1 /*
2 * PSA crypto layer on top of Mbed TLS crypto
3 */
4 /*
5 * Copyright The Mbed TLS Contributors
6 * SPDX-License-Identifier: Apache-2.0
7 *
8 * Licensed under the Apache License, Version 2.0 (the "License"); you may
9 * not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
16 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 */
20
21 #include "common.h"
22
23 #if defined(MBEDTLS_PSA_CRYPTO_C)
24
25 #if defined(MBEDTLS_PSA_CRYPTO_CONFIG)
26 #include "check_crypto_config.h"
27 #endif
28
29 #include "psa/crypto.h"
30 #include "psa/crypto_values.h"
31
32 #include "psa_crypto_cipher.h"
33 #include "psa_crypto_core.h"
34 #include "psa_crypto_invasive.h"
35 #include "psa_crypto_driver_wrappers.h"
36 #include "psa_crypto_ecp.h"
37 #include "psa_crypto_hash.h"
38 #include "psa_crypto_mac.h"
39 #include "psa_crypto_rsa.h"
40 #include "psa_crypto_ecp.h"
41 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
42 #include "psa_crypto_se.h"
43 #endif
44 #include "psa_crypto_slot_management.h"
45 /* Include internal declarations that are useful for implementing persistently
46 * stored keys. */
47 #include "psa_crypto_storage.h"
48
49 #include "psa_crypto_random_impl.h"
50
51 #include <assert.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include "mbedtls/platform.h"
55
56 #include "mbedtls/aes.h"
57 #include "mbedtls/asn1.h"
58 #include "mbedtls/asn1write.h"
59 #include "mbedtls/bignum.h"
60 #include "mbedtls/camellia.h"
61 #include "mbedtls/chacha20.h"
62 #include "mbedtls/chachapoly.h"
63 #include "mbedtls/cipher.h"
64 #include "mbedtls/ccm.h"
65 #include "mbedtls/cmac.h"
66 #include "mbedtls/des.h"
67 #include "mbedtls/ecdh.h"
68 #include "mbedtls/ecp.h"
69 #include "mbedtls/entropy.h"
70 #include "mbedtls/error.h"
71 #include "mbedtls/gcm.h"
72 #include "mbedtls/md5.h"
73 #include "mbedtls/md.h"
74 #include "md_wrap.h"
75 #include "mbedtls/pk.h"
76 #include "pk_wrap.h"
77 #include "mbedtls/platform_util.h"
78 #include "mbedtls/error.h"
79 #include "mbedtls/ripemd160.h"
80 #include "mbedtls/rsa.h"
81 #include "mbedtls/sha1.h"
82 #include "mbedtls/sha256.h"
83 #include "mbedtls/sha512.h"
84
85 #if defined(PSA_CRYPTO_DRIVER_TFM_BUILTIN_KEY_LOADER)
86 #include "tfm_crypto_defs.h"
87 #include "tfm_builtin_key_loader.h"
88 #endif /* PSA_CRYPTO_DRIVER_TFM_BUILTIN_KEY_LOADER */
89
90 #define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) )
91
92 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) || \
93 defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT) || \
94 defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
95 #define BUILTIN_ALG_ANY_HKDF 1
96 #endif
97
98 /****************************************************************/
99 /* Global data, support functions and library management */
100 /****************************************************************/
101
key_type_is_raw_bytes(psa_key_type_t type)102 static int key_type_is_raw_bytes( psa_key_type_t type )
103 {
104 return( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) );
105 }
106
107 /* Values for psa_global_data_t::rng_state */
108 #define RNG_NOT_INITIALIZED 0
109 #define RNG_INITIALIZED 1
110 #define RNG_SEEDED 2
111
112 typedef struct
113 {
114 unsigned initialized : 1;
115 unsigned rng_state : 2;
116 mbedtls_psa_random_context_t rng;
117 } psa_global_data_t;
118
119 static psa_global_data_t global_data;
120
121 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
122 mbedtls_psa_drbg_context_t *const mbedtls_psa_random_state =
123 &global_data.rng.drbg;
124 #endif
125
126 #define GUARD_MODULE_INITIALIZED \
127 if( global_data.initialized == 0 ) \
128 return( PSA_ERROR_BAD_STATE );
129
mbedtls_to_psa_error(int ret)130 psa_status_t mbedtls_to_psa_error( int ret )
131 {
132 /* Mbed TLS error codes can combine a high-level error code and a
133 * low-level error code. The low-level error usually reflects the
134 * root cause better, so dispatch on that preferably. */
135 int low_level_ret = - ( -ret & 0x007f );
136 switch( low_level_ret != 0 ? low_level_ret : ret )
137 {
138 case 0:
139 return( PSA_SUCCESS );
140
141 case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH:
142 case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH:
143 return( PSA_ERROR_NOT_SUPPORTED );
144 case MBEDTLS_ERR_ASN1_OUT_OF_DATA:
145 case MBEDTLS_ERR_ASN1_UNEXPECTED_TAG:
146 case MBEDTLS_ERR_ASN1_INVALID_LENGTH:
147 case MBEDTLS_ERR_ASN1_LENGTH_MISMATCH:
148 case MBEDTLS_ERR_ASN1_INVALID_DATA:
149 return( PSA_ERROR_INVALID_ARGUMENT );
150 case MBEDTLS_ERR_ASN1_ALLOC_FAILED:
151 return( PSA_ERROR_INSUFFICIENT_MEMORY );
152 case MBEDTLS_ERR_ASN1_BUF_TOO_SMALL:
153 return( PSA_ERROR_BUFFER_TOO_SMALL );
154
155 #if defined(MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA)
156 case MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA:
157 #endif
158 case MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH:
159 return( PSA_ERROR_NOT_SUPPORTED );
160
161 case MBEDTLS_ERR_CCM_BAD_INPUT:
162 return( PSA_ERROR_INVALID_ARGUMENT );
163 case MBEDTLS_ERR_CCM_AUTH_FAILED:
164 return( PSA_ERROR_INVALID_SIGNATURE );
165
166 case MBEDTLS_ERR_CHACHA20_BAD_INPUT_DATA:
167 return( PSA_ERROR_INVALID_ARGUMENT );
168
169 case MBEDTLS_ERR_CHACHAPOLY_BAD_STATE:
170 return( PSA_ERROR_BAD_STATE );
171 case MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED:
172 return( PSA_ERROR_INVALID_SIGNATURE );
173
174 case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE:
175 return( PSA_ERROR_NOT_SUPPORTED );
176 case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA:
177 return( PSA_ERROR_INVALID_ARGUMENT );
178 case MBEDTLS_ERR_CIPHER_ALLOC_FAILED:
179 return( PSA_ERROR_INSUFFICIENT_MEMORY );
180 case MBEDTLS_ERR_CIPHER_INVALID_PADDING:
181 return( PSA_ERROR_INVALID_PADDING );
182 case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED:
183 return( PSA_ERROR_INVALID_ARGUMENT );
184 case MBEDTLS_ERR_CIPHER_AUTH_FAILED:
185 return( PSA_ERROR_INVALID_SIGNATURE );
186 case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT:
187 return( PSA_ERROR_CORRUPTION_DETECTED );
188
189 #if !( defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) || \
190 defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE) )
191 /* Only check CTR_DRBG error codes if underlying mbedtls_xxx
192 * functions are passed a CTR_DRBG instance. */
193 case MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED:
194 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
195 case MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG:
196 case MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG:
197 return( PSA_ERROR_NOT_SUPPORTED );
198 case MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR:
199 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
200 #endif
201
202 case MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH:
203 return( PSA_ERROR_NOT_SUPPORTED );
204
205 case MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED:
206 case MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE:
207 case MBEDTLS_ERR_ENTROPY_SOURCE_FAILED:
208 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
209
210 case MBEDTLS_ERR_GCM_AUTH_FAILED:
211 return( PSA_ERROR_INVALID_SIGNATURE );
212 case MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL:
213 return( PSA_ERROR_BUFFER_TOO_SMALL );
214 case MBEDTLS_ERR_GCM_BAD_INPUT:
215 return( PSA_ERROR_INVALID_ARGUMENT );
216
217 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) && \
218 defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE)
219 /* Only check HMAC_DRBG error codes if underlying mbedtls_xxx
220 * functions are passed a HMAC_DRBG instance. */
221 case MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED:
222 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
223 case MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG:
224 case MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG:
225 return( PSA_ERROR_NOT_SUPPORTED );
226 case MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR:
227 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
228 #endif
229
230 case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE:
231 return( PSA_ERROR_NOT_SUPPORTED );
232 case MBEDTLS_ERR_MD_BAD_INPUT_DATA:
233 return( PSA_ERROR_INVALID_ARGUMENT );
234 case MBEDTLS_ERR_MD_ALLOC_FAILED:
235 return( PSA_ERROR_INSUFFICIENT_MEMORY );
236 case MBEDTLS_ERR_MD_FILE_IO_ERROR:
237 return( PSA_ERROR_STORAGE_FAILURE );
238
239 case MBEDTLS_ERR_MPI_FILE_IO_ERROR:
240 return( PSA_ERROR_STORAGE_FAILURE );
241 case MBEDTLS_ERR_MPI_BAD_INPUT_DATA:
242 return( PSA_ERROR_INVALID_ARGUMENT );
243 case MBEDTLS_ERR_MPI_INVALID_CHARACTER:
244 return( PSA_ERROR_INVALID_ARGUMENT );
245 case MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL:
246 return( PSA_ERROR_BUFFER_TOO_SMALL );
247 case MBEDTLS_ERR_MPI_NEGATIVE_VALUE:
248 return( PSA_ERROR_INVALID_ARGUMENT );
249 case MBEDTLS_ERR_MPI_DIVISION_BY_ZERO:
250 return( PSA_ERROR_INVALID_ARGUMENT );
251 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
252 return( PSA_ERROR_INVALID_ARGUMENT );
253 case MBEDTLS_ERR_MPI_ALLOC_FAILED:
254 return( PSA_ERROR_INSUFFICIENT_MEMORY );
255
256 case MBEDTLS_ERR_PK_ALLOC_FAILED:
257 return( PSA_ERROR_INSUFFICIENT_MEMORY );
258 case MBEDTLS_ERR_PK_TYPE_MISMATCH:
259 case MBEDTLS_ERR_PK_BAD_INPUT_DATA:
260 return( PSA_ERROR_INVALID_ARGUMENT );
261 case MBEDTLS_ERR_PK_FILE_IO_ERROR:
262 return( PSA_ERROR_STORAGE_FAILURE );
263 case MBEDTLS_ERR_PK_KEY_INVALID_VERSION:
264 case MBEDTLS_ERR_PK_KEY_INVALID_FORMAT:
265 return( PSA_ERROR_INVALID_ARGUMENT );
266 case MBEDTLS_ERR_PK_UNKNOWN_PK_ALG:
267 return( PSA_ERROR_NOT_SUPPORTED );
268 case MBEDTLS_ERR_PK_PASSWORD_REQUIRED:
269 case MBEDTLS_ERR_PK_PASSWORD_MISMATCH:
270 return( PSA_ERROR_NOT_PERMITTED );
271 case MBEDTLS_ERR_PK_INVALID_PUBKEY:
272 return( PSA_ERROR_INVALID_ARGUMENT );
273 case MBEDTLS_ERR_PK_INVALID_ALG:
274 case MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE:
275 case MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE:
276 return( PSA_ERROR_NOT_SUPPORTED );
277 case MBEDTLS_ERR_PK_SIG_LEN_MISMATCH:
278 return( PSA_ERROR_INVALID_SIGNATURE );
279 case MBEDTLS_ERR_PK_BUFFER_TOO_SMALL:
280 return( PSA_ERROR_BUFFER_TOO_SMALL );
281
282 case MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED:
283 return( PSA_ERROR_HARDWARE_FAILURE );
284 case MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED:
285 return( PSA_ERROR_NOT_SUPPORTED );
286
287 case MBEDTLS_ERR_RSA_BAD_INPUT_DATA:
288 return( PSA_ERROR_INVALID_ARGUMENT );
289 case MBEDTLS_ERR_RSA_INVALID_PADDING:
290 return( PSA_ERROR_INVALID_PADDING );
291 case MBEDTLS_ERR_RSA_KEY_GEN_FAILED:
292 return( PSA_ERROR_HARDWARE_FAILURE );
293 case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED:
294 return( PSA_ERROR_INVALID_ARGUMENT );
295 case MBEDTLS_ERR_RSA_PUBLIC_FAILED:
296 case MBEDTLS_ERR_RSA_PRIVATE_FAILED:
297 return( PSA_ERROR_CORRUPTION_DETECTED );
298 case MBEDTLS_ERR_RSA_VERIFY_FAILED:
299 return( PSA_ERROR_INVALID_SIGNATURE );
300 case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE:
301 return( PSA_ERROR_BUFFER_TOO_SMALL );
302 case MBEDTLS_ERR_RSA_RNG_FAILED:
303 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
304
305 case MBEDTLS_ERR_ECP_BAD_INPUT_DATA:
306 case MBEDTLS_ERR_ECP_INVALID_KEY:
307 return( PSA_ERROR_INVALID_ARGUMENT );
308 case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL:
309 return( PSA_ERROR_BUFFER_TOO_SMALL );
310 case MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE:
311 return( PSA_ERROR_NOT_SUPPORTED );
312 case MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH:
313 case MBEDTLS_ERR_ECP_VERIFY_FAILED:
314 return( PSA_ERROR_INVALID_SIGNATURE );
315 case MBEDTLS_ERR_ECP_ALLOC_FAILED:
316 return( PSA_ERROR_INSUFFICIENT_MEMORY );
317 case MBEDTLS_ERR_ECP_RANDOM_FAILED:
318 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
319
320 case MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED:
321 return( PSA_ERROR_CORRUPTION_DETECTED );
322
323 default:
324 return( PSA_ERROR_GENERIC_ERROR );
325 }
326 }
327
328
329
330
331 /****************************************************************/
332 /* Key management */
333 /****************************************************************/
334
335 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
336 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) || \
337 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
338 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) || \
339 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
mbedtls_ecc_group_of_psa(psa_ecc_family_t curve,size_t bits,int bits_is_sloppy)340 mbedtls_ecp_group_id mbedtls_ecc_group_of_psa( psa_ecc_family_t curve,
341 size_t bits,
342 int bits_is_sloppy )
343 {
344 switch( curve )
345 {
346 case PSA_ECC_FAMILY_SECP_R1:
347 switch( bits )
348 {
349 #if defined(PSA_WANT_ECC_SECP_R1_192)
350 case 192:
351 return( MBEDTLS_ECP_DP_SECP192R1 );
352 #endif
353 #if defined(PSA_WANT_ECC_SECP_R1_224)
354 case 224:
355 return( MBEDTLS_ECP_DP_SECP224R1 );
356 #endif
357 #if defined(PSA_WANT_ECC_SECP_R1_256)
358 case 256:
359 return( MBEDTLS_ECP_DP_SECP256R1 );
360 #endif
361 #if defined(PSA_WANT_ECC_SECP_R1_384)
362 case 384:
363 return( MBEDTLS_ECP_DP_SECP384R1 );
364 #endif
365 #if defined(PSA_WANT_ECC_SECP_R1_521)
366 case 521:
367 return( MBEDTLS_ECP_DP_SECP521R1 );
368 case 528:
369 if( bits_is_sloppy )
370 return( MBEDTLS_ECP_DP_SECP521R1 );
371 break;
372 #endif
373 }
374 break;
375
376 case PSA_ECC_FAMILY_BRAINPOOL_P_R1:
377 switch( bits )
378 {
379 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_256)
380 case 256:
381 return( MBEDTLS_ECP_DP_BP256R1 );
382 #endif
383 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_384)
384 case 384:
385 return( MBEDTLS_ECP_DP_BP384R1 );
386 #endif
387 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_512)
388 case 512:
389 return( MBEDTLS_ECP_DP_BP512R1 );
390 #endif
391 }
392 break;
393
394 case PSA_ECC_FAMILY_MONTGOMERY:
395 switch( bits )
396 {
397 #if defined(PSA_WANT_ECC_MONTGOMERY_255)
398 case 255:
399 return( MBEDTLS_ECP_DP_CURVE25519 );
400 case 256:
401 if( bits_is_sloppy )
402 return( MBEDTLS_ECP_DP_CURVE25519 );
403 break;
404 #endif
405 #if defined(PSA_WANT_ECC_MONTGOMERY_448)
406 case 448:
407 return( MBEDTLS_ECP_DP_CURVE448 );
408 #endif
409 }
410 break;
411
412 case PSA_ECC_FAMILY_SECP_K1:
413 switch( bits )
414 {
415 #if defined(PSA_WANT_ECC_SECP_K1_192)
416 case 192:
417 return( MBEDTLS_ECP_DP_SECP192K1 );
418 #endif
419 #if defined(PSA_WANT_ECC_SECP_K1_224)
420 case 224:
421 return( MBEDTLS_ECP_DP_SECP224K1 );
422 #endif
423 #if defined(PSA_WANT_ECC_SECP_K1_256)
424 case 256:
425 return( MBEDTLS_ECP_DP_SECP256K1 );
426 #endif
427 }
428 break;
429 }
430
431 (void) bits_is_sloppy;
432 return( MBEDTLS_ECP_DP_NONE );
433 }
434 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
435 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) ||
436 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
437 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) ||
438 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH) */
439
psa_validate_unstructured_key_bit_size(psa_key_type_t type,size_t bits)440 psa_status_t psa_validate_unstructured_key_bit_size( psa_key_type_t type,
441 size_t bits )
442 {
443 /* Check that the bit size is acceptable for the key type */
444 switch( type )
445 {
446 case PSA_KEY_TYPE_RAW_DATA:
447 case PSA_KEY_TYPE_HMAC:
448 case PSA_KEY_TYPE_DERIVE:
449 case PSA_KEY_TYPE_PASSWORD:
450 case PSA_KEY_TYPE_PASSWORD_HASH:
451 break;
452 #if defined(PSA_WANT_KEY_TYPE_AES)
453 case PSA_KEY_TYPE_AES:
454 if( bits != 128 && bits != 192 && bits != 256 )
455 return( PSA_ERROR_INVALID_ARGUMENT );
456 break;
457 #endif
458 #if defined(PSA_WANT_KEY_TYPE_ARIA)
459 case PSA_KEY_TYPE_ARIA:
460 if( bits != 128 && bits != 192 && bits != 256 )
461 return( PSA_ERROR_INVALID_ARGUMENT );
462 break;
463 #endif
464 #if defined(PSA_WANT_KEY_TYPE_CAMELLIA)
465 case PSA_KEY_TYPE_CAMELLIA:
466 if( bits != 128 && bits != 192 && bits != 256 )
467 return( PSA_ERROR_INVALID_ARGUMENT );
468 break;
469 #endif
470 #if defined(PSA_WANT_KEY_TYPE_DES)
471 case PSA_KEY_TYPE_DES:
472 if( bits != 64 && bits != 128 && bits != 192 )
473 return( PSA_ERROR_INVALID_ARGUMENT );
474 break;
475 #endif
476 #if defined(PSA_WANT_KEY_TYPE_CHACHA20)
477 case PSA_KEY_TYPE_CHACHA20:
478 if( bits != 256 )
479 return( PSA_ERROR_INVALID_ARGUMENT );
480 break;
481 #endif
482 default:
483 return( PSA_ERROR_NOT_SUPPORTED );
484 }
485 if( bits % 8 != 0 )
486 return( PSA_ERROR_INVALID_ARGUMENT );
487
488 return( PSA_SUCCESS );
489 }
490
491 /** Check whether a given key type is valid for use with a given MAC algorithm
492 *
493 * Upon successful return of this function, the behavior of #PSA_MAC_LENGTH
494 * when called with the validated \p algorithm and \p key_type is well-defined.
495 *
496 * \param[in] algorithm The specific MAC algorithm (can be wildcard).
497 * \param[in] key_type The key type of the key to be used with the
498 * \p algorithm.
499 *
500 * \retval #PSA_SUCCESS
501 * The \p key_type is valid for use with the \p algorithm
502 * \retval #PSA_ERROR_INVALID_ARGUMENT
503 * The \p key_type is not valid for use with the \p algorithm
504 */
psa_mac_key_can_do(psa_algorithm_t algorithm,psa_key_type_t key_type)505 MBEDTLS_STATIC_TESTABLE psa_status_t psa_mac_key_can_do(
506 psa_algorithm_t algorithm,
507 psa_key_type_t key_type )
508 {
509 if( PSA_ALG_IS_HMAC( algorithm ) )
510 {
511 if( key_type == PSA_KEY_TYPE_HMAC )
512 return( PSA_SUCCESS );
513 }
514
515 if( PSA_ALG_IS_BLOCK_CIPHER_MAC( algorithm ) )
516 {
517 /* Check that we're calling PSA_BLOCK_CIPHER_BLOCK_LENGTH with a cipher
518 * key. */
519 if( ( key_type & PSA_KEY_TYPE_CATEGORY_MASK ) ==
520 PSA_KEY_TYPE_CATEGORY_SYMMETRIC )
521 {
522 /* PSA_BLOCK_CIPHER_BLOCK_LENGTH returns 1 for stream ciphers and
523 * the block length (larger than 1) for block ciphers. */
524 if( PSA_BLOCK_CIPHER_BLOCK_LENGTH( key_type ) > 1 )
525 return( PSA_SUCCESS );
526 }
527 }
528
529 return( PSA_ERROR_INVALID_ARGUMENT );
530 }
531
psa_allocate_buffer_to_slot(psa_key_slot_t * slot,size_t buffer_length)532 psa_status_t psa_allocate_buffer_to_slot( psa_key_slot_t *slot,
533 size_t buffer_length )
534 {
535 if( slot->key.data != NULL )
536 return( PSA_ERROR_ALREADY_EXISTS );
537
538 slot->key.data = mbedtls_calloc( 1, buffer_length );
539 if( slot->key.data == NULL )
540 return( PSA_ERROR_INSUFFICIENT_MEMORY );
541
542 slot->key.bytes = buffer_length;
543 return( PSA_SUCCESS );
544 }
545
psa_copy_key_material_into_slot(psa_key_slot_t * slot,const uint8_t * data,size_t data_length)546 psa_status_t psa_copy_key_material_into_slot( psa_key_slot_t *slot,
547 const uint8_t* data,
548 size_t data_length )
549 {
550 psa_status_t status = psa_allocate_buffer_to_slot( slot,
551 data_length );
552 if( status != PSA_SUCCESS )
553 return( status );
554
555 memcpy( slot->key.data, data, data_length );
556 return( PSA_SUCCESS );
557 }
558
psa_import_key_into_slot(const psa_key_attributes_t * attributes,const uint8_t * data,size_t data_length,uint8_t * key_buffer,size_t key_buffer_size,size_t * key_buffer_length,size_t * bits)559 psa_status_t psa_import_key_into_slot(
560 const psa_key_attributes_t *attributes,
561 const uint8_t *data, size_t data_length,
562 uint8_t *key_buffer, size_t key_buffer_size,
563 size_t *key_buffer_length, size_t *bits )
564 {
565 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
566 psa_key_type_t type = attributes->core.type;
567
568 /* zero-length keys are never supported. */
569 if( data_length == 0 )
570 return( PSA_ERROR_NOT_SUPPORTED );
571
572 if( key_type_is_raw_bytes( type ) )
573 {
574 *bits = PSA_BYTES_TO_BITS( data_length );
575
576 status = psa_validate_unstructured_key_bit_size( attributes->core.type,
577 *bits );
578 if( status != PSA_SUCCESS )
579 return( status );
580
581 /* Copy the key material. */
582 memcpy( key_buffer, data, data_length );
583 *key_buffer_length = data_length;
584 (void)key_buffer_size;
585
586 return( PSA_SUCCESS );
587 }
588 else if( PSA_KEY_TYPE_IS_ASYMMETRIC( type ) )
589 {
590 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
591 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
592 if( PSA_KEY_TYPE_IS_ECC( type ) )
593 {
594 return( mbedtls_psa_ecp_import_key( attributes,
595 data, data_length,
596 key_buffer, key_buffer_size,
597 key_buffer_length,
598 bits ) );
599 }
600 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
601 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
602 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
603 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
604 if( PSA_KEY_TYPE_IS_RSA( type ) )
605 {
606 return( mbedtls_psa_rsa_import_key( attributes,
607 data, data_length,
608 key_buffer, key_buffer_size,
609 key_buffer_length,
610 bits ) );
611 }
612 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
613 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
614 }
615
616 return( PSA_ERROR_NOT_SUPPORTED );
617 }
618
619 /** Calculate the intersection of two algorithm usage policies.
620 *
621 * Return 0 (which allows no operation) on incompatibility.
