compute( psa_algorithm_t alg,
2260 const uint8_t *input, size_t input_length,
2261 uint8_t *hash, size_t hash_size,
2262 size_t *hash_length )
2263 {
2264 *hash_length = 0;
2265 if( !PSA_ALG_IS_HASH( alg ) )
2266 return( PSA_ERROR_INVALID_ARGUMENT );
2267
2268 return( psa_driver_wrapper_hash_compute( alg, input, input_length,
2269 hash, hash_size, hash_length ) );
2270 }
2271
psa_hash_compare(psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * hash,size_t hash_length)2272 psa_status_t psa_hash_compare( psa_algorithm_t alg,
2273 const uint8_t *input, size_t input_length,
2274 const uint8_t *hash, size_t hash_length )
2275 {
2276 uint8_t actual_hash[PSA_HASH_MAX_SIZE];
2277 size_t actual_hash_length;
2278
2279 if( !PSA_ALG_IS_HASH( alg ) )
2280 return( PSA_ERROR_INVALID_ARGUMENT );
2281
2282 psa_status_t status = psa_driver_wrapper_hash_compute(
2283 alg, input, input_length,
2284 actual_hash, sizeof(actual_hash),
2285 &actual_hash_length );
2286 if( status != PSA_SUCCESS )
2287 goto exit;
2288 if( actual_hash_length != hash_length )
2289 {
2290 status = PSA_ERROR_INVALID_SIGNATURE;
2291 goto exit;
2292 }
2293 if( mbedtls_psa_safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
2294 status = PSA_ERROR_INVALID_SIGNATURE;
2295
2296 exit:
2297 mbedtls_platform_zeroize( actual_hash, sizeof( actual_hash ) );
2298 return( status );
2299 }
2300
psa_hash_clone(const psa_hash_operation_t * source_operation,psa_hash_operation_t * target_operation)2301 psa_status_t psa_hash_clone( const psa_hash_operation_t *source_operation,
2302 psa_hash_operation_t *target_operation )
2303 {
2304 if( source_operation->id == 0 ||
2305 target_operation->id != 0 )
2306 {
2307 return( PSA_ERROR_BAD_STATE );
2308 }
2309
2310 psa_status_t status = psa_driver_wrapper_hash_clone( source_operation,
2311 target_operation );
2312 if( status != PSA_SUCCESS )
2313 psa_hash_abort( target_operation );
2314
2315 return( status );
2316 }
2317
2318
2319 /****************************************************************/
2320 /* MAC */
2321 /****************************************************************/
2322
psa_mac_abort(psa_mac_operation_t * operation)2323 psa_status_t psa_mac_abort( psa_mac_operation_t *operation )
2324 {
2325 /* Aborting a non-active operation is allowed */
2326 if( operation->id == 0 )
2327 return( PSA_SUCCESS );
2328
2329 psa_status_t status = psa_driver_wrapper_mac_abort( operation );
2330 operation->mac_size = 0;
2331 operation->is_sign = 0;
2332 operation->id = 0;
2333
2334 return( status );
2335 }
2336
psa_mac_finalize_alg_and_key_validation(psa_algorithm_t alg,const psa_key_attributes_t * attributes,uint8_t * mac_size)2337 static psa_status_t psa_mac_finalize_alg_and_key_validation(
2338 psa_algorithm_t alg,
2339 const psa_key_attributes_t *attributes,
2340 uint8_t *mac_size )
2341 {
2342 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2343 psa_key_type_t key_type = psa_get_key_type( attributes );
2344 size_t key_bits = psa_get_key_bits( attributes );
2345
2346 if( ! PSA_ALG_IS_MAC( alg ) )
2347 return( PSA_ERROR_INVALID_ARGUMENT );
2348
2349 /* Validate the combination of key type and algorithm */
2350 status = psa_mac_key_can_do( alg, key_type );
2351 if( status != PSA_SUCCESS )
2352 return( status );
2353
2354 /* Get the output length for the algorithm and key combination */
2355 *mac_size = PSA_MAC_LENGTH( key_type, key_bits, alg );
2356
2357 if( *mac_size < 4 )
2358 {
2359 /* A very short MAC is too short for security since it can be
2360 * brute-forced. Ancient protocols with 32-bit MACs do exist,
2361 * so we make this our minimum, even though 32 bits is still
2362 * too small for security. */
2363 return( PSA_ERROR_NOT_SUPPORTED );
2364 }
2365
2366 if( *mac_size > PSA_MAC_LENGTH( key_type, key_bits,
2367 PSA_ALG_FULL_LENGTH_MAC( alg ) ) )
2368 {
2369 /* It's impossible to "truncate" to a larger length than the full length
2370 * of the algorithm. */
2371 return( PSA_ERROR_INVALID_ARGUMENT );
2372 }
2373
2374 return( PSA_SUCCESS );
2375 }
2376
psa_mac_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg,int is_sign)2377 static psa_status_t psa_mac_setup( psa_mac_operation_t *operation,
2378 mbedtls_svc_key_id_t key,
2379 psa_algorithm_t alg,
2380 int is_sign )
2381 {
2382 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2383 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2384 psa_key_slot_t *slot = NULL;
2385
2386 /* A context must be freshly initialized before it can be set up. */
2387 if( operation->id != 0 )
2388 {
2389 status = PSA_ERROR_BAD_STATE;
2390 goto exit;
2391 }
2392
2393 status = psa_get_and_lock_key_slot_with_policy(
2394 key,
2395 &slot,
2396 is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
2397 alg );
2398 if( status != PSA_SUCCESS )
2399 goto exit;
2400
2401 psa_key_attributes_t attributes = {
2402 .core = slot->attr
2403 };
2404
2405 status = psa_mac_finalize_alg_and_key_validation( alg, &attributes,
2406 &operation->mac_size );
2407 if( status != PSA_SUCCESS )
2408 goto exit;
2409
2410 operation->is_sign = is_sign;
2411 /* Dispatch the MAC setup call with validated input */
2412 if( is_sign )
2413 {
2414 status = psa_driver_wrapper_mac_sign_setup( operation,
2415 &attributes,
2416 slot->key.data,
2417 slot->key.bytes,
2418 alg );
2419 }
2420 else
2421 {
2422 status = psa_driver_wrapper_mac_verify_setup( operation,
2423 &attributes,
2424 slot->key.data,
2425 slot->key.bytes,
2426 alg );
2427 }
2428
2429 exit:
2430 if( status != PSA_SUCCESS )
2431 psa_mac_abort( operation );
2432
2433 unlock_status = psa_unlock_key_slot( slot );
2434
2435 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2436 }
2437
psa_mac_sign_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)2438 psa_status_t psa_mac_sign_setup( psa_mac_operation_t *operation,
2439 mbedtls_svc_key_id_t key,
2440 psa_algorithm_t alg )
2441 {
2442 return( psa_mac_setup( operation, key, alg, 1 ) );
2443 }
2444
psa_mac_verify_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)2445 psa_status_t psa_mac_verify_setup( psa_mac_operation_t *operation,
2446 mbedtls_svc_key_id_t key,
2447 psa_algorithm_t alg )
2448 {
2449 return( psa_mac_setup( operation, key, alg, 0 ) );
2450 }
2451
psa_mac_update(psa_mac_operation_t * operation,const uint8_t * input,size_t input_length)2452 psa_status_t psa_mac_update( psa_mac_operation_t *operation,
2453 const uint8_t *input,
2454 size_t input_length )
2455 {
2456 if( operation->id == 0 )
2457 return( PSA_ERROR_BAD_STATE );
2458
2459 /* Don't require hash implementations to behave correctly on a
2460 * zero-length input, which may have an invalid pointer. */
2461 if( input_length == 0 )
2462 return( PSA_SUCCESS );
2463
2464 psa_status_t status = psa_driver_wrapper_mac_update( operation,
2465 input, input_length );
2466 if( status != PSA_SUCCESS )
2467 psa_mac_abort( operation );
2468
2469 return( status );
2470 }
2471
psa_mac_sign_finish(psa_mac_operation_t * operation,uint8_t * mac,size_t mac_size,size_t * mac_length)2472 psa_status_t psa_mac_sign_finish( psa_mac_operation_t *operation,
2473 uint8_t *mac,
2474 size_t mac_size,
2475 size_t *mac_length )
2476 {
2477 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2478 psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
2479
2480 if( operation->id == 0 )
2481 {
2482 status = PSA_ERROR_BAD_STATE;
2483 goto exit;
2484 }
2485
2486 if( ! operation->is_sign )
2487 {
2488 status = PSA_ERROR_BAD_STATE;
2489 goto exit;
2490 }
2491
2492 /* Sanity check. This will guarantee that mac_size != 0 (and so mac != NULL)
2493 * once all the error checks are done. */
2494 if( operation->mac_size == 0 )
2495 {
2496 status = PSA_ERROR_BAD_STATE;
2497 goto exit;
2498 }
2499
2500 if( mac_size < operation->mac_size )
2501 {
2502 status = PSA_ERROR_BUFFER_TOO_SMALL;
2503 goto exit;
2504 }
2505
2506 status = psa_driver_wrapper_mac_sign_finish( operation,
2507 mac, operation->mac_size,
2508 mac_length );
2509
2510 exit:
2511 /* In case of success, set the potential excess room in the output buffer
2512 * to an invalid value, to avoid potentially leaking a longer MAC.
2513 * In case of error, set the output length and content to a safe default,
2514 * such that in case the caller misses an error check, the output would be
2515 * an unachievable MAC.
2516 */
2517 if( status != PSA_SUCCESS )
2518 {
2519 *mac_length = mac_size;
2520 operation->mac_size = 0;
2521 }
2522
2523 if( mac_size > operation->mac_size )
2524 memset( &mac[operation->mac_size], '!',
2525 mac_size - operation->mac_size );
2526
2527 abort_status = psa_mac_abort( operation );
2528
2529 return( status == PSA_SUCCESS ? abort_status : status );
2530 }
2531
psa_mac_verify_finish(psa_mac_operation_t * operation,const uint8_t * mac,size_t mac_length)2532 psa_status_t psa_mac_verify_finish( psa_mac_operation_t *operation,
2533 const uint8_t *mac,
2534 size_t mac_length )
2535 {
2536 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2537 psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
2538
2539 if( operation->id == 0 )
2540 {
2541 status = PSA_ERROR_BAD_STATE;
2542 goto exit;
2543 }
2544
2545 if( operation->is_sign )
2546 {
2547 status = PSA_ERROR_BAD_STATE;
2548 goto exit;
2549 }
2550
2551 if( operation->mac_size != mac_length )
2552 {
2553 status = PSA_ERROR_INVALID_SIGNATURE;
2554 goto exit;
2555 }
2556
2557 status = psa_driver_wrapper_mac_verify_finish( operation,
2558 mac, mac_length );
2559
2560 exit:
2561 abort_status = psa_mac_abort( operation );
2562
2563 return( status == PSA_SUCCESS ? abort_status : status );
2564 }
2565
psa_mac_compute_internal(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * mac,size_t mac_size,size_t * mac_length,int is_sign)2566 static psa_status_t psa_mac_compute_internal( mbedtls_svc_key_id_t key,
2567 psa_algorithm_t alg,
2568 const uint8_t *input,
2569 size_t input_length,
2570 uint8_t *mac,
2571 size_t mac_size,
2572 size_t *mac_length,
2573 int is_sign )
2574 {
2575 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2576 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2577 psa_key_slot_t *slot;
2578 uint8_t operation_mac_size = 0;
2579
2580 status = psa_get_and_lock_key_slot_with_policy(
2581 key,
2582 &slot,
2583 is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
2584 alg );
2585 if( status != PSA_SUCCESS )
2586 goto exit;
2587
2588 psa_key_attributes_t attributes = {
2589 .core = slot->attr
2590 };
2591
2592 status = psa_mac_finalize_alg_and_key_validation( alg, &attributes,
2593 &operation_mac_size );
2594 if( status != PSA_SUCCESS )
2595 goto exit;
2596
2597 if( mac_size < operation_mac_size )
2598 {
2599 status = PSA_ERROR_BUFFER_TOO_SMALL;
2600 goto exit;
2601 }
2602
2603 status = psa_driver_wrapper_mac_compute(
2604 &attributes,
2605 slot->key.data, slot->key.bytes,
2606 alg,
2607 input, input_length,
2608 mac, operation_mac_size, mac_length );
2609
2610 exit:
2611 /* In case of success, set the potential excess room in the output buffer
2612 * to an invalid value, to avoid potentially leaking a longer MAC.
2613 * In case of error, set the output length and content to a safe default,
2614 * such that in case the caller misses an error check, the output would be
2615 * an unachievable MAC.