622 */
psa_key_policy_algorithm_intersection(psa_key_type_t key_type,psa_algorithm_t alg1,psa_algorithm_t alg2)623 static psa_algorithm_t psa_key_policy_algorithm_intersection(
624 psa_key_type_t key_type,
625 psa_algorithm_t alg1,
626 psa_algorithm_t alg2 )
627 {
628 /* Common case: both sides actually specify the same policy. */
629 if( alg1 == alg2 )
630 return( alg1 );
631 /* If the policies are from the same hash-and-sign family, check
632 * if one is a wildcard. If so the other has the specific algorithm. */
633 if( PSA_ALG_IS_SIGN_HASH( alg1 ) &&
634 PSA_ALG_IS_SIGN_HASH( alg2 ) &&
635 ( alg1 & ~PSA_ALG_HASH_MASK ) == ( alg2 & ~PSA_ALG_HASH_MASK ) )
636 {
637 if( PSA_ALG_SIGN_GET_HASH( alg1 ) == PSA_ALG_ANY_HASH )
638 return( alg2 );
639 if( PSA_ALG_SIGN_GET_HASH( alg2 ) == PSA_ALG_ANY_HASH )
640 return( alg1 );
641 }
642 /* If the policies are from the same AEAD family, check whether
643 * one of them is a minimum-tag-length wildcard. Calculate the most
644 * restrictive tag length. */
645 if( PSA_ALG_IS_AEAD( alg1 ) && PSA_ALG_IS_AEAD( alg2 ) &&
646 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg1, 0 ) ==
647 PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg2, 0 ) ) )
648 {
649 size_t alg1_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg1 );
650 size_t alg2_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg2 );
651 size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
652
653 /* If both are wildcards, return most restrictive wildcard */
654 if( ( ( alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
655 ( ( alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
656 {
657 return( PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(
658 alg1, restricted_len ) );
659 }
660 /* If only one is a wildcard, return specific algorithm if compatible. */
661 if( ( ( alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
662 ( alg1_len <= alg2_len ) )
663 {
664 return( alg2 );
665 }
666 if( ( ( alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
667 ( alg2_len <= alg1_len ) )
668 {
669 return( alg1 );
670 }
671 }
672 /* If the policies are from the same MAC family, check whether one
673 * of them is a minimum-MAC-length policy. Calculate the most
674 * restrictive tag length. */
675 if( PSA_ALG_IS_MAC( alg1 ) && PSA_ALG_IS_MAC( alg2 ) &&
676 ( PSA_ALG_FULL_LENGTH_MAC( alg1 ) ==
677 PSA_ALG_FULL_LENGTH_MAC( alg2 ) ) )
678 {
679 /* Validate the combination of key type and algorithm. Since the base
680 * algorithm of alg1 and alg2 are the same, we only need this once. */
681 if( PSA_SUCCESS != psa_mac_key_can_do( alg1, key_type ) )
682 return( 0 );
683
684 /* Get the (exact or at-least) output lengths for both sides of the
685 * requested intersection. None of the currently supported algorithms
686 * have an output length dependent on the actual key size, so setting it
687 * to a bogus value of 0 is currently OK.
688 *
689 * Note that for at-least-this-length wildcard algorithms, the output
690 * length is set to the shortest allowed length, which allows us to
691 * calculate the most restrictive tag length for the intersection. */
692 size_t alg1_len = PSA_MAC_LENGTH( key_type, 0, alg1 );
693 size_t alg2_len = PSA_MAC_LENGTH( key_type, 0, alg2 );
694 size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
695
696 /* If both are wildcards, return most restrictive wildcard */
697 if( ( ( alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
698 ( ( alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
699 {
700 return( PSA_ALG_AT_LEAST_THIS_LENGTH_MAC( alg1, restricted_len ) );
701 }
702
703 /* If only one is an at-least-this-length policy, the intersection would
704 * be the other (fixed-length) policy as long as said fixed length is
705 * equal to or larger than the shortest allowed length. */
706 if( ( alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
707 {
708 return( ( alg1_len <= alg2_len ) ? alg2 : 0 );
709 }
710 if( ( alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
711 {
712 return( ( alg2_len <= alg1_len ) ? alg1 : 0 );
713 }
714
715 /* If none of them are wildcards, check whether they define the same tag
716 * length. This is still possible here when one is default-length and
717 * the other specific-length. Ensure to always return the
718 * specific-length version for the intersection. */
719 if( alg1_len == alg2_len )
720 return( PSA_ALG_TRUNCATED_MAC( alg1, alg1_len ) );
721 }
722 /* If the policies are incompatible, allow nothing. */
723 return( 0 );
724 }
725
psa_key_algorithm_permits(psa_key_type_t key_type,psa_algorithm_t policy_alg,psa_algorithm_t requested_alg)726 static int psa_key_algorithm_permits( psa_key_type_t key_type,
727 psa_algorithm_t policy_alg,
728 psa_algorithm_t requested_alg )
729 {
730 /* Common case: the policy only allows requested_alg. */
731 if( requested_alg == policy_alg )
732 return( 1 );
733 /* If policy_alg is a hash-and-sign with a wildcard for the hash,
734 * and requested_alg is the same hash-and-sign family with any hash,
735 * then requested_alg is compliant with policy_alg. */
736 if( PSA_ALG_IS_SIGN_HASH( requested_alg ) &&
737 PSA_ALG_SIGN_GET_HASH( policy_alg ) == PSA_ALG_ANY_HASH )
738 {
739 return( ( policy_alg & ~PSA_ALG_HASH_MASK ) ==
740 ( requested_alg & ~PSA_ALG_HASH_MASK ) );
741 }
742 /* If policy_alg is a wildcard AEAD algorithm of the same base as
743 * the requested algorithm, check the requested tag length to be
744 * equal-length or longer than the wildcard-specified length. */
745 if( PSA_ALG_IS_AEAD( policy_alg ) &&
746 PSA_ALG_IS_AEAD( requested_alg ) &&
747 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG( policy_alg, 0 ) ==
748 PSA_ALG_AEAD_WITH_SHORTENED_TAG( requested_alg, 0 ) ) &&
749 ( ( policy_alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
750 {
751 return( PSA_ALG_AEAD_GET_TAG_LENGTH( policy_alg ) <=
752 PSA_ALG_AEAD_GET_TAG_LENGTH( requested_alg ) );
753 }
754 /* If policy_alg is a MAC algorithm of the same base as the requested
755 * algorithm, check whether their MAC lengths are compatible. */
756 if( PSA_ALG_IS_MAC( policy_alg ) &&
757 PSA_ALG_IS_MAC( requested_alg ) &&
758 ( PSA_ALG_FULL_LENGTH_MAC( policy_alg ) ==
759 PSA_ALG_FULL_LENGTH_MAC( requested_alg ) ) )
760 {
761 /* Validate the combination of key type and algorithm. Since the policy
762 * and requested algorithms are the same, we only need this once. */
763 if( PSA_SUCCESS != psa_mac_key_can_do( policy_alg, key_type ) )
764 return( 0 );
765
766 /* Get both the requested output length for the algorithm which is to be
767 * verified, and the default output length for the base algorithm.
768 * Note that none of the currently supported algorithms have an output
769 * length dependent on actual key size, so setting it to a bogus value
770 * of 0 is currently OK. */
771 size_t requested_output_length = PSA_MAC_LENGTH(
772 key_type, 0, requested_alg );
773 size_t default_output_length = PSA_MAC_LENGTH(
774 key_type, 0,
775 PSA_ALG_FULL_LENGTH_MAC( requested_alg ) );
776
777 /* If the policy is default-length, only allow an algorithm with
778 * a declared exact-length matching the default. */
779 if( PSA_MAC_TRUNCATED_LENGTH( policy_alg ) == 0 )
780 return( requested_output_length == default_output_length );
781
782 /* If the requested algorithm is default-length, allow it if the policy
783 * length exactly matches the default length. */
784 if( PSA_MAC_TRUNCATED_LENGTH( requested_alg ) == 0 &&
785 PSA_MAC_TRUNCATED_LENGTH( policy_alg ) == default_output_length )
786 {
787 return( 1 );
788 }
789
790 /* If policy_alg is an at-least-this-length wildcard MAC algorithm,
791 * check for the requested MAC length to be equal to or longer than the
792 * minimum allowed length. */
793 if( ( policy_alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
794 {
795 return( PSA_MAC_TRUNCATED_LENGTH( policy_alg ) <=
796 requested_output_length );
797 }
798 }
799 /* If policy_alg is a generic key agreement operation, then using it for
800 * a key derivation with that key agreement should also be allowed. This
801 * behaviour is expected to be defined in a future specification version. */
802 if( PSA_ALG_IS_RAW_KEY_AGREEMENT( policy_alg ) &&
803 PSA_ALG_IS_KEY_AGREEMENT( requested_alg ) )
804 {
805 return( PSA_ALG_KEY_AGREEMENT_GET_BASE( requested_alg ) ==
806 policy_alg );
807 }
808 /* If it isn't explicitly permitted, it's forbidden. */
809 return( 0 );
810 }
811
812 /** Test whether a policy permits an algorithm.
813 *
814 * The caller must test usage flags separately.
815 *
816 * \note This function requires providing the key type for which the policy is
817 * being validated, since some algorithm policy definitions (e.g. MAC)
818 * have different properties depending on what kind of cipher it is
819 * combined with.
820 *
821 * \retval PSA_SUCCESS When \p alg is a specific algorithm
822 * allowed by the \p policy.
823 * \retval PSA_ERROR_INVALID_ARGUMENT When \p alg is not a specific algorithm
824 * \retval PSA_ERROR_NOT_PERMITTED When \p alg is a specific algorithm, but
825 * the \p policy does not allow it.
826 */
psa_key_policy_permits(const psa_key_policy_t * policy,psa_key_type_t key_type,psa_algorithm_t alg)827 static psa_status_t psa_key_policy_permits( const psa_key_policy_t *policy,
828 psa_key_type_t key_type,
829 psa_algorithm_t alg )
830 {
831 /* '0' is not a valid algorithm */
832 if( alg == 0 )
833 return( PSA_ERROR_INVALID_ARGUMENT );
834
835 /* A requested algorithm cannot be a wildcard. */
836 if( PSA_ALG_IS_WILDCARD( alg ) )
837 return( PSA_ERROR_INVALID_ARGUMENT );
838
839 if( psa_key_algorithm_permits( key_type, policy->alg, alg ) ||
840 psa_key_algorithm_permits( key_type, policy->alg2, alg ) )
841 return( PSA_SUCCESS );
842 else
843 return( PSA_ERROR_NOT_PERMITTED );
844 }
845
846 /** Restrict a key policy based on a constraint.
847 *
848 * \note This function requires providing the key type for which the policy is
849 * being restricted, since some algorithm policy definitions (e.g. MAC)
850 * have different properties depending on what kind of cipher it is
851 * combined with.
852 *
853 * \param[in] key_type The key type for which to restrict the policy
854 * \param[in,out] policy The policy to restrict.
855 * \param[in] constraint The policy constraint to apply.
856 *
857 * \retval #PSA_SUCCESS
858 * \c *policy contains the intersection of the original value of
859 * \c *policy and \c *constraint.
860 * \retval #PSA_ERROR_INVALID_ARGUMENT
861 * \c key_type, \c *policy and \c *constraint are incompatible.
862 * \c *policy is unchanged.
863 */
psa_restrict_key_policy(psa_key_type_t key_type,psa_key_policy_t * policy,const psa_key_policy_t * constraint)864 static psa_status_t psa_restrict_key_policy(
865 psa_key_type_t key_type,
866 psa_key_policy_t *policy,
867 const psa_key_policy_t *constraint )
868 {
869 psa_algorithm_t intersection_alg =
870 psa_key_policy_algorithm_intersection( key_type, policy->alg,
871 constraint->alg );
872 psa_algorithm_t intersection_alg2 =
873 psa_key_policy_algorithm_intersection( key_type, policy->alg2,
874 constraint->alg2 );
875 if( intersection_alg == 0 && policy->alg != 0 && constraint->alg != 0 )
876 return( PSA_ERROR_INVALID_ARGUMENT );
877 if( intersection_alg2 == 0 && policy->alg2 != 0 && constraint->alg2 != 0 )
878 return( PSA_ERROR_INVALID_ARGUMENT );
879 policy->usage &= constraint->usage;
880 policy->alg = intersection_alg;
881 policy->alg2 = intersection_alg2;
882 return( PSA_SUCCESS );
883 }
884
psa_get_and_lock_key_slot_with_policy(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot,psa_key_usage_t usage,psa_algorithm_t alg)885 psa_status_t psa_get_and_lock_key_slot_with_policy(
886 mbedtls_svc_key_id_t key,
887 psa_key_slot_t **p_slot,
888 psa_key_usage_t usage,
889 psa_algorithm_t alg )
890 {
891 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
892 psa_key_slot_t *slot;
893
894 status = psa_get_and_lock_key_slot( key, p_slot );
895 if( status != PSA_SUCCESS )
896 return( status );
897 slot = *p_slot;
898
899 /* Enforce that usage policy for the key slot contains all the flags
900 * required by the usage parameter. There is one exception: public
901 * keys can always be exported, so we treat public key objects as
902 * if they had the export flag. */
903 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) )
904 usage &= ~PSA_KEY_USAGE_EXPORT;
905
906 if( ( slot->attr.policy.usage & usage ) != usage )
907 {
908 status = PSA_ERROR_NOT_PERMITTED;
909 goto error;
910 }
911
912 /* Enforce that the usage policy permits the requested algorithm. */
913 if( alg != 0 )
914 {
915 status = psa_key_policy_permits( &slot->attr.policy,
916 slot->attr.type,
917 alg );
918 if( status != PSA_SUCCESS )
919 goto error;
920 }
921
922 return( PSA_SUCCESS );
923
924 error:
925 *p_slot = NULL;
926 psa_unlock_key_slot( slot );
927
928 return( status );
929 }
930
931 /** Get a key slot containing a transparent key and lock it.
932 *
933 * A transparent key is a key for which the key material is directly
934 * available, as opposed to a key in a secure element and/or to be used
935 * by a secure element.
936 *
937 * This is a temporary function that may be used instead of
938 * psa_get_and_lock_key_slot_with_policy() when there is no opaque key support
939 * for a cryptographic operation.
940 *
941 * On success, the returned key slot is locked. It is the responsibility of the
942 * caller to unlock the key slot when it does not access it anymore.
943 */
psa_get_and_lock_transparent_key_slot_with_policy(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot,psa_key_usage_t usage,psa_algorithm_t alg)944 static psa_status_t psa_get_and_lock_transparent_key_slot_with_policy(
945 mbedtls_svc_key_id_t key,
946 psa_key_slot_t **p_slot,
947 psa_key_usage_t usage,
948 psa_algorithm_t alg )
949 {
950 psa_status_t status = psa_get_and_lock_key_slot_with_policy( key, p_slot,
951 usage, alg );
952 if( status != PSA_SUCCESS )
953 return( status );
954
955 if( psa_key_lifetime_is_external( (*p_slot)->attr.lifetime )
956 #if defined(PSA_CRYPTO_DRIVER_TFM_BUILTIN_KEY_LOADER)
957 && PSA_KEY_LIFETIME_GET_LOCATION((*p_slot)->attr.lifetime) != TFM_BUILTIN_KEY_LOADER_KEY_LOCATION
958 #endif /* defined(PSA_CRYPTO_DRIVER_TFM_BUILTIN_KEY_LOADER) */
959 )
960 {
961 psa_unlock_key_slot( *p_slot );
962 *p_slot = NULL;
963 return( PSA_ERROR_NOT_SUPPORTED );
964 }
965
966 return( PSA_SUCCESS );
967 }
968
psa_remove_key_data_from_memory(psa_key_slot_t * slot)969 psa_status_t psa_remove_key_data_from_memory( psa_key_slot_t *slot )
970 {
971 /* Data pointer will always be either a valid pointer or NULL in an
972 * initialized slot, so we can just free it. */
973 if( slot->key.data != NULL )
974 mbedtls_platform_zeroize( slot->key.data, slot->key.bytes);
975
976 mbedtls_free( slot->key.data );
977 slot->key.data = NULL;
978 slot->key.bytes = 0;
979
980 return( PSA_SUCCESS );
981 }
982
983 /** Completely wipe a slot in memory, including its policy.
984 * Persistent storage is not affected. */
psa_wipe_key_slot(psa_key_slot_t * slot)985 psa_status_t psa_wipe_key_slot( psa_key_slot_t *slot )
986 {
987 psa_status_t status = psa_remove_key_data_from_memory( slot );
988
989 /*
990 * As the return error code may not be handled in case of multiple errors,
991 * do our best to report an unexpected lock counter. Assert with
992 * MBEDTLS_TEST_HOOK_TEST_ASSERT that the lock counter is equal to one:
993 * if the MBEDTLS_TEST_HOOKS configuration option is enabled and the
994 * function is called as part of the execution of a test suite, the
995 * execution of the test suite is stopped in error if the assertion fails.
996 */
997 if( slot->lock_count != 1 )
998 {
999 MBEDTLS_TEST_HOOK_TEST_ASSERT( slot->lock_count == 1 );
1000 status = PSA_ERROR_CORRUPTION_DETECTED;
1001 }
1002
1003 /* Multipart operations may still be using the key. This is safe
1004 * because all multipart operation objects are independent from
1005 * the key slot: if they need to access the key after the setup
1006 * phase, they have a copy of the key. Note that this means that
1007 * key material can linger until all operations are completed. */
1008 /* At this point, key material and other type-specific content has
1009 * been wiped. Clear remaining metadata. We can call memset and not
1010 * zeroize because the metadata is not particularly sensitive. */
1011 memset( slot, 0, sizeof( *slot ) );
1012 return( status );
1013 }
1014
psa_destroy_key(mbedtls_svc_key_id_t key)1015 psa_status_t psa_destroy_key( mbedtls_svc_key_id_t key )
1016 {
1017 psa_key_slot_t *slot;
1018 psa_status_t status; /* status of the last operation */
1019 psa_status_t overall_status = PSA_SUCCESS;
1020 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1021 psa_se_drv_table_entry_t *driver;
1022 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1023
1024 if( mbedtls_svc_key_id_is_null( key ) )
1025 return( PSA_SUCCESS );
1026
1027 /*
1028 * Get the description of the key in a key slot. In case of a persistent
1029 * key, this will load the key description from persistent memory if not
1030 * done yet. We cannot avoid this loading as without it we don't know if
1031 * the key is operated by an SE or not and this information is needed by
1032 * the current implementation.
1033 */
1034 status = psa_get_and_lock_key_slot( key, &slot );
1035 if( status != PSA_SUCCESS )
1036 return( status );
1037
1038 /*
1039 * If the key slot containing the key description is under access by the
1040 * library (apart from the present access), the key cannot be destroyed
1041 * yet. For the time being, just return in error. Eventually (to be
1042 * implemented), the key should be destroyed when all accesses have
1043 * stopped.
1044 */
1045 if( slot->lock_count > 1 )
1046 {
1047 psa_unlock_key_slot( slot );
1048 return( PSA_ERROR_GENERIC_ERROR );
1049 }
1050
1051 if( PSA_KEY_LIFETIME_IS_READ_ONLY( slot->attr.lifetime ) )
1052 {
1053 /* Refuse the destruction of a read-only key (which may or may not work
1054 * if we attempt it, depending on whether the key is merely read-only
1055 * by policy or actually physically read-only).
1056 * Just do the best we can, which is to wipe the copy in memory
1057 * (done in this function's cleanup code). */
1058 overall_status = PSA_ERROR_NOT_PERMITTED;
1059 goto exit;
1060 }
1061
1062 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1063 driver = psa_get_se_driver_entry( slot->attr.lifetime );
1064 if( driver != NULL )
1065 {
1066 /* For a key in a secure element, we need to do three things:
1067 * remove the key file in internal storage, destroy the
1068 * key inside the secure element, and update the driver's
1069 * persistent data. Start a transaction that will encompass these
1070 * three actions. */
1071 psa_crypto_prepare_transaction( PSA_CRYPTO_TRANSACTION_DESTROY_KEY );
1072 psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
1073 psa_crypto_transaction.key.slot = psa_key_slot_get_slot_number( slot );
1074 psa_crypto_transaction.key.id = slot->attr.id;
1075 status = psa_crypto_save_transaction( );
1076 if( status != PSA_SUCCESS )
1077 {
1078 (void) psa_crypto_stop_transaction( );
1079 /* We should still try to destroy the key in the secure
1080 * element and the key metadata in storage. This is especially
1081 * important if the error is that the storage is full.
1082 * But how to do it exactly without risking an inconsistent
1083 * state after a reset?
1084 * https://github.com/ARMmbed/mbed-crypto/issues/215
1085 */
1086 overall_status = status;
1087 goto exit;
1088 }
1089
1090 status = psa_destroy_se_key( driver,
1091 psa_key_slot_get_slot_number( slot ) );
1092 if( overall_status == PSA_SUCCESS )
1093 overall_status = status;
1094 }
1095 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1096
1097 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
1098 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1099 {
1100 status = psa_destroy_persistent_key( slot->attr.id );
1101 if( overall_status == PSA_SUCCESS )
1102 overall_status = status;
1103
1104 /* TODO: other slots may have a copy of the same key. We should
1105 * invalidate them.
1106 * https://github.com/ARMmbed/mbed-crypto/issues/214
1107 */
1108 }
1109 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
1110
1111 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1112 if( driver != NULL )
1113 {
1114 status = psa_save_se_persistent_data( driver );
1115 if( overall_status == PSA_SUCCESS )
1116 overall_status = status;
1117 status = psa_crypto_stop_transaction( );
1118 if( overall_status == PSA_SUCCESS )
1119 overall_status = status;
1120 }
1121 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1122
1123 exit:
1124 status = psa_wipe_key_slot( slot );
1125 /* Prioritize CORRUPTION_DETECTED from wiping over a storage error */
1126 if( status != PSA_SUCCESS )
1127 overall_status = status;
1128 return( overall_status );
1129 }
1130
1131 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1132 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
psa_get_rsa_public_exponent(const mbedtls_rsa_context * rsa,psa_key_attributes_t * attributes)1133 static psa_status_t psa_get_rsa_public_exponent(
1134 const mbedtls_rsa_context *rsa,
1135 psa_key_attributes_t *attributes )
1136 {
1137 mbedtls_mpi mpi;
1138 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1139 uint8_t *buffer = NULL;
1140 size_t buflen;
1141 mbedtls_mpi_init( &mpi );
1142
1143 ret = mbedtls_rsa_export( rsa, NULL, NULL, NULL, NULL, &mpi );
1144 if( ret != 0 )
1145 goto exit;
1146 if( mbedtls_mpi_cmp_int( &mpi, 65537 ) == 0 )
1147 {
1148 /* It's the default value, which is reported as an empty string,
1149 * so there's nothing to do. */
1150 goto exit;
1151 }
1152
1153 buflen = mbedtls_mpi_size( &mpi );
1154 buffer = mbedtls_calloc( 1, buflen );
1155 if( buffer == NULL )
1156 {
1157 ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
1158 goto exit;
1159 }
1160 ret = mbedtls_mpi_write_binary( &mpi, buffer, buflen );
1161 if( ret != 0 )
1162 goto exit;
1163 attributes->domain_parameters = buffer;
1164 attributes->domain_parameters_size = buflen;
1165
1166 exit:
1167 mbedtls_mpi_free( &mpi );
1168 if( ret != 0 )
1169 mbedtls_free( buffer );
1170 return( mbedtls_to_psa_error( ret ) );
1171 }
1172 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1173 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1174
1175 /** Retrieve all the publicly-accessible attributes of a key.
1176 */
psa_get_key_attributes(mbedtls_svc_key_id_t key,psa_key_attributes_t * attributes)1177 psa_status_t psa_get_key_attributes( mbedtls_svc_key_id_t key,
1178 psa_key_attributes_t *attributes )
1179 {
1180 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1181 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1182 psa_key_slot_t *slot;
1183
1184 psa_reset_key_attributes( attributes );
1185
1186 status = psa_get_and_lock_key_slot_with_policy( key, &slot, 0, 0 );
1187 if( status != PSA_SUCCESS )
1188 return( status );
1189
1190 attributes->core = slot->attr;
1191 attributes->core.flags &= ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY |
1192 MBEDTLS_PSA_KA_MASK_DUAL_USE );
1193
1194 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1195 if( psa_get_se_driver_entry( slot->attr.lifetime ) != NULL )
1196 psa_set_key_slot_number( attributes,
1197 psa_key_slot_get_slot_number( slot ) );
1198 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1199
1200 switch( slot->attr.type )
1201 {
1202 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1203 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1204 case PSA_KEY_TYPE_RSA_KEY_PAIR:
1205 case PSA_KEY_TYPE_RSA_PUBLIC_KEY:
1206 /* TODO: reporting the public exponent for opaque keys
1207 * is not yet implemented.
1208 * https://github.com/ARMmbed/mbed-crypto/issues/216
1209 */
1210 if( ! psa_key_lifetime_is_external( slot->attr.lifetime ) )
1211 {
1212 mbedtls_rsa_context *rsa = NULL;
1213
1214 status = mbedtls_psa_rsa_load_representation(
1215 slot->attr.type,
1216 slot->key.data,
1217 slot->key.bytes,
1218 &rsa );
1219 if( status != PSA_SUCCESS )
1220 break;
1221
1222 status = psa_get_rsa_public_exponent( rsa,
1223 attributes );
1224 mbedtls_rsa_free( rsa );
1225 mbedtls_free( rsa );
1226 }
1227 break;
1228 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1229 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1230 default:
1231 /* Nothing else to do. */
1232 break;
1233 }
1234
1235 if( status != PSA_SUCCESS )
1236 psa_reset_key_attributes( attributes );
1237
1238 unlock_status = psa_unlock_key_slot( slot );
1239
1240 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1241 }
1242
1243 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
psa_get_key_slot_number(const psa_key_attributes_t * attributes,psa_key_slot_number_t * slot_number)1244 psa_status_t psa_get_key_slot_number(
1245 const psa_key_attributes_t *attributes,
1246 psa_key_slot_number_t *slot_number )
1247 {
1248 if( attributes->core.flags & MBEDTLS_PSA_KA_FLAG_HAS_SLOT_NUMBER )
1249 {
1250 *slot_number = attributes->slot_number;
1251 return( PSA_SUCCESS );
1252 }
1253 else
1254 return( PSA_ERROR_INVALID_ARGUMENT );
1255 }
1256 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1257
psa_export_key_buffer_internal(const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1258 static psa_status_t psa_export_key_buffer_internal( const uint8_t *key_buffer,
1259 size_t key_buffer_size,
1260 uint8_t *data,
1261 size_t data_size,
1262 size_t *data_length )
1263 {
1264 if( key_buffer_size > data_size )
1265 return( PSA_ERROR_BUFFER_TOO_SMALL );
1266 memcpy( data, key_buffer, key_buffer_size );
1267 memset( data + key_buffer_size, 0,
1268 data_size - key_buffer_size );
1269 *data_length = key_buffer_size;
1270 return( PSA_SUCCESS );
1271 }
1272
psa_export_key_internal(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1273 psa_status_t psa_export_key_internal(
1274 const psa_key_attributes_t *attributes,
1275 const uint8_t *key_buffer, size_t key_buffer_size,
1276 uint8_t *data, size_t data_size, size_t *data_length )
1277 {
1278 psa_key_type_t type = attributes->core.type;
1279
1280 if( key_type_is_raw_bytes( type ) ||
1281 PSA_KEY_TYPE_IS_RSA( type ) ||
1282 PSA_KEY_TYPE_IS_ECC( type ) )
1283 {
1284 return( psa_export_key_buffer_internal(
1285 key_buffer, key_buffer_size,
1286 data, data_size, data_length ) );
1287 }
1288 else
1289 {
1290 /* This shouldn't happen in the reference implementation, but
1291 it is valid for a special-purpose implementation to omit
1292 support for exporting certain key types. */
1293 return( PSA_ERROR_NOT_SUPPORTED );
1294 }
1295 }
1296
psa_export_key(mbedtls_svc_key_id_t key,uint8_t * data,size_t data_size,size_t * data_length)1297 psa_status_t psa_export_key( mbedtls_svc_key_id_t key,
1298 uint8_t *data,
1299 size_t data_size,
1300 size_t *data_length )
1301 {
1302 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1303 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1304 psa_key_slot_t *slot;
1305
1306 /* Reject a zero-length output buffer now, since this can never be a
1307 * valid key representation. This way we know that data must be a valid
1308 * pointer and we can do things like memset(data, ..., data_size). */
1309 if( data_size == 0 )
1310 return( PSA_ERROR_BUFFER_TOO_SMALL );
1311
1312 /* Set the key to empty now, so that even when there are errors, we always
1313 * set data_length to a value between 0 and data_size. On error, setting
1314 * the key to empty is a good choice because an empty key representation is
1315 * unlikely to be accepted anywhere. */
1316 *data_length = 0;
1317
1318 /* Export requires the EXPORT flag. There is an exception for public keys,
1319 * which don't require any flag, but
1320 * psa_get_and_lock_key_slot_with_policy() takes care of this.
1321 */
1322 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
1323 PSA_KEY_USAGE_EXPORT, 0 );
1324 if( status != PSA_SUCCESS )
1325 return( status );
1326
1327 psa_key_attributes_t attributes = {
1328 .core = slot->attr
1329 };
1330 status = psa_driver_wrapper_export_key( &attributes,
1331 slot->key.data, slot->key.bytes,
1332 data, data_size, data_length );
1333
1334 unlock_status = psa_unlock_key_slot( slot );
1335
1336 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1337 }
1338
psa_export_public_key_internal(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1339 psa_status_t psa_export_public_key_internal(
1340 const psa_key_attributes_t *attributes,
1341 const uint8_t *key_buffer,
1342 size_t key_buffer_size,
1343 uint8_t *data,
1344 size_t data_size,
1345 size_t *data_length )
1346 {
1347 psa_key_type_t type = attributes->core.type;
1348
1349 if( PSA_KEY_TYPE_IS_RSA( type ) || PSA_KEY_TYPE_IS_ECC( type ) )
1350 {
1351 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
1352 {
1353 /* Exporting public -> public */
1354 return( psa_export_key_buffer_internal(
1355 key_buffer, key_buffer_size,
1356 data, data_size, data_length ) );
1357 }
1358
1359 if( PSA_KEY_TYPE_IS_RSA( type ) )
1360 {
1361 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1362 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1363 return( mbedtls_psa_rsa_export_public_key( attributes,
1364 key_buffer,
1365 key_buffer_size,
1366 data,
1367 data_size,
1368 data_length ) );
1369 #else
1370 /* We don't know how to convert a private RSA key to public. */
1371 return( PSA_ERROR_NOT_SUPPORTED );
1372 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1373 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1374 }
1375 else
1376 {
1377 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
1378 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
1379 return( mbedtls_psa_ecp_export_public_key( attributes,
1380 key_buffer,
1381 key_buffer_size,
1382 data,
1383 data_size,
1384 data_length ) );
1385 #else
1386 /* We don't know how to convert a private ECC key to public */
1387 return( PSA_ERROR_NOT_SUPPORTED );
1388 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
1389 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
1390 }
1391 }
1392 else
1393 {
1394 /* This shouldn't happen in the reference implementation, but
1395 it is valid for a special-purpose implementation to omit
1396 support for exporting certain key types. */
1397 return( PSA_ERROR_NOT_SUPPORTED );
1398 }
1399 }
1400
psa_export_public_key(mbedtls_svc_key_id_t key,uint8_t * data,size_t data_size,size_t * data_length)1401 psa_status_t psa_export_public_key( mbedtls_svc_key_id_t key,
1402 uint8_t *data,
1403 size_t data_size,
1404 size_t *data_length )
1405 {
1406 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1407 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1408 psa_key_slot_t *slot;
1409
1410 /* Reject a zero-length output buffer now, since this can never be a
1411 * valid key representation. This way we know that data must be a valid
1412 * pointer and we can do things like memset(data, ..., data_size). */
1413 if( data_size == 0 )
1414 return( PSA_ERROR_BUFFER_TOO_SMALL );
1415
1416 /* Set the key to empty now, so that even when there are errors, we always
1417 * set data_length to a value between 0 and data_size. On error, setting
1418 * the key to empty is a good choice because an empty key representation is
1419 * unlikely to be accepted anywhere. */
1420 *data_length = 0;
1421
1422 /* Exporting a public key doesn't require a usage flag. */
1423 status = psa_get_and_lock_key_slot_with_policy( key, &slot, 0, 0 );
1424 if( status != PSA_SUCCESS )
1425 return( status );
1426
1427 if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( slot->attr.type ) )
1428 {
1429 status = PSA_ERROR_INVALID_ARGUMENT;
1430 goto exit;
1431 }
1432
1433 psa_key_attributes_t attributes = {
1434 .core = slot->attr
1435 };
1436 status = psa_driver_wrapper_export_public_key(
1437 &attributes, slot->key.data, slot->key.bytes,
1438 data, data_size, data_length );
1439
1440 exit:
1441 unlock_status = psa_unlock_key_slot( slot );
1442
1443 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1444 }
1445
1446 #if defined(static_assert)
1447 static_assert( ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_DUAL_USE ) == 0,
1448 "One or more key attribute flag is listed as both external-only and dual-use" );
1449 static_assert( ( PSA_KA_MASK_INTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_DUAL_USE ) == 0,
1450 "One or more key attribute flag is listed as both internal-only and dual-use" );
1451 static_assert( ( PSA_KA_MASK_INTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY ) == 0,
1452 "One or more key attribute flag is listed as both internal-only and external-only" );
1453 #endif
1454
1455 /** Validate that a key policy is internally well-formed.
1456 *
1457 * This function only rejects invalid policies. It does not validate the
1458 * consistency of the policy with respect to other attributes of the key
1459 * such as the key type.
1460 */
psa_validate_key_policy(const psa_key_policy_t * policy)1461 static psa_status_t psa_validate_key_policy( const psa_key_policy_t *policy )
1462 {
1463 if( ( policy->usage & ~( PSA_KEY_USAGE_EXPORT |
1464 PSA_KEY_USAGE_COPY |
1465 PSA_KEY_USAGE_ENCRYPT |
1466 PSA_KEY_USAGE_DECRYPT |
1467 PSA_KEY_USAGE_SIGN_MESSAGE |
1468 PSA_KEY_USAGE_VERIFY_MESSAGE |
1469 PSA_KEY_USAGE_SIGN_HASH |
1470 PSA_KEY_USAGE_VERIFY_HASH |
1471 PSA_KEY_USAGE_VERIFY_DERIVATION |
1472 PSA_KEY_USAGE_DERIVE ) ) != 0 )
1473 return( PSA_ERROR_INVALID_ARGUMENT );
1474
1475 return( PSA_SUCCESS );
1476 }
1477
1478 /** Validate the internal consistency of key attributes.
1479 *
1480 * This function only rejects invalid attribute values. If does not
1481 * validate the consistency of the attributes with any key data that may
1482 * be involved in the creation of the key.
1483 *
1484 * Call this function early in the key creation process.
1485 *
1486 * \param[in] attributes Key attributes for the new key.
1487 * \param[out] p_drv On any return, the driver for the key, if any.
1488 * NULL for a transparent key.
1489 *
1490 */
psa_validate_key_attributes(const psa_key_attributes_t * attributes,psa_se_drv_table_entry_t ** p_drv)1491 static psa_status_t psa_validate_key_attributes(
1492 const psa_key_attributes_t *attributes,
1493 psa_se_drv_table_entry_t **p_drv )
1494 {
1495 psa_status_t status = PSA_ERROR_INVALID_ARGUMENT;
1496 psa_key_lifetime_t lifetime = psa_get_key_lifetime( attributes );
1497 mbedtls_svc_key_id_t key = psa_get_key_id( attributes );
1498
1499 status = psa_validate_key_location( lifetime, p_drv );
1500 if( status != PSA_SUCCESS )
1501 return( status );
1502
1503 status = psa_validate_key_persistence( lifetime );
1504 if( status != PSA_SUCCESS )
1505 return( status );
1506
1507 if ( PSA_KEY_LIFETIME_IS_VOLATILE( lifetime ) )
1508 {
1509 if( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( key ) != 0 )
1510 return( PSA_ERROR_INVALID_ARGUMENT );
1511 }
1512 else
1513 {
1514 if( !psa_is_valid_key_id( psa_get_key_id( attributes ), 0 ) )
1515 return( PSA_ERROR_INVALID_ARGUMENT );
1516 }
1517
1518 status = psa_validate_key_policy( &attributes->core.policy );
1519 if( status != PSA_SUCCESS )
1520 return( status );
1521
1522 /* Refuse to create overly large keys.
1523 * Note that this doesn't trigger on import if the attributes don't
1524 * explicitly specify a size (so psa_get_key_bits returns 0), so
1525 * psa_import_key() needs its own checks. */
1526 if( psa_get_key_bits( attributes ) > PSA_MAX_KEY_BITS )
1527 return( PSA_ERROR_NOT_SUPPORTED );
1528
1529 /* Reject invalid flags. These should not be reachable through the API. */
1530 if( attributes->core.flags & ~ ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY |
1531 MBEDTLS_PSA_KA_MASK_DUAL_USE ) )
1532 return( PSA_ERROR_INVALID_ARGUMENT );
1533
1534 return( PSA_SUCCESS );
1535 }
1536
1537 /** Prepare a key slot to receive key material.
1538 *
1539 * This function allocates a key slot and sets its metadata.
1540 *
1541 * If this function fails, call psa_fail_key_creation().
1542 *
1543 * This function is intended to be used as follows:
1544 * -# Call psa_start_key_creation() to allocate a key slot, prepare
1545 * it with the specified attributes, and in case of a volatile key assign it
1546 * a volatile key identifier.
1547 * -# Populate the slot with the key material.
1548 * -# Call psa_finish_key_creation() to finalize the creation of the slot.
1549 * In case of failure at any step, stop the sequence and call
1550 * psa_fail_key_creation().
1551 *
1552 * On success, the key slot is locked. It is the responsibility of the caller
1553 * to unlock the key slot when it does not access it anymore.
1554 *
1555 * \param method An identification of the calling function.
1556 * \param[in] attributes Key attributes for the new key.
1557 * \param[out] p_slot On success, a pointer to the prepared slot.
1558 * \param[out] p_drv On any return, the driver for the key, if any.
1559 * NULL for a transparent key.
1560 *
1561 * \retval #PSA_SUCCESS
1562 * The key slot is ready to receive key material.
1563 * \return If this function fails, the key slot is an invalid state.
1564 * You must call psa_fail_key_creation() to wipe and free the slot.
1565 */
psa_start_key_creation(psa_key_creation_method_t method,const psa_key_attributes_t * attributes,psa_key_slot_t ** p_slot,psa_se_drv_table_entry_t ** p_drv)1566 static psa_status_t psa_start_key_creation(
1567 psa_key_creation_method_t method,
1568 const psa_key_attributes_t *attributes,
1569 psa_key_slot_t **p_slot,
1570 psa_se_drv_table_entry_t **p_drv )
1571 {
1572 psa_status_t status;
1573 psa_key_id_t volatile_key_id;
1574 psa_key_slot_t *slot;
1575
1576 (void) method;
1577 *p_drv = NULL;
1578
1579 status = psa_validate_key_attributes( attributes, p_drv );
1580 if( status != PSA_SUCCESS )
1581 return( status );
1582
1583 status = psa_get_empty_key_slot( &volatile_key_id, p_slot );
1584 if( status != PSA_SUCCESS )
1585 return( status );
1586 slot = *p_slot;
1587
1588 /* We're storing the declared bit-size of the key. It's up to each
1589 * creation mechanism to verify that this information is correct.
1590 * It's automatically correct for mechanisms that use the bit-size as
1591 * an input (generate, device) but not for those where the bit-size
1592 * is optional (import, copy). In case of a volatile key, assign it the
1593 * volatile key identifier associated to the slot returned to contain its
1594 * definition. */
1595
1596 slot->attr = attributes->core;
1597 if( PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1598 {
1599 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1600 slot->attr.id = volatile_key_id;
1601 #else
1602 slot->attr.id.key_id = volatile_key_id;
1603 #endif
1604 }
1605
1606 /* Erase external-only flags from the internal copy. To access
1607 * external-only flags, query `attributes`. Thanks to the check
1608 * in psa_validate_key_attributes(), this leaves the dual-use
1609 * flags and any internal flag that psa_get_empty_key_slot()
1610 * may have set. */
1611 slot->attr.flags &= ~MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY;
1612
1613 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1614 /* For a key in a secure element, we need to do three things
1615 * when creating or registering a persistent key:
1616 * create the key file in internal storage, create the
1617 * key inside the secure element, and update the driver's
1618 * persistent data. This is done by starting a transaction that will
1619 * encompass these three actions.
1620 * For registering a volatile key, we just need to find an appropriate
1621 * slot number inside the SE. Since the key is designated volatile, creating
1622 * a transaction is not required. */
1623 /* The first thing to do is to find a slot number for the new key.
1624 * We save the slot number in persistent storage as part of the
1625 * transaction data. It will be needed to recover if the power
1626 * fails during the key creation process, to clean up on the secure
1627 * element side after restarting. Obtaining a slot number from the
1628 * secure element driver updates its persistent state, but we do not yet
1629 * save the driver's persistent state, so that if the power fails,
1630 * we can roll back to a state where the key doesn't exist. */
1631 if( *p_drv != NULL )
1632 {
1633 psa_key_slot_number_t slot_number;
1634 status = psa_find_se_slot_for_key( attributes, method, *p_drv,
1635 &slot_number );
1636 if( status != PSA_SUCCESS )
1637 return( status );
1638
1639 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( attributes->core.lifetime ) )
1640 {
1641 psa_crypto_prepare_transaction( PSA_CRYPTO_TRANSACTION_CREATE_KEY );
1642 psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
1643 psa_crypto_transaction.key.slot = slot_number;
1644 psa_crypto_transaction.key.id = slot->attr.id;
1645 status = psa_crypto_save_transaction( );
1646 if( status != PSA_SUCCESS )
1647 {
1648 (void) psa_crypto_stop_transaction( );
1649 return( status );
1650 }
1651 }
1652
1653 status = psa_copy_key_material_into_slot(
1654 slot, (uint8_t *)( &slot_number ), sizeof( slot_number ) );
1655 }
1656
1657 if( *p_drv == NULL && method == PSA_KEY_CREATION_REGISTER )
1658 {
1659 /* Key registration only makes sense with a secure element. */
1660 return( PSA_ERROR_INVALID_ARGUMENT );
1661 }
1662 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1663
1664 return( PSA_SUCCESS );
1665 }
1666
1667 /** Finalize the creation of a key once its key material has been set.
1668 *
1669 * This entails writing the key to persistent storage.
1670 *
1671 * If this function fails, call psa_fail_key_creation().
1672 * See the documentation of psa_start_key_creation() for the intended use
1673 * of this function.
1674 *
1675 * If the finalization succeeds, the function unlocks the key slot (it was
1676 * locked by psa_start_key_creation()) and the key slot cannot be accessed
1677 * anymore as part of the key creation process.
1678 *
1679 * \param[in,out] slot Pointer to the slot with key material.
1680 * \param[in] driver The secure element driver for the key,
1681 * or NULL for a transparent key.
1682 * \param[out] key On success, identifier of the key. Note that the
1683 * key identifier is also stored in the key slot.
1684 *
1685 * \retval #PSA_SUCCESS
1686 * The key was successfully created.
1687 * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
1688 * \retval #PSA_ERROR_INSUFFICIENT_STORAGE
1689 * \retval #PSA_ERROR_ALREADY_EXISTS
1690 * \retval #PSA_ERROR_DATA_INVALID
1691 * \retval #PSA_ERROR_DATA_CORRUPT
1692 * \retval #PSA_ERROR_STORAGE_FAILURE
1693 *
1694 * \return If this function fails, the key slot is an invalid state.
1695 * You must call psa_fail_key_creation() to wipe and free the slot.
1696 */
psa_finish_key_creation(psa_key_slot_t * slot,psa_se_drv_table_entry_t * driver,mbedtls_svc_key_id_t * key)1697 static psa_status_t psa_finish_key_creation(
1698 psa_key_slot_t *slot,
1699 psa_se_drv_table_entry_t *driver,
1700 mbedtls_svc_key_id_t *key)
1701 {
1702 psa_status_t status = PSA_SUCCESS;
1703 (void) slot;
1704 (void) driver;
1705
1706 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
1707 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1708 {
1709 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1710 if( driver != NULL )
1711 {
1712 psa_se_key_data_storage_t data;
1713 psa_key_slot_number_t slot_number =
1714 psa_key_slot_get_slot_number( slot ) ;
1715
1716 #if defined(static_assert)
1717 static_assert( sizeof( slot_number ) ==
1718 sizeof( data.slot_number ),
1719 "Slot number size does not match psa_se_key_data_storage_t" );
1720 #endif
1721 memcpy( &data.slot_number, &slot_number, sizeof( slot_number ) );
1722 status = psa_save_persistent_key( &slot->attr,
1723 (uint8_t*) &data,
1724 sizeof( data ) );
1725 }
1726 else
1727 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1728 {
1729 /* Key material is saved in export representation in the slot, so
1730 * just pass the slot buffer for storage. */
1731 status = psa_save_persistent_key( &slot->attr,
1732 slot->key.data,
1733 slot->key.bytes );
1734 }
1735 }
1736 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
1737
1738 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1739 /* Finish the transaction for a key creation. This does not
1740 * happen when registering an existing key. Detect this case
1741 * by checking whether a transaction is in progress (actual
1742 * creation of a persistent key in a secure element requires a transaction,
1743 * but registration or volatile key creation doesn't use one). */
1744 if( driver != NULL &&
1745 psa_crypto_transaction.unknown.type == PSA_CRYPTO_TRANSACTION_CREATE_KEY )
1746 {
1747 status = psa_save_se_persistent_data( driver );
1748 if( status != PSA_SUCCESS )
1749 {
1750 psa_destroy_persistent_key( slot->attr.id );
1751 return( status );
1752 }
1753 status = psa_crypto_stop_transaction( );
1754 }
1755 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1756
1757 if( status == PSA_SUCCESS )
1758 {
1759 *key = slot->attr.id;
1760 status = psa_unlock_key_slot( slot );
1761 if( status != PSA_SUCCESS )
1762 *key = MBEDTLS_SVC_KEY_ID_INIT;
1763 }
1764
1765 return( status );
1766 }
1767
1768 /** Abort the creation of a key.
1769 *
1770 * You may call this function after calling psa_start_key_creation(),
1771 * or after psa_finish_key_creation() fails. In other circumstances, this
1772 * function may not clean up persistent storage.
1773 * See the documentation of psa_start_key_creation() for the intended use
1774 * of this function.
1775 *
1776 * \param[in,out] slot Pointer to the slot with key material.
1777 * \param[in] driver The secure element driver for the key,
1778 * or NULL for a transparent key.
1779 */
psa_fail_key_creation(psa_key_slot_t * slot,psa_se_drv_table_entry_t * driver)1780 static void psa_fail_key_creation( psa_key_slot_t *slot,
1781 psa_se_drv_table_entry_t *driver )
1782 {
1783 (void) driver;
1784
1785 if( slot == NULL )
1786 return;
1787
1788 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1789 /* TODO: If the key has already been created in the secure
1790 * element, and the failure happened later (when saving metadata
1791 * to internal storage), we need to destroy the key in the secure
1792 * element.
1793 * https://github.com/ARMmbed/mbed-crypto/issues/217
1794 */
1795
1796 /* Abort the ongoing transaction if any (there may not be one if
1797 * the creation process failed before starting one, or if the
1798 * key creation is a registration of a key in a secure element).
1799 * Earlier functions must already have done what it takes to undo any
1800 * partial creation. All that's left is to update the transaction data
1801 * itself. */
1802 (void) psa_crypto_stop_transaction( );
1803 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1804
1805 psa_wipe_key_slot( slot );
1806 }
1807
1808 /** Validate optional attributes during key creation.
1809 *
1810 * Some key attributes are optional during key creation. If they are
1811 * specified in the attributes structure, check that they are consistent
1812 * with the data in the slot.
1813 *
1814 * This function should be called near the end of key creation, after
1815 * the slot in memory is fully populated but before saving persistent data.
1816 */
psa_validate_optional_attributes(const psa_key_slot_t * slot,const psa_key_attributes_t * attributes)1817 static psa_status_t psa_validate_optional_attributes(
1818 const psa_key_slot_t *slot,
1819 const psa_key_attributes_t *attributes )
1820 {
1821 if( attributes->core.type != 0 )
1822 {
1823 if( attributes->core.type != slot->attr.type )
1824 return( PSA_ERROR_INVALID_ARGUMENT );
1825 }
1826
1827 if( attributes->domain_parameters_size != 0 )
1828 {
1829 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1830 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1831 if( PSA_KEY_TYPE_IS_RSA( slot->attr.type ) )
1832 {
1833 mbedtls_rsa_context *rsa = NULL;
1834 mbedtls_mpi actual, required;
1835 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1836
1837 psa_status_t status = mbedtls_psa_rsa_load_representation(
1838 slot->attr.type,
1839 slot->key.data,
1840 slot->key.bytes,
1841 &rsa );
1842 if( status != PSA_SUCCESS )
1843 return( status );
1844
1845 mbedtls_mpi_init( &actual );
1846 mbedtls_mpi_init( &required );
1847 ret = mbedtls_rsa_export( rsa,
1848 NULL, NULL, NULL, NULL, &actual );
1849 mbedtls_rsa_free( rsa );
1850 mbedtls_free( rsa );
1851 if( ret != 0 )
1852 goto rsa_exit;
1853 ret = mbedtls_mpi_read_binary( &required,
1854 attributes->domain_parameters,
1855 attributes->domain_parameters_size );
1856 if( ret != 0 )
1857 goto rsa_exit;
1858 if( mbedtls_mpi_cmp_mpi( &actual, &required ) != 0 )
1859 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1860 rsa_exit:
1861 mbedtls_mpi_free( &actual );
1862 mbedtls_mpi_free( &required );
1863 if( ret != 0)
1864 return( mbedtls_to_psa_error( ret ) );
1865 }
1866 else
1867 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1868 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1869 {
1870 return( PSA_ERROR_INVALID_ARGUMENT );
1871 }
1872 }
1873
1874 if( attributes->core.bits != 0 )
1875 {
1876 if( attributes->core.bits != slot->attr.bits )
1877 return( PSA_ERROR_INVALID_ARGUMENT );
1878 }
1879
1880 return( PSA_SUCCESS );
1881 }
1882
psa_import_key(const psa_key_attributes_t * attributes,const uint8_t * data,size_t data_length,mbedtls_svc_key_id_t * key)1883 psa_status_t psa_import_key( const psa_key_attributes_t *attributes,
1884 const uint8_t *data,
1885 size_t data_length,
1886 mbedtls_svc_key_id_t *key )
1887 {
1888 psa_status_t status;
1889 psa_key_slot_t *slot = NULL;
1890 psa_se_drv_table_entry_t *driver = NULL;
1891 size_t bits;
1892 size_t storage_size = data_length;
1893
1894 *key = MBEDTLS_SVC_KEY_ID_INIT;
1895
1896 /* Reject zero-length symmetric keys (including raw data key objects).