2616 */
2617 if( status != PSA_SUCCESS )
2618 {
2619 *mac_length = mac_size;
2620 operation_mac_size = 0;
2621 }
2622 if( mac_size > operation_mac_size )
2623 memset( &mac[operation_mac_size], '!', mac_size - operation_mac_size );
2624
2625 unlock_status = psa_unlock_key_slot( slot );
2626
2627 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2628 }
2629
psa_mac_compute(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * mac,size_t mac_size,size_t * mac_length)2630 psa_status_t psa_mac_compute( mbedtls_svc_key_id_t key,
2631 psa_algorithm_t alg,
2632 const uint8_t *input,
2633 size_t input_length,
2634 uint8_t *mac,
2635 size_t mac_size,
2636 size_t *mac_length)
2637 {
2638 return( psa_mac_compute_internal( key, alg,
2639 input, input_length,
2640 mac, mac_size, mac_length, 1 ) );
2641 }
2642
psa_mac_verify(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * mac,size_t mac_length)2643 psa_status_t psa_mac_verify( mbedtls_svc_key_id_t key,
2644 psa_algorithm_t alg,
2645 const uint8_t *input,
2646 size_t input_length,
2647 const uint8_t *mac,
2648 size_t mac_length)
2649 {
2650 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2651 uint8_t actual_mac[PSA_MAC_MAX_SIZE];
2652 size_t actual_mac_length;
2653
2654 status = psa_mac_compute_internal( key, alg,
2655 input, input_length,
2656 actual_mac, sizeof( actual_mac ),
2657 &actual_mac_length, 0 );
2658 if( status != PSA_SUCCESS )
2659 goto exit;
2660
2661 if( mac_length != actual_mac_length )
2662 {
2663 status = PSA_ERROR_INVALID_SIGNATURE;
2664 goto exit;
2665 }
2666 if( mbedtls_psa_safer_memcmp( mac, actual_mac, actual_mac_length ) != 0 )
2667 {
2668 status = PSA_ERROR_INVALID_SIGNATURE;
2669 goto exit;
2670 }
2671
2672 exit:
2673 mbedtls_platform_zeroize( actual_mac, sizeof( actual_mac ) );
2674
2675 return ( status );
2676 }
2677
2678 /****************************************************************/
2679 /* Asymmetric cryptography */
2680 /****************************************************************/
2681
psa_sign_verify_check_alg(int input_is_message,psa_algorithm_t alg)2682 static psa_status_t psa_sign_verify_check_alg( int input_is_message,
2683 psa_algorithm_t alg )
2684 {
2685 if( input_is_message )
2686 {
2687 if( ! PSA_ALG_IS_SIGN_MESSAGE( alg ) )
2688 return( PSA_ERROR_INVALID_ARGUMENT );
2689
2690 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2691 {
2692 if( ! PSA_ALG_IS_HASH( PSA_ALG_SIGN_GET_HASH( alg ) ) )
2693 return( PSA_ERROR_INVALID_ARGUMENT );
2694 }
2695 }
2696 else
2697 {
2698 if( ! PSA_ALG_IS_SIGN_HASH( alg ) )
2699 return( PSA_ERROR_INVALID_ARGUMENT );
2700 }
2701
2702 return( PSA_SUCCESS );
2703 }
2704
psa_sign_internal(mbedtls_svc_key_id_t key,int input_is_message,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2705 static psa_status_t psa_sign_internal( mbedtls_svc_key_id_t key,
2706 int input_is_message,
2707 psa_algorithm_t alg,
2708 const uint8_t * input,
2709 size_t input_length,
2710 uint8_t * signature,
2711 size_t signature_size,
2712 size_t * signature_length )
2713 {
2714 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2715 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2716 psa_key_slot_t *slot;
2717
2718 *signature_length = 0;
2719
2720 status = psa_sign_verify_check_alg( input_is_message, alg );
2721 if( status != PSA_SUCCESS )
2722 return status;
2723
2724 /* Immediately reject a zero-length signature buffer. This guarantees
2725 * that signature must be a valid pointer. (On the other hand, the input
2726 * buffer can in principle be empty since it doesn't actually have
2727 * to be a hash.) */
2728 if( signature_size == 0 )
2729 return( PSA_ERROR_BUFFER_TOO_SMALL );
2730
2731 status = psa_get_and_lock_key_slot_with_policy(
2732 key, &slot,
2733 input_is_message ? PSA_KEY_USAGE_SIGN_MESSAGE :
2734 PSA_KEY_USAGE_SIGN_HASH,
2735 alg );
2736
2737 if( status != PSA_SUCCESS )
2738 goto exit;
2739
2740 if( ! PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) )
2741 {
2742 status = PSA_ERROR_INVALID_ARGUMENT;
2743 goto exit;
2744 }
2745
2746 psa_key_attributes_t attributes = {
2747 .core = slot->attr
2748 };
2749
2750 if( input_is_message )
2751 {
2752 status = psa_driver_wrapper_sign_message(
2753 &attributes, slot->key.data, slot->key.bytes,
2754 alg, input, input_length,
2755 signature, signature_size, signature_length );
2756 }
2757 else
2758 {
2759
2760 status = psa_driver_wrapper_sign_hash(
2761 &attributes, slot->key.data, slot->key.bytes,
2762 alg, input, input_length,
2763 signature, signature_size, signature_length );
2764 }
2765
2766
2767 exit:
2768 /* Fill the unused part of the output buffer (the whole buffer on error,
2769 * the trailing part on success) with something that isn't a valid signature
2770 * (barring an attack on the signature and deliberately-crafted input),
2771 * in case the caller doesn't check the return status properly. */
2772 if( status == PSA_SUCCESS )
2773 memset( signature + *signature_length, '!',
2774 signature_size - *signature_length );
2775 else
2776 memset( signature, '!', signature_size );
2777 /* If signature_size is 0 then we have nothing to do. We must not call
2778 * memset because signature may be NULL in this case. */
2779
2780 unlock_status = psa_unlock_key_slot( slot );
2781
2782 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2783 }
2784
psa_verify_internal(mbedtls_svc_key_id_t key,int input_is_message,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2785 static psa_status_t psa_verify_internal( mbedtls_svc_key_id_t key,
2786 int input_is_message,
2787 psa_algorithm_t alg,
2788 const uint8_t * input,
2789 size_t input_length,
2790 const uint8_t * signature,
2791 size_t signature_length )
2792 {
2793 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2794 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2795 psa_key_slot_t *slot;
2796
2797 status = psa_sign_verify_check_alg( input_is_message, alg );
2798 if( status != PSA_SUCCESS )
2799 return status;
2800
2801 status = psa_get_and_lock_key_slot_with_policy(
2802 key, &slot,
2803 input_is_message ? PSA_KEY_USAGE_VERIFY_MESSAGE :
2804 PSA_KEY_USAGE_VERIFY_HASH,
2805 alg );
2806
2807 if( status != PSA_SUCCESS )
2808 return( status );
2809
2810 psa_key_attributes_t attributes = {
2811 .core = slot->attr
2812 };
2813
2814 if( input_is_message )
2815 {
2816 status = psa_driver_wrapper_verify_message(
2817 &attributes, slot->key.data, slot->key.bytes,
2818 alg, input, input_length,
2819 signature, signature_length );
2820 }
2821 else
2822 {
2823 status = psa_driver_wrapper_verify_hash(
2824 &attributes, slot->key.data, slot->key.bytes,
2825 alg, input, input_length,
2826 signature, signature_length );
2827 }
2828
2829 unlock_status = psa_unlock_key_slot( slot );
2830
2831 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2832
2833 }
2834
psa_sign_message_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2835 psa_status_t psa_sign_message_builtin(
2836 const psa_key_attributes_t *attributes,
2837 const uint8_t *key_buffer,
2838 size_t key_buffer_size,
2839 psa_algorithm_t alg,
2840 const uint8_t *input,
2841 size_t input_length,
2842 uint8_t *signature,
2843 size_t signature_size,
2844 size_t *signature_length )
2845 {
2846 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2847
2848 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2849 {
2850 size_t hash_length;
2851 uint8_t hash[PSA_HASH_MAX_SIZE];
2852
2853 status = psa_driver_wrapper_hash_compute(
2854 PSA_ALG_SIGN_GET_HASH( alg ),
2855 input, input_length,
2856 hash, sizeof( hash ), &hash_length );
2857
2858 if( status != PSA_SUCCESS )
2859 return status;
2860
2861 return psa_driver_wrapper_sign_hash(
2862 attributes, key_buffer, key_buffer_size,
2863 alg, hash, hash_length,
2864 signature, signature_size, signature_length );
2865 }
2866
2867 return( PSA_ERROR_NOT_SUPPORTED );
2868 }
2869
psa_sign_message(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2870 psa_status_t psa_sign_message( mbedtls_svc_key_id_t key,
2871 psa_algorithm_t alg,
2872 const uint8_t * input,
2873 size_t input_length,
2874 uint8_t * signature,
2875 size_t signature_size,
2876 size_t * signature_length )
2877 {
2878 return psa_sign_internal(
2879 key, 1, alg, input, input_length,
2880 signature, signature_size, signature_length );
2881 }
2882
psa_verify_message_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2883 psa_status_t psa_verify_message_builtin(
2884 const psa_key_attributes_t *attributes,
2885 const uint8_t *key_buffer,
2886 size_t key_buffer_size,
2887 psa_algorithm_t alg,
2888 const uint8_t *input,
2889 size_t input_length,
2890 const uint8_t *signature,
2891 size_t signature_length )
2892 {
2893 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2894
2895 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2896 {
2897 size_t hash_length;
2898 uint8_t hash[PSA_HASH_MAX_SIZE];
2899
2900 status = psa_driver_wrapper_hash_compute(
2901 PSA_ALG_SIGN_GET_HASH( alg ),
2902 input, input_length,
2903 hash, sizeof( hash ), &hash_length );
2904
2905 if( status != PSA_SUCCESS )
2906 return status;
2907
2908 return psa_driver_wrapper_verify_hash(
2909 attributes, key_buffer, key_buffer_size,
2910 alg, hash, hash_length,
2911 signature, signature_length );
2912 }
2913
2914 return( PSA_ERROR_NOT_SUPPORTED );
2915 }
2916
psa_verify_message(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2917 psa_status_t psa_verify_message( mbedtls_svc_key_id_t key,
2918 psa_algorithm_t alg,
2919 const uint8_t * input,
2920 size_t input_length,
2921 const uint8_t * signature,
2922 size_t signature_length )
2923 {
2924 return psa_verify_internal(
2925 key, 1, alg, input, input_length,
2926 signature, signature_length );
2927 }
2928
psa_sign_hash_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2929 psa_status_t psa_sign_hash_builtin(
2930 const psa_key_attributes_t *attributes,
2931 const uint8_t *key_buffer, size_t key_buffer_size,
2932 psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
2933 uint8_t *signature, size_t signature_size, size_t *signature_length )
2934 {
2935 if( attributes->core.type == PSA_KEY_TYPE_RSA_KEY_PAIR )
2936 {
2937 if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ||
2938 PSA_ALG_IS_RSA_PSS( alg) )
2939 {
2940 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
2941 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
2942 return( mbedtls_psa_rsa_sign_hash(
2943 attributes,
2944 key_buffer, key_buffer_size,
2945 alg, hash, hash_length,
2946 signature, signature_size, signature_length ) );
2947 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
2948 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
2949 }
2950 else
2951 {
2952 return( PSA_ERROR_INVALID_ARGUMENT );
2953 }
2954 }
2955 else if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) )
2956 {
2957 if( PSA_ALG_IS_ECDSA( alg ) )
2958 {
2959 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
2960 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
2961 return( mbedtls_psa_ecdsa_sign_hash(
2962 attributes,
2963 key_buffer, key_buffer_size,
2964 alg, hash, hash_length,
2965 signature, signature_size, signature_length ) );
2966 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
2967 * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
2968 }
2969 else
2970 {
2971 return( PSA_ERROR_INVALID_ARGUMENT );
2972 }
2973 }
2974
2975 (void)key_buffer;
2976 (void)key_buffer_size;
2977 (void)hash;
2978 (void)hash_length;
2979 (void)signature;
2980 (void)signature_size;
2981 (void)signature_length;
2982
2983 return( PSA_ERROR_NOT_SUPPORTED );
2984 }
2985
psa_sign_hash(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2986 psa_status_t psa_sign_hash( mbedtls_svc_key_id_t key,
2987 psa_algorithm_t alg,
2988 const uint8_t *hash,
2989 size_t hash_length,
2990 uint8_t *signature,
2991 size_t signature_size,
2992 size_t *signature_length )
2993 {
2994 return psa_sign_internal(
2995 key, 0, alg, hash, hash_length,
2996 signature, signature_size, signature_length );
2997 }
2998
psa_verify_hash_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,const uint8_t * signature,size_t signature_length)2999 psa_status_t psa_verify_hash_builtin(
3000 const psa_key_attributes_t *attributes,
3001 const uint8_t *key_buffer, size_t key_buffer_size,
3002 psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
3003 const uint8_t *signature, size_t signature_length )
3004 {
3005 if( PSA_KEY_TYPE_IS_RSA( attributes->core.type ) )
3006 {
3007 if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ||
3008 PSA_ALG_IS_RSA_PSS( alg) )
3009 {
3010 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
3011 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
3012 return( mbedtls_psa_rsa_verify_hash(
3013 attributes,
3014 key_buffer, key_buffer_size,
3015 alg, hash, hash_length,
3016 signature, signature_length ) );
3017 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
3018 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
3019 }
3020 else
3021 {
3022 return( PSA_ERROR_INVALID_ARGUMENT );
3023 }
3024 }
3025 else if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) )
3026 {
3027 if( PSA_ALG_IS_ECDSA( alg ) )
3028 {
3029 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
3030 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
3031 return( mbedtls_psa_ecdsa_verify_hash(
3032 attributes,
3033 key_buffer, key_buffer_size,
3034 alg, hash, hash_length,
3035 signature, signature_length ) );
3036 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
3037 * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
3038 }
3039 else
3040 {
3041 return( PSA_ERROR_INVALID_ARGUMENT );
3042 }
3043 }
3044
3045 (void)key_buffer;
3046 (void)key_buffer_size;
3047 (void)hash;
3048 (void)hash_length;
3049 (void)signature;
3050 (void)signature_length;
3051
3052 return( PSA_ERROR_NOT_SUPPORTED );
3053 }
3054
psa_verify_hash(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,const uint8_t * signature,size_t signature_length)3055 psa_status_t psa_verify_hash( mbedtls_svc_key_id_t key,
3056 psa_algorithm_t alg,
3057 const uint8_t *hash,
3058 size_t hash_length,
3059 const uint8_t *signature,
3060 size_t signature_length )
3061 {
3062 return psa_verify_internal(
3063 key, 0, alg, hash, hash_length,
3064 signature, signature_length );
3065 }
3066
3067 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
psa_rsa_oaep_set_padding_mode(psa_algorithm_t alg,mbedtls_rsa_context * rsa)3068 static void psa_rsa_oaep_set_padding_mode( psa_algorithm_t alg,
3069 mbedtls_rsa_context *rsa )
3070 {
3071 psa_algorithm_t hash_alg = PSA_ALG_RSA_OAEP_GET_HASH( alg );
3072 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg );
3073 mbedtls_md_type_t md_alg = mbedtls_md_get_type( md_info );
3074 mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg );
3075 }
3076 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3077
psa_asymmetric_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * salt,size_t salt_length,uint8_t * output,size_t output_size,size_t * output_length)3078 psa_status_t psa_asymmetric_encrypt( mbedtls_svc_key_id_t key,
3079 psa_algorithm_t alg,
3080 const uint8_t *input,