1897 * This also rejects any key which might be encoded as an empty string,
1898 * which is never valid. */
1899 if( data_length == 0 )
1900 return( PSA_ERROR_INVALID_ARGUMENT );
1901
1902 /* Ensure that the bytes-to-bits conversion cannot overflow. */
1903 if( data_length > SIZE_MAX / 8 )
1904 return( PSA_ERROR_NOT_SUPPORTED );
1905
1906 status = psa_start_key_creation( PSA_KEY_CREATION_IMPORT, attributes,
1907 &slot, &driver );
1908 if( status != PSA_SUCCESS )
1909 goto exit;
1910
1911 /* In the case of a transparent key or an opaque key stored in local
1912 * storage ( thus not in the case of importing a key in a secure element
1913 * with storage ( MBEDTLS_PSA_CRYPTO_SE_C ) ),we have to allocate a
1914 * buffer to hold the imported key material. */
1915 if( slot->key.data == NULL )
1916 {
1917 if( psa_key_lifetime_is_external( attributes->core.lifetime ) )
1918 {
1919 status = psa_driver_wrapper_get_key_buffer_size_from_key_data(
1920 attributes, data, data_length, &storage_size );
1921 if( status != PSA_SUCCESS )
1922 goto exit;
1923 }
1924 status = psa_allocate_buffer_to_slot( slot, storage_size );
1925 if( status != PSA_SUCCESS )
1926 goto exit;
1927 }
1928
1929 bits = slot->attr.bits;
1930 status = psa_driver_wrapper_import_key( attributes,
1931 data, data_length,
1932 slot->key.data,
1933 slot->key.bytes,
1934 &slot->key.bytes, &bits );
1935 if( status != PSA_SUCCESS )
1936 goto exit;
1937
1938 if( slot->attr.bits == 0 )
1939 slot->attr.bits = (psa_key_bits_t) bits;
1940 else if( bits != slot->attr.bits )
1941 {
1942 status = PSA_ERROR_INVALID_ARGUMENT;
1943 goto exit;
1944 }
1945
1946 /* Enforce a size limit, and in particular ensure that the bit
1947 * size fits in its representation type.*/
1948 if( bits > PSA_MAX_KEY_BITS )
1949 {
1950 status = PSA_ERROR_NOT_SUPPORTED;
1951 goto exit;
1952 }
1953 status = psa_validate_optional_attributes( slot, attributes );
1954 if( status != PSA_SUCCESS )
1955 goto exit;
1956
1957 status = psa_finish_key_creation( slot, driver, key );
1958 exit:
1959 if( status != PSA_SUCCESS )
1960 psa_fail_key_creation( slot, driver );
1961
1962 return( status );
1963 }
1964
1965 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
mbedtls_psa_register_se_key(const psa_key_attributes_t * attributes)1966 psa_status_t mbedtls_psa_register_se_key(
1967 const psa_key_attributes_t *attributes )
1968 {
1969 psa_status_t status;
1970 psa_key_slot_t *slot = NULL;
1971 psa_se_drv_table_entry_t *driver = NULL;
1972 mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
1973
1974 /* Leaving attributes unspecified is not currently supported.
1975 * It could make sense to query the key type and size from the
1976 * secure element, but not all secure elements support this
1977 * and the driver HAL doesn't currently support it. */
1978 if( psa_get_key_type( attributes ) == PSA_KEY_TYPE_NONE )
1979 return( PSA_ERROR_NOT_SUPPORTED );
1980 if( psa_get_key_bits( attributes ) == 0 )
1981 return( PSA_ERROR_NOT_SUPPORTED );
1982
1983 status = psa_start_key_creation( PSA_KEY_CREATION_REGISTER, attributes,
1984 &slot, &driver );
1985 if( status != PSA_SUCCESS )
1986 goto exit;
1987
1988 status = psa_finish_key_creation( slot, driver, &key );
1989
1990 exit:
1991 if( status != PSA_SUCCESS )
1992 psa_fail_key_creation( slot, driver );
1993
1994 /* Registration doesn't keep the key in RAM. */
1995 psa_close_key( key );
1996 return( status );
1997 }
1998 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1999
psa_copy_key(mbedtls_svc_key_id_t source_key,const psa_key_attributes_t * specified_attributes,mbedtls_svc_key_id_t * target_key)2000 psa_status_t psa_copy_key( mbedtls_svc_key_id_t source_key,
2001 const psa_key_attributes_t *specified_attributes,
2002 mbedtls_svc_key_id_t *target_key )
2003 {
2004 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2005 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2006 psa_key_slot_t *source_slot = NULL;
2007 psa_key_slot_t *target_slot = NULL;
2008 psa_key_attributes_t actual_attributes = *specified_attributes;
2009 psa_se_drv_table_entry_t *driver = NULL;
2010 size_t storage_size = 0;
2011
2012 *target_key = MBEDTLS_SVC_KEY_ID_INIT;
2013
2014 status = psa_get_and_lock_key_slot_with_policy(
2015 source_key, &source_slot, PSA_KEY_USAGE_COPY, 0 );
2016 if( status != PSA_SUCCESS )
2017 goto exit;
2018
2019 status = psa_validate_optional_attributes( source_slot,
2020 specified_attributes );
2021 if( status != PSA_SUCCESS )
2022 goto exit;
2023
2024 /* The target key type and number of bits have been validated by
2025 * psa_validate_optional_attributes() to be either equal to zero or
2026 * equal to the ones of the source key. So it is safe to inherit
2027 * them from the source key now."
2028 * */
2029 actual_attributes.core.bits = source_slot->attr.bits;
2030 actual_attributes.core.type = source_slot->attr.type;
2031
2032
2033 status = psa_restrict_key_policy( source_slot->attr.type,
2034 &actual_attributes.core.policy,
2035 &source_slot->attr.policy );
2036 if( status != PSA_SUCCESS )
2037 goto exit;
2038
2039 status = psa_start_key_creation( PSA_KEY_CREATION_COPY, &actual_attributes,
2040 &target_slot, &driver );
2041 if( status != PSA_SUCCESS )
2042 goto exit;
2043 if( PSA_KEY_LIFETIME_GET_LOCATION( target_slot->attr.lifetime ) !=
2044 PSA_KEY_LIFETIME_GET_LOCATION( source_slot->attr.lifetime ) )
2045 {
2046 /*
2047 * If the source and target keys are stored in different locations,
2048 * the source key would need to be exported as plaintext and re-imported
2049 * in the other location. This has security implications which have not
2050 * been fully mapped. For now, this can be achieved through
2051 * appropriate API invocations from the application, if needed.
2052 * */
2053 status = PSA_ERROR_NOT_SUPPORTED;
2054 goto exit;
2055 }
2056 /*
2057 * When the source and target keys are within the same location,
2058 * - For transparent keys it is a blind copy without any driver invocation,
2059 * - For opaque keys this translates to an invocation of the drivers'
2060 * copy_key entry point through the dispatch layer.
2061 * */
2062 if( psa_key_lifetime_is_external( actual_attributes.core.lifetime ) )
2063 {
2064 status = psa_driver_wrapper_get_key_buffer_size( &actual_attributes,
2065 &storage_size );
2066 if( status != PSA_SUCCESS )
2067 goto exit;
2068
2069 status = psa_allocate_buffer_to_slot( target_slot, storage_size );
2070 if( status != PSA_SUCCESS )
2071 goto exit;
2072
2073 status = psa_driver_wrapper_copy_key( &actual_attributes,
2074 source_slot->key.data,
2075 source_slot->key.bytes,
2076 target_slot->key.data,
2077 target_slot->key.bytes,
2078 &target_slot->key.bytes );
2079 if( status != PSA_SUCCESS )
2080 goto exit;
2081 }
2082 else
2083 {
2084 status = psa_copy_key_material_into_slot( target_slot,
2085 source_slot->key.data,
2086 source_slot->key.bytes );
2087 if( status != PSA_SUCCESS )
2088 goto exit;
2089 }
2090 status = psa_finish_key_creation( target_slot, driver, target_key );
2091 exit:
2092 if( status != PSA_SUCCESS )
2093 psa_fail_key_creation( target_slot, driver );
2094
2095 unlock_status = psa_unlock_key_slot( source_slot );
2096
2097 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2098 }
2099
2100
2101
2102 /****************************************************************/
2103 /* Message digests */
2104 /****************************************************************/
2105
psa_hash_abort(psa_hash_operation_t * operation)2106 psa_status_t psa_hash_abort( psa_hash_operation_t *operation )
2107 {
2108 /* Aborting a non-active operation is allowed */
2109 if( operation->id == 0 )
2110 return( PSA_SUCCESS );
2111
2112 psa_status_t status = psa_driver_wrapper_hash_abort( operation );
2113 operation->id = 0;
2114
2115 return( status );
2116 }
2117
psa_hash_setup(psa_hash_operation_t * operation,psa_algorithm_t alg)2118 psa_status_t psa_hash_setup( psa_hash_operation_t *operation,
2119 psa_algorithm_t alg )
2120 {
2121 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2122
2123 /* A context must be freshly initialized before it can be set up. */
2124 if( operation->id != 0 )
2125 {
2126 status = PSA_ERROR_BAD_STATE;
2127 goto exit;
2128 }
2129
2130 if( !PSA_ALG_IS_HASH( alg ) )
2131 {
2132 status = PSA_ERROR_INVALID_ARGUMENT;
2133 goto exit;
2134 }
2135
2136 /* Ensure all of the context is zeroized, since PSA_HASH_OPERATION_INIT only
2137 * directly zeroes the int-sized dummy member of the context union. */
2138 memset( &operation->ctx, 0, sizeof( operation->ctx ) );
2139
2140 status = psa_driver_wrapper_hash_setup( operation, alg );
2141
2142 exit:
2143 if( status != PSA_SUCCESS )
2144 psa_hash_abort( operation );
2145
2146 return status;
2147 }
2148
psa_hash_update(psa_hash_operation_t * operation,const uint8_t * input,size_t input_length)2149 psa_status_t psa_hash_update( psa_hash_operation_t *operation,
2150 const uint8_t *input,
2151 size_t input_length )
2152 {
2153 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2154
2155 if( operation->id == 0 )
2156 {
2157 status = PSA_ERROR_BAD_STATE;
2158 goto exit;
2159 }
2160
2161 /* Don't require hash implementations to behave correctly on a
2162 * zero-length input, which may have an invalid pointer. */
2163 if( input_length == 0 )
2164 return( PSA_SUCCESS );
2165
2166 status = psa_driver_wrapper_hash_update( operation, input, input_length );
2167
2168 exit:
2169 if( status != PSA_SUCCESS )
2170 psa_hash_abort( operation );
2171
2172 return( status );
2173 }
2174
psa_hash_finish(psa_hash_operation_t * operation,uint8_t * hash,size_t hash_size,size_t * hash_length)2175 psa_status_t psa_hash_finish( psa_hash_operation_t *operation,
2176 uint8_t *hash,
2177 size_t hash_size,
2178 size_t *hash_length )
2179 {
2180 *hash_length = 0;
2181 if( operation->id == 0 )
2182 return( PSA_ERROR_BAD_STATE );
2183
2184 psa_status_t status = psa_driver_wrapper_hash_finish(
2185 operation, hash, hash_size, hash_length );
2186 psa_hash_abort( operation );
2187 return( status );
2188 }
2189
psa_hash_verify(psa_hash_operation_t * operation,const uint8_t * hash,size_t hash_length)2190 psa_status_t psa_hash_verify( psa_hash_operation_t *operation,
2191 const uint8_t *hash,
2192 size_t hash_length )
2193 {
2194 uint8_t actual_hash[PSA_HASH_MAX_SIZE];
2195 size_t actual_hash_length;
2196 psa_status_t status = psa_hash_finish(
2197 operation,
2198 actual_hash, sizeof( actual_hash ),
2199 &actual_hash_length );
2200
2201 if( status != PSA_SUCCESS )
2202 goto exit;
2203
2204 if( actual_hash_length != hash_length )
2205 {
2206 status = PSA_ERROR_INVALID_SIGNATURE;
2207 goto exit;
2208 }
2209
2210 if( mbedtls_psa_safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
2211 status = PSA_ERROR_INVALID_SIGNATURE;
2212
2213 exit:
2214 mbedtls_platform_zeroize( actual_hash, sizeof( actual_hash ) );
2215 if( status != PSA_SUCCESS )
2216 psa_hash_abort(operation);
2217
2218 return( status );
2219 }
2220
psa_hash_compute(psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * hash,size_t hash_size,size_t * hash_length)2221 psa_status_t psa_hash_compute( psa_algorithm_t alg,
2222 const uint8_t *input, size_t input_length,
2223 uint8_t *hash, size_t hash_size,
2224 size_t *hash_length )
2225 {
2226 *hash_length = 0;
2227 if( !PSA_ALG_IS_HASH( alg ) )
2228 return( PSA_ERROR_INVALID_ARGUMENT );
2229
2230 return( psa_driver_wrapper_hash_compute( alg, input, input_length,
2231 hash, hash_size, hash_length ) );
2232 }
2233
psa_hash_compare(psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * hash,size_t hash_length)2234 psa_status_t psa_hash_compare( psa_algorithm_t alg,
2235 const uint8_t *input, size_t input_length,
2236 const uint8_t *hash, size_t hash_length )
2237 {
2238 uint8_t actual_hash[PSA_HASH_MAX_SIZE];
2239 size_t actual_hash_length;
2240
2241 if( !PSA_ALG_IS_HASH( alg ) )
2242 return( PSA_ERROR_INVALID_ARGUMENT );
2243
2244 psa_status_t status = psa_driver_wrapper_hash_compute(
2245 alg, input, input_length,
2246 actual_hash, sizeof(actual_hash),
2247 &actual_hash_length );
2248 if( status != PSA_SUCCESS )
2249 goto exit;
2250 if( actual_hash_length != hash_length )
2251 {
2252 status = PSA_ERROR_INVALID_SIGNATURE;
2253 goto exit;
2254 }
2255 if( mbedtls_psa_safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
2256 status = PSA_ERROR_INVALID_SIGNATURE;
2257
2258 exit:
2259 mbedtls_platform_zeroize( actual_hash, sizeof( actual_hash ) );
2260 return( status );
2261 }
2262
psa_hash_clone(const psa_hash_operation_t * source_operation,psa_hash_operation_t * target_operation)2263 psa_status_t psa_hash_clone( const psa_hash_operation_t *source_operation,
2264 psa_hash_operation_t *target_operation )
2265 {
2266 if( source_operation->id == 0 ||
2267 target_operation->id != 0 )
2268 {
2269 return( PSA_ERROR_BAD_STATE );
2270 }
2271
2272 psa_status_t status = psa_driver_wrapper_hash_clone( source_operation,
2273 target_operation );
2274 if( status != PSA_SUCCESS )
2275 psa_hash_abort( target_operation );
2276
2277 return( status );
2278 }
2279
2280
2281 /****************************************************************/
2282 /* MAC */
2283 /****************************************************************/
2284
psa_mac_abort(psa_mac_operation_t * operation)2285 psa_status_t psa_mac_abort( psa_mac_operation_t *operation )
2286 {
2287 /* Aborting a non-active operation is allowed */
2288 if( operation->id == 0 )
2289 return( PSA_SUCCESS );
2290
2291 psa_status_t status = psa_driver_wrapper_mac_abort( operation );
2292 operation->mac_size = 0;
2293 operation->is_sign = 0;
2294 operation->id = 0;
2295
2296 return( status );
2297 }
2298
psa_mac_finalize_alg_and_key_validation(psa_algorithm_t alg,const psa_key_attributes_t * attributes,uint8_t * mac_size)2299 static psa_status_t psa_mac_finalize_alg_and_key_validation(
2300 psa_algorithm_t alg,
2301 const psa_key_attributes_t *attributes,
2302 uint8_t *mac_size )
2303 {
2304 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2305 psa_key_type_t key_type = psa_get_key_type( attributes );
2306 size_t key_bits = psa_get_key_bits( attributes );
2307
2308 if( ! PSA_ALG_IS_MAC( alg ) )
2309 return( PSA_ERROR_INVALID_ARGUMENT );
2310
2311 /* Validate the combination of key type and algorithm */
2312 status = psa_mac_key_can_do( alg, key_type );
2313 if( status != PSA_SUCCESS )
2314 return( status );
2315
2316 /* Get the output length for the algorithm and key combination */
2317 *mac_size = PSA_MAC_LENGTH( key_type, key_bits, alg );
2318
2319 if( *mac_size < 4 )
2320 {
2321 /* A very short MAC is too short for security since it can be
2322 * brute-forced. Ancient protocols with 32-bit MACs do exist,
2323 * so we make this our minimum, even though 32 bits is still
2324 * too small for security. */
2325 return( PSA_ERROR_NOT_SUPPORTED );
2326 }
2327
2328 if( *mac_size > PSA_MAC_LENGTH( key_type, key_bits,
2329 PSA_ALG_FULL_LENGTH_MAC( alg ) ) )
2330 {
2331 /* It's impossible to "truncate" to a larger length than the full length
2332 * of the algorithm. */
2333 return( PSA_ERROR_INVALID_ARGUMENT );
2334 }
2335
2336 if( *mac_size > PSA_MAC_MAX_SIZE )
2337 {
2338 /* PSA_MAC_LENGTH returns the correct length even for a MAC algorithm
2339 * that is disabled in the compile-time configuration. The result can
2340 * therefore be larger than PSA_MAC_MAX_SIZE, which does take the
2341 * configuration into account. In this case, force a return of
2342 * PSA_ERROR_NOT_SUPPORTED here. Otherwise psa_mac_verify(), or
2343 * psa_mac_compute(mac_size=PSA_MAC_MAX_SIZE), would return
2344 * PSA_ERROR_BUFFER_TOO_SMALL for an unsupported algorithm whose MAC size
2345 * is larger than PSA_MAC_MAX_SIZE, which is misleading and which breaks
2346 * systematically generated tests. */
2347 return( PSA_ERROR_NOT_SUPPORTED );
2348 }
2349
2350 return( PSA_SUCCESS );
2351 }
2352
psa_mac_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg,int is_sign)2353 static psa_status_t psa_mac_setup( psa_mac_operation_t *operation,
2354 mbedtls_svc_key_id_t key,
2355 psa_algorithm_t alg,
2356 int is_sign )
2357 {
2358 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2359 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2360 psa_key_slot_t *slot = NULL;
2361
2362 /* A context must be freshly initialized before it can be set up. */
2363 if( operation->id != 0 )
2364 {
2365 status = PSA_ERROR_BAD_STATE;
2366 goto exit;
2367 }
2368
2369 status = psa_get_and_lock_key_slot_with_policy(
2370 key,
2371 &slot,
2372 is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
2373 alg );
2374 if( status != PSA_SUCCESS )
2375 goto exit;
2376
2377 psa_key_attributes_t attributes = {
2378 .core = slot->attr
2379 };
2380
2381 status = psa_mac_finalize_alg_and_key_validation( alg, &attributes,
2382 &operation->mac_size );
2383 if( status != PSA_SUCCESS )
2384 goto exit;
2385
2386 operation->is_sign = is_sign;
2387 /* Dispatch the MAC setup call with validated input */
2388 if( is_sign )
2389 {
2390 status = psa_driver_wrapper_mac_sign_setup( operation,
2391 &attributes,
2392 slot->key.data,
2393 slot->key.bytes,
2394 alg );
2395 }
2396 else
2397 {
2398 status = psa_driver_wrapper_mac_verify_setup( operation,
2399 &attributes,
2400 slot->key.data,
2401 slot->key.bytes,
2402 alg );
2403 }
2404
2405 exit:
2406 if( status != PSA_SUCCESS )
2407 psa_mac_abort( operation );
2408
2409 unlock_status = psa_unlock_key_slot( slot );
2410
2411 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2412 }
2413
psa_mac_sign_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)2414 psa_status_t psa_mac_sign_setup( psa_mac_operation_t *operation,
2415 mbedtls_svc_key_id_t key,
2416 psa_algorithm_t alg )
2417 {
2418 return( psa_mac_setup( operation, key, alg, 1 ) );
2419 }
2420
psa_mac_verify_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)2421 psa_status_t psa_mac_verify_setup( psa_mac_operation_t *operation,
2422 mbedtls_svc_key_id_t key,
2423 psa_algorithm_t alg )
2424 {
2425 return( psa_mac_setup( operation, key, alg, 0 ) );
2426 }
2427
psa_mac_update(psa_mac_operation_t * operation,const uint8_t * input,size_t input_length)2428 psa_status_t psa_mac_update( psa_mac_operation_t *operation,
2429 const uint8_t *input,
2430 size_t input_length )
2431 {
2432 if( operation->id == 0 )
2433 return( PSA_ERROR_BAD_STATE );
2434
2435 /* Don't require hash implementations to behave correctly on a
2436 * zero-length input, which may have an invalid pointer. */
2437 if( input_length == 0 )
2438 return( PSA_SUCCESS );
2439
2440 psa_status_t status = psa_driver_wrapper_mac_update( operation,
2441 input, input_length );
2442 if( status != PSA_SUCCESS )
2443 psa_mac_abort( operation );
2444
2445 return( status );
2446 }
2447
psa_mac_sign_finish(psa_mac_operation_t * operation,uint8_t * mac,size_t mac_size,size_t * mac_length)2448 psa_status_t psa_mac_sign_finish( psa_mac_operation_t *operation,
2449 uint8_t *mac,
2450 size_t mac_size,
2451 size_t *mac_length )
2452 {
2453 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2454 psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
2455
2456 if( operation->id == 0 )
2457 {
2458 status = PSA_ERROR_BAD_STATE;
2459 goto exit;
2460 }
2461
2462 if( ! operation->is_sign )
2463 {
2464 status = PSA_ERROR_BAD_STATE;
2465 goto exit;
2466 }
2467
2468 /* Sanity check. This will guarantee that mac_size != 0 (and so mac != NULL)
2469 * once all the error checks are done. */
2470 if( operation->mac_size == 0 )
2471 {
2472 status = PSA_ERROR_BAD_STATE;
2473 goto exit;
2474 }
2475
2476 if( mac_size < operation->mac_size )
2477 {
2478 status = PSA_ERROR_BUFFER_TOO_SMALL;
2479 goto exit;
2480 }
2481
2482 status = psa_driver_wrapper_mac_sign_finish( operation,
2483 mac, operation->mac_size,
2484 mac_length );
2485
2486 exit:
2487 /* In case of success, set the potential excess room in the output buffer
2488 * to an invalid value, to avoid potentially leaking a longer MAC.
2489 * In case of error, set the output length and content to a safe default,
2490 * such that in case the caller misses an error check, the output would be
2491 * an unachievable MAC.
2492 */
2493 if( status != PSA_SUCCESS )
2494 {
2495 *mac_length = mac_size;
2496 operation->mac_size = 0;
2497 }
2498
2499 if( mac_size > operation->mac_size )
2500 memset( &mac[operation->mac_size], '!',
2501 mac_size - operation->mac_size );
2502
2503 abort_status = psa_mac_abort( operation );
2504
2505 return( status == PSA_SUCCESS ? abort_status : status );
2506 }
2507
psa_mac_verify_finish(psa_mac_operation_t * operation,const uint8_t * mac,size_t mac_length)2508 psa_status_t psa_mac_verify_finish( psa_mac_operation_t *operation,
2509 const uint8_t *mac,
2510 size_t mac_length )
2511 {
2512 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2513 psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
2514
2515 if( operation->id == 0 )
2516 {
2517 status = PSA_ERROR_BAD_STATE;
2518 goto exit;
2519 }
2520
2521 if( operation->is_sign )
2522 {
2523 status = PSA_ERROR_BAD_STATE;
2524 goto exit;
2525 }
2526
2527 if( operation->mac_size != mac_length )
2528 {
2529 status = PSA_ERROR_INVALID_SIGNATURE;
2530 goto exit;
2531 }
2532
2533 status = psa_driver_wrapper_mac_verify_finish( operation,
2534 mac, mac_length );
2535
2536 exit:
2537 abort_status = psa_mac_abort( operation );
2538
2539 return( status == PSA_SUCCESS ? abort_status : status );
2540 }
2541
psa_mac_compute_internal(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * mac,size_t mac_size,size_t * mac_length,int is_sign)2542 static psa_status_t psa_mac_compute_internal( mbedtls_svc_key_id_t key,
2543 psa_algorithm_t alg,
2544 const uint8_t *input,
2545 size_t input_length,
2546 uint8_t *mac,
2547 size_t mac_size,
2548 size_t *mac_length,
2549 int is_sign )
2550 {
2551 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2552 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2553 psa_key_slot_t *slot;
2554 uint8_t operation_mac_size = 0;
2555
2556 status = psa_get_and_lock_key_slot_with_policy(
2557 key,
2558 &slot,
2559 is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
2560 alg );
2561 if( status != PSA_SUCCESS )
2562 goto exit;
2563
2564 psa_key_attributes_t attributes = {
2565 .core = slot->attr
2566 };
2567
2568 status = psa_mac_finalize_alg_and_key_validation( alg, &attributes,
2569 &operation_mac_size );
2570 if( status != PSA_SUCCESS )
2571 goto exit;
2572
2573 if( mac_size < operation_mac_size )
2574 {
2575 status = PSA_ERROR_BUFFER_TOO_SMALL;
2576 goto exit;
2577 }
2578
2579 status = psa_driver_wrapper_mac_compute(
2580 &attributes,
2581 slot->key.data, slot->key.bytes,
2582 alg,
2583 input, input_length,
2584 mac, operation_mac_size, mac_length );
2585
2586 exit:
2587 /* In case of success, set the potential excess room in the output buffer
2588 * to an invalid value, to avoid potentially leaking a longer MAC.
2589 * In case of error, set the output length and content to a safe default,
2590 * such that in case the caller misses an error check, the output would be
2591 * an unachievable MAC.
2592 */
2593 if( status != PSA_SUCCESS )
2594 {
2595 *mac_length = mac_size;
2596 operation_mac_size = 0;
2597 }
2598 if( mac_size > operation_mac_size )
2599 memset( &mac[operation_mac_size], '!', mac_size - operation_mac_size );
2600
2601 unlock_status = psa_unlock_key_slot( slot );
2602
2603 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2604 }
2605
psa_mac_compute(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * mac,size_t mac_size,size_t * mac_length)2606 psa_status_t psa_mac_compute( mbedtls_svc_key_id_t key,
2607 psa_algorithm_t alg,
2608 const uint8_t *input,
2609 size_t input_length,
2610 uint8_t *mac,
2611 size_t mac_size,
2612 size_t *mac_length)
2613 {
2614 return( psa_mac_compute_internal( key, alg,
2615 input, input_length,
2616 mac, mac_size, mac_length, 1 ) );
2617 }
2618
psa_mac_verify(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * mac,size_t mac_length)2619 psa_status_t psa_mac_verify( mbedtls_svc_key_id_t key,
2620 psa_algorithm_t alg,
2621 const uint8_t *input,
2622 size_t input_length,
2623 const uint8_t *mac,
2624 size_t mac_length)
2625 {
2626 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2627 uint8_t actual_mac[PSA_MAC_MAX_SIZE];
2628 size_t actual_mac_length;
2629
2630 status = psa_mac_compute_internal( key, alg,
2631 input, input_length,
2632 actual_mac, sizeof( actual_mac ),
2633 &actual_mac_length, 0 );
2634 if( status != PSA_SUCCESS )
2635 goto exit;
2636
2637 if( mac_length != actual_mac_length )
2638 {
2639 status = PSA_ERROR_INVALID_SIGNATURE;
2640 goto exit;
2641 }
2642 if( mbedtls_psa_safer_memcmp( mac, actual_mac, actual_mac_length ) != 0 )
2643 {
2644 status = PSA_ERROR_INVALID_SIGNATURE;
2645 goto exit;
2646 }
2647
2648 exit:
2649 mbedtls_platform_zeroize( actual_mac, sizeof( actual_mac ) );
2650
2651 return ( status );
2652 }
2653
2654 /****************************************************************/
2655 /* Asymmetric cryptography */
2656 /****************************************************************/
2657
psa_sign_verify_check_alg(int input_is_message,psa_algorithm_t alg)2658 static psa_status_t psa_sign_verify_check_alg( int input_is_message,
2659 psa_algorithm_t alg )
2660 {
2661 if( input_is_message )
2662 {
2663 if( ! PSA_ALG_IS_SIGN_MESSAGE( alg ) )
2664 return( PSA_ERROR_INVALID_ARGUMENT );
2665
2666 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2667 {
2668 if( ! PSA_ALG_IS_HASH( PSA_ALG_SIGN_GET_HASH( alg ) ) )
2669 return( PSA_ERROR_INVALID_ARGUMENT );
2670 }
2671 }
2672 else
2673 {
2674 if( ! PSA_ALG_IS_SIGN_HASH( alg ) )
2675 return( PSA_ERROR_INVALID_ARGUMENT );
2676 }
2677
2678 return( PSA_SUCCESS );
2679 }
2680
psa_sign_internal(mbedtls_svc_key_id_t key,int input_is_message,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2681 static psa_status_t psa_sign_internal( mbedtls_svc_key_id_t key,
2682 int input_is_message,
2683 psa_algorithm_t alg,
2684 const uint8_t * input,
2685 size_t input_length,
2686 uint8_t * signature,
2687 size_t signature_size,
2688 size_t * signature_length )
2689 {
2690 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2691 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2692 psa_key_slot_t *slot;
2693
2694 *signature_length = 0;
2695
2696 status = psa_sign_verify_check_alg( input_is_message, alg );
2697 if( status != PSA_SUCCESS )
2698 return status;
2699
2700 /* Immediately reject a zero-length signature buffer. This guarantees
2701 * that signature must be a valid pointer. (On the other hand, the input
2702 * buffer can in principle be empty since it doesn't actually have
2703 * to be a hash.) */
2704 if( signature_size == 0 )
2705 return( PSA_ERROR_BUFFER_TOO_SMALL );
2706
2707 status = psa_get_and_lock_key_slot_with_policy(
2708 key, &slot,
2709 input_is_message ? PSA_KEY_USAGE_SIGN_MESSAGE :
2710 PSA_KEY_USAGE_SIGN_HASH,
2711 alg );
2712
2713 if( status != PSA_SUCCESS )
2714 goto exit;
2715
2716 if( ! PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) )
2717 {
2718 status = PSA_ERROR_INVALID_ARGUMENT;
2719 goto exit;
2720 }
2721
2722 psa_key_attributes_t attributes = {
2723 .core = slot->attr
2724 };
2725
2726 if( input_is_message )
2727 {
2728 status = psa_driver_wrapper_sign_message(
2729 &attributes, slot->key.data, slot->key.bytes,
2730 alg, input, input_length,
2731 signature, signature_size, signature_length );
2732 }
2733 else
2734 {
2735
2736 status = psa_driver_wrapper_sign_hash(
2737 &attributes, slot->key.data, slot->key.bytes,
2738 alg, input, input_length,
2739 signature, signature_size, signature_length );
2740 }
2741
2742
2743 exit:
2744 /* Fill the unused part of the output buffer (the whole buffer on error,
2745 * the trailing part on success) with something that isn't a valid signature
2746 * (barring an attack on the signature and deliberately-crafted input),
2747 * in case the caller doesn't check the return status properly. */
2748 if( status == PSA_SUCCESS )
2749 memset( signature + *signature_length, '!',
2750 signature_size - *signature_length );
2751 else
2752 memset( signature, '!', signature_size );
2753 /* If signature_size is 0 then we have nothing to do. We must not call
2754 * memset because signature may be NULL in this case. */
2755
2756 unlock_status = psa_unlock_key_slot( slot );
2757
2758 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2759 }
2760
psa_verify_internal(mbedtls_svc_key_id_t key,int input_is_message,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2761 static psa_status_t psa_verify_internal( mbedtls_svc_key_id_t key,
2762 int input_is_message,
2763 psa_algorithm_t alg,
2764 const uint8_t * input,
2765 size_t input_length,
2766 const uint8_t * signature,
2767 size_t signature_length )
2768 {
2769 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2770 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2771 psa_key_slot_t *slot;
2772
2773 status = psa_sign_verify_check_alg( input_is_message, alg );
2774 if( status != PSA_SUCCESS )
2775 return status;
2776
2777 status = psa_get_and_lock_key_slot_with_policy(
2778 key, &slot,
2779 input_is_message ? PSA_KEY_USAGE_VERIFY_MESSAGE :
2780 PSA_KEY_USAGE_VERIFY_HASH,
2781 alg );
2782
2783 if( status != PSA_SUCCESS )
2784 return( status );
2785
2786 psa_key_attributes_t attributes = {
2787 .core = slot->attr
2788 };
2789
2790 if( input_is_message )
2791 {
2792 status = psa_driver_wrapper_verify_message(
2793 &attributes, slot->key.data, slot->key.bytes,
2794 alg, input, input_length,
2795 signature, signature_length );
2796 }
2797 else
2798 {
2799 status = psa_driver_wrapper_verify_hash(
2800 &attributes, slot->key.data, slot->key.bytes,
2801 alg, input, input_length,
2802 signature, signature_length );
2803 }
2804
2805 unlock_status = psa_unlock_key_slot( slot );
2806
2807 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2808
2809 }
2810
psa_sign_message_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2811 psa_status_t psa_sign_message_builtin(
2812 const psa_key_attributes_t *attributes,
2813 const uint8_t *key_buffer,
2814 size_t key_buffer_size,
2815 psa_algorithm_t alg,
2816 const uint8_t *input,
2817 size_t input_length,
2818 uint8_t *signature,
2819 size_t signature_size,
2820 size_t *signature_length )
2821 {
2822 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2823
2824 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2825 {
2826 size_t hash_length;
2827 uint8_t hash[PSA_HASH_MAX_SIZE];
2828
2829 status = psa_driver_wrapper_hash_compute(
2830 PSA_ALG_SIGN_GET_HASH( alg ),
2831 input, input_length,
2832 hash, sizeof( hash ), &hash_length );
2833
2834 if( status != PSA_SUCCESS )
2835 return status;
2836
2837 return psa_driver_wrapper_sign_hash(
2838 attributes, key_buffer, key_buffer_size,
2839 alg, hash, hash_length,
2840 signature, signature_size, signature_length );
2841 }
2842
2843 return( PSA_ERROR_NOT_SUPPORTED );
2844 }
2845
psa_sign_message(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2846 psa_status_t psa_sign_message( mbedtls_svc_key_id_t key,
2847 psa_algorithm_t alg,
2848 const uint8_t * input,
2849 size_t input_length,
2850 uint8_t * signature,
2851 size_t signature_size,
2852 size_t * signature_length )
2853 {
2854 return psa_sign_internal(
2855 key, 1, alg, input, input_length,
2856 signature, signature_size, signature_length );
2857 }
2858
psa_verify_message_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2859 psa_status_t psa_verify_message_builtin(
2860 const psa_key_attributes_t *attributes,
2861 const uint8_t *key_buffer,
2862 size_t key_buffer_size,
2863 psa_algorithm_t alg,
2864 const uint8_t *input,
2865 size_t input_length,
2866 const uint8_t *signature,
2867 size_t signature_length )
2868 {
2869 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2870
2871 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2872 {
2873 size_t hash_length;
2874 uint8_t hash[PSA_HASH_MAX_SIZE];
2875
2876 status = psa_driver_wrapper_hash_compute(
2877 PSA_ALG_SIGN_GET_HASH( alg ),
2878 input, input_length,
2879 hash, sizeof( hash ), &hash_length );
2880
2881 if( status != PSA_SUCCESS )
2882 return status;
2883
2884 return psa_driver_wrapper_verify_hash(
2885 attributes, key_buffer, key_buffer_size,
2886 alg, hash, hash_length,
2887 signature, signature_length );
2888 }
2889
2890 return( PSA_ERROR_NOT_SUPPORTED );
2891 }
2892
psa_verify_message(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2893 psa_status_t psa_verify_message( mbedtls_svc_key_id_t key,
2894 psa_algorithm_t alg,
2895 const uint8_t * input,
2896 size_t input_length,
2897 const uint8_t * signature,
2898 size_t signature_length )
2899 {
2900 return psa_verify_internal(
2901 key, 1, alg, input, input_length,
2902 signature, signature_length );
2903 }
2904
psa_sign_hash_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2905 psa_status_t psa_sign_hash_builtin(
2906 const psa_key_attributes_t *attributes,
2907 const uint8_t *key_buffer, size_t key_buffer_size,
2908 psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
2909 uint8_t *signature, size_t signature_size, size_t *signature_length )
2910 {
2911 if( attributes->core.type == PSA_KEY_TYPE_RSA_KEY_PAIR )
2912 {
2913 if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ||
2914 PSA_ALG_IS_RSA_PSS( alg) )
2915 {
2916 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
2917 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
2918 return( mbedtls_psa_rsa_sign_hash(
2919 attributes,
2920 key_buffer, key_buffer_size,
2921 alg, hash, hash_length,
2922 signature, signature_size, signature_length ) );
2923 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
2924 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
2925 }
2926 else
2927 {
2928 return( PSA_ERROR_INVALID_ARGUMENT );
2929 }
2930 }
2931 else if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) )
2932 {
2933 if( PSA_ALG_IS_ECDSA( alg ) )
2934 {
2935 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
2936 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
2937 return( mbedtls_psa_ecdsa_sign_hash(
2938 attributes,
2939 key_buffer, key_buffer_size,
2940 alg, hash, hash_length,
2941 signature, signature_size, signature_length ) );
2942 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
2943 * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
2944 }
2945 else
2946 {
2947 return( PSA_ERROR_INVALID_ARGUMENT );
2948 }
2949 }
2950
2951 (void)key_buffer;
2952 (void)key_buffer_size;
2953 (void)hash;
2954 (void)hash_length;
2955 (void)signature;
2956 (void)signature_size;
2957 (void)signature_length;
2958
2959 return( PSA_ERROR_NOT_SUPPORTED );
2960 }
2961
psa_sign_hash(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2962 psa_status_t psa_sign_hash( mbedtls_svc_key_id_t key,
2963 psa_algorithm_t alg,
2964 const uint8_t *hash,
2965 size_t hash_length,
2966 uint8_t *signature,
2967 size_t signature_size,
2968 size_t *signature_length )
2969 {
2970 return psa_sign_internal(
2971 key, 0, alg, hash, hash_length,
2972 signature, signature_size, signature_length );
2973 }
2974
psa_verify_hash_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,const uint8_t * signature,size_t signature_length)2975 psa_status_t psa_verify_hash_builtin(
2976 const psa_key_attributes_t *attributes,
2977 const uint8_t *key_buffer, size_t key_buffer_size,
2978 psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
2979 const uint8_t *signature, size_t signature_length )
2980 {
2981 if( PSA_KEY_TYPE_IS_RSA( attributes->core.type ) )
2982 {
2983 if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ||
2984 PSA_ALG_IS_RSA_PSS( alg) )
2985 {
2986 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
2987 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
2988 return( mbedtls_psa_rsa_verify_hash(
2989 attributes,
2990 key_buffer, key_buffer_size,
2991 alg, hash, hash_length,
2992 signature, signature_length ) );
2993 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
2994 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
2995 }
2996 else
2997 {
2998 return( PSA_ERROR_INVALID_ARGUMENT );
2999 }
3000 }
3001 else if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) )
3002 {
3003 if( PSA_ALG_IS_ECDSA( alg ) )
3004 {
3005 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
3006 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
3007 return( mbedtls_psa_ecdsa_verify_hash(
3008 attributes,
3009 key_buffer, key_buffer_size,
3010 alg, hash, hash_length,
3011 signature, signature_length ) );
3012 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
3013 * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
3014 }
3015 else
3016 {
3017 return( PSA_ERROR_INVALID_ARGUMENT );
3018 }
3019 }
3020
3021 (void)key_buffer;
3022 (void)key_buffer_size;
3023 (void)hash;
3024 (void)hash_length;
3025 (void)signature;
3026 (void)signature_length;
3027
3028 return( PSA_ERROR_NOT_SUPPORTED );
3029 }
3030
psa_verify_hash(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,const uint8_t * signature,size_t signature_length)3031 psa_status_t psa_verify_hash( mbedtls_svc_key_id_t key,
3032 psa_algorithm_t alg,
3033 const uint8_t *hash,
3034 size_t hash_length,
3035 const uint8_t *signature,
3036 size_t signature_length )
3037 {
3038 return psa_verify_internal(
3039 key, 0, alg, hash, hash_length,
3040 signature, signature_length );
3041 }
3042
psa_asymmetric_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * salt,size_t salt_length,uint8_t * output,size_t output_size,size_t * output_length)3043 psa_status_t psa_asymmetric_encrypt( mbedtls_svc_key_id_t key,
3044 psa_algorithm_t alg,
3045 const uint8_t *input,
3046 size_t input_length,
3047 const uint8_t *salt,
3048 size_t salt_length,
3049 uint8_t *output,
3050 size_t output_size,
3051 size_t *output_length )
3052 {
3053 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3054 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3055 psa_key_slot_t *slot;
3056
3057 (void) input;
3058 (void) input_length;
3059 (void) salt;
3060 (void) output;
3061 (void) output_size;
3062
3063 *output_length = 0;
3064
3065 if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
3066 return( PSA_ERROR_INVALID_ARGUMENT );
3067
3068 status = psa_get_and_lock_transparent_key_slot_with_policy(
3069 key, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
3070 if( status != PSA_SUCCESS )
3071 return( status );
3072 if( ! ( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) ||
3073 PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) ) )
3074 {
3075 status = PSA_ERROR_INVALID_ARGUMENT;
3076 goto exit;
3077 }
3078
3079 psa_key_attributes_t attributes = {
3080 .core = slot->attr
3081 };
3082
3083 status = psa_driver_wrapper_asymmetric_encrypt(
3084 &attributes, slot->key.data, slot->key.bytes,
3085 alg, input, input_length, salt, salt_length,
3086 output, output_size, output_length );
3087 exit:
3088 unlock_status = psa_unlock_key_slot( slot );
3089
3090 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3091 }
3092
psa_asymmetric_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * salt,size_t salt_length,uint8_t * output,size_t output_size,size_t * output_length)3093 psa_status_t psa_asymmetric_decrypt( mbedtls_svc_key_id_t key,
3094 psa_algorithm_t alg,
3095 const uint8_t *input,
3096 size_t input_length,
3097 const uint8_t *salt,
3098 size_t salt_length,
3099 uint8_t *output,
3100 size_t output_size,
3101 size_t *output_length )
3102 {
3103 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3104 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3105 psa_key_slot_t *slot;
3106
3107 (void) input;
3108 (void) input_length;
3109 (void) salt;
3110 (void) output;
3111 (void) output_size;
3112
3113 *output_length = 0;
3114
3115 if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
3116 return( PSA_ERROR_INVALID_ARGUMENT );
3117
3118 status = psa_get_and_lock_transparent_key_slot_with_policy(
3119 key, &slot, PSA_KEY_USAGE_DECRYPT, alg );
3120 if( status != PSA_SUCCESS )
3121 return( status );
3122 if( ! PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) )
3123 {
3124 status = PSA_ERROR_INVALID_ARGUMENT;
3125 goto exit;
3126 }
3127
3128 psa_key_attributes_t attributes = {
3129 .core = slot->attr
3130 };
3131
3132 status = psa_driver_wrapper_asymmetric_decrypt(
3133 &attributes, slot->key.data, slot->key.bytes,
3134 alg, input, input_length, salt, salt_length,
3135 output, output_size, output_length );
3136
3137 exit:
3138 unlock_status = psa_unlock_key_slot( slot );
3139
3140 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3141 }
3142
3143
3144
3145 /****************************************************************/
3146 /* Symmetric cryptography */
3147 /****************************************************************/
3148
psa_cipher_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg,mbedtls_operation_t cipher_operation)3149 static psa_status_t psa_cipher_setup( psa_cipher_operation_t *operation,
3150 mbedtls_svc_key_id_t key,
3151 psa_algorithm_t alg,
3152 mbedtls_operation_t cipher_operation )
3153 {
3154 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3155 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3156 psa_key_slot_t *slot = NULL;
3157 psa_key_usage_t usage = ( cipher_operation == MBEDTLS_ENCRYPT ?