3081 size_t input_length,
3082 const uint8_t *salt,
3083 size_t salt_length,
3084 uint8_t *output,
3085 size_t output_size,
3086 size_t *output_length )
3087 {
3088 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3089 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3090 psa_key_slot_t *slot;
3091
3092 (void) input;
3093 (void) input_length;
3094 (void) salt;
3095 (void) output;
3096 (void) output_size;
3097
3098 *output_length = 0;
3099
3100 if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
3101 return( PSA_ERROR_INVALID_ARGUMENT );
3102
3103 status = psa_get_and_lock_transparent_key_slot_with_policy(
3104 key, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
3105 if( status != PSA_SUCCESS )
3106 return( status );
3107 if( ! ( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) ||
3108 PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) ) )
3109 {
3110 status = PSA_ERROR_INVALID_ARGUMENT;
3111 goto exit;
3112 }
3113
3114 if( PSA_KEY_TYPE_IS_RSA( slot->attr.type ) )
3115 {
3116 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3117 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3118 mbedtls_rsa_context *rsa = NULL;
3119 status = mbedtls_psa_rsa_load_representation( slot->attr.type,
3120 slot->key.data,
3121 slot->key.bytes,
3122 &rsa );
3123 if( status != PSA_SUCCESS )
3124 goto rsa_exit;
3125
3126 if( output_size < mbedtls_rsa_get_len( rsa ) )
3127 {
3128 status = PSA_ERROR_BUFFER_TOO_SMALL;
3129 goto rsa_exit;
3130 }
3131 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3132 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3133 if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT )
3134 {
3135 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT)
3136 status = mbedtls_to_psa_error(
3137 mbedtls_rsa_pkcs1_encrypt( rsa,
3138 mbedtls_psa_get_random,
3139 MBEDTLS_PSA_RANDOM_STATE,
3140 MBEDTLS_RSA_PUBLIC,
3141 input_length,
3142 input,
3143 output ) );
3144 #else
3145 status = PSA_ERROR_NOT_SUPPORTED;
3146 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT */
3147 }
3148 else
3149 if( PSA_ALG_IS_RSA_OAEP( alg ) )
3150 {
3151 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3152 psa_rsa_oaep_set_padding_mode( alg, rsa );
3153 status = mbedtls_to_psa_error(
3154 mbedtls_rsa_rsaes_oaep_encrypt( rsa,
3155 mbedtls_psa_get_random,
3156 MBEDTLS_PSA_RANDOM_STATE,
3157 MBEDTLS_RSA_PUBLIC,
3158 salt, salt_length,
3159 input_length,
3160 input,
3161 output ) );
3162 #else
3163 status = PSA_ERROR_NOT_SUPPORTED;
3164 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP */
3165 }
3166 else
3167 {
3168 status = PSA_ERROR_INVALID_ARGUMENT;
3169 }
3170 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3171 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3172 rsa_exit:
3173 if( status == PSA_SUCCESS )
3174 *output_length = mbedtls_rsa_get_len( rsa );
3175
3176 mbedtls_rsa_free( rsa );
3177 mbedtls_free( rsa );
3178 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3179 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3180 }
3181 else
3182 {
3183 status = PSA_ERROR_NOT_SUPPORTED;
3184 }
3185
3186 exit:
3187 unlock_status = psa_unlock_key_slot( slot );
3188
3189 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3190 }
3191
psa_asymmetric_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * salt,size_t salt_length,uint8_t * output,size_t output_size,size_t * output_length)3192 psa_status_t psa_asymmetric_decrypt( mbedtls_svc_key_id_t key,
3193 psa_algorithm_t alg,
3194 const uint8_t *input,
3195 size_t input_length,
3196 const uint8_t *salt,
3197 size_t salt_length,
3198 uint8_t *output,
3199 size_t output_size,
3200 size_t *output_length )
3201 {
3202 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3203 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3204 psa_key_slot_t *slot;
3205
3206 (void) input;
3207 (void) input_length;
3208 (void) salt;
3209 (void) output;
3210 (void) output_size;
3211
3212 *output_length = 0;
3213
3214 if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
3215 return( PSA_ERROR_INVALID_ARGUMENT );
3216
3217 status = psa_get_and_lock_transparent_key_slot_with_policy(
3218 key, &slot, PSA_KEY_USAGE_DECRYPT, alg );
3219 if( status != PSA_SUCCESS )
3220 return( status );
3221 if( ! PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) )
3222 {
3223 status = PSA_ERROR_INVALID_ARGUMENT;
3224 goto exit;
3225 }
3226
3227 if( slot->attr.type == PSA_KEY_TYPE_RSA_KEY_PAIR )
3228 {
3229 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3230 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3231 mbedtls_rsa_context *rsa = NULL;
3232 status = mbedtls_psa_rsa_load_representation( slot->attr.type,
3233 slot->key.data,
3234 slot->key.bytes,
3235 &rsa );
3236 if( status != PSA_SUCCESS )
3237 goto exit;
3238
3239 if( input_length != mbedtls_rsa_get_len( rsa ) )
3240 {
3241 status = PSA_ERROR_INVALID_ARGUMENT;
3242 goto rsa_exit;
3243 }
3244 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3245 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3246
3247 if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT )
3248 {
3249 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT)
3250 status = mbedtls_to_psa_error(
3251 mbedtls_rsa_pkcs1_decrypt( rsa,
3252 mbedtls_psa_get_random,
3253 MBEDTLS_PSA_RANDOM_STATE,
3254 MBEDTLS_RSA_PRIVATE,
3255 output_length,
3256 input,
3257 output,
3258 output_size ) );
3259 #else
3260 status = PSA_ERROR_NOT_SUPPORTED;
3261 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT */
3262 }
3263 else
3264 if( PSA_ALG_IS_RSA_OAEP( alg ) )
3265 {
3266 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3267 psa_rsa_oaep_set_padding_mode( alg, rsa );
3268 status = mbedtls_to_psa_error(
3269 mbedtls_rsa_rsaes_oaep_decrypt( rsa,
3270 mbedtls_psa_get_random,
3271 MBEDTLS_PSA_RANDOM_STATE,
3272 MBEDTLS_RSA_PRIVATE,
3273 salt, salt_length,
3274 output_length,
3275 input,
3276 output,
3277 output_size ) );
3278 #else
3279 status = PSA_ERROR_NOT_SUPPORTED;
3280 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP */
3281 }
3282 else
3283 {
3284 status = PSA_ERROR_INVALID_ARGUMENT;
3285 }
3286
3287 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3288 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3289 rsa_exit:
3290 mbedtls_rsa_free( rsa );
3291 mbedtls_free( rsa );
3292 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3293 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3294 }
3295 else
3296 {
3297 status = PSA_ERROR_NOT_SUPPORTED;
3298 }
3299
3300 exit:
3301 unlock_status = psa_unlock_key_slot( slot );
3302
3303 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3304 }
3305
3306
3307
3308 /****************************************************************/
3309 /* Symmetric cryptography */
3310 /****************************************************************/
3311
psa_cipher_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg,mbedtls_operation_t cipher_operation)3312 static psa_status_t psa_cipher_setup( psa_cipher_operation_t *operation,
3313 mbedtls_svc_key_id_t key,
3314 psa_algorithm_t alg,
3315 mbedtls_operation_t cipher_operation )
3316 {
3317 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3318 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3319 psa_key_slot_t *slot = NULL;
3320 psa_key_usage_t usage = ( cipher_operation == MBEDTLS_ENCRYPT ?
3321 PSA_KEY_USAGE_ENCRYPT :
3322 PSA_KEY_USAGE_DECRYPT );
3323
3324 /* A context must be freshly initialized before it can be set up. */
3325 if( operation->id != 0 )
3326 {
3327 status = PSA_ERROR_BAD_STATE;
3328 goto exit;
3329 }
3330
3331 if( ! PSA_ALG_IS_CIPHER( alg ) )
3332 {
3333 status = PSA_ERROR_INVALID_ARGUMENT;
3334 goto exit;
3335 }
3336
3337 status = psa_get_and_lock_key_slot_with_policy( key, &slot, usage, alg );
3338 if( status != PSA_SUCCESS )
3339 goto exit;
3340
3341 /* Initialize the operation struct members, except for id. The id member
3342 * is used to indicate to psa_cipher_abort that there are resources to free,
3343 * so we only set it (in the driver wrapper) after resources have been
3344 * allocated/initialized. */
3345 operation->iv_set = 0;
3346 if( alg == PSA_ALG_ECB_NO_PADDING )
3347 operation->iv_required = 0;
3348 else
3349 operation->iv_required = 1;
3350 operation->default_iv_length = PSA_CIPHER_IV_LENGTH( slot->attr.type, alg );
3351
3352 psa_key_attributes_t attributes = {
3353 .core = slot->attr
3354 };
3355
3356 /* Try doing the operation through a driver before using software fallback. */
3357 if( cipher_operation == MBEDTLS_ENCRYPT )
3358 status = psa_driver_wrapper_cipher_encrypt_setup( operation,
3359 &attributes,
3360 slot->key.data,
3361 slot->key.bytes,
3362 alg );
3363 else
3364 status = psa_driver_wrapper_cipher_decrypt_setup( operation,
3365 &attributes,
3366 slot->key.data,
3367 slot->key.bytes,
3368 alg );
3369
3370 exit:
3371 if( status != PSA_SUCCESS )
3372 psa_cipher_abort( operation );
3373
3374 unlock_status = psa_unlock_key_slot( slot );
3375
3376 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3377 }
3378
psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3379 psa_status_t psa_cipher_encrypt_setup( psa_cipher_operation_t *operation,
3380 mbedtls_svc_key_id_t key,
3381 psa_algorithm_t alg )
3382 {
3383 return( psa_cipher_setup( operation, key, alg, MBEDTLS_ENCRYPT ) );
3384 }
3385
psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3386 psa_status_t psa_cipher_decrypt_setup( psa_cipher_operation_t *operation,
3387 mbedtls_svc_key_id_t key,
3388 psa_algorithm_t alg )
3389 {
3390 return( psa_cipher_setup( operation, key, alg, MBEDTLS_DECRYPT ) );
3391 }
3392
psa_cipher_generate_iv(psa_cipher_operation_t * operation,uint8_t * iv,size_t iv_size,size_t * iv_length)3393 psa_status_t psa_cipher_generate_iv( psa_cipher_operation_t *operation,
3394 uint8_t *iv,
3395 size_t iv_size,
3396 size_t *iv_length )
3397 {
3398 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3399 uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
3400 size_t default_iv_length;
3401
3402 if( operation->id == 0 )
3403 {
3404 status = PSA_ERROR_BAD_STATE;
3405 goto exit;
3406 }
3407
3408 if( operation->iv_set || ! operation->iv_required )
3409 {
3410 status = PSA_ERROR_BAD_STATE;
3411 goto exit;
3412 }
3413
3414 default_iv_length = operation->default_iv_length;
3415 if( iv_size < default_iv_length )
3416 {
3417 status = PSA_ERROR_BUFFER_TOO_SMALL;
3418 goto exit;
3419 }
3420
3421 if( default_iv_length > PSA_CIPHER_IV_MAX_SIZE )
3422 {
3423 status = PSA_ERROR_GENERIC_ERROR;
3424 goto exit;
3425 }
3426
3427 status = psa_generate_random( local_iv, default_iv_length );
3428 if( status != PSA_SUCCESS )
3429 goto exit;
3430
3431 status = psa_driver_wrapper_cipher_set_iv( operation,
3432 local_iv, default_iv_length );
3433
3434 exit:
3435 if( status == PSA_SUCCESS )
3436 {
3437 memcpy( iv, local_iv, default_iv_length );
3438 *iv_length = default_iv_length;
3439 operation->iv_set = 1;
3440 }
3441 else
3442 {
3443 *iv_length = 0;
3444 psa_cipher_abort( operation );
3445 }
3446
3447 return( status );
3448 }
3449
psa_cipher_set_iv(psa_cipher_operation_t * operation,const uint8_t * iv,size_t iv_length)3450 psa_status_t psa_cipher_set_iv( psa_cipher_operation_t *operation,
3451 const uint8_t *iv,
3452 size_t iv_length )
3453 {
3454 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3455
3456 if( operation->id == 0 )
3457 {
3458 status = PSA_ERROR_BAD_STATE;
3459 goto exit;
3460 }
3461
3462 if( operation->iv_set || ! operation->iv_required )
3463 {
3464 status = PSA_ERROR_BAD_STATE;
3465 goto exit;
3466 }
3467
3468 if( iv_length > PSA_CIPHER_IV_MAX_SIZE )
3469 {
3470 status = PSA_ERROR_INVALID_ARGUMENT;
3471 goto exit;
3472 }
3473
3474 status = psa_driver_wrapper_cipher_set_iv( operation,
3475 iv,
3476 iv_length );
3477
3478 exit:
3479 if( status == PSA_SUCCESS )
3480 operation->iv_set = 1;
3481 else
3482 psa_cipher_abort( operation );
3483 return( status );
3484 }
3485
psa_cipher_update(psa_cipher_operation_t * operation,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3486 psa_status_t psa_cipher_update( psa_cipher_operation_t *operation,
3487 const uint8_t *input,
3488 size_t input_length,
3489 uint8_t *output,
3490 size_t output_size,
3491 size_t *output_length )
3492 {
3493 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3494
3495 if( operation->id == 0 )
3496 {
3497 status = PSA_ERROR_BAD_STATE;
3498 goto exit;
3499 }
3500
3501 if( operation->iv_required && ! operation->iv_set )
3502 {
3503 status = PSA_ERROR_BAD_STATE;
3504 goto exit;
3505 }
3506
3507 status = psa_driver_wrapper_cipher_update( operation,
3508 input,
3509 input_length,
3510 output,
3511 output_size,
3512 output_length );
3513
3514 exit:
3515 if( status != PSA_SUCCESS )
3516 psa_cipher_abort( operation );
3517
3518 return( status );
3519 }
3520
psa_cipher_finish(psa_cipher_operation_t * operation,uint8_t * output,size_t output_size,size_t * output_length)3521 psa_status_t psa_cipher_finish( psa_cipher_operation_t *operation,
3522 uint8_t *output,
3523 size_t output_size,
3524 size_t *output_length )
3525 {
3526 psa_status_t status = PSA_ERROR_GENERIC_ERROR;
3527
3528 if( operation->id == 0 )
3529 {
3530 status = PSA_ERROR_BAD_STATE;
3531 goto exit;
3532 }
3533
3534 if( operation->iv_required && ! operation->iv_set )
3535 {
3536 status = PSA_ERROR_BAD_STATE;
3537 goto exit;
3538 }
3539
3540 status = psa_driver_wrapper_cipher_finish( operation,
3541 output,
3542 output_size,
3543 output_length );
3544
3545 exit:
3546 if( status == PSA_SUCCESS )
3547 return( psa_cipher_abort( operation ) );
3548 else
3549 {
3550 *output_length = 0;
3551 (void) psa_cipher_abort( operation );
3552
3553 return( status );
3554 }
3555 }
3556
psa_cipher_abort(psa_cipher_operation_t * operation)3557 psa_status_t psa_cipher_abort( psa_cipher_operation_t *operation )
3558 {
3559 if( operation->id == 0 )
3560 {
3561 /* The object has (apparently) been initialized but it is not (yet)
3562 * in use. It's ok to call abort on such an object, and there's
3563 * nothing to do. */
3564 return( PSA_SUCCESS );
3565 }
3566
3567 psa_driver_wrapper_cipher_abort( operation );
3568
3569 operation->id = 0;
3570 operation->iv_set = 0;
3571 operation->iv_required = 0;
3572
3573 return( PSA_SUCCESS );
3574 }
3575
psa_cipher_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3576 psa_status_t psa_cipher_encrypt( mbedtls_svc_key_id_t key,
3577 psa_algorithm_t alg,
3578 const uint8_t *input,
3579 size_t input_length,
3580 uint8_t *output,
3581 size_t output_size,
3582 size_t *output_length )
3583 {
3584 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3585 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3586 psa_key_slot_t *slot = NULL;
3587 uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
3588 size_t default_iv_length = 0;
3589
3590 if( ! PSA_ALG_IS_CIPHER( alg ) )
3591 {
3592 status = PSA_ERROR_INVALID_ARGUMENT;
3593 goto exit;
3594 }
3595
3596 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
3597 PSA_KEY_USAGE_ENCRYPT,
3598 alg );
3599 if( status != PSA_SUCCESS )
3600 goto exit;
3601
3602 psa_key_attributes_t attributes = {
3603 .core = slot->attr