3158 PSA_KEY_USAGE_ENCRYPT :
3159 PSA_KEY_USAGE_DECRYPT );
3160
3161 /* A context must be freshly initialized before it can be set up. */
3162 if( operation->id != 0 )
3163 {
3164 status = PSA_ERROR_BAD_STATE;
3165 goto exit;
3166 }
3167
3168 if( ! PSA_ALG_IS_CIPHER( alg ) )
3169 {
3170 status = PSA_ERROR_INVALID_ARGUMENT;
3171 goto exit;
3172 }
3173
3174 status = psa_get_and_lock_key_slot_with_policy( key, &slot, usage, alg );
3175 if( status != PSA_SUCCESS )
3176 goto exit;
3177
3178 /* Initialize the operation struct members, except for id. The id member
3179 * is used to indicate to psa_cipher_abort that there are resources to free,
3180 * so we only set it (in the driver wrapper) after resources have been
3181 * allocated/initialized. */
3182 operation->iv_set = 0;
3183 if( alg == PSA_ALG_ECB_NO_PADDING )
3184 operation->iv_required = 0;
3185 else
3186 operation->iv_required = 1;
3187 operation->default_iv_length = PSA_CIPHER_IV_LENGTH( slot->attr.type, alg );
3188
3189 psa_key_attributes_t attributes = {
3190 .core = slot->attr
3191 };
3192
3193 /* Try doing the operation through a driver before using software fallback. */
3194 if( cipher_operation == MBEDTLS_ENCRYPT )
3195 status = psa_driver_wrapper_cipher_encrypt_setup( operation,
3196 &attributes,
3197 slot->key.data,
3198 slot->key.bytes,
3199 alg );
3200 else
3201 status = psa_driver_wrapper_cipher_decrypt_setup( operation,
3202 &attributes,
3203 slot->key.data,
3204 slot->key.bytes,
3205 alg );
3206
3207 exit:
3208 if( status != PSA_SUCCESS )
3209 psa_cipher_abort( operation );
3210
3211 unlock_status = psa_unlock_key_slot( slot );
3212
3213 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3214 }
3215
psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3216 psa_status_t psa_cipher_encrypt_setup( psa_cipher_operation_t *operation,
3217 mbedtls_svc_key_id_t key,
3218 psa_algorithm_t alg )
3219 {
3220 return( psa_cipher_setup( operation, key, alg, MBEDTLS_ENCRYPT ) );
3221 }
3222
psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3223 psa_status_t psa_cipher_decrypt_setup( psa_cipher_operation_t *operation,
3224 mbedtls_svc_key_id_t key,
3225 psa_algorithm_t alg )
3226 {
3227 return( psa_cipher_setup( operation, key, alg, MBEDTLS_DECRYPT ) );
3228 }
3229
psa_cipher_generate_iv(psa_cipher_operation_t * operation,uint8_t * iv,size_t iv_size,size_t * iv_length)3230 psa_status_t psa_cipher_generate_iv( psa_cipher_operation_t *operation,
3231 uint8_t *iv,
3232 size_t iv_size,
3233 size_t *iv_length )
3234 {
3235 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3236 uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
3237 size_t default_iv_length;
3238
3239 if( operation->id == 0 )
3240 {
3241 status = PSA_ERROR_BAD_STATE;
3242 goto exit;
3243 }
3244
3245 if( operation->iv_set || ! operation->iv_required )
3246 {
3247 status = PSA_ERROR_BAD_STATE;
3248 goto exit;
3249 }
3250
3251 default_iv_length = operation->default_iv_length;
3252 if( iv_size < default_iv_length )
3253 {
3254 status = PSA_ERROR_BUFFER_TOO_SMALL;
3255 goto exit;
3256 }
3257
3258 if( default_iv_length > PSA_CIPHER_IV_MAX_SIZE )
3259 {
3260 status = PSA_ERROR_GENERIC_ERROR;
3261 goto exit;
3262 }
3263
3264 status = psa_generate_random( local_iv, default_iv_length );
3265 if( status != PSA_SUCCESS )
3266 goto exit;
3267
3268 status = psa_driver_wrapper_cipher_set_iv( operation,
3269 local_iv, default_iv_length );
3270
3271 exit:
3272 if( status == PSA_SUCCESS )
3273 {
3274 memcpy( iv, local_iv, default_iv_length );
3275 *iv_length = default_iv_length;
3276 operation->iv_set = 1;
3277 }
3278 else
3279 {
3280 *iv_length = 0;
3281 psa_cipher_abort( operation );
3282 }
3283
3284 return( status );
3285 }
3286
psa_cipher_set_iv(psa_cipher_operation_t * operation,const uint8_t * iv,size_t iv_length)3287 psa_status_t psa_cipher_set_iv( psa_cipher_operation_t *operation,
3288 const uint8_t *iv,
3289 size_t iv_length )
3290 {
3291 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3292
3293 if( operation->id == 0 )
3294 {
3295 status = PSA_ERROR_BAD_STATE;
3296 goto exit;
3297 }
3298
3299 if( operation->iv_set || ! operation->iv_required )
3300 {
3301 status = PSA_ERROR_BAD_STATE;
3302 goto exit;
3303 }
3304
3305 if( iv_length > PSA_CIPHER_IV_MAX_SIZE )
3306 {
3307 status = PSA_ERROR_INVALID_ARGUMENT;
3308 goto exit;
3309 }
3310
3311 status = psa_driver_wrapper_cipher_set_iv( operation,
3312 iv,
3313 iv_length );
3314
3315 exit:
3316 if( status == PSA_SUCCESS )
3317 operation->iv_set = 1;
3318 else
3319 psa_cipher_abort( operation );
3320 return( status );
3321 }
3322
psa_cipher_update(psa_cipher_operation_t * operation,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3323 psa_status_t psa_cipher_update( psa_cipher_operation_t *operation,
3324 const uint8_t *input,
3325 size_t input_length,
3326 uint8_t *output,
3327 size_t output_size,
3328 size_t *output_length )
3329 {
3330 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3331
3332 if( operation->id == 0 )
3333 {
3334 status = PSA_ERROR_BAD_STATE;
3335 goto exit;
3336 }
3337
3338 if( operation->iv_required && ! operation->iv_set )
3339 {
3340 status = PSA_ERROR_BAD_STATE;
3341 goto exit;
3342 }
3343
3344 status = psa_driver_wrapper_cipher_update( operation,
3345 input,
3346 input_length,
3347 output,
3348 output_size,
3349 output_length );
3350
3351 exit:
3352 if( status != PSA_SUCCESS )
3353 psa_cipher_abort( operation );
3354
3355 return( status );
3356 }
3357
psa_cipher_finish(psa_cipher_operation_t * operation,uint8_t * output,size_t output_size,size_t * output_length)3358 psa_status_t psa_cipher_finish( psa_cipher_operation_t *operation,
3359 uint8_t *output,
3360 size_t output_size,
3361 size_t *output_length )
3362 {
3363 psa_status_t status = PSA_ERROR_GENERIC_ERROR;
3364
3365 if( operation->id == 0 )
3366 {
3367 status = PSA_ERROR_BAD_STATE;
3368 goto exit;
3369 }
3370
3371 if( operation->iv_required && ! operation->iv_set )
3372 {
3373 status = PSA_ERROR_BAD_STATE;
3374 goto exit;
3375 }
3376
3377 status = psa_driver_wrapper_cipher_finish( operation,
3378 output,
3379 output_size,
3380 output_length );
3381
3382 exit:
3383 if( status == PSA_SUCCESS )
3384 return( psa_cipher_abort( operation ) );
3385 else
3386 {
3387 *output_length = 0;
3388 (void) psa_cipher_abort( operation );
3389
3390 return( status );
3391 }
3392 }
3393
psa_cipher_abort(psa_cipher_operation_t * operation)3394 psa_status_t psa_cipher_abort( psa_cipher_operation_t *operation )
3395 {
3396 if( operation->id == 0 )
3397 {
3398 /* The object has (apparently) been initialized but it is not (yet)
3399 * in use. It's ok to call abort on such an object, and there's
3400 * nothing to do. */
3401 return( PSA_SUCCESS );
3402 }
3403
3404 psa_driver_wrapper_cipher_abort( operation );
3405
3406 operation->id = 0;
3407 operation->iv_set = 0;
3408 operation->iv_required = 0;
3409
3410 return( PSA_SUCCESS );
3411 }
3412
psa_cipher_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3413 psa_status_t psa_cipher_encrypt( mbedtls_svc_key_id_t key,
3414 psa_algorithm_t alg,
3415 const uint8_t *input,
3416 size_t input_length,
3417 uint8_t *output,
3418 size_t output_size,
3419 size_t *output_length )
3420 {
3421 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3422 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3423 psa_key_slot_t *slot = NULL;
3424 uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
3425 size_t default_iv_length = 0;
3426
3427 if( ! PSA_ALG_IS_CIPHER( alg ) )
3428 {
3429 status = PSA_ERROR_INVALID_ARGUMENT;
3430 goto exit;
3431 }
3432
3433 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
3434 PSA_KEY_USAGE_ENCRYPT,
3435 alg );
3436 if( status != PSA_SUCCESS )
3437 goto exit;
3438
3439 psa_key_attributes_t attributes = {
3440 .core = slot->attr
3441 };
3442
3443 default_iv_length = PSA_CIPHER_IV_LENGTH( slot->attr.type, alg );
3444 if( default_iv_length > PSA_CIPHER_IV_MAX_SIZE )
3445 {
3446 status = PSA_ERROR_GENERIC_ERROR;
3447 goto exit;
3448 }
3449
3450 if( default_iv_length > 0 )
3451 {
3452 if( output_size < default_iv_length )
3453 {
3454 status = PSA_ERROR_BUFFER_TOO_SMALL;
3455 goto exit;
3456 }
3457
3458 status = psa_generate_random( local_iv, default_iv_length );
3459 if( status != PSA_SUCCESS )
3460 goto exit;
3461 }
3462
3463 status = psa_driver_wrapper_cipher_encrypt(
3464 &attributes, slot->key.data, slot->key.bytes,
3465 alg, local_iv, default_iv_length, input, input_length,
3466 mbedtls_buffer_offset( output, default_iv_length ),
3467 output_size - default_iv_length, output_length );
3468
3469 exit:
3470 unlock_status = psa_unlock_key_slot( slot );
3471 if( status == PSA_SUCCESS )
3472 status = unlock_status;
3473
3474 if( status == PSA_SUCCESS )
3475 {
3476 if( default_iv_length > 0 )
3477 memcpy( output, local_iv, default_iv_length );
3478 *output_length += default_iv_length;
3479 }
3480 else
3481 *output_length = 0;
3482
3483 return( status );
3484 }
3485
psa_cipher_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3486 psa_status_t psa_cipher_decrypt( mbedtls_svc_key_id_t key,
3487 psa_algorithm_t alg,
3488 const uint8_t *input,
3489 size_t input_length,
3490 uint8_t *output,
3491 size_t output_size,
3492 size_t *output_length )
3493 {
3494 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3495 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3496 psa_key_slot_t *slot = NULL;
3497
3498 if( ! PSA_ALG_IS_CIPHER( alg ) )
3499 {
3500 status = PSA_ERROR_INVALID_ARGUMENT;
3501 goto exit;
3502 }
3503
3504 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
3505 PSA_KEY_USAGE_DECRYPT,
3506 alg );
3507 if( status != PSA_SUCCESS )
3508 goto exit;
3509
3510 psa_key_attributes_t attributes = {
3511 .core = slot->attr
3512 };
3513
3514 if( alg == PSA_ALG_CCM_STAR_NO_TAG && input_length < PSA_BLOCK_CIPHER_BLOCK_LENGTH( slot->attr.type ) )
3515 {
3516 status = PSA_ERROR_INVALID_ARGUMENT;
3517 goto exit;
3518 }
3519 else if ( input_length < PSA_CIPHER_IV_LENGTH( slot->attr.type, alg ) )
3520 {
3521 status = PSA_ERROR_INVALID_ARGUMENT;
3522 goto exit;
3523 }
3524
3525 status = psa_driver_wrapper_cipher_decrypt(
3526 &attributes, slot->key.data, slot->key.bytes,
3527 alg, input, input_length,
3528 output, output_size, output_length );
3529
3530 exit:
3531 unlock_status = psa_unlock_key_slot( slot );
3532 if( status == PSA_SUCCESS )
3533 status = unlock_status;
3534
3535 if( status != PSA_SUCCESS )
3536 *output_length = 0;
3537
3538 return( status );
3539 }
3540
3541
3542 /****************************************************************/
3543 /* AEAD */
3544 /****************************************************************/
3545
3546 /* Helper function to get the base algorithm from its variants. */
psa_aead_get_base_algorithm(psa_algorithm_t alg)3547 static psa_algorithm_t psa_aead_get_base_algorithm( psa_algorithm_t alg )
3548 {
3549 return PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG( alg );
3550 }
3551
3552 /* Helper function to perform common nonce length checks. */
psa_aead_check_nonce_length(psa_algorithm_t alg,size_t nonce_length)3553 static psa_status_t psa_aead_check_nonce_length( psa_algorithm_t alg,
3554 size_t nonce_length )
3555 {
3556 psa_algorithm_t base_alg = psa_aead_get_base_algorithm( alg );
3557
3558 switch(base_alg)
3559 {
3560 #if defined(PSA_WANT_ALG_GCM)
3561 case PSA_ALG_GCM:
3562 /* Not checking max nonce size here as GCM spec allows almost
3563 * arbitrarily large nonces. Please note that we do not generally
3564 * recommend the usage of nonces of greater length than
3565 * PSA_AEAD_NONCE_MAX_SIZE, as large nonces are hashed to a shorter
3566 * size, which can then lead to collisions if you encrypt a very
3567 * large number of messages.*/
3568 if( nonce_length != 0 )
3569 return( PSA_SUCCESS );
3570 break;
3571 #endif /* PSA_WANT_ALG_GCM */
3572 #if defined(PSA_WANT_ALG_CCM)
3573 case PSA_ALG_CCM:
3574 if( nonce_length >= 7 && nonce_length <= 13 )
3575 return( PSA_SUCCESS );
3576 break;
3577 #endif /* PSA_WANT_ALG_CCM */
3578 #if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
3579 case PSA_ALG_CHACHA20_POLY1305:
3580 if( nonce_length == 12 )
3581 return( PSA_SUCCESS );
3582 else if( nonce_length == 8 )
3583 return( PSA_ERROR_NOT_SUPPORTED );
3584 break;
3585 #endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
3586 default:
3587 (void) nonce_length;
3588 return( PSA_ERROR_NOT_SUPPORTED );
3589 }
3590
3591 return( PSA_ERROR_INVALID_ARGUMENT );
3592 }
3593
psa_aead_check_algorithm(psa_algorithm_t alg)3594 static psa_status_t psa_aead_check_algorithm( psa_algorithm_t alg )
3595 {
3596 if( !PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_WILDCARD( alg ) )
3597 return( PSA_ERROR_INVALID_ARGUMENT );
3598
3599 return( PSA_SUCCESS );
3600 }
3601
psa_aead_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * nonce,size_t nonce_length,const uint8_t * additional_data,size_t additional_data_length,const uint8_t * plaintext,size_t plaintext_length,uint8_t * ciphertext,size_t ciphertext_size,size_t * ciphertext_length)3602 psa_status_t psa_aead_encrypt( mbedtls_svc_key_id_t key,
3603 psa_algorithm_t alg,
3604 const uint8_t *nonce,
3605 size_t nonce_length,
3606 const uint8_t *additional_data,
3607 size_t additional_data_length,
3608 const uint8_t *plaintext,
3609 size_t plaintext_length,
3610 uint8_t *ciphertext,
3611 size_t ciphertext_size,
3612 size_t *ciphertext_length )
3613 {
3614 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3615 psa_key_slot_t *slot;
3616
3617 *ciphertext_length = 0;
3618
3619 status = psa_aead_check_algorithm( alg );
3620 if( status != PSA_SUCCESS )
3621 return( status );
3622
3623 status = psa_get_and_lock_key_slot_with_policy(
3624 key, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
3625 if( status != PSA_SUCCESS )
3626 return( status );
3627
3628 psa_key_attributes_t attributes = {
3629 .core = slot->attr
3630 };
3631
3632 status = psa_aead_check_nonce_length( alg, nonce_length );
3633 if( status != PSA_SUCCESS )
3634 goto exit;
3635
3636 status = psa_driver_wrapper_aead_encrypt(
3637 &attributes, slot->key.data, slot->key.bytes,
3638 alg,
3639 nonce, nonce_length,
3640 additional_data, additional_data_length,
3641 plaintext, plaintext_length,
3642 ciphertext, ciphertext_size, ciphertext_length );
3643
3644 if( status != PSA_SUCCESS && ciphertext_size != 0 )
3645 memset( ciphertext, 0, ciphertext_size );
3646
3647 exit:
3648 psa_unlock_key_slot( slot );
3649
3650 return( status );
3651 }
3652
psa_aead_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * nonce,size_t nonce_length,const uint8_t * additional_data,size_t additional_data_length,const uint8_t * ciphertext,size_t ciphertext_length,uint8_t * plaintext,size_t plaintext_size,size_t * plaintext_length)3653 psa_status_t psa_aead_decrypt( mbedtls_svc_key_id_t key,
3654 psa_algorithm_t alg,
3655 const uint8_t *nonce,
3656 size_t nonce_length,
3657 const uint8_t *additional_data,
3658 size_t additional_data_length,
3659 const uint8_t *ciphertext,
3660 size_t ciphertext_length,
3661 uint8_t *plaintext,
3662 size_t plaintext_size,
3663 size_t *plaintext_length )
3664 {
3665 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3666 psa_key_slot_t *slot;
3667
3668 *plaintext_length = 0;
3669
3670 status = psa_aead_check_algorithm( alg );
3671 if( status != PSA_SUCCESS )
3672 return( status );
3673
3674 status = psa_get_and_lock_key_slot_with_policy(
3675 key, &slot, PSA_KEY_USAGE_DECRYPT, alg );
3676 if( status != PSA_SUCCESS )
3677 return( status );
3678
3679 psa_key_attributes_t attributes = {
3680 .core = slot->attr
3681 };
3682
3683 status = psa_aead_check_nonce_length( alg, nonce_length );
3684 if( status != PSA_SUCCESS )
3685 goto exit;
3686
3687 status = psa_driver_wrapper_aead_decrypt(
3688 &attributes, slot->key.data, slot->key.bytes,
3689 alg,
3690 nonce, nonce_length,
3691 additional_data, additional_data_length,
3692 ciphertext, ciphertext_length,
3693 plaintext, plaintext_size, plaintext_length );
3694
3695 if( status != PSA_SUCCESS && plaintext_size != 0 )
3696 memset( plaintext, 0, plaintext_size );
3697
3698 exit:
3699 psa_unlock_key_slot( slot );
3700
3701 return( status );
3702 }
3703
psa_validate_tag_length(psa_algorithm_t alg)3704 static psa_status_t psa_validate_tag_length( psa_algorithm_t alg ) {
3705 const uint8_t tag_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg );
3706
3707 switch( PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg, 0 ) )
3708 {
3709 #if defined(PSA_WANT_ALG_CCM)
3710 case PSA_ALG_AEAD_WITH_SHORTENED_TAG( PSA_ALG_CCM, 0 ):
3711 /* CCM allows the following tag lengths: 4, 6, 8, 10, 12, 14, 16.*/
3712 if( tag_len < 4 || tag_len > 16 || tag_len % 2 )
3713 return( PSA_ERROR_INVALID_ARGUMENT );
3714 break;
3715 #endif /* PSA_WANT_ALG_CCM */
3716
3717 #if defined(PSA_WANT_ALG_GCM)
3718 case PSA_ALG_AEAD_WITH_SHORTENED_TAG( PSA_ALG_GCM, 0 ):
3719 /* GCM allows the following tag lengths: 4, 8, 12, 13, 14, 15, 16. */
3720 if( tag_len != 4 && tag_len != 8 && ( tag_len < 12 || tag_len > 16 ) )
3721 return( PSA_ERROR_INVALID_ARGUMENT );
3722 break;
3723 #endif /* PSA_WANT_ALG_GCM */
3724
3725 #if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
3726 case PSA_ALG_AEAD_WITH_SHORTENED_TAG( PSA_ALG_CHACHA20_POLY1305, 0 ):
3727 /* We only support the default tag length. */
3728 if( tag_len != 16 )
3729 return( PSA_ERROR_INVALID_ARGUMENT );
3730 break;
3731 #endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
3732
3733 default:
3734 (void) tag_len;
3735 return( PSA_ERROR_NOT_SUPPORTED );
3736 }
3737 return( PSA_SUCCESS );
3738 }
3739
3740 /* Set the key for a multipart authenticated operation. */
psa_aead_setup(psa_aead_operation_t * operation,int is_encrypt,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3741 static psa_status_t psa_aead_setup( psa_aead_operation_t *operation,
3742 int is_encrypt,
3743 mbedtls_svc_key_id_t key,
3744 psa_algorithm_t alg )
3745 {
3746 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3747 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3748 psa_key_slot_t *slot = NULL;
3749 psa_key_usage_t key_usage = 0;
3750
3751 status = psa_aead_check_algorithm( alg );
3752 if( status != PSA_SUCCESS )
3753 goto exit;
3754
3755 if( operation->id != 0 )
3756 {
3757 status = PSA_ERROR_BAD_STATE;
3758 goto exit;
3759 }
3760
3761 if( operation->nonce_set || operation->lengths_set ||
3762 operation->ad_started || operation->body_started )
3763 {
3764 status = PSA_ERROR_BAD_STATE;
3765 goto exit;
3766 }
3767
3768 if( is_encrypt )
3769 key_usage = PSA_KEY_USAGE_ENCRYPT;
3770 else
3771 key_usage = PSA_KEY_USAGE_DECRYPT;
3772
3773 status = psa_get_and_lock_key_slot_with_policy( key, &slot, key_usage,
3774 alg );
3775 if( status != PSA_SUCCESS )
3776 goto exit;
3777
3778 psa_key_attributes_t attributes = {
3779 .core = slot->attr
3780 };
3781
3782 if( ( status = psa_validate_tag_length( alg ) ) != PSA_SUCCESS )
3783 goto exit;
3784
3785 if( is_encrypt )
3786 status = psa_driver_wrapper_aead_encrypt_setup( operation,
3787 &attributes,
3788 slot->key.data,
3789 slot->key.bytes,
3790 alg );
3791 else
3792 status = psa_driver_wrapper_aead_decrypt_setup( operation,
3793 &attributes,
3794 slot->key.data,
3795 slot->key.bytes,
3796 alg );
3797 if( status != PSA_SUCCESS )
3798 goto exit;
3799
3800 operation->key_type = psa_get_key_type( &attributes );
3801
3802 exit:
3803 unlock_status = psa_unlock_key_slot( slot );
3804
3805 if( status == PSA_SUCCESS )
3806 {
3807 status = unlock_status;
3808 operation->alg = psa_aead_get_base_algorithm( alg );
3809 operation->is_encrypt = is_encrypt;
3810 }
3811 else
3812 psa_aead_abort( operation );
3813
3814 return( status );
3815 }
3816
3817 /* Set the key for a multipart authenticated encryption operation. */
psa_aead_encrypt_setup(psa_aead_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3818 psa_status_t psa_aead_encrypt_setup( psa_aead_operation_t *operation,
3819 mbedtls_svc_key_id_t key,
3820 psa_algorithm_t alg )
3821 {
3822 return( psa_aead_setup( operation, 1, key, alg ) );
3823 }
3824
3825 /* Set the key for a multipart authenticated decryption operation. */
psa_aead_decrypt_setup(psa_aead_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3826 psa_status_t psa_aead_decrypt_setup( psa_aead_operation_t *operation,
3827 mbedtls_svc_key_id_t key,
3828 psa_algorithm_t alg )
3829 {
3830 return( psa_aead_setup( operation, 0, key, alg ) );
3831 }
3832
3833 /* Generate a random nonce / IV for multipart AEAD operation */
psa_aead_generate_nonce(psa_aead_operation_t * operation,uint8_t * nonce,size_t nonce_size,size_t * nonce_length)3834 psa_status_t psa_aead_generate_nonce( psa_aead_operation_t *operation,
3835 uint8_t *nonce,
3836 size_t nonce_size,
3837 size_t *nonce_length )
3838 {
3839 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3840 uint8_t local_nonce[PSA_AEAD_NONCE_MAX_SIZE];
3841 size_t required_nonce_size;
3842
3843 *nonce_length = 0;
3844
3845 if( operation->id == 0 )
3846 {
3847 status = PSA_ERROR_BAD_STATE;
3848 goto exit;
3849 }
3850
3851 if( operation->nonce_set || !operation->is_encrypt )
3852 {
3853 status = PSA_ERROR_BAD_STATE;
3854 goto exit;
3855 }
3856
3857 /* For CCM, this size may not be correct according to the PSA
3858 * specification. The PSA Crypto 1.0.1 specification states:
3859 *
3860 * CCM encodes the plaintext length pLen in L octets, with L the smallest
3861 * integer >= 2 where pLen < 2^(8L). The nonce length is then 15 - L bytes.
3862 *
3863 * However this restriction that L has to be the smallest integer is not
3864 * applied in practice, and it is not implementable here since the
3865 * plaintext length may or may not be known at this time. */
3866 required_nonce_size = PSA_AEAD_NONCE_LENGTH( operation->key_type,
3867 operation->alg );
3868 if( nonce_size < required_nonce_size )
3869 {
3870 status = PSA_ERROR_BUFFER_TOO_SMALL;
3871 goto exit;
3872 }
3873
3874 status = psa_generate_random( local_nonce, required_nonce_size );
3875 if( status != PSA_SUCCESS )
3876 goto exit;
3877
3878 status = psa_aead_set_nonce( operation, local_nonce, required_nonce_size );
3879
3880 exit:
3881 if( status == PSA_SUCCESS )
3882 {
3883 memcpy( nonce, local_nonce, required_nonce_size );
3884 *nonce_length = required_nonce_size;
3885 }
3886 else
3887 psa_aead_abort( operation );
3888
3889 return( status );
3890 }
3891
3892 /* Set the nonce for a multipart authenticated encryption or decryption
3893 operation.*/
psa_aead_set_nonce(psa_aead_operation_t * operation,const uint8_t * nonce,size_t nonce_length)3894 psa_status_t psa_aead_set_nonce( psa_aead_operation_t *operation,
3895 const uint8_t *nonce,
3896 size_t nonce_length )
3897 {
3898 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3899
3900 if( operation->id == 0 )
3901 {
3902 status = PSA_ERROR_BAD_STATE;
3903 goto exit;
3904 }
3905
3906 if( operation->nonce_set )
3907 {
3908 status = PSA_ERROR_BAD_STATE;
3909 goto exit;
3910 }
3911
3912 status = psa_aead_check_nonce_length( operation->alg, nonce_length );
3913 if( status != PSA_SUCCESS )
3914 {
3915 status = PSA_ERROR_INVALID_ARGUMENT;
3916 goto exit;
3917 }
3918
3919 status = psa_driver_wrapper_aead_set_nonce( operation, nonce,
3920 nonce_length );
3921
3922 exit:
3923 if( status == PSA_SUCCESS )
3924 operation->nonce_set = 1;
3925 else
3926 psa_aead_abort( operation );
3927
3928 return( status );
3929 }
3930
3931 /* Declare the lengths of the message and additional data for multipart AEAD. */
psa_aead_set_lengths(psa_aead_operation_t * operation,size_t ad_length,size_t plaintext_length)3932 psa_status_t psa_aead_set_lengths( psa_aead_operation_t *operation,
3933 size_t ad_length,
3934 size_t plaintext_length )
3935 {
3936 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3937
3938 if( operation->id == 0 )
3939 {
3940 status = PSA_ERROR_BAD_STATE;
3941 goto exit;
3942 }
3943
3944 if( operation->lengths_set || operation->ad_started ||
3945 operation->body_started )
3946 {
3947 status = PSA_ERROR_BAD_STATE;
3948 goto exit;
3949 }
3950
3951 switch(operation->alg)
3952 {
3953 #if defined(PSA_WANT_ALG_GCM)
3954 case PSA_ALG_GCM:
3955 /* Lengths can only be too large for GCM if size_t is bigger than 32
3956 * bits. Without the guard this code will generate warnings on 32bit
3957 * builds. */
3958 #if SIZE_MAX > UINT32_MAX
3959 if( (( uint64_t ) ad_length ) >> 61 != 0 ||
3960 (( uint64_t ) plaintext_length ) > 0xFFFFFFFE0ull )
3961 {
3962 status = PSA_ERROR_INVALID_ARGUMENT;
3963 goto exit;
3964 }
3965 #endif
3966 break;
3967 #endif /* PSA_WANT_ALG_GCM */
3968 #if defined(PSA_WANT_ALG_CCM)
3969 case PSA_ALG_CCM:
3970 if( ad_length > 0xFF00 )
3971 {
3972 status = PSA_ERROR_INVALID_ARGUMENT;
3973 goto exit;
3974 }
3975 break;
3976 #endif /* PSA_WANT_ALG_CCM */
3977 #if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
3978 case PSA_ALG_CHACHA20_POLY1305:
3979 /* No length restrictions for ChaChaPoly. */
3980 break;
3981 #endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
3982 default:
3983 break;
3984 }
3985
3986 status = psa_driver_wrapper_aead_set_lengths( operation, ad_length,
3987 plaintext_length );
3988
3989 exit:
3990 if( status == PSA_SUCCESS )
3991 {
3992 operation->ad_remaining = ad_length;
3993 operation->body_remaining = plaintext_length;
3994 operation->lengths_set = 1;
3995 }
3996 else
3997 psa_aead_abort( operation );
3998
3999 return( status );
4000 }
4001
4002 /* Pass additional data to an active multipart AEAD operation. */
psa_aead_update_ad(psa_aead_operation_t * operation,const uint8_t * input,size_t input_length)4003 psa_status_t psa_aead_update_ad( psa_aead_operation_t *operation,
4004 const uint8_t *input,
4005 size_t input_length )
4006 {
4007 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4008
4009 if( operation->id == 0 )
4010 {
4011 status = PSA_ERROR_BAD_STATE;
4012 goto exit;
4013 }
4014
4015 if( !operation->nonce_set || operation->body_started )
4016 {
4017 status = PSA_ERROR_BAD_STATE;
4018 goto exit;
4019 }
4020
4021 if( operation->lengths_set )
4022 {
4023 if( operation->ad_remaining < input_length )
4024 {
4025 status = PSA_ERROR_INVALID_ARGUMENT;
4026 goto exit;
4027 }
4028
4029 operation->ad_remaining -= input_length;
4030 }
4031 #if defined(PSA_WANT_ALG_CCM)
4032 else if( operation->alg == PSA_ALG_CCM )
4033 {
4034 status = PSA_ERROR_BAD_STATE;
4035 goto exit;
4036 }
4037 #endif /* PSA_WANT_ALG_CCM */
4038
4039 status = psa_driver_wrapper_aead_update_ad( operation, input,
4040 input_length );
4041
4042 exit:
4043 if( status == PSA_SUCCESS )
4044 operation->ad_started = 1;
4045 else
4046 psa_aead_abort( operation );
4047
4048 return( status );
4049 }
4050
4051 /* Encrypt or decrypt a message fragment in an active multipart AEAD
4052 operation.*/
psa_aead_update(psa_aead_operation_t * operation,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)4053 psa_status_t psa_aead_update( psa_aead_operation_t *operation,
4054 const uint8_t *input,
4055 size_t input_length,
4056 uint8_t *output,
4057 size_t output_size,
4058 size_t *output_length )
4059 {
4060 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4061
4062 *output_length = 0;
4063
4064 if( operation->id == 0 )
4065 {
4066 status = PSA_ERROR_BAD_STATE;
4067 goto exit;
4068 }
4069
4070 if( !operation->nonce_set )
4071 {
4072 status = PSA_ERROR_BAD_STATE;
4073 goto exit;
4074 }
4075
4076 if( operation->lengths_set )
4077 {
4078 /* Additional data length was supplied, but not all the additional
4079 data was supplied.*/
4080 if( operation->ad_remaining != 0 )
4081 {
4082 status = PSA_ERROR_INVALID_ARGUMENT;
4083 goto exit;
4084 }
4085
4086 /* Too much data provided. */
4087 if( operation->body_remaining < input_length )
4088 {
4089 status = PSA_ERROR_INVALID_ARGUMENT;
4090 goto exit;
4091 }
4092
4093 operation->body_remaining -= input_length;
4094 }
4095 #if defined(PSA_WANT_ALG_CCM)
4096 else if( operation->alg == PSA_ALG_CCM )
4097 {
4098 status = PSA_ERROR_BAD_STATE;
4099 goto exit;
4100 }
4101 #endif /* PSA_WANT_ALG_CCM */
4102
4103 status = psa_driver_wrapper_aead_update( operation, input, input_length,
4104 output, output_size,
4105 output_length );
4106
4107 exit:
4108 if( status == PSA_SUCCESS )
4109 operation->body_started = 1;
4110 else
4111 psa_aead_abort( operation );
4112
4113 return( status );
4114 }
4115
psa_aead_final_checks(const psa_aead_operation_t * operation)4116 static psa_status_t psa_aead_final_checks( const psa_aead_operation_t *operation )
4117 {
4118 if( operation->id == 0 || !operation->nonce_set )
4119 return( PSA_ERROR_BAD_STATE );
4120
4121 if( operation->lengths_set && ( operation->ad_remaining != 0 ||
4122 operation->body_remaining != 0 ) )
4123 return( PSA_ERROR_INVALID_ARGUMENT );
4124
4125 return( PSA_SUCCESS );
4126 }
4127
4128 /* Finish encrypting a message in a multipart AEAD operation. */
psa_aead_finish(psa_aead_operation_t * operation,uint8_t * ciphertext,size_t ciphertext_size,size_t * ciphertext_length,uint8_t * tag,size_t tag_size,size_t * tag_length)4129 psa_status_t psa_aead_finish( psa_aead_operation_t *operation,
4130 uint8_t *ciphertext,
4131 size_t ciphertext_size,
4132 size_t *ciphertext_length,
4133 uint8_t *tag,
4134 size_t tag_size,
4135 size_t *tag_length )
4136 {
4137 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4138
4139 *ciphertext_length = 0;
4140 *tag_length = tag_size;
4141
4142 status = psa_aead_final_checks( operation );
4143 if( status != PSA_SUCCESS )
4144 goto exit;
4145
4146 if( !operation->is_encrypt )
4147 {
4148 status = PSA_ERROR_BAD_STATE;
4149 goto exit;
4150 }
4151
4152 status = psa_driver_wrapper_aead_finish( operation, ciphertext,
4153 ciphertext_size,
4154 ciphertext_length,
4155 tag, tag_size, tag_length );
4156
4157 exit:
4158 /* In case the operation fails and the user fails to check for failure or
4159 * the zero tag size, make sure the tag is set to something implausible.
4160 * Even if the operation succeeds, make sure we clear the rest of the
4161 * buffer to prevent potential leakage of anything previously placed in
4162 * the same buffer.*/
4163 if( tag != NULL )
4164 {
4165 if( status != PSA_SUCCESS )
4166 memset( tag, '!', tag_size );
4167 else if( *tag_length < tag_size )
4168 memset( tag + *tag_length, '!', ( tag_size - *tag_length ) );
4169 }
4170
4171 psa_aead_abort( operation );
4172
4173 return( status );
4174 }
4175
4176 /* Finish authenticating and decrypting a message in a multipart AEAD
4177 operation.*/
psa_aead_verify(psa_aead_operation_t * operation,uint8_t * plaintext,size_t plaintext_size,size_t * plaintext_length,const uint8_t * tag,size_t tag_length)4178 psa_status_t psa_aead_verify( psa_aead_operation_t *operation,
4179 uint8_t *plaintext,
4180 size_t plaintext_size,
4181 size_t *plaintext_length,
4182 const uint8_t *tag,
4183 size_t tag_length )
4184 {
4185 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4186
4187 *plaintext_length = 0;
4188
4189 status = psa_aead_final_checks( operation );
4190 if( status != PSA_SUCCESS )
4191 goto exit;
4192
4193 if( operation->is_encrypt )
4194 {
4195 status = PSA_ERROR_BAD_STATE;
4196 goto exit;
4197 }
4198
4199 status = psa_driver_wrapper_aead_verify( operation, plaintext,
4200 plaintext_size,
4201 plaintext_length,
4202 tag, tag_length );
4203
4204 exit:
4205 psa_aead_abort( operation );
4206
4207 return( status );
4208 }
4209
4210 /* Abort an AEAD operation. */
psa_aead_abort(psa_aead_operation_t * operation)4211 psa_status_t psa_aead_abort( psa_aead_operation_t *operation )
4212 {
4213 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4214
4215 if( operation->id == 0 )
4216 {
4217 /* The object has (apparently) been initialized but it is not (yet)
4218 * in use. It's ok to call abort on such an object, and there's
4219 * nothing to do. */
4220 return( PSA_SUCCESS );
4221 }
4222
4223 status = psa_driver_wrapper_aead_abort( operation );
4224
4225 memset( operation, 0, sizeof( *operation ) );
4226
4227 return( status );
4228 }
4229
4230 /****************************************************************/
4231 /* Generators */
4232 /****************************************************************/
4233
4234 #if defined(BUILTIN_ALG_ANY_HKDF) || \
4235 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4236 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS) || \
4237 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
4238 #define AT_LEAST_ONE_BUILTIN_KDF
4239 #endif /* At least one builtin KDF */
4240
4241 #if defined(BUILTIN_ALG_ANY_HKDF) || \
4242 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4243 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_key_derivation_start_hmac(psa_mac_operation_t * operation,psa_algorithm_t hash_alg,const uint8_t * hmac_key,size_t hmac_key_length)4244 static psa_status_t psa_key_derivation_start_hmac(
4245 psa_mac_operation_t *operation,
4246 psa_algorithm_t hash_alg,
4247 const uint8_t *hmac_key,
4248 size_t hmac_key_length )
4249 {
4250 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4251 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
4252 psa_set_key_type( &attributes, PSA_KEY_TYPE_HMAC );
4253 psa_set_key_bits( &attributes, PSA_BYTES_TO_BITS( hmac_key_length ) );
4254 psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
4255
4256 operation->is_sign = 1;
4257 operation->mac_size = PSA_HASH_LENGTH( hash_alg );
4258
4259 status = psa_driver_wrapper_mac_sign_setup( operation,
4260 &attributes,
4261 hmac_key, hmac_key_length,
4262 PSA_ALG_HMAC( hash_alg ) );
4263
4264 psa_reset_key_attributes( &attributes );
4265 return( status );
4266 }
4267 #endif /* KDF algorithms reliant on HMAC */
4268
4269 #define HKDF_STATE_INIT 0 /* no input yet */
4270 #define HKDF_STATE_STARTED 1 /* got salt */
4271 #define HKDF_STATE_KEYED 2 /* got key */
4272 #define HKDF_STATE_OUTPUT 3 /* output started */
4273
psa_key_derivation_get_kdf_alg(const psa_key_derivation_operation_t * operation)4274 static psa_algorithm_t psa_key_derivation_get_kdf_alg(
4275 const psa_key_derivation_operation_t *operation )
4276 {
4277 if ( PSA_ALG_IS_KEY_AGREEMENT( operation->alg ) )
4278 return( PSA_ALG_KEY_AGREEMENT_GET_KDF( operation->alg ) );
4279 else
4280 return( operation->alg );
4281 }
4282
psa_key_derivation_abort(psa_key_derivation_operation_t * operation)4283 psa_status_t psa_key_derivation_abort( psa_key_derivation_operation_t *operation )
4284 {
4285 psa_status_t status = PSA_SUCCESS;
4286 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
4287 if( kdf_alg == 0 )
4288 {
4289 /* The object has (apparently) been initialized but it is not
4290 * in use. It's ok to call abort on such an object, and there's
4291 * nothing to do. */
4292 }
4293 else
4294 #if defined(BUILTIN_ALG_ANY_HKDF)
4295 if( PSA_ALG_IS_ANY_HKDF( kdf_alg ) )
4296 {
4297 mbedtls_free( operation->ctx.hkdf.info );
4298 status = psa_mac_abort( &operation->ctx.hkdf.hmac );
4299 }
4300 else
4301 #endif /* BUILTIN_ALG_ANY_HKDF */
4302 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4303 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4304 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4305 /* TLS-1.2 PSK-to-MS KDF uses the same core as TLS-1.2 PRF */
4306 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4307 {
4308 if( operation->ctx.tls12_prf.secret != NULL )
4309 {
4310 mbedtls_platform_zeroize( operation->ctx.tls12_prf.secret,
4311 operation->ctx.tls12_prf.secret_length );
4312 mbedtls_free( operation->ctx.tls12_prf.secret );
4313 }
4314
4315 if( operation->ctx.tls12_prf.seed != NULL )
4316 {
4317 mbedtls_platform_zeroize( operation->ctx.tls12_prf.seed,
4318 operation->ctx.tls12_prf.seed_length );
4319 mbedtls_free( operation->ctx.tls12_prf.seed );
4320 }
4321
4322 if( operation->ctx.tls12_prf.label != NULL )
4323 {
4324 mbedtls_platform_zeroize( operation->ctx.tls12_prf.label,
4325 operation->ctx.tls12_prf.label_length );
4326 mbedtls_free( operation->ctx.tls12_prf.label );
4327 }
4328
4329 if( operation->ctx.tls12_prf.other_secret != NULL )
4330 {
4331 mbedtls_platform_zeroize( operation->ctx.tls12_prf.other_secret,
4332 operation->ctx.tls12_prf.other_secret_length );
4333 mbedtls_free( operation->ctx.tls12_prf.other_secret );
4334 }
4335
4336 status = PSA_SUCCESS;
4337
4338 /* We leave the fields Ai and output_block to be erased safely by the
4339 * mbedtls_platform_zeroize() in the end of this function. */
4340 }
4341 else
4342 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
4343 * defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS) */
4344 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
4345 if( kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS )
4346 {
4347 mbedtls_platform_zeroize( operation->ctx.tls12_ecjpake_to_pms.data,
4348 sizeof( operation->ctx.tls12_ecjpake_to_pms.data ) );
4349 }
4350 else
4351 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS) */
4352 {
4353 status = PSA_ERROR_BAD_STATE;
4354 }
4355 mbedtls_platform_zeroize( operation, sizeof( *operation ) );
4356 return( status );
4357 }
4358
psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,size_t * capacity)4359 psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t *operation,
4360 size_t *capacity)
4361 {
4362 if( operation->alg == 0 )
4363 {
4364 /* This is a blank key derivation operation. */
4365 return( PSA_ERROR_BAD_STATE );
4366 }
4367
4368 *capacity = operation->capacity;
4369 return( PSA_SUCCESS );
4370 }
4371
psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,size_t capacity)4372 psa_status_t psa_key_derivation_set_capacity( psa_key_derivation_operation_t *operation,
4373 size_t capacity )
4374 {
4375 if( operation->alg == 0 )
4376 return( PSA_ERROR_BAD_STATE );
4377 if( capacity > operation->capacity )
4378 return( PSA_ERROR_INVALID_ARGUMENT );
4379 operation->capacity = capacity;
4380 return( PSA_SUCCESS );
4381 }
4382
4383 #if defined(BUILTIN_ALG_ANY_HKDF)
4384 /* Read some bytes from an HKDF-based operation. */
psa_key_derivation_hkdf_read(psa_hkdf_key_derivation_t * hkdf,psa_algorithm_t kdf_alg,uint8_t * output,size_t output_length)4385 static psa_status_t psa_key_derivation_hkdf_read( psa_hkdf_key_derivation_t *hkdf,
4386 psa_algorithm_t kdf_alg,
4387 uint8_t *output,
4388 size_t output_length )
4389 {
4390 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
4391 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4392 size_t hmac_output_length;
4393 psa_status_t status;
4394 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
4395 const uint8_t last_block = PSA_ALG_IS_HKDF_EXTRACT( kdf_alg ) ? 0 : 0xff;
4396 #else
4397 const uint8_t last_block = 0xff;
4398 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
4399
4400 if( hkdf->state < HKDF_STATE_KEYED ||
4401 ( !hkdf->info_set
4402 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
4403 && !PSA_ALG_IS_HKDF_EXTRACT( kdf_alg )
4404 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
4405 ) )
4406 return( PSA_ERROR_BAD_STATE );
4407 hkdf->state = HKDF_STATE_OUTPUT;
4408
4409 while( output_length != 0 )
4410 {
4411 /* Copy what remains of the current block */
4412 uint8_t n = hash_length - hkdf->offset_in_block;
4413 if( n > output_length )
4414 n = (uint8_t) output_length;
4415 memcpy( output, hkdf->output_block + hkdf->offset_in_block, n );
4416 output += n;
4417 output_length -= n;
4418 hkdf->offset_in_block += n;
4419 if( output_length == 0 )
4420 break;
4421 /* We can't be wanting more output after the last block, otherwise
4422 * the capacity check in psa_key_derivation_output_bytes() would have
4423 * prevented this call. It could happen only if the operation
4424 * object was corrupted or if this function is called directly
4425 * inside the library. */
4426 if( hkdf->block_number == last_block )
4427 return( PSA_ERROR_BAD_STATE );
4428
4429 /* We need a new block */
4430 ++hkdf->block_number;
4431 hkdf->offset_in_block = 0;
4432
4433 status = psa_key_derivation_start_hmac( &hkdf->hmac,
4434 hash_alg,
4435 hkdf->prk,
4436 hash_length );
4437 if( status != PSA_SUCCESS )
4438 return( status );
4439
4440 if( hkdf->block_number != 1 )
4441 {
4442 status = psa_mac_update( &hkdf->hmac,
4443 hkdf->output_block,
4444 hash_length );
4445 if( status != PSA_SUCCESS )
4446 return( status );
4447 }
4448 status = psa_mac_update( &hkdf->hmac,
4449 hkdf->info,
4450 hkdf->info_length );
4451 if( status != PSA_SUCCESS )
4452 return( status );
4453 status = psa_mac_update( &hkdf->hmac,
4454 &hkdf->block_number, 1 );
4455 if( status != PSA_SUCCESS )
4456 return( status );
4457 status = psa_mac_sign_finish( &hkdf->hmac,
4458 hkdf->output_block,
4459 sizeof( hkdf->output_block ),
4460 &hmac_output_length );
4461 if( status != PSA_SUCCESS )
4462 return( status );
4463 }
4464
4465 return( PSA_SUCCESS );
4466 }
4467 #endif /* BUILTIN_ALG_ANY_HKDF */
4468
4469 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4470 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_key_derivation_tls12_prf_generate_next_block(psa_tls12_prf_key_derivation_t * tls12_prf,psa_algorithm_t alg)4471 static psa_status_t psa_key_derivation_tls12_prf_generate_next_block(
4472 psa_tls12_prf_key_derivation_t *tls12_prf,
4473 psa_algorithm_t alg )
4474 {
4475 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( alg );
4476 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4477 psa_mac_operation_t hmac = PSA_MAC_OPERATION_INIT;
4478 size_t hmac_output_length;
4479 psa_status_t status, cleanup_status;
4480
4481 /* We can't be wanting more output after block 0xff, otherwise
4482 * the capacity check in psa_key_derivation_output_bytes() would have
4483 * prevented this call. It could happen only if the operation
4484 * object was corrupted or if this function is called directly
4485 * inside the library. */
4486 if( tls12_prf->block_number == 0xff )
4487 return( PSA_ERROR_CORRUPTION_DETECTED );
4488
4489 /* We need a new block */
4490 ++tls12_prf->block_number;
4491 tls12_prf->left_in_block = hash_length;
4492
4493 /* Recall the definition of the TLS-1.2-PRF from RFC 5246:
4494 *
4495 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
4496 *
4497 * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
4498 * HMAC_hash(secret, A(2) + seed) +
4499 * HMAC_hash(secret, A(3) + seed) + ...
4500 *
4501 * A(0) = seed
4502 * A(i) = HMAC_hash(secret, A(i-1))
4503 *
4504 * The `psa_tls12_prf_key_derivation` structure saves the block
4505 * `HMAC_hash(secret, A(i) + seed)` from which the output
4506 * is currently extracted as `output_block` and where i is
4507 * `block_number`.
4508 */
4509
4510 status = psa_key_derivation_start_hmac( &hmac,
4511 hash_alg,
4512 tls12_prf->secret,
4513 tls12_prf->secret_length );
4514 if( status != PSA_SUCCESS )
4515 goto cleanup;
4516
4517 /* Calculate A(i) where i = tls12_prf->block_number. */
4518 if( tls12_prf->block_number == 1 )
4519 {
4520 /* A(1) = HMAC_hash(secret, A(0)), where A(0) = seed. (The RFC overloads
4521 * the variable seed and in this instance means it in the context of the
4522 * P_hash function, where seed = label + seed.) */
4523 status = psa_mac_update( &hmac,
4524 tls12_prf->label,
4525 tls12_prf->label_length );
4526 if( status != PSA_SUCCESS )
4527 goto cleanup;
4528 status = psa_mac_update( &hmac,
4529 tls12_prf->seed,
4530 tls12_prf->seed_length );
4531 if( status != PSA_SUCCESS )
4532 goto cleanup;
4533 }
4534 else
4535 {
4536 /* A(i) = HMAC_hash(secret, A(i-1)) */
4537 status = psa_mac_update( &hmac, tls12_prf->Ai, hash_length );
4538 if( status != PSA_SUCCESS )
4539 goto cleanup;
4540 }
4541
4542 status = psa_mac_sign_finish( &hmac,
4543 tls12_prf->Ai, hash_length,
4544 &hmac_output_length );
4545 if( hmac_output_length != hash_length )
4546 status = PSA_ERROR_CORRUPTION_DETECTED;
4547 if( status != PSA_SUCCESS )
4548 goto cleanup;
4549
4550 /* Calculate HMAC_hash(secret, A(i) + label + seed). */
4551 status = psa_key_derivation_start_hmac( &hmac,
4552 hash_alg,
4553 tls12_prf->secret,
4554 tls12_prf->secret_length );
4555 if( status != PSA_SUCCESS )
4556 goto cleanup;
4557 status = psa_mac_update( &hmac, tls12_prf->Ai, hash_length );
4558 if( status != PSA_SUCCESS )
4559 goto cleanup;
4560 status = psa_mac_update( &hmac, tls12_prf->label, tls12_prf->label_length );
4561 if( status != PSA_SUCCESS )
4562 goto cleanup;
4563 status = psa_mac_update( &hmac, tls12_prf->seed, tls12_prf->seed_length );
4564 if( status != PSA_SUCCESS )
4565 goto cleanup;
4566 status = psa_mac_sign_finish( &hmac,
4567 tls12_prf->output_block, hash_length,
4568 &hmac_output_length );
4569 if( status != PSA_SUCCESS )
4570 goto cleanup;
4571
4572
4573 cleanup:
4574 cleanup_status = psa_mac_abort( &hmac );
4575 if( status == PSA_SUCCESS && cleanup_status != PSA_SUCCESS )
4576 status = cleanup_status;
4577
4578 return( status );
4579 }
4580
psa_key_derivation_tls12_prf_read(psa_tls12_prf_key_derivation_t * tls12_prf,psa_algorithm_t alg,uint8_t * output,size_t output_length)4581 static psa_status_t psa_key_derivation_tls12_prf_read(
4582 psa_tls12_prf_key_derivation_t *tls12_prf,
4583 psa_algorithm_t alg,
4584 uint8_t *output,
4585 size_t output_length )
4586 {
4587 psa_algorithm_t hash_alg = PSA_ALG_TLS12_PRF_GET_HASH( alg );
4588 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4589 psa_status_t status;
4590 uint8_t offset, length;
4591
4592 switch( tls12_prf->state )
4593 {
4594 case PSA_TLS12_PRF_STATE_LABEL_SET:
4595 tls12_prf->state = PSA_TLS12_PRF_STATE_OUTPUT;
4596 break;
4597 case PSA_TLS12_PRF_STATE_OUTPUT:
4598 break;
4599 default:
4600 return( PSA_ERROR_BAD_STATE );
4601 }
4602
4603 while( output_length != 0 )
4604 {
4605 /* Check if we have fully processed the current block. */
4606 if( tls12_prf->left_in_block == 0 )
4607 {
4608 status = psa_key_derivation_tls12_prf_generate_next_block( tls12_prf,
4609 alg );
4610 if( status != PSA_SUCCESS )
4611 return( status );
4612
4613 continue;
4614 }
4615
4616 if( tls12_prf->left_in_block > output_length )
4617 length = (uint8_t) output_length;
4618 else
4619 length = tls12_prf->left_in_block;
4620
4621 offset = hash_length - tls12_prf->left_in_block;
4622 memcpy( output, tls12_prf->output_block + offset, length );
4623 output += length;
4624 output_length -= length;
4625 tls12_prf->left_in_block -= length;
4626 }
4627
4628 return( PSA_SUCCESS );
4629 }
4630 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
4631 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4632
4633 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
psa_key_derivation_tls12_ecjpake_to_pms_read(psa_tls12_ecjpake_to_pms_t * ecjpake,uint8_t * output,size_t output_length)4634 static psa_status_t psa_key_derivation_tls12_ecjpake_to_pms_read(
4635 psa_tls12_ecjpake_to_pms_t *ecjpake,
4636 uint8_t *output,
4637 size_t output_length )
4638 {
4639 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4640 size_t output_size = 0;
4641
4642 if( output_length != 32 )
4643 return ( PSA_ERROR_INVALID_ARGUMENT );
4644
4645 status = psa_hash_compute( PSA_ALG_SHA_256, ecjpake->data,
4646 PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE, output, output_length,
4647 &output_size );
4648 if( status != PSA_SUCCESS )
4649 return ( status );
4650
4651 if( output_size != output_length )
4652 return ( PSA_ERROR_GENERIC_ERROR );
4653
4654 return ( PSA_SUCCESS );
4655 }
4656 #endif
4657
psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,uint8_t * output,size_t output_length)4658 psa_status_t psa_key_derivation_output_bytes(
4659 psa_key_derivation_operation_t *operation,
4660 uint8_t *output,
4661 size_t output_length )
4662 {
4663 psa_status_t status;
4664 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
4665
4666 if( operation->alg == 0 )
4667 {
4668 /* This is a blank operation. */
4669 return( PSA_ERROR_BAD_STATE );
4670 }
4671
4672 if( output_length > operation->capacity )
4673 {
4674 operation->capacity = 0;
4675 /* Go through the error path to wipe all confidential data now
4676 * that the operation object is useless. */
4677 status = PSA_ERROR_INSUFFICIENT_DATA;
4678 goto exit;
4679 }
4680 if( output_length == 0 && operation->capacity == 0 )
4681 {
4682 /* Edge case: this is a finished operation, and 0 bytes
4683 * were requested. The right error in this case could
4684 * be either INSUFFICIENT_CAPACITY or BAD_STATE. Return
4685 * INSUFFICIENT_CAPACITY, which is right for a finished
4686 * operation, for consistency with the case when
4687 * output_length > 0. */
4688 return( PSA_ERROR_INSUFFICIENT_DATA );
4689 }
4690 operation->capacity -= output_length;
4691
4692 #if defined(BUILTIN_ALG_ANY_HKDF)
4693 if( PSA_ALG_IS_ANY_HKDF( kdf_alg ) )
4694 {
4695 status = psa_key_derivation_hkdf_read( &operation->ctx.hkdf, kdf_alg,
4696 output, output_length );
4697 }
4698 else
4699 #endif /* BUILTIN_ALG_ANY_HKDF */
4700 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4701 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4702 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4703 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4704 {
4705 status = psa_key_derivation_tls12_prf_read( &operation->ctx.tls12_prf,
4706 kdf_alg, output,
4707 output_length );
4708 }
4709 else
4710 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
4711 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4712 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
4713 if( kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS )
4714 {
4715 status = psa_key_derivation_tls12_ecjpake_to_pms_read(
4716 &operation->ctx.tls12_ecjpake_to_pms, output, output_length );
4717 }
4718 else
4719 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
4720
4721 {
4722 (void) kdf_alg;
4723 return( PSA_ERROR_BAD_STATE );
4724 }
4725
4726 exit:
4727 if( status != PSA_SUCCESS )
4728 {
4729 /* Preserve the algorithm upon errors, but clear all sensitive state.
4730 * This allows us to differentiate between exhausted operations and
4731 * blank operations, so we can return PSA_ERROR_BAD_STATE on blank
4732 * operations. */
4733 psa_algorithm_t alg = operation->alg;
4734 psa_key_derivation_abort( operation );
4735 operation->alg = alg;
4736 memset( output, '!', output_length );
4737 }
4738 return( status );
4739 }
4740
4741 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
psa_des_set_key_parity(uint8_t * data,size_t data_size)4742 static void psa_des_set_key_parity( uint8_t *data, size_t data_size )
4743 {
4744 if( data_size >= 8 )
4745 mbedtls_des_key_set_parity( data );
4746 if( data_size >= 16 )
4747 mbedtls_des_key_set_parity( data + 8 );
4748 if( data_size >= 24 )
4749 mbedtls_des_key_set_parity( data + 16 );
4750 }
4751 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
4752
4753 /*
4754 * ECC keys on a Weierstrass elliptic curve require the generation
4755 * of a private key which is an integer
4756 * in the range [1, N - 1], where N is the boundary of the private key domain:
4757 * N is the prime p for Diffie-Hellman, or the order of the
4758 * curve’s base point for ECC.