3604 };
3605
3606 default_iv_length = PSA_CIPHER_IV_LENGTH( slot->attr.type, alg );
3607 if( default_iv_length > PSA_CIPHER_IV_MAX_SIZE )
3608 {
3609 status = PSA_ERROR_GENERIC_ERROR;
3610 goto exit;
3611 }
3612
3613 if( default_iv_length > 0 )
3614 {
3615 if( output_size < default_iv_length )
3616 {
3617 status = PSA_ERROR_BUFFER_TOO_SMALL;
3618 goto exit;
3619 }
3620
3621 status = psa_generate_random( local_iv, default_iv_length );
3622 if( status != PSA_SUCCESS )
3623 goto exit;
3624 }
3625
3626 status = psa_driver_wrapper_cipher_encrypt(
3627 &attributes, slot->key.data, slot->key.bytes,
3628 alg, local_iv, default_iv_length, input, input_length,
3629 output + default_iv_length, output_size - default_iv_length,
3630 output_length );
3631
3632 exit:
3633 unlock_status = psa_unlock_key_slot( slot );
3634 if( status == PSA_SUCCESS )
3635 status = unlock_status;
3636
3637 if( status == PSA_SUCCESS )
3638 {
3639 if( default_iv_length > 0 )
3640 memcpy( output, local_iv, default_iv_length );
3641 *output_length += default_iv_length;
3642 }
3643 else
3644 *output_length = 0;
3645
3646 return( status );
3647 }
3648
psa_cipher_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3649 psa_status_t psa_cipher_decrypt( mbedtls_svc_key_id_t key,
3650 psa_algorithm_t alg,
3651 const uint8_t *input,
3652 size_t input_length,
3653 uint8_t *output,
3654 size_t output_size,
3655 size_t *output_length )
3656 {
3657 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3658 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3659 psa_key_slot_t *slot = NULL;
3660
3661 if( ! PSA_ALG_IS_CIPHER( alg ) )
3662 {
3663 status = PSA_ERROR_INVALID_ARGUMENT;
3664 goto exit;
3665 }
3666
3667 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
3668 PSA_KEY_USAGE_DECRYPT,
3669 alg );
3670 if( status != PSA_SUCCESS )
3671 goto exit;
3672
3673 psa_key_attributes_t attributes = {
3674 .core = slot->attr
3675 };
3676
3677 if( input_length < PSA_CIPHER_IV_LENGTH( slot->attr.type, alg ) )
3678 {
3679 status = PSA_ERROR_INVALID_ARGUMENT;
3680 goto exit;
3681 }
3682
3683 status = psa_driver_wrapper_cipher_decrypt(
3684 &attributes, slot->key.data, slot->key.bytes,
3685 alg, input, input_length,
3686 output, output_size, output_length );
3687
3688 exit:
3689 unlock_status = psa_unlock_key_slot( slot );
3690 if( status == PSA_SUCCESS )
3691 status = unlock_status;
3692
3693 if( status != PSA_SUCCESS )
3694 *output_length = 0;
3695
3696 return( status );
3697 }
3698
3699
3700 /****************************************************************/
3701 /* AEAD */
3702 /****************************************************************/
3703
psa_aead_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * nonce,size_t nonce_length,const uint8_t * additional_data,size_t additional_data_length,const uint8_t * plaintext,size_t plaintext_length,uint8_t * ciphertext,size_t ciphertext_size,size_t * ciphertext_length)3704 psa_status_t psa_aead_encrypt( mbedtls_svc_key_id_t key,
3705 psa_algorithm_t alg,
3706 const uint8_t *nonce,
3707 size_t nonce_length,
3708 const uint8_t *additional_data,
3709 size_t additional_data_length,
3710 const uint8_t *plaintext,
3711 size_t plaintext_length,
3712 uint8_t *ciphertext,
3713 size_t ciphertext_size,
3714 size_t *ciphertext_length )
3715 {
3716 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3717 psa_key_slot_t *slot;
3718
3719 *ciphertext_length = 0;
3720
3721 if( !PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_WILDCARD( alg ) )
3722 return( PSA_ERROR_NOT_SUPPORTED );
3723
3724 status = psa_get_and_lock_key_slot_with_policy(
3725 key, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
3726 if( status != PSA_SUCCESS )
3727 return( status );
3728
3729 psa_key_attributes_t attributes = {
3730 .core = slot->attr
3731 };
3732
3733 status = psa_driver_wrapper_aead_encrypt(
3734 &attributes, slot->key.data, slot->key.bytes,
3735 alg,
3736 nonce, nonce_length,
3737 additional_data, additional_data_length,
3738 plaintext, plaintext_length,
3739 ciphertext, ciphertext_size, ciphertext_length );
3740
3741 if( status != PSA_SUCCESS && ciphertext_size != 0 )
3742 memset( ciphertext, 0, ciphertext_size );
3743
3744 psa_unlock_key_slot( slot );
3745
3746 return( status );
3747 }
3748
psa_aead_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * nonce,size_t nonce_length,const uint8_t * additional_data,size_t additional_data_length,const uint8_t * ciphertext,size_t ciphertext_length,uint8_t * plaintext,size_t plaintext_size,size_t * plaintext_length)3749 psa_status_t psa_aead_decrypt( mbedtls_svc_key_id_t key,
3750 psa_algorithm_t alg,
3751 const uint8_t *nonce,
3752 size_t nonce_length,
3753 const uint8_t *additional_data,
3754 size_t additional_data_length,
3755 const uint8_t *ciphertext,
3756 size_t ciphertext_length,
3757 uint8_t *plaintext,
3758 size_t plaintext_size,
3759 size_t *plaintext_length )
3760 {
3761 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3762 psa_key_slot_t *slot;
3763
3764 *plaintext_length = 0;
3765
3766 if( !PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_WILDCARD( alg ) )
3767 return( PSA_ERROR_NOT_SUPPORTED );
3768
3769 status = psa_get_and_lock_key_slot_with_policy(
3770 key, &slot, PSA_KEY_USAGE_DECRYPT, alg );
3771 if( status != PSA_SUCCESS )
3772 return( status );
3773
3774 psa_key_attributes_t attributes = {
3775 .core = slot->attr
3776 };
3777
3778 status = psa_driver_wrapper_aead_decrypt(
3779 &attributes, slot->key.data, slot->key.bytes,
3780 alg,
3781 nonce, nonce_length,
3782 additional_data, additional_data_length,
3783 ciphertext, ciphertext_length,
3784 plaintext, plaintext_size, plaintext_length );
3785
3786 if( status != PSA_SUCCESS && plaintext_size != 0 )
3787 memset( plaintext, 0, plaintext_size );
3788
3789 psa_unlock_key_slot( slot );
3790
3791 return( status );
3792 }
3793
3794 /****************************************************************/
3795 /* Generators */
3796 /****************************************************************/
3797
3798 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) || \
3799 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
3800 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
3801 #define AT_LEAST_ONE_BUILTIN_KDF
3802 #endif /* At least one builtin KDF */
3803
3804 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) || \
3805 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
3806 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_key_derivation_start_hmac(psa_mac_operation_t * operation,psa_algorithm_t hash_alg,const uint8_t * hmac_key,size_t hmac_key_length)3807 static psa_status_t psa_key_derivation_start_hmac(
3808 psa_mac_operation_t *operation,
3809 psa_algorithm_t hash_alg,
3810 const uint8_t *hmac_key,
3811 size_t hmac_key_length )
3812 {
3813 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3814 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
3815 psa_set_key_type( &attributes, PSA_KEY_TYPE_HMAC );
3816 psa_set_key_bits( &attributes, PSA_BYTES_TO_BITS( hmac_key_length ) );
3817 psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
3818
3819 operation->is_sign = 1;
3820 operation->mac_size = PSA_HASH_LENGTH( hash_alg );
3821
3822 status = psa_driver_wrapper_mac_sign_setup( operation,
3823 &attributes,
3824 hmac_key, hmac_key_length,
3825 PSA_ALG_HMAC( hash_alg ) );
3826
3827 psa_reset_key_attributes( &attributes );
3828 return( status );
3829 }
3830 #endif /* KDF algorithms reliant on HMAC */
3831
3832 #define HKDF_STATE_INIT 0 /* no input yet */
3833 #define HKDF_STATE_STARTED 1 /* got salt */
3834 #define HKDF_STATE_KEYED 2 /* got key */
3835 #define HKDF_STATE_OUTPUT 3 /* output started */
3836
psa_key_derivation_get_kdf_alg(const psa_key_derivation_operation_t * operation)3837 static psa_algorithm_t psa_key_derivation_get_kdf_alg(
3838 const psa_key_derivation_operation_t *operation )
3839 {
3840 if ( PSA_ALG_IS_KEY_AGREEMENT( operation->alg ) )
3841 return( PSA_ALG_KEY_AGREEMENT_GET_KDF( operation->alg ) );
3842 else
3843 return( operation->alg );
3844 }
3845
psa_key_derivation_abort(psa_key_derivation_operation_t * operation)3846 psa_status_t psa_key_derivation_abort( psa_key_derivation_operation_t *operation )
3847 {
3848 psa_status_t status = PSA_SUCCESS;
3849 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
3850 if( kdf_alg == 0 )
3851 {
3852 /* The object has (apparently) been initialized but it is not
3853 * in use. It's ok to call abort on such an object, and there's
3854 * nothing to do. */
3855 }
3856 else
3857 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
3858 if( PSA_ALG_IS_HKDF( kdf_alg ) )
3859 {
3860 mbedtls_free( operation->ctx.hkdf.info );
3861 status = psa_mac_abort( &operation->ctx.hkdf.hmac );
3862 }
3863 else
3864 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF */
3865 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
3866 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
3867 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
3868 /* TLS-1.2 PSK-to-MS KDF uses the same core as TLS-1.2 PRF */
3869 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
3870 {
3871 if( operation->ctx.tls12_prf.secret != NULL )
3872 {
3873 mbedtls_platform_zeroize( operation->ctx.tls12_prf.secret,
3874 operation->ctx.tls12_prf.secret_length );
3875 mbedtls_free( operation->ctx.tls12_prf.secret );
3876 }
3877
3878 if( operation->ctx.tls12_prf.seed != NULL )
3879 {
3880 mbedtls_platform_zeroize( operation->ctx.tls12_prf.seed,
3881 operation->ctx.tls12_prf.seed_length );
3882 mbedtls_free( operation->ctx.tls12_prf.seed );
3883 }
3884
3885 if( operation->ctx.tls12_prf.label != NULL )
3886 {
3887 mbedtls_platform_zeroize( operation->ctx.tls12_prf.label,
3888 operation->ctx.tls12_prf.label_length );
3889 mbedtls_free( operation->ctx.tls12_prf.label );
3890 }
3891
3892 status = PSA_SUCCESS;
3893
3894 /* We leave the fields Ai and output_block to be erased safely by the
3895 * mbedtls_platform_zeroize() in the end of this function. */
3896 }
3897 else
3898 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
3899 * defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS) */
3900 {
3901 status = PSA_ERROR_BAD_STATE;
3902 }
3903 mbedtls_platform_zeroize( operation, sizeof( *operation ) );
3904 return( status );
3905 }
3906
psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,size_t * capacity)3907 psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t *operation,
3908 size_t *capacity)
3909 {
3910 if( operation->alg == 0 )
3911 {
3912 /* This is a blank key derivation operation. */
3913 return( PSA_ERROR_BAD_STATE );
3914 }
3915
3916 *capacity = operation->capacity;
3917 return( PSA_SUCCESS );
3918 }
3919
psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,size_t capacity)3920 psa_status_t psa_key_derivation_set_capacity( psa_key_derivation_operation_t *operation,
3921 size_t capacity )
3922 {
3923 if( operation->alg == 0 )
3924 return( PSA_ERROR_BAD_STATE );
3925 if( capacity > operation->capacity )
3926 return( PSA_ERROR_INVALID_ARGUMENT );
3927 operation->capacity = capacity;
3928 return( PSA_SUCCESS );
3929 }
3930
3931 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
3932 /* Read some bytes from an HKDF-based operation. This performs a chunk
3933 * of the expand phase of the HKDF algorithm. */
psa_key_derivation_hkdf_read(psa_hkdf_key_derivation_t * hkdf,psa_algorithm_t hash_alg,uint8_t * output,size_t output_length)3934 static psa_status_t psa_key_derivation_hkdf_read( psa_hkdf_key_derivation_t *hkdf,
3935 psa_algorithm_t hash_alg,
3936 uint8_t *output,
3937 size_t output_length )
3938 {
3939 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
3940 size_t hmac_output_length;
3941 psa_status_t status;
3942
3943 if( hkdf->state < HKDF_STATE_KEYED || ! hkdf->info_set )
3944 return( PSA_ERROR_BAD_STATE );
3945 hkdf->state = HKDF_STATE_OUTPUT;
3946
3947 while( output_length != 0 )
3948 {
3949 /* Copy what remains of the current block */
3950 uint8_t n = hash_length - hkdf->offset_in_block;
3951 if( n > output_length )
3952 n = (uint8_t) output_length;
3953 memcpy( output, hkdf->output_block + hkdf->offset_in_block, n );
3954 output += n;
3955 output_length -= n;
3956 hkdf->offset_in_block += n;
3957 if( output_length == 0 )
3958 break;
3959 /* We can't be wanting more output after block 0xff, otherwise
3960 * the capacity check in psa_key_derivation_output_bytes() would have
3961 * prevented this call. It could happen only if the operation
3962 * object was corrupted or if this function is called directly
3963 * inside the library. */
3964 if( hkdf->block_number == 0xff )
3965 return( PSA_ERROR_BAD_STATE );
3966
3967 /* We need a new block */
3968 ++hkdf->block_number;
3969 hkdf->offset_in_block = 0;
3970
3971 status = psa_key_derivation_start_hmac( &hkdf->hmac,
3972 hash_alg,
3973 hkdf->prk,
3974 hash_length );
3975 if( status != PSA_SUCCESS )
3976 return( status );
3977
3978 if( hkdf->block_number != 1 )
3979 {
3980 status = psa_mac_update( &hkdf->hmac,
3981 hkdf->output_block,
3982 hash_length );
3983 if( status != PSA_SUCCESS )
3984 return( status );
3985 }
3986 status = psa_mac_update( &hkdf->hmac,
3987 hkdf->info,
3988 hkdf->info_length );
3989 if( status != PSA_SUCCESS )
3990 return( status );
3991 status = psa_mac_update( &hkdf->hmac,
3992 &hkdf->block_number, 1 );
3993 if( status != PSA_SUCCESS )
3994 return( status );
3995 status = psa_mac_sign_finish( &hkdf->hmac,
3996 hkdf->output_block,
3997 sizeof( hkdf->output_block ),
3998 &hmac_output_length );
3999 if( status != PSA_SUCCESS )
4000 return( status );
4001 }
4002
4003 return( PSA_SUCCESS );
4004 }
4005 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4006
4007 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4008 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_key_derivation_tls12_prf_generate_next_block(psa_tls12_prf_key_derivation_t * tls12_prf,psa_algorithm_t alg)4009 static psa_status_t psa_key_derivation_tls12_prf_generate_next_block(
4010 psa_tls12_prf_key_derivation_t *tls12_prf,
4011 psa_algorithm_t alg )
4012 {
4013 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( alg );
4014 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4015 psa_mac_operation_t hmac = PSA_MAC_OPERATION_INIT;
4016 size_t hmac_output_length;
4017 psa_status_t status, cleanup_status;
4018
4019 /* We can't be wanting more output after block 0xff, otherwise
4020 * the capacity check in psa_key_derivation_output_bytes() would have
4021 * prevented this call. It could happen only if the operation
4022 * object was corrupted or if this function is called directly
4023 * inside the library. */
4024 if( tls12_prf->block_number == 0xff )
4025 return( PSA_ERROR_CORRUPTION_DETECTED );
4026
4027 /* We need a new block */
4028 ++tls12_prf->block_number;
4029 tls12_prf->left_in_block = hash_length;
4030
4031 /* Recall the definition of the TLS-1.2-PRF from RFC 5246:
4032 *
4033 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
4034 *
4035 * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
4036 * HMAC_hash(secret, A(2) + seed) +
4037 * HMAC_hash(secret, A(3) + seed) + ...
4038 *
4039 * A(0) = seed
4040 * A(i) = HMAC_hash(secret, A(i-1))
4041 *
4042 * The `psa_tls12_prf_key_derivation` structure saves the block
4043 * `HMAC_hash(secret, A(i) + seed)` from which the output
4044 * is currently extracted as `output_block` and where i is
4045 * `block_number`.
4046 */
4047
4048 status = psa_key_derivation_start_hmac( &hmac,
4049 hash_alg,
4050 tls12_prf->secret,
4051 tls12_prf->secret_length );
4052 if( status != PSA_SUCCESS )
4053 goto cleanup;
4054
4055 /* Calculate A(i) where i = tls12_prf->block_number. */
4056 if( tls12_prf->block_number == 1 )
4057 {
4058 /* A(1) = HMAC_hash(secret, A(0)), where A(0) = seed. (The RFC overloads
4059 * the variable seed and in this instance means it in the context of the
4060 * P_hash function, where seed = label + seed.) */
4061 status = psa_mac_update( &hmac,
4062 tls12_prf->label,
4063 tls12_prf->label_length );
4064 if( status != PSA_SUCCESS )
4065 goto cleanup;
4066 status = psa_mac_update( &hmac,
4067 tls12_prf->seed,
4068 tls12_prf->seed_length );
4069 if( status != PSA_SUCCESS )
4070 goto cleanup;
4071 }
4072 else
4073 {
4074 /* A(i) = HMAC_hash(secret, A(i-1)) */
4075 status = psa_mac_update( &hmac, tls12_prf->Ai, hash_length );
4076 if( status != PSA_SUCCESS )
4077 goto cleanup;
4078 }
4079
4080 status = psa_mac_sign_finish( &hmac,
4081 tls12_prf->Ai, hash_length,
4082 &hmac_output_length );
4083 if( hmac_output_length != hash_length )
4084 status = PSA_ERROR_CORRUPTION_DETECTED;
4085 if( status != PSA_SUCCESS )
4086 goto cleanup;
4087
4088 /* Calculate HMAC_hash(secret, A(i) + label + seed). */
4089 status = psa_key_derivation_start_hmac( &hmac,
4090 hash_alg,
4091 tls12_prf->secret,
4092 tls12_prf->secret_length );
4093 if( status != PSA_SUCCESS )
4094 goto cleanup;
4095 status = psa_mac_update( &hmac, tls12_prf->Ai, hash_length );
4096 if( status != PSA_SUCCESS )
4097 goto cleanup;
4098 status = psa_mac_update( &hmac, tls12_prf->label, tls12_prf->label_length );
4099 if( status != PSA_SUCCESS )
4100 goto cleanup;
4101 status = psa_mac_update( &hmac, tls12_prf->seed, tls12_prf->seed_length );
4102 if( status != PSA_SUCCESS )
4103 goto cleanup;
4104 status = psa_mac_sign_finish( &hmac,
4105 tls12_prf->output_block, hash_length,
4106 &hmac_output_length );
4107 if( status != PSA_SUCCESS )
4108 goto cleanup;
4109
4110
4111 cleanup:
4112 cleanup_status = psa_mac_abort( &hmac );
4113 if( status == PSA_SUCCESS && cleanup_status != PSA_SUCCESS )
4114 status = cleanup_status;
4115
4116 return( status );
4117 }
4118
psa_key_derivation_tls12_prf_read(psa_tls12_prf_key_derivation_t * tls12_prf,psa_algorithm_t alg,uint8_t * output,size_t output_length)4119 static psa_status_t psa_key_derivation_tls12_prf_read(
4120 psa_tls12_prf_key_derivation_t *tls12_prf,
4121 psa_algorithm_t alg,
4122 uint8_t *output,
4123 size_t output_length )
4124 {
4125 psa_algorithm_t hash_alg = PSA_ALG_TLS12_PRF_GET_HASH( alg );
4126 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4127 psa_status_t status;
4128 uint8_t offset, length;
4129
4130 switch( tls12_prf->state )
4131 {
4132 case PSA_TLS12_PRF_STATE_LABEL_SET:
4133 tls12_prf->state = PSA_TLS12_PRF_STATE_OUTPUT;
4134 break;
4135 case PSA_TLS12_PRF_STATE_OUTPUT:
4136 break;
4137 default:
4138 return( PSA_ERROR_BAD_STATE );
4139 }
4140
4141 while( output_length != 0 )
4142 {
4143 /* Check if we have fully processed the current block. */
4144 if( tls12_prf->left_in_block == 0 )
4145 {
4146 status = psa_key_derivation_tls12_prf_generate_next_block( tls12_prf,
4147 alg );
4148 if( status != PSA_SUCCESS )
4149 return( status );
4150
4151 continue;
4152 }
4153
4154 if( tls12_prf->left_in_block > output_length )
4155 length = (uint8_t) output_length;
4156 else
4157 length = tls12_prf->left_in_block;
4158
4159 offset = hash_length - tls12_prf->left_in_block;
4160 memcpy( output, tls12_prf->output_block + offset, length );
4161 output += length;
4162 output_length -= length;
4163 tls12_prf->left_in_block -= length;
4164 }
4165
4166 return( PSA_SUCCESS );
4167 }
4168 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
4169 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4170
psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,uint8_t * output,size_t output_length)4171 psa_status_t psa_key_derivation_output_bytes(
4172 psa_key_derivation_operation_t *operation,
4173 uint8_t *output,
4174 size_t output_length )
4175 {
4176 psa_status_t status;
4177 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
4178
4179 if( operation->alg == 0 )
4180 {
4181 /* This is a blank operation. */
4182 return( PSA_ERROR_BAD_STATE );
4183 }
4184
4185 if( output_length > operation->capacity )
4186 {
4187 operation->capacity = 0;
4188 /* Go through the error path to wipe all confidential data now
4189 * that the operation object is useless. */
4190 status = PSA_ERROR_INSUFFICIENT_DATA;
4191 goto exit;
4192 }
4193 if( output_length == 0 && operation->capacity == 0 )
4194 {
4195 /* Edge case: this is a finished operation, and 0 bytes
4196 * were requested. The right error in this case could
4197 * be either INSUFFICIENT_CAPACITY or BAD_STATE. Return
4198 * INSUFFICIENT_CAPACITY, which is right for a finished
4199 * operation, for consistency with the case when
4200 * output_length > 0. */
4201 return( PSA_ERROR_INSUFFICIENT_DATA );
4202 }
4203 operation->capacity -= output_length;
4204
4205 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4206 if( PSA_ALG_IS_HKDF( kdf_alg ) )
4207 {
4208 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
4209 status = psa_key_derivation_hkdf_read( &operation->ctx.hkdf, hash_alg,
4210 output, output_length );
4211 }
4212 else
4213 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4214 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4215 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4216 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4217 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4218 {
4219 status = psa_key_derivation_tls12_prf_read( &operation->ctx.tls12_prf,
4220 kdf_alg, output,
4221 output_length );
4222 }
4223 else
4224 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
4225 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4226 {
4227 (void) kdf_alg;
4228 return( PSA_ERROR_BAD_STATE );
4229 }
4230
4231 exit:
4232 if( status != PSA_SUCCESS )
4233 {
4234 /* Preserve the algorithm upon errors, but clear all sensitive state.