4759 *
4760 * Let m be the bit size of N, such that 2^m > N >= 2^(m-1).
4761 * This function generates the private key using the following process:
4762 *
4763 * 1. Draw a byte string of length ceiling(m/8) bytes.
4764 * 2. If m is not a multiple of 8, set the most significant
4765 * (8 * ceiling(m/8) - m) bits of the first byte in the string to zero.
4766 * 3. Convert the string to integer k by decoding it as a big-endian byte string.
4767 * 4. If k > N - 2, discard the result and return to step 1.
4768 * 5. Output k + 1 as the private key.
4769 *
4770 * This method allows compliance to NIST standards, specifically the methods titled
4771 * Key-Pair Generation by Testing Candidates in the following publications:
4772 * - NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-Establishment
4773 * Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.6.1.1.4 for
4774 * Diffie-Hellman keys.
4775 *
4776 * - [SP800-56A] §5.6.1.2.2 or FIPS Publication 186-4: Digital Signature
4777 * Standard (DSS) [FIPS186-4] §B.4.2 for elliptic curve keys.
4778 *
4779 * Note: Function allocates memory for *data buffer, so given *data should be
4780 * always NULL.
4781 */
4782 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
4783 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) || \
4784 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
4785 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) || \
4786 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
psa_generate_derived_ecc_key_weierstrass_helper(psa_key_slot_t * slot,size_t bits,psa_key_derivation_operation_t * operation,uint8_t ** data)4787 static psa_status_t psa_generate_derived_ecc_key_weierstrass_helper(
4788 psa_key_slot_t *slot,
4789 size_t bits,
4790 psa_key_derivation_operation_t *operation,
4791 uint8_t **data
4792 )
4793 {
4794 unsigned key_out_of_range = 1;
4795 mbedtls_mpi k;
4796 mbedtls_mpi diff_N_2;
4797 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
4798 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4799
4800 mbedtls_mpi_init( &k );
4801 mbedtls_mpi_init( &diff_N_2 );
4802
4803 psa_ecc_family_t curve = PSA_KEY_TYPE_ECC_GET_FAMILY(
4804 slot->attr.type );
4805 mbedtls_ecp_group_id grp_id =
4806 mbedtls_ecc_group_of_psa( curve, bits, 0 );
4807
4808 if( grp_id == MBEDTLS_ECP_DP_NONE )
4809 {
4810 ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
4811 goto cleanup;
4812 }
4813
4814 mbedtls_ecp_group ecp_group;
4815 mbedtls_ecp_group_init( &ecp_group );
4816
4817 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &ecp_group, grp_id ) );
4818
4819 /* N is the boundary of the private key domain (ecp_group.N). */
4820 /* Let m be the bit size of N. */
4821 size_t m = ecp_group.nbits;
4822
4823 size_t m_bytes = PSA_BITS_TO_BYTES( m );
4824
4825 /* Calculate N - 2 - it will be needed later. */
4826 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &diff_N_2, &ecp_group.N, 2 ) );
4827
4828 /* Note: This function is always called with *data == NULL and it
4829 * allocates memory for the data buffer. */
4830 *data = mbedtls_calloc( 1, m_bytes );
4831 if( *data == NULL )
4832 {
4833 ret = MBEDTLS_ERR_ASN1_ALLOC_FAILED;
4834 goto cleanup;
4835 }
4836
4837 while( key_out_of_range )
4838 {
4839 /* 1. Draw a byte string of length ceiling(m/8) bytes. */
4840 if( ( status = psa_key_derivation_output_bytes( operation, *data, m_bytes ) ) != 0 )
4841 goto cleanup;
4842
4843 /* 2. If m is not a multiple of 8 */
4844 if( m % 8 != 0 )
4845 {
4846 /* Set the most significant
4847 * (8 * ceiling(m/8) - m) bits of the first byte in
4848 * the string to zero.
4849 */
4850 uint8_t clear_bit_mask = ( 1 << ( m % 8 ) ) - 1;
4851 (*data)[0] &= clear_bit_mask;
4852 }
4853
4854 /* 3. Convert the string to integer k by decoding it as a
4855 * big-endian byte string.
4856 */
4857 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &k, *data, m_bytes ) );
4858
4859 /* 4. If k > N - 2, discard the result and return to step 1.
4860 * Result of comparison is returned. When it indicates error
4861 * then this function is called again.
4862 */
4863 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( &diff_N_2, &k, &key_out_of_range ) );
4864 }
4865
4866 /* 5. Output k + 1 as the private key. */
4867 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &k, &k, 1 ) );
4868 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &k, *data, m_bytes ) );
4869 cleanup:
4870 if( ret != 0 )
4871 status = mbedtls_to_psa_error( ret );
4872 if( status != PSA_SUCCESS ) {
4873 mbedtls_free( *data );
4874 *data = NULL;
4875 }
4876 mbedtls_mpi_free( &k );
4877 mbedtls_mpi_free( &diff_N_2 );
4878 return( status );
4879 }
4880
4881 /* ECC keys on a Montgomery elliptic curve draws a byte string whose length
4882 * is determined by the curve, and sets the mandatory bits accordingly. That is:
4883 *
4884 * - Curve25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits):
4885 * draw a 32-byte string and process it as specified in
4886 * Elliptic Curves for Security [RFC7748] §5.
4887 *
4888 * - Curve448 (PSA_ECC_FAMILY_MONTGOMERY, 448 bits):
4889 * draw a 56-byte string and process it as specified in [RFC7748] §5.
4890 *
4891 * Note: Function allocates memory for *data buffer, so given *data should be
4892 * always NULL.
4893 */
4894
psa_generate_derived_ecc_key_montgomery_helper(size_t bits,psa_key_derivation_operation_t * operation,uint8_t ** data)4895 static psa_status_t psa_generate_derived_ecc_key_montgomery_helper(
4896 size_t bits,
4897 psa_key_derivation_operation_t *operation,
4898 uint8_t **data
4899 )
4900 {
4901 size_t output_length;
4902 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4903
4904 switch( bits )
4905 {
4906 case 255:
4907 output_length = 32;
4908 break;
4909 case 448:
4910 output_length = 56;
4911 break;
4912 default:
4913 return( PSA_ERROR_INVALID_ARGUMENT );
4914 break;
4915 }
4916
4917 *data = mbedtls_calloc( 1, output_length );
4918
4919 if( *data == NULL )
4920 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4921
4922 status = psa_key_derivation_output_bytes( operation, *data, output_length );
4923
4924 if( status != PSA_SUCCESS )
4925 return status;
4926
4927 switch( bits )
4928 {
4929 case 255:
4930 (*data)[0] &= 248;
4931 (*data)[31] &= 127;
4932 (*data)[31] |= 64;
4933 break;
4934 case 448:
4935 (*data)[0] &= 252;
4936 (*data)[55] |= 128;
4937 break;
4938 default:
4939 return( PSA_ERROR_CORRUPTION_DETECTED );
4940 break;
4941 }
4942
4943 return status;
4944 }
4945 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
4946 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) ||
4947 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
4948 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) ||
4949 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH) */
4950
psa_generate_derived_key_internal(psa_key_slot_t * slot,size_t bits,psa_key_derivation_operation_t * operation)4951 static psa_status_t psa_generate_derived_key_internal(
4952 psa_key_slot_t *slot,
4953 size_t bits,
4954 psa_key_derivation_operation_t *operation )
4955 {
4956 uint8_t *data = NULL;
4957 size_t bytes = PSA_BITS_TO_BYTES( bits );
4958 size_t storage_size = bytes;
4959 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4960
4961 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) )
4962 return( PSA_ERROR_INVALID_ARGUMENT );
4963
4964 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
4965 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) || \
4966 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
4967 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) || \
4968 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
4969 if( PSA_KEY_TYPE_IS_ECC( slot->attr.type ) )
4970 {
4971 psa_ecc_family_t curve = PSA_KEY_TYPE_ECC_GET_FAMILY( slot->attr.type );
4972 if( PSA_ECC_FAMILY_IS_WEIERSTRASS( curve ) )
4973 {
4974 /* Weierstrass elliptic curve */
4975 status = psa_generate_derived_ecc_key_weierstrass_helper( slot, bits, operation, &data );
4976 if( status != PSA_SUCCESS )
4977 goto exit;
4978 }
4979 else
4980 {
4981 /* Montgomery elliptic curve */
4982 status = psa_generate_derived_ecc_key_montgomery_helper( bits, operation, &data );
4983 if( status != PSA_SUCCESS )
4984 goto exit;
4985 }
4986 } else
4987 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
4988 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) ||
4989 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
4990 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) ||
4991 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH) */
4992 if( key_type_is_raw_bytes( slot->attr.type ) )
4993 {
4994 if( bits % 8 != 0 )
4995 return( PSA_ERROR_INVALID_ARGUMENT );
4996 data = mbedtls_calloc( 1, bytes );
4997 if( data == NULL )
4998 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4999
5000 status = psa_key_derivation_output_bytes( operation, data, bytes );
5001 if( status != PSA_SUCCESS )
5002 goto exit;
5003 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
5004 if( slot->attr.type == PSA_KEY_TYPE_DES )
5005 psa_des_set_key_parity( data, bytes );
5006 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES) */
5007 }
5008 else
5009 return( PSA_ERROR_NOT_SUPPORTED );
5010
5011 slot->attr.bits = (psa_key_bits_t) bits;
5012 psa_key_attributes_t attributes = {
5013 .core = slot->attr
5014 };
5015
5016 if( psa_key_lifetime_is_external( attributes.core.lifetime ) )
5017 {
5018 status = psa_driver_wrapper_get_key_buffer_size( &attributes,
5019 &storage_size );
5020 if( status != PSA_SUCCESS )
5021 goto exit;
5022 }
5023 status = psa_allocate_buffer_to_slot( slot, storage_size );
5024 if( status != PSA_SUCCESS )
5025 goto exit;
5026
5027 status = psa_driver_wrapper_import_key( &attributes,
5028 data, bytes,
5029 slot->key.data,
5030 slot->key.bytes,
5031 &slot->key.bytes, &bits );
5032 if( bits != slot->attr.bits )
5033 status = PSA_ERROR_INVALID_ARGUMENT;
5034
5035 exit:
5036 mbedtls_free( data );
5037 return( status );
5038 }
5039
psa_key_derivation_output_key(const psa_key_attributes_t * attributes,psa_key_derivation_operation_t * operation,mbedtls_svc_key_id_t * key)5040 psa_status_t psa_key_derivation_output_key( const psa_key_attributes_t *attributes,
5041 psa_key_derivation_operation_t *operation,
5042 mbedtls_svc_key_id_t *key )
5043 {
5044 psa_status_t status;
5045 psa_key_slot_t *slot = NULL;
5046 psa_se_drv_table_entry_t *driver = NULL;
5047
5048 *key = MBEDTLS_SVC_KEY_ID_INIT;
5049
5050 /* Reject any attempt to create a zero-length key so that we don't
5051 * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
5052 if( psa_get_key_bits( attributes ) == 0 )
5053 return( PSA_ERROR_INVALID_ARGUMENT );
5054
5055 if( operation->alg == PSA_ALG_NONE )
5056 return( PSA_ERROR_BAD_STATE );
5057
5058 if( ! operation->can_output_key )
5059 return( PSA_ERROR_NOT_PERMITTED );
5060
5061 status = psa_start_key_creation( PSA_KEY_CREATION_DERIVE, attributes,
5062 &slot, &driver );
5063 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
5064 if( driver != NULL )
5065 {
5066 /* Deriving a key in a secure element is not implemented yet. */
5067 status = PSA_ERROR_NOT_SUPPORTED;
5068 }
5069 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
5070 if( status == PSA_SUCCESS )
5071 {
5072 status = psa_generate_derived_key_internal( slot,
5073 attributes->core.bits,
5074 operation );
5075 }
5076 if( status == PSA_SUCCESS )
5077 status = psa_finish_key_creation( slot, driver, key );
5078 if( status != PSA_SUCCESS )
5079 psa_fail_key_creation( slot, driver );
5080
5081 return( status );
5082 }
5083
5084
5085
5086 /****************************************************************/
5087 /* Key derivation */
5088 /****************************************************************/
5089
5090 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
is_kdf_alg_supported(psa_algorithm_t kdf_alg)5091 static int is_kdf_alg_supported( psa_algorithm_t kdf_alg )
5092 {
5093 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
5094 if( PSA_ALG_IS_HKDF( kdf_alg ) )
5095 return( 1 );
5096 #endif
5097 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
5098 if( PSA_ALG_IS_HKDF_EXTRACT( kdf_alg ) )
5099 return( 1 );
5100 #endif
5101 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
5102 if( PSA_ALG_IS_HKDF_EXPAND( kdf_alg ) )
5103 return( 1 );
5104 #endif
5105 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
5106 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) )
5107 return( 1 );
5108 #endif
5109 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
5110 if( PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
5111 return( 1 );
5112 #endif
5113 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
5114 if( kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS )
5115 return( 1 );
5116 #endif
5117 return( 0 );
5118 }
5119
psa_hash_try_support(psa_algorithm_t alg)5120 static psa_status_t psa_hash_try_support( psa_algorithm_t alg )
5121 {
5122 psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
5123 psa_status_t status = psa_hash_setup( &operation, alg );
5124 psa_hash_abort( &operation );
5125 return( status );
5126 }
5127
psa_key_derivation_setup_kdf(psa_key_derivation_operation_t * operation,psa_algorithm_t kdf_alg)5128 static psa_status_t psa_key_derivation_setup_kdf(
5129 psa_key_derivation_operation_t *operation,
5130 psa_algorithm_t kdf_alg )
5131 {
5132 /* Make sure that operation->ctx is properly zero-initialised. (Macro
5133 * initialisers for this union leave some bytes unspecified.) */
5134 memset( &operation->ctx, 0, sizeof( operation->ctx ) );
5135
5136 /* Make sure that kdf_alg is a supported key derivation algorithm. */
5137 if( ! is_kdf_alg_supported( kdf_alg ) )
5138 return( PSA_ERROR_NOT_SUPPORTED );
5139
5140 /* All currently supported key derivation algorithms (apart from
5141 * ecjpake to pms) are based on a hash algorithm. */
5142 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
5143 size_t hash_size = PSA_HASH_LENGTH( hash_alg );
5144 if( kdf_alg != PSA_ALG_TLS12_ECJPAKE_TO_PMS )
5145 {
5146 if( hash_size == 0 )
5147 return( PSA_ERROR_NOT_SUPPORTED );
5148
5149 /* Make sure that hash_alg is a supported hash algorithm. Otherwise
5150 * we might fail later, which is somewhat unfriendly and potentially
5151 * risk-prone. */
5152 psa_status_t status = psa_hash_try_support( hash_alg );
5153 if( status != PSA_SUCCESS )
5154 return( status );
5155 }
5156 else
5157 {
5158 hash_size = PSA_HASH_LENGTH( PSA_ALG_SHA_256 );
5159 }
5160
5161 if( ( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
5162 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) ) &&
5163 ! ( hash_alg == PSA_ALG_SHA_256 || hash_alg == PSA_ALG_SHA_384 ) )
5164 {
5165 return( PSA_ERROR_NOT_SUPPORTED );
5166 }
5167 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT) || \
5168 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
5169 if( PSA_ALG_IS_HKDF_EXTRACT( kdf_alg ) ||
5170 ( kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS ) )
5171 operation->capacity = hash_size;
5172 else
5173 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT ||
5174 MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
5175 operation->capacity = 255 * hash_size;
5176 return( PSA_SUCCESS );
5177 }
5178
psa_key_agreement_try_support(psa_algorithm_t alg)5179 static psa_status_t psa_key_agreement_try_support( psa_algorithm_t alg )
5180 {
5181 #if defined(PSA_WANT_ALG_ECDH)
5182 if( alg == PSA_ALG_ECDH )
5183 return( PSA_SUCCESS );
5184 #endif
5185 (void) alg;
5186 return( PSA_ERROR_NOT_SUPPORTED );
5187 }
5188 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
5189
psa_key_derivation_setup(psa_key_derivation_operation_t * operation,psa_algorithm_t alg)5190 psa_status_t psa_key_derivation_setup( psa_key_derivation_operation_t *operation,
5191 psa_algorithm_t alg )
5192 {
5193 psa_status_t status;
5194
5195 if( operation->alg != 0 )
5196 return( PSA_ERROR_BAD_STATE );
5197
5198 if( PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
5199 return( PSA_ERROR_INVALID_ARGUMENT );
5200 else if( PSA_ALG_IS_KEY_AGREEMENT( alg ) )
5201 {
5202 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
5203 psa_algorithm_t kdf_alg = PSA_ALG_KEY_AGREEMENT_GET_KDF( alg );
5204 psa_algorithm_t ka_alg = PSA_ALG_KEY_AGREEMENT_GET_BASE( alg );
5205 status = psa_key_agreement_try_support( ka_alg );
5206 if( status != PSA_SUCCESS )
5207 return( status );
5208 status = psa_key_derivation_setup_kdf( operation, kdf_alg );
5209 #else
5210 return( PSA_ERROR_NOT_SUPPORTED );
5211 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
5212 }
5213 else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
5214 {
5215 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
5216 status = psa_key_derivation_setup_kdf( operation, alg );
5217 #else
5218 return( PSA_ERROR_NOT_SUPPORTED );
5219 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
5220 }
5221 else
5222 return( PSA_ERROR_INVALID_ARGUMENT );
5223
5224 if( status == PSA_SUCCESS )
5225 operation->alg = alg;
5226 return( status );
5227 }
5228
5229 #if defined(BUILTIN_ALG_ANY_HKDF)
psa_hkdf_input(psa_hkdf_key_derivation_t * hkdf,psa_algorithm_t kdf_alg,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5230 static psa_status_t psa_hkdf_input( psa_hkdf_key_derivation_t *hkdf,
5231 psa_algorithm_t kdf_alg,
5232 psa_key_derivation_step_t step,
5233 const uint8_t *data,
5234 size_t data_length )
5235 {
5236 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
5237 psa_status_t status;
5238 switch( step )
5239 {
5240 case PSA_KEY_DERIVATION_INPUT_SALT:
5241 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
5242 if( PSA_ALG_IS_HKDF_EXPAND( kdf_alg ) )
5243 return( PSA_ERROR_INVALID_ARGUMENT );
5244 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND */
5245 if( hkdf->state != HKDF_STATE_INIT )
5246 return( PSA_ERROR_BAD_STATE );
5247 else
5248 {
5249 status = psa_key_derivation_start_hmac( &hkdf->hmac,
5250 hash_alg,
5251 data, data_length );
5252 if( status != PSA_SUCCESS )
5253 return( status );
5254 hkdf->state = HKDF_STATE_STARTED;
5255 return( PSA_SUCCESS );
5256 }
5257 case PSA_KEY_DERIVATION_INPUT_SECRET:
5258 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
5259 if( PSA_ALG_IS_HKDF_EXPAND( kdf_alg ) )
5260 {
5261 /* We shouldn't be in different state as HKDF_EXPAND only allows
5262 * two inputs: SECRET (this case) and INFO which does not modify
5263 * the state. It could happen only if the hkdf
5264 * object was corrupted. */
5265 if( hkdf->state != HKDF_STATE_INIT )
5266 return( PSA_ERROR_BAD_STATE );
5267
5268 /* Allow only input that fits expected prk size */
5269 if( data_length != PSA_HASH_LENGTH( hash_alg ) )
5270 return( PSA_ERROR_INVALID_ARGUMENT );
5271
5272 memcpy( hkdf->prk, data, data_length );
5273 }
5274 else
5275 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND */
5276 {
5277 /* HKDF: If no salt was provided, use an empty salt.
5278 * HKDF-EXTRACT: salt is mandatory. */
5279 if( hkdf->state == HKDF_STATE_INIT )
5280 {
5281 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
5282 if( PSA_ALG_IS_HKDF_EXTRACT( kdf_alg ) )
5283 return( PSA_ERROR_BAD_STATE );
5284 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
5285 status = psa_key_derivation_start_hmac( &hkdf->hmac,
5286 hash_alg,
5287 NULL, 0 );
5288 if( status != PSA_SUCCESS )
5289 return( status );
5290 hkdf->state = HKDF_STATE_STARTED;
5291 }
5292 if( hkdf->state != HKDF_STATE_STARTED )
5293 return( PSA_ERROR_BAD_STATE );
5294 status = psa_mac_update( &hkdf->hmac,
5295 data, data_length );
5296 if( status != PSA_SUCCESS )
5297 return( status );
5298 status = psa_mac_sign_finish( &hkdf->hmac,
5299 hkdf->prk,
5300 sizeof( hkdf->prk ),
5301 &data_length );
5302 if( status != PSA_SUCCESS )
5303 return( status );
5304 }
5305
5306 hkdf->state = HKDF_STATE_KEYED;
5307 hkdf->block_number = 0;
5308 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
5309 if( PSA_ALG_IS_HKDF_EXTRACT( kdf_alg ) )
5310 {
5311 /* The only block of output is the PRK. */
5312 memcpy( hkdf->output_block, hkdf->prk, PSA_HASH_LENGTH( hash_alg ) );
5313 hkdf->offset_in_block = 0;
5314 }
5315 else
5316 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
5317 {
5318 /* Block 0 is empty, and the next block will be
5319 * generated by psa_key_derivation_hkdf_read(). */
5320 hkdf->offset_in_block = PSA_HASH_LENGTH( hash_alg );
5321 }
5322
5323 return( PSA_SUCCESS );
5324 case PSA_KEY_DERIVATION_INPUT_INFO:
5325 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
5326 if( PSA_ALG_IS_HKDF_EXTRACT( kdf_alg ) )
5327 return( PSA_ERROR_INVALID_ARGUMENT );
5328 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
5329 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
5330 if( PSA_ALG_IS_HKDF_EXPAND( kdf_alg ) &&
5331 hkdf->state == HKDF_STATE_INIT )
5332 return( PSA_ERROR_BAD_STATE );
5333 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
5334 if( hkdf->state == HKDF_STATE_OUTPUT )
5335 return( PSA_ERROR_BAD_STATE );
5336 if( hkdf->info_set )
5337 return( PSA_ERROR_BAD_STATE );
5338 hkdf->info_length = data_length;
5339 if( data_length != 0 )
5340 {
5341 hkdf->info = mbedtls_calloc( 1, data_length );
5342 if( hkdf->info == NULL )
5343 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5344 memcpy( hkdf->info, data, data_length );
5345 }
5346 hkdf->info_set = 1;
5347 return( PSA_SUCCESS );
5348 default:
5349 return( PSA_ERROR_INVALID_ARGUMENT );
5350 }
5351 }
5352 #endif /* BUILTIN_ALG_ANY_HKDF */
5353
5354 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
5355 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_tls12_prf_set_seed(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5356 static psa_status_t psa_tls12_prf_set_seed( psa_tls12_prf_key_derivation_t *prf,
5357 const uint8_t *data,
5358 size_t data_length )
5359 {
5360 if( prf->state != PSA_TLS12_PRF_STATE_INIT )
5361 return( PSA_ERROR_BAD_STATE );
5362
5363 if( data_length != 0 )
5364 {
5365 prf->seed = mbedtls_calloc( 1, data_length );
5366 if( prf->seed == NULL )
5367 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5368
5369 memcpy( prf->seed, data, data_length );
5370 prf->seed_length = data_length;
5371 }
5372
5373 prf->state = PSA_TLS12_PRF_STATE_SEED_SET;
5374
5375 return( PSA_SUCCESS );
5376 }
5377
psa_tls12_prf_set_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5378 static psa_status_t psa_tls12_prf_set_key( psa_tls12_prf_key_derivation_t *prf,
5379 const uint8_t *data,
5380 size_t data_length )
5381 {
5382 if( prf->state != PSA_TLS12_PRF_STATE_SEED_SET &&
5383 prf->state != PSA_TLS12_PRF_STATE_OTHER_KEY_SET )
5384 return( PSA_ERROR_BAD_STATE );
5385
5386 if( data_length != 0 )
5387 {
5388 prf->secret = mbedtls_calloc( 1, data_length );
5389 if( prf->secret == NULL )
5390 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5391
5392 memcpy( prf->secret, data, data_length );
5393 prf->secret_length = data_length;
5394 }
5395
5396 prf->state = PSA_TLS12_PRF_STATE_KEY_SET;
5397
5398 return( PSA_SUCCESS );
5399 }
5400
psa_tls12_prf_set_label(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5401 static psa_status_t psa_tls12_prf_set_label( psa_tls12_prf_key_derivation_t *prf,
5402 const uint8_t *data,
5403 size_t data_length )
5404 {
5405 if( prf->state != PSA_TLS12_PRF_STATE_KEY_SET )
5406 return( PSA_ERROR_BAD_STATE );
5407
5408 if( data_length != 0 )
5409 {
5410 prf->label = mbedtls_calloc( 1, data_length );
5411 if( prf->label == NULL )
5412 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5413
5414 memcpy( prf->label, data, data_length );
5415 prf->label_length = data_length;
5416 }
5417
5418 prf->state = PSA_TLS12_PRF_STATE_LABEL_SET;
5419
5420 return( PSA_SUCCESS );
5421 }
5422
psa