4235 * This allows us to differentiate between exhausted operations and
4236 * blank operations, so we can return PSA_ERROR_BAD_STATE on blank
4237 * operations. */
4238 psa_algorithm_t alg = operation->alg;
4239 psa_key_derivation_abort( operation );
4240 operation->alg = alg;
4241 memset( output, '!', output_length );
4242 }
4243 return( status );
4244 }
4245
4246 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
psa_des_set_key_parity(uint8_t * data,size_t data_size)4247 static void psa_des_set_key_parity( uint8_t *data, size_t data_size )
4248 {
4249 if( data_size >= 8 )
4250 mbedtls_des_key_set_parity( data );
4251 if( data_size >= 16 )
4252 mbedtls_des_key_set_parity( data + 8 );
4253 if( data_size >= 24 )
4254 mbedtls_des_key_set_parity( data + 16 );
4255 }
4256 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
4257
psa_generate_derived_key_internal(psa_key_slot_t * slot,size_t bits,psa_key_derivation_operation_t * operation)4258 static psa_status_t psa_generate_derived_key_internal(
4259 psa_key_slot_t *slot,
4260 size_t bits,
4261 psa_key_derivation_operation_t *operation )
4262 {
4263 uint8_t *data = NULL;
4264 size_t bytes = PSA_BITS_TO_BYTES( bits );
4265 psa_status_t status;
4266
4267 if( ! key_type_is_raw_bytes( slot->attr.type ) )
4268 return( PSA_ERROR_INVALID_ARGUMENT );
4269 if( bits % 8 != 0 )
4270 return( PSA_ERROR_INVALID_ARGUMENT );
4271 data = mbedtls_calloc( 1, bytes );
4272 if( data == NULL )
4273 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4274
4275 status = psa_key_derivation_output_bytes( operation, data, bytes );
4276 if( status != PSA_SUCCESS )
4277 goto exit;
4278 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
4279 if( slot->attr.type == PSA_KEY_TYPE_DES )
4280 psa_des_set_key_parity( data, bytes );
4281 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
4282
4283 status = psa_allocate_buffer_to_slot( slot, bytes );
4284 if( status != PSA_SUCCESS )
4285 goto exit;
4286
4287 slot->attr.bits = (psa_key_bits_t) bits;
4288 psa_key_attributes_t attributes = {
4289 .core = slot->attr
4290 };
4291
4292 status = psa_driver_wrapper_import_key( &attributes,
4293 data, bytes,
4294 slot->key.data,
4295 slot->key.bytes,
4296 &slot->key.bytes, &bits );
4297 if( bits != slot->attr.bits )
4298 status = PSA_ERROR_INVALID_ARGUMENT;
4299
4300 exit:
4301 mbedtls_free( data );
4302 return( status );
4303 }
4304
psa_key_derivation_output_key(const psa_key_attributes_t * attributes,psa_key_derivation_operation_t * operation,mbedtls_svc_key_id_t * key)4305 psa_status_t psa_key_derivation_output_key( const psa_key_attributes_t *attributes,
4306 psa_key_derivation_operation_t *operation,
4307 mbedtls_svc_key_id_t *key )
4308 {
4309 psa_status_t status;
4310 psa_key_slot_t *slot = NULL;
4311 psa_se_drv_table_entry_t *driver = NULL;
4312
4313 *key = MBEDTLS_SVC_KEY_ID_INIT;
4314
4315 /* Reject any attempt to create a zero-length key so that we don't
4316 * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
4317 if( psa_get_key_bits( attributes ) == 0 )
4318 return( PSA_ERROR_INVALID_ARGUMENT );
4319
4320 if( operation->alg == PSA_ALG_NONE )
4321 return( PSA_ERROR_BAD_STATE );
4322
4323 if( ! operation->can_output_key )
4324 return( PSA_ERROR_NOT_PERMITTED );
4325
4326 status = psa_start_key_creation( PSA_KEY_CREATION_DERIVE, attributes,
4327 &slot, &driver );
4328 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
4329 if( driver != NULL )
4330 {
4331 /* Deriving a key in a secure element is not implemented yet. */
4332 status = PSA_ERROR_NOT_SUPPORTED;
4333 }
4334 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
4335 if( status == PSA_SUCCESS )
4336 {
4337 status = psa_generate_derived_key_internal( slot,
4338 attributes->core.bits,
4339 operation );
4340 }
4341 if( status == PSA_SUCCESS )
4342 status = psa_finish_key_creation( slot, driver, key );
4343 if( status != PSA_SUCCESS )
4344 psa_fail_key_creation( slot, driver );
4345
4346 return( status );
4347 }
4348
4349
4350
4351 /****************************************************************/
4352 /* Key derivation */
4353 /****************************************************************/
4354
4355 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
psa_key_derivation_setup_kdf(psa_key_derivation_operation_t * operation,psa_algorithm_t kdf_alg)4356 static psa_status_t psa_key_derivation_setup_kdf(
4357 psa_key_derivation_operation_t *operation,
4358 psa_algorithm_t kdf_alg )
4359 {
4360 int is_kdf_alg_supported;
4361
4362 /* Make sure that operation->ctx is properly zero-initialised. (Macro
4363 * initialisers for this union leave some bytes unspecified.) */
4364 memset( &operation->ctx, 0, sizeof( operation->ctx ) );
4365
4366 /* Make sure that kdf_alg is a supported key derivation algorithm. */
4367 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4368 if( PSA_ALG_IS_HKDF( kdf_alg ) )
4369 is_kdf_alg_supported = 1;
4370 else
4371 #endif
4372 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
4373 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) )
4374 is_kdf_alg_supported = 1;
4375 else
4376 #endif
4377 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4378 if( PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4379 is_kdf_alg_supported = 1;
4380 else
4381 #endif
4382 is_kdf_alg_supported = 0;
4383
4384 if( is_kdf_alg_supported )
4385 {
4386 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
4387 size_t hash_size = PSA_HASH_LENGTH( hash_alg );
4388 if( hash_size == 0 )
4389 return( PSA_ERROR_NOT_SUPPORTED );
4390 if( ( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4391 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) ) &&
4392 ! ( hash_alg == PSA_ALG_SHA_256 || hash_alg == PSA_ALG_SHA_384 ) )
4393 {
4394 return( PSA_ERROR_NOT_SUPPORTED );
4395 }
4396 operation->capacity = 255 * hash_size;
4397 return( PSA_SUCCESS );
4398 }
4399
4400 return( PSA_ERROR_NOT_SUPPORTED );
4401 }
4402 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
4403
psa_key_derivation_setup(psa_key_derivation_operation_t * operation,psa_algorithm_t alg)4404 psa_status_t psa_key_derivation_setup( psa_key_derivation_operation_t *operation,
4405 psa_algorithm_t alg )
4406 {
4407 psa_status_t status;
4408
4409 if( operation->alg != 0 )
4410 return( PSA_ERROR_BAD_STATE );
4411
4412 if( PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
4413 return( PSA_ERROR_INVALID_ARGUMENT );
4414 else if( PSA_ALG_IS_KEY_AGREEMENT( alg ) )
4415 {
4416 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
4417 psa_algorithm_t kdf_alg = PSA_ALG_KEY_AGREEMENT_GET_KDF( alg );
4418 status = psa_key_derivation_setup_kdf( operation, kdf_alg );
4419 #else
4420 return( PSA_ERROR_NOT_SUPPORTED );
4421 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
4422 }
4423 else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
4424 {
4425 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
4426 status = psa_key_derivation_setup_kdf( operation, alg );
4427 #else
4428 return( PSA_ERROR_NOT_SUPPORTED );
4429 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
4430 }
4431 else
4432 return( PSA_ERROR_INVALID_ARGUMENT );
4433
4434 if( status == PSA_SUCCESS )
4435 operation->alg = alg;
4436 return( status );
4437 }
4438
4439 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
psa_hkdf_input(psa_hkdf_key_derivation_t * hkdf,psa_algorithm_t hash_alg,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)4440 static psa_status_t psa_hkdf_input( psa_hkdf_key_derivation_t *hkdf,
4441 psa_algorithm_t hash_alg,
4442 psa_key_derivation_step_t step,
4443 const uint8_t *data,
4444 size_t data_length )
4445 {
4446 psa_status_t status;
4447 switch( step )
4448 {
4449 case PSA_KEY_DERIVATION_INPUT_SALT:
4450 if( hkdf->state != HKDF_STATE_INIT )
4451 return( PSA_ERROR_BAD_STATE );
4452 else
4453 {
4454 status = psa_key_derivation_start_hmac( &hkdf->hmac,
4455 hash_alg,
4456 data, data_length );
4457 if( status != PSA_SUCCESS )
4458 return( status );
4459 hkdf->state = HKDF_STATE_STARTED;
4460 return( PSA_SUCCESS );
4461 }
4462 case PSA_KEY_DERIVATION_INPUT_SECRET:
4463 /* If no salt was provided, use an empty salt. */
4464 if( hkdf->state == HKDF_STATE_INIT )
4465 {
4466 status = psa_key_derivation_start_hmac( &hkdf->hmac,
4467 hash_alg,
4468 NULL, 0 );
4469 if( status != PSA_SUCCESS )
4470 return( status );
4471 hkdf->state = HKDF_STATE_STARTED;
4472 }
4473 if( hkdf->state != HKDF_STATE_STARTED )
4474 return( PSA_ERROR_BAD_STATE );
4475 status = psa_mac_update( &hkdf->hmac,
4476 data, data_length );
4477 if( status != PSA_SUCCESS )
4478 return( status );
4479 status = psa_mac_sign_finish( &hkdf->hmac,
4480 hkdf->prk,
4481 sizeof( hkdf->prk ),
4482 &data_length );
4483 if( status != PSA_SUCCESS )
4484 return( status );
4485 hkdf->offset_in_block = PSA_HASH_LENGTH( hash_alg );
4486 hkdf->block_number = 0;
4487 hkdf->state = HKDF_STATE_KEYED;
4488 return( PSA_SUCCESS );
4489 case PSA_KEY_DERIVATION_INPUT_INFO:
4490 if( hkdf->state == HKDF_STATE_OUTPUT )
4491 return( PSA_ERROR_BAD_STATE );
4492 if( hkdf->info_set )
4493 return( PSA_ERROR_BAD_STATE );
4494 hkdf->info_length = data_length;
4495 if( data_length != 0 )
4496 {
4497 hkdf->info = mbedtls_calloc( 1, data_length );
4498 if( hkdf->info == NULL )
4499 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4500 memcpy( hkdf->info, data, data_length );
4501 }
4502 hkdf->info_set = 1;
4503 return( PSA_SUCCESS );
4504 default:
4505 return( PSA_ERROR_INVALID_ARGUMENT );
4506 }
4507 }
4508 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4509
4510 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4511 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_tls12_prf_set_seed(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)4512 static psa_status_t psa_tls12_prf_set_seed( psa_tls12_prf_key_derivation_t *prf,
4513 const uint8_t *data,
4514 size_t data_length )
4515 {
4516 if( prf->state != PSA_TLS12_PRF_STATE_INIT )
4517 return( PSA_ERROR_BAD_STATE );
4518
4519 if( data_length != 0 )
4520 {
4521 prf->seed = mbedtls_calloc( 1, data_length );
4522 if( prf->seed == NULL )
4523 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4524
4525 memcpy( prf->seed, data, data_length );
4526 prf->seed_length = data_length;
4527 }
4528
4529 prf->state = PSA_TLS12_PRF_STATE_SEED_SET;
4530
4531 return( PSA_SUCCESS );
4532 }
4533
psa_tls12_prf_set_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)4534 static psa_status_t psa_tls12_prf_set_key( psa_tls12_prf_key_derivation_t *prf,
4535 const uint8_t *data,
4536 size_t data_length )
4537 {
4538 if( prf->state != PSA_TLS12_PRF_STATE_SEED_SET )
4539 return( PSA_ERROR_BAD_STATE );
4540
4541 if( data_length != 0 )
4542 {
4543 prf->secret = mbedtls_calloc( 1, data_length );
4544 if( prf->secret == NULL )
4545 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4546
4547 memcpy( prf->secret, data, data_length );
4548 prf->secret_length = data_length;
4549 }
4550
4551 prf->state = PSA_TLS12_PRF_STATE_KEY_SET;
4552
4553 return( PSA_SUCCESS );
4554 }
4555
psa_tls12_prf_set_label(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)4556 static psa_status_t psa_tls12_prf_set_label( psa_tls12_prf_key_derivation_t *prf,
4557 const uint8_t *data,
4558 size_t data_length )
4559 {
4560 if( prf->state != PSA_TLS12_PRF_STATE_KEY_SET )
4561 return( PSA_ERROR_BAD_STATE );
4562
4563 if( data_length != 0 )
4564 {
4565 prf->label = mbedtls_calloc( 1, data_length );
4566 if( prf->label == NULL )
4567 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4568
4569 memcpy( prf->label, data, data_length );
4570 prf->label_length = data_length;
4571 }
4572
4573 prf->state = PSA_TLS12_PRF_STATE_LABEL_SET;
4574
4575 return( PSA_SUCCESS );
4576 }
4577
psa_tls12_prf_input(psa_tls12_prf_key_derivation_t * prf,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)4578 static psa_status_t psa_tls12_prf_input( psa_tls12_prf_key_derivation_t *prf,
4579 psa_key_derivation_step_t step,
4580 const uint8_t *data,
4581 size_t data_length )
4582 {
4583 switch( step )
4584 {
4585 case PSA_KEY_DERIVATION_INPUT_SEED:
4586 return( psa_tls12_prf_set_seed( prf, data, data_length ) );
4587 case PSA_KEY_DERIVATION_INPUT_SECRET:
4588 return( psa_tls12_prf_set_key( prf, data, data_length ) );
4589 case PSA_KEY_DERIVATION_INPUT_LABEL:
4590 return( psa_tls12_prf_set_label( prf, data, data_length ) );
4591 default:
4592 return( PSA_ERROR_INVALID_ARGUMENT );
4593 }
4594 }
4595 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
4596 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4597
4598 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_tls12_prf_psk_to_ms_set_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)4599 static psa_status_t psa_tls12_prf_psk_to_ms_set_key(
4600 psa_tls12_prf_key_derivation_t *prf,
4601 const uint8_t *data,
4602 size_t data_length )
4603 {
4604 psa_status_t status;
4605 uint8_t pms[ 4 + 2 * PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE ];
4606 uint8_t *cur = pms;
4607
4608 if( data_length > PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE )
4609 return( PSA_ERROR_INVALID_ARGUMENT );
4610
4611 /* Quoting RFC 4279, Section 2:
4612 *
4613 * The premaster secret is formed as follows: if the PSK is N octets
4614 * long, concatenate a uint16 with the value N, N zero octets, a second
4615 * uint16 with the value N, and the PSK itself.
4616 */
4617
4618 *cur++ = MBEDTLS_BYTE_1( data_length );
4619 *cur++ = MBEDTLS_BYTE_0( data_length );
4620 memset( cur, 0, data_length );
4621 cur += data_length;
4622 *cur++ = pms[0];
4623 *cur++ = pms[1];
4624 memcpy( cur, data, data_length );
4625 cur += data_length;
4626
4627 status = psa_tls12_prf_set_key( prf, pms, cur - pms );
4628
4629 mbedtls_platform_zeroize( pms, sizeof( pms ) );
4630 return( status );
4631 }
4632
psa_tls12_prf_psk_to_ms_input(psa_tls12_prf_key_derivation_t * prf,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)4633 static psa_status_t psa_tls12_prf_psk_to_ms_input(
4634 psa_tls12_prf_key_derivation_t *prf,
4635 psa_key_derivation_step_t step,
4636 const uint8_t *data,
4637 size_t data_length )
4638 {
4639 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
4640 {
4641 return( psa_tls12_prf_psk_to_ms_set_key( prf,
4642 data, data_length ) );
4643 }
4644
4645 return( psa_tls12_prf_input( prf, step, data, data_length ) );
4646 }
4647 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4648
4649 /** Check whether the given key type is acceptable for the given
4650 * input step of a key derivation.
4651 *
4652 * Secret inputs must have the type #PSA_KEY_TYPE_DERIVE.
4653 * Non-secret inputs must have the type #PSA_KEY_TYPE_RAW_DATA.
4654 * Both secret and non-secret inputs can alternatively have the type
4655 * #PSA_KEY_TYPE_NONE, which is never the type of a key object, meaning
4656 * that the input was passed as a buffer rather than via a key object.
4657 */
psa_key_derivation_check_input_type(psa_key_derivation_step_t step,psa_key_type_t key_type)4658 static int psa_key_derivation_check_input_type(
4659 psa_key_derivation_step_t step,
4660 psa_key_type_t key_type )
4661 {
4662 switch( step )
4663 {
4664 case PSA_KEY_DERIVATION_INPUT_SECRET:
4665 if( key_type == PSA_KEY_TYPE_DERIVE )
4666 return( PSA_SUCCESS );
4667 if( key_type == PSA_KEY_TYPE_NONE )
4668 return( PSA_SUCCESS );
4669 break;
4670 case PSA_KEY_DERIVATION_INPUT_LABEL:
4671 case PSA_KEY_DERIVATION_INPUT_SALT:
4672 case PSA_KEY_DERIVATION_INPUT_INFO:
4673 case PSA_KEY_DERIVATION_INPUT_SEED:
4674 if( key_type == PSA_KEY_TYPE_RAW_DATA )
4675 return( PSA_SUCCESS );
4676 if( key_type == PSA_KEY_TYPE_NONE )
4677 return( PSA_SUCCESS );
4678 break;
4679 }
4680 return( PSA_ERROR_INVALID_ARGUMENT );
4681 }
4682
psa_key_derivation_input_internal(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,psa_key_type_t key_type,const uint8_t * data,size_t data_length)4683 static psa_status_t psa_key_derivation_input_internal(
4684 psa_key_derivation_operation_t *operation,
4685 psa_key_derivation_step_t step,
4686 psa_key_type_t key_type,
4687 const uint8_t *data,
4688 size_t data_length )
4689 {
4690 psa_status_t status;
4691 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
4692
4693 status = psa_key_derivation_check_input_type( step, key_type );
4694 if( status != PSA_SUCCESS )
4695 goto exit;
4696
4697 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4698 if( PSA_ALG_IS_HKDF( kdf_alg ) )
4699 {
4700 status = psa_hkdf_input( &operation->ctx.hkdf,
4701 PSA_ALG_HKDF_GET_HASH( kdf_alg ),
4702 step, data, data_length );
4703 }
4704 else
4705 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4706 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
4707 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) )
4708 {
4709 status = psa_tls12_prf_input( &operation->ctx.tls12_prf,
4710 step, data, data_length );
4711 }
4712 else
4713 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF */
4714 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4715 if( PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4716 {
4717 status = psa_tls12_prf_psk_to_ms_input( &operation->ctx.tls12_prf,
4718 step, data, data_length );
4719 }
4720 else
4721 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4722 {
4723 /* This can't happen unless the operation object was not initialized */
4724 (void) data;
4725 (void) data_length;
4726 (void) kdf_alg;
4727 return( PSA_ERROR_BAD_STATE );
4728 }
4729
4730 exit:
4731 if( status != PSA_SUCCESS )
4732 psa_key_derivation_abort( operation );
4733 return( status );
4734 }
4735
psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)4736 psa_status_t psa_key_derivation_input_bytes(
4737 psa_key_derivation_operation_t *operation,
4738 psa_key_derivation_step_t step,
4739 const uint8_t *data,
4740 size_t data_length )
4741 {
4742 return( psa_key_derivation_input_internal( operation, step,
4743 PSA_KEY_TYPE_NONE,
4744 data, data_length ) );
4745 }
4746
psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,mbedtls_svc_key_id_t key)4747 psa_status_t psa_key_derivation_input_key(
4748 psa_key_derivation_operation_t *operation,
4749 psa_key_derivation_step_t step,
4750 mbedtls_svc_key_id_t key )
4751 {
4752 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4753 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
4754 psa_key_slot_t *slot;
4755
4756 status = psa_get_and_lock_transparent_key_slot_with_policy(
4757 key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg );
4758 if( status != PSA_SUCCESS )
4759 {
4760 psa_key_derivation_abort( operation );
4761 return( status );
4762 }
4763
4764 /* Passing a key object as a SECRET input unlocks the permission
4765 * to output to a key object. */
4766 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
4767 operation->can_output_key = 1;
4768
4769 status = psa_key_derivation_input_internal( operation,
4770 step, slot->attr.type,
4771 slot->key.data,
4772 slot->key.bytes );
4773
4774 unlock_status = psa_unlock_key_slot( slot );
4775
4776 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
4777 }
4778
4779
4780
4781 /****************************************************************/
4782 /* Key agreement */
4783 /****************************************************************/
4784
4785 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
psa_key_agreement_ecdh(const uint8_t * peer_key,size_t peer_key_length,const mbedtls_ecp_keypair * our_key,uint8_t * shared_secret,size_t shared_secret_size,size_t * shared_secret_length)4786 static psa_status_t psa_key_agreement_ecdh( const uint8_t *peer_key,
4787 size_t peer_key_length,
4788 const mbedtls_ecp_keypair *our_key,
4789 uint8_t *shared_secret,
4790 size_t shared_secret_size,
4791 size_t *shared_secret_length )
4792 {
4793 mbedtls_ecp_keypair *their_key = NULL;
4794 mbedtls_ecdh_context ecdh;
4795 psa_status_t status;
4796 size_t bits = 0;
4797 psa_ecc_family_t curve = mbedtls_ecc_group_to_psa( our_key->grp.id, &bits );
4798 mbedtls_ecdh_init( &ecdh );
4799
4800 status = mbedtls_psa_ecp_load_representation(
4801 PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve),
4802 bits,
4803 peer_key,
4804 peer_key_length,
4805 &their_key );
4806 if( status != PSA_SUCCESS )
4807 goto exit;
4808
4809 status = mbedtls_to_psa_error(
4810 mbedtls_ecdh_get_params( &ecdh, their_key, MBEDTLS_ECDH_THEIRS ) );
4811 if( status != PSA_SUCCESS )
4812 goto exit;
4813 status = mbedtls_to_psa_error(
4814 mbedtls_ecdh_get_params( &ecdh, our_key, MBEDTLS_ECDH_OURS ) );
4815 if( status != PSA_SUCCESS )
4816 goto exit;
4817
4818 status = mbedtls_to_psa_error(
4819 mbedtls_ecdh_calc_secret( &ecdh,
4820 shared_secret_length,
4821 shared_secret, shared_secret_size,
4822 mbedtls_psa_get_random,
4823 MBEDTLS_PSA_RANDOM_STATE ) );
4824 if( status != PSA_SUCCESS )
4825 goto exit;
4826 if( PSA_BITS_TO_BYTES( bits ) != *shared_secret_length )
4827 status = PSA_ERROR_CORRUPTION_DETECTED;
4828
4829 exit:
4830 if( status != PSA_SUCCESS )
4831 mbedtls_platform_zeroize( shared_secret, shared_secret_size );
4832 mbedtls_ecdh_free( &ecdh );
4833 mbedtls_ecp_keypair_free( their_key );
4834 mbedtls_free( their_key );
4835
4836 return( status );
4837 }
4838 #endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
4839
4840 #define PSA_KEY_AGREEMENT_MAX_SHARED_SECRET_SIZE MBEDTLS_ECP_MAX_BYTES
4841
psa_key_agreement_raw_internal(psa_algorithm_t alg,psa_key_slot_t * private_key,const uint8_t * peer_key,size_t peer_key_length,uint8_t * shared_secret,size_t shared_secret_size,size_t * shared_secret_length)4842 static psa_status_t psa_key_agreement_raw_internal( psa_algorithm_t alg,
4843 psa_key_slot_t *private_key,
4844 const uint8_t *peer_key,
4845 size_t peer_key_length,
4846 uint8_t *shared_secret,
4847 size_t shared_secret_size,
4848 size_t *shared_secret_length )
4849 {
4850 switch( alg )
4851 {
4852 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
4853 case PSA_ALG_ECDH:
4854 if( ! PSA_KEY_TYPE_IS_ECC_KEY_PAIR( private_key->attr.type ) )
4855 return( PSA_ERROR_INVALID_ARGUMENT );
4856 mbedtls_ecp_keypair *ecp = NULL;
4857 psa_status_t status = mbedtls_psa_ecp_load_representation(
4858 private_key->attr.type,
4859 private_key->attr.bits,
4860 private_key->key.data,
4861 private_key->key.bytes,
4862 &ecp );
4863 if( status != PSA_SUCCESS )
4864 return( status );
4865 status = psa_key_agreement_ecdh( peer_key, peer_key_length,
4866 ecp,
4867 shared_secret, shared_secret_size,
4868 shared_secret_length );
4869 mbedtls_ecp_keypair_free( ecp );
4870 mbedtls_free( ecp );
4871 return( status );
4872 #endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
4873 default:
4874 (void) private_key;
4875 (void) peer_key;
4876 (void) peer_key_length;
4877 (void) shared_secret;
4878 (void) shared_secret_size;
4879 (void) shared_secret_length;
4880 return( PSA_ERROR_NOT_SUPPORTED );
4881 }
4882 }
4883
4884 /* Note that if this function fails, you must call psa_key_derivation_abort()
4885 * to potentially free embedded data structures and wipe confidential data.
4886 */
psa_key_agreement_internal(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,psa_key_slot_t * private_key,const uint8_t * peer_key,size_t peer_key_length)4887 static psa_status_t psa_key_agreement_internal( psa_key_derivation_operation_t *operation,
4888 psa_key_derivation_step_t step,
4889 psa_key_slot_t *private_key,
4890 const uint8_t *peer_key,
4891 size_t peer_key_length )
4892 {
4893 psa_status_t status;
4894 uint8_t shared_secret[PSA_KEY_AGREEMENT_MAX_SHARED_SECRET_SIZE];
4895 size_t shared_secret_length = 0;
4896 psa_algorithm_t ka_alg = PSA_ALG_KEY_AGREEMENT_GET_BASE( operation->alg );
4897
4898 /* Step 1: run the secret agreement algorithm to generate the shared
4899 * secret. */
4900 status = psa_key_agreement_raw_internal( ka_alg,
4901 private_key,
4902 peer_key, peer_key_length,
4903 shared_secret,
4904 sizeof( shared_secret ),
4905 &shared_secret_length );
4906 if( status != PSA_SUCCESS )
4907 goto exit;
4908
4909 /* Step 2: set up the key derivation to generate key material from
4910 * the shared secret. A shared secret is permitted wherever a key
4911 * of type DERIVE is permitted. */
4912 status = psa_key_derivation_input_internal( operation, step,
4913 PSA_KEY_TYPE_DERIVE,
4914 shared_secret,
4915 shared_secret_length );
4916 exit:
4917 mbedtls_platform_zeroize( shared_secret, shared_secret_length );
4918 return( status );
4919 }
4920
psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,mbedtls_svc_key_id_t private_key,const uint8_t * peer_key,size_t peer_key_length)4921 psa_status_t psa_key_derivation_key_agreement( psa_key_derivation_operation_t *operation,
4922 psa_key_derivation_step_t step,
4923 mbedtls_svc_key_id_t private_key,
4924 const uint8_t *peer_key,
4925 size_t peer_key_length )
4926 {
4927 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4928 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
4929 psa_key_slot_t *slot;
4930
4931 if( ! PSA_ALG_IS_KEY_AGREEMENT( operation->alg ) )
4932 return( PSA_ERROR_INVALID_ARGUMENT );
4933 status = psa_get_and_lock_transparent_key_slot_with_policy(
4934 private_key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg );
4935 if( status != PSA_SUCCESS )
4936 return( status );
4937 status = psa_key_agreement_internal( operation, step,
4938 slot,
4939 peer_key, peer_key_length );
4940 if( status != PSA_SUCCESS )
4941 psa_key_derivation_abort( operation );
4942 else
4943 {
4944 /* If a private key has been added as SECRET, we allow the derived
4945 * key material to be used as a key in PSA Crypto. */
4946 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
4947 operation->can_output_key = 1;
4948 }
4949
4950 unlock_status = psa_unlock_key_slot( slot );
4951
4952 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
4953 }
4954
psa_raw_key_agreement(psa_algorithm_t alg,mbedtls_svc_key_id_t private_key,const uint8_t * peer_key,size_t peer_key_length,uint8_t * output,size_t output_size,size_t * output_length)4955 psa_status_t psa_raw_key_agreement( psa_algorithm_t alg,
4956 mbedtls_svc_key_id_t private_key,
4957 const uint8_t *peer_key,
4958 size_t peer_key_length,
4959 uint8_t *output,
4960 size_t output_size,
4961 size_t *output_length )
4962 {
4963 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4964 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
4965 psa_key_slot_t *slot = NULL;
4966
4967 if( ! PSA_ALG_IS_KEY_AGREEMENT( alg ) )
4968 {
4969 status = PSA_ERROR_INVALID_ARGUMENT;
4970 goto exit;
4971 }
4972 status = psa_get_and_lock_transparent_key_slot_with_policy(
4973 private_key, &slot, PSA_KEY_USAGE_DERIVE, alg );
4974 if( status != PSA_SUCCESS )
4975 goto exit;
4976
4977 status = psa_key_agreement_raw_internal( alg, slot,
4978 peer_key, peer_key_length,
4979 output, output_size,
4980 output_length );
4981
4982 exit:
4983 if( status != PSA_SUCCESS )
4984 {
4985 /* If an error happens and is not handled properly, the output
4986 * may be used as a key to protect sensitive data. Arrange for such
4987 * a key to be random, which is likely to result in decryption or
4988 * verification errors. This is better than filling the buffer with
4989 * some constant data such as zeros, which would result in the data
4990 * being protected with a reproducible, easily knowable key.
4991 */
4992 psa_generate_random( output, output_size );
4993 *output_length = output_size;
4994 }
4995
4996 unlock_status = psa_unlock_key_slot( slot );
4997
4998 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
4999 }
5000
5001
5002
5003 /****************************************************************/
5004 /* Random generation */
5005 /****************************************************************/
5006
5007 /** Initialize the PSA random generator.
5008 */
mbedtls_psa_random_init(mbedtls_psa_random_context_t * rng)5009 static void mbedtls_psa_random_init( mbedtls_psa_random_context_t *rng )
5010 {
5011 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5012 memset( rng, 0, sizeof( *rng ) );
5013 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5014
5015 /* Set default configuration if
5016 * mbedtls_psa_crypto_configure_entropy_sources() hasn't been called. */
5017 if( rng->entropy_init == NULL )
5018 rng->entropy_init = mbedtls_entropy_init;
5019 if( rng->entropy_free == NULL )
5020 rng->entropy_free = mbedtls_entropy_free;
5021
5022 rng->entropy_init( &rng->entropy );
5023 #if defined(MBEDTLS_PSA_INJECT_ENTROPY) && \
5024 defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
5025 /* The PSA entropy injection feature depends on using NV seed as an entropy
5026 * source. Add NV seed as an entropy source for PSA entropy injection. */
5027 mbedtls_entropy_add_source( &rng->entropy,
5028 mbedtls_nv_seed_poll, NULL,
5029 MBEDTLS_ENTROPY_BLOCK_SIZE,
5030 MBEDTLS_ENTROPY_SOURCE_STRONG );
5031 #endif
5032
5033 mbedtls_psa_drbg_init( MBEDTLS_PSA_RANDOM_STATE );
5034 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5035 }
5036
5037 /** Deinitialize the PSA random generator.
5038 */
mbedtls_psa_random_free(mbedtls_psa_random_context_t * rng)5039 static void mbedtls_psa_random_free( mbedtls_psa_random_context_t *rng )
5040 {
5041 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5042 memset( rng, 0, sizeof( *rng ) );
5043 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5044 mbedtls_psa_drbg_free( MBEDTLS_PSA_RANDOM_STATE );
5045 rng->entropy_free( &rng->entropy );
5046 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5047 }
5048
5049 /** Seed the PSA random generator.
5050 */
mbedtls_psa_random_seed(mbedtls_psa_random_context_t * rng)5051 static psa_status_t mbedtls_psa_random_seed( mbedtls_psa_random_context_t *rng )
5052 {
5053 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5054 /* Do nothing: the external RNG seeds itself. */
5055 (void) rng;
5056 return( PSA_SUCCESS );
5057 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5058 const unsigned char drbg_seed[] = "PSA";
5059 int ret = mbedtls_psa_drbg_seed( &rng->entropy,
5060 drbg_seed, sizeof( drbg_seed ) - 1 );
5061 return mbedtls_to_psa_error( ret );
5062 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5063 }
5064
psa_generate_random(uint8_t * output,size_t output_size)5065 psa_status_t psa_generate_random( uint8_t *output,
5066 size_t output_size )
5067 {
5068 GUARD_MODULE_INITIALIZED;
5069
5070 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5071
5072 size_t output_length = 0;
5073 psa_status_t status = mbedtls_psa_external_get_random( &global_data.rng,
5074 output, output_size,
5075 &output_length );
5076 if( status != PSA_SUCCESS )
5077 return( status );
5078 /* Breaking up a request into smaller chunks is currently not supported
5079 * for the extrernal RNG interface. */
5080 if( output_length != output_size )
5081 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
5082 return( PSA_SUCCESS );
5083
5084 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5085
5086 while( output_size > 0 )
5087 {
5088 size_t request_size =
5089 ( output_size > MBEDTLS_PSA_RANDOM_MAX_REQUEST ?
5090 MBEDTLS_PSA_RANDOM_MAX_REQUEST :
5091 output_size );
5092 int ret = mbedtls_psa_get_random( MBEDTLS_PSA_RANDOM_STATE,
5093 output, request_size );
5094 if( ret != 0 )
5095 return( mbedtls_to_psa_error( ret ) );
5096 output_size -= request_size;
5097 output += request_size;
5098 }
5099 return( PSA_SUCCESS );
5100 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5101 }
5102
5103 /* Wrapper function allowing the classic API to use the PSA RNG.
5104 *
5105 * `mbedtls_psa_get_random(MBEDTLS_PSA_RANDOM_STATE, ...)` calls
5106 * `psa_generate_random(...)`. The state parameter is ignored since the
5107 * PSA API doesn't support passing an explicit state.
5108 *
5109 * In the non-external case, psa_generate_random() calls an
5110 * `mbedtls_xxx_drbg_random` function which has exactly the same signature
5111 * and semantics as mbedtls_psa_get_random(). As an optimization,
5112 * instead of doing this back-and-forth between the PSA API and the
5113 * classic API, psa_crypto_random_impl.h defines `mbedtls_psa_get_random`
5114 * as a constant function pointer to `mbedtls_xxx_drbg_random`.
5115 */
5116 #if defined (MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_psa_get_random(void * p_rng,unsigned char * output,size_t output_size)5117 int mbedtls_psa_get_random( void *p_rng,
5118 unsigned char *output,
5119 size_t output_size )
5120 {
5121 /* This function takes a pointer to the RNG state because that's what
5122 * classic mbedtls functions using an RNG expect. The PSA RNG manages
5123 * its own state internally and doesn't let the caller access that state.
5124 * So we just ignore the state parameter, and in practice we'll pass
5125 * NULL. */
5126 (void) p_rng;
5127 psa_status_t status = psa_generate_random( output, output_size );
5128 if( status == PSA_SUCCESS )
5129 return( 0 );
5130 else
5131 return( MBEDTLS_ERR_ENTROPY_SOURCE_FAILED );
5132 }
5133 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5134
5135 #if defined(MBEDTLS_PSA_INJECT_ENTROPY)
5136 #include "mbedtls/entropy_poll.h"
5137
mbedtls_psa_inject_entropy(const uint8_t * seed,size_t seed_size)5138 psa_status_t mbedtls_psa_inject_entropy( const uint8_t *seed,
5139 size_t seed_size )
5140 {
5141 if( global_data.initialized )
5142 return( PSA_ERROR_NOT_PERMITTED );
5143
5144 if( ( ( seed_size < MBEDTLS_ENTROPY_MIN_PLATFORM ) ||
5145 ( seed_size < MBEDTLS_ENTROPY_BLOCK_SIZE ) ) ||
5146 ( seed_size > MBEDTLS_ENTROPY_MAX_SEED_SIZE ) )
5147 return( PSA_ERROR_INVALID_ARGUMENT );
5148
5149 return( mbedtls_psa_storage_inject_entropy( seed, seed_size ) );
5150 }
5151 #endif /* MBEDTLS_PSA_INJECT_ENTROPY */
5152
5153 /** Validate the key type and size for key generation
5154 *
5155 * \param type The key type
5156 * \param bits The number of bits of the key
5157 *
5158 * \retval #PSA_SUCCESS
5159 * The key type and size are valid.
5160 * \retval #PSA_ERROR_INVALID_ARGUMENT
5161 * The size in bits of the key is not valid.
5162 * \retval #PSA_ERROR_NOT_SUPPORTED
5163 * The type and/or the size in bits of the key or the combination of
5164 * the two is not supported.
5165 */
psa_validate_key_type_and_size_for_key_generation(psa_key_type_t type,size_t bits)5166 static psa_status_t psa_validate_key_type_and_size_for_key_generation(
5167 psa_key_type_t type, size_t bits )
5168 {
5169 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5170
5171 if( key_type_is_raw_bytes( type ) )
5172 {
5173 status = validate_unstructured_key_bit_size( type, bits );
5174 if( status != PSA_SUCCESS )
5175 return( status );
5176 }
5177 else
5178 #if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR)
5179 if( PSA_KEY_TYPE_IS_RSA( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
5180 {
5181 if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS )
5182 return( PSA_ERROR_NOT_SUPPORTED );
5183
5184 /* Accept only byte-aligned keys, for the same reasons as
5185 * in psa_import_rsa_key(). */
5186 if( bits % 8 != 0 )
5187 return( PSA_ERROR_NOT_SUPPORTED );
5188 }
5189 else
5190 #endif /* defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR) */
5191
5192 #if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR)
5193 if( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
5194 {
5195 /* To avoid empty block, return successfully here. */
5196 return( PSA_SUCCESS );
5197 }
5198 else
5199 #endif /* defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR) */
5200 {
5201 return( PSA_ERROR_NOT_SUPPORTED );
5202 }
5203
5204 return( PSA_SUCCESS );
5205 }
5206
psa_generate_key_internal(const psa_key_attributes_t * attributes,uint8_t * key_buffer,size_t key_buffer_size,size_t * key_buffer_length)5207 psa_status_t psa_generate_key_internal(
5208 const psa_key_attributes_t *attributes,
5209 uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length )
5210 {
5211 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5212 psa_key_type_t type = attributes->core.type;
5213
5214 if( ( attributes->domain_parameters == NULL ) &&
5215 ( attributes->domain_parameters_size != 0 ) )
5216 return( PSA_ERROR_INVALID_ARGUMENT );
5217
5218 if( key_type_is_raw_bytes( type ) )
5219 {
5220 status = psa_generate_random( key_buffer, key_buffer_size );
5221 if( status != PSA_SUCCESS )
5222 return( status );
5223
5224 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
5225 if( type == PSA_KEY_TYPE_DES )
5226 psa_des_set_key_parity( key_buffer, key_buffer_size );
5227 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
5228 }
5229 else
5230
5231 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) && \
5232 defined(MBEDTLS_GENPRIME)
5233 if ( type == PSA_KEY_TYPE_RSA_KEY_PAIR )
5234 {
5235 return( mbedtls_psa_rsa_generate_key( attributes,
5236 key_buffer,
5237 key_buffer_size,
5238 key_buffer_length ) );
5239 }
5240 else
5241 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR)
5242 * defined(MBEDTLS_GENPRIME) */
5243
5244 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR)
5245 if ( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
5246 {
5247 return( mbedtls_psa_ecp_generate_key( attributes,
5248 key_buffer,
5249 key_buffer_size,
5250 key_buffer_length ) );
5251 }
5252 else
5253 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) */
5254 {
5255 (void)key_buffer_length;
5256 return( PSA_ERROR_NOT_SUPPORTED );
5257 }
5258
5259 return( PSA_SUCCESS );
5260 }
5261
psa_generate_key(const psa_key_attributes_t * attributes,mbedtls_svc_key_id_t * key)5262 psa_status_t psa_generate_key( const psa_key_attributes_t *attributes,
5263 mbedtls_svc_key_id_t *key )
5264 {
5265 psa_status_t status;
5266 psa_key_slot_t *slot = NULL;
5267 psa_se_drv_table_entry_t *driver = NULL;
5268 size_t key_buffer_size;
5269
5270 *key = MBEDTLS_SVC_KEY_ID_INIT;
5271
5272 /* Reject any attempt to create a zero-length key so that we don't
5273 * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
5274 if( psa_get_key_bits( attributes ) == 0 )
5275 return( PSA_ERROR_INVALID_ARGUMENT );
5276
5277 /* Reject any attempt to create a public key. */
5278 if( PSA_KEY_TYPE_IS_PUBLIC_KEY(attributes->core.type) )
5279 return( PSA_ERROR_INVALID_ARGUMENT );
5280
5281 status = psa_start_key_creation( PSA_KEY_CREATION_GENERATE, attributes,
5282 &slot, &driver );
5283 if( status != PSA_SUCCESS )
5284 goto exit;
5285
5286 /* In the case of a transparent key or an opaque key stored in local
5287 * storage (thus not in the case of generating a key in a secure element
5288 * or cryptoprocessor with storage), we have to allocate a buffer to
5289 * hold the generated key material. */
5290 if( slot->key.data == NULL )
5291 {
5292 if ( PSA_KEY_LIFETIME_GET_LOCATION( attributes->core.lifetime ) ==
5293 PSA_KEY_LOCATION_LOCAL_STORAGE )
5294 {
5295 status = psa_validate_key_type_and_size_for_key_generation(
5296 attributes->core.type, attributes->core.bits );
5297 if( status != PSA_SUCCESS )
5298 goto exit;
5299
5300 key_buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
5301 attributes->core.type,
5302 attributes->core.bits );
5303 }
5304 else
5305 {
5306 status = psa_driver_wrapper_get_key_buffer_size(
5307 attributes, &key_buffer_size );
5308 if( status != PSA_SUCCESS )
5309 goto exit;
5310 }
5311
5312 status = psa_allocate_buffer_to_slot( slot, key_buffer_size );
5313 if( status != PSA_SUCCESS )
5314 goto exit;
5315 }
5316
5317 status = psa_driver_wrapper_generate_key( attributes,
5318 slot->key.data, slot->key.bytes, &slot->key.bytes );
5319
5320 if( status != PSA_SUCCESS )
5321 psa_remove_key_data_from_memory( slot );
5322
5323 exit:
5324 if( status == PSA_SUCCESS )
5325 status = psa_finish_key_creation( slot, driver, key );
5326 if( status != PSA_SUCCESS )
5327 psa_fail_key_creation( slot, driver );
5328
5329 return( status );
5330 }
5331
5332 /****************************************************************/
5333 /* Module setup */
5334 /****************************************************************/
5335
5336 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_psa_crypto_configure_entropy_sources(void (* entropy_init)(mbedtls_entropy_context * ctx),void (* entropy_free)(mbedtls_entropy_context * ctx))5337 psa_status_t mbedtls_psa_crypto_configure_entropy_sources(
5338 void (* entropy_init )( mbedtls_entropy_context *ctx ),
5339 void (* entropy_free )( mbedtls_entropy_context *ctx ) )
5340 {
5341 if( global_data.rng_state != RNG_NOT_INITIALIZED )
5342 return( PSA_ERROR_BAD_STATE );
5343 global_data.rng.entropy_init = entropy_init;
5344 global_data.rng.entropy_free = entropy_free;
5345 return( PSA_SUCCESS );
5346 }
5347 #endif /* !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) */
5348
mbedtls_psa_crypto_free(void)5349 void mbedtls_psa_crypto_free( void )
5350 {
5351 psa_wipe_all_key_slots( );
5352 if( global_data.rng_state != RNG_NOT_INITIALIZED )
5353 {
5354 mbedtls_psa_random_free( &global_data.rng );
5355 }
5356 /* Wipe all remaining data, including configuration.
5357 * In particular, this sets all state indicator to the value
5358 * indicating "uninitialized". */
5359 mbedtls_platform_zeroize( &global_data, sizeof( global_data ) );
5360
5361 /* Terminate drivers */
5362 psa_driver_wrapper_free( );
5363 }
5364
5365 #if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
5366 /** Recover a transaction that was interrupted by a power failure.
5367 *
5368 * This function is called during initialization, before psa_crypto_init()
5369 * returns. If this function returns a failure status, the initialization
5370 * fails.
5371 */
psa_crypto_recover_transaction(const psa_crypto_transaction_t * transaction)5372 static psa_status_t psa_crypto_recover_transaction(
5373 const psa_crypto_transaction_t *transaction )
5374 {
5375 switch( transaction->unknown.type )
5376 {
5377 case PSA_CRYPTO_TRANSACTION_CREATE_KEY:
5378 case PSA_CRYPTO_TRANSACTION_DESTROY_KEY:
5379 /* TODO - fall through to the failure case until this
5380 * is implemented.
5381 * https://github.com/ARMmbed/mbed-crypto/issues/218
5382 */
5383 default:
5384 /* We found an unsupported transaction in the storage.
5385 * We don't know what state the storage is in. Give up. */
5386 return( PSA_ERROR_DATA_INVALID );
5387 }
5388 }
5389 #endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
5390
psa_crypto_init(void)5391 psa_status_t psa_crypto_init( void )
5392 {
5393 psa_status_t status;
5394
5395 /* Double initialization is explicitly allowed. */
5396 if( global_data.initialized != 0 )
5397 return( PSA_SUCCESS );
5398
5399 /* Initialize and seed the random generator. */
5400 mbedtls_psa_random_init( &global_data.rng );
5401 global_data.rng_state = RNG_INITIALIZED;
5402 status = mbedtls_psa_random_seed( &global_data.rng );
5403 if( status != PSA_SUCCESS )
5404 goto exit;
5405 global_data.rng_state = RNG_SEEDED;
5406
5407 status = psa_initialize_key_slots( );
5408 if( status != PSA_SUCCESS )
5409 goto exit;
5410
5411 /* Init drivers */
5412 status = psa_driver_wrapper_init( );
5413 if( status != PSA_SUCCESS )
5414 goto exit;
5415
5416 #if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
5417 status = psa_crypto_load_transaction( );
5418 if( status == PSA_SUCCESS )
5419 {
5420 status = psa_crypto_recover_transaction( &psa_crypto_transaction );
5421 if( status != PSA_SUCCESS )
5422 goto exit;
5423 status = psa_crypto_stop_transaction( );
5424 }
5425 else if( status == PSA_ERROR_DOES_NOT_EXIST )
5426 {
5427 /* There's no transaction to complete. It's all good. */
5428 status = PSA_SUCCESS;
5429 }
5430 #endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
5431
5432 /* All done. */
5433 global_data.initialized = 1;
5434
5435 exit:
5436 if( status != PSA_SUCCESS )
5437 mbedtls_psa_crypto_free( );
5438 return( status );
5439 }
5440
5441 #endif /* MBEDTLS_PSA_CRYPTO_C */
5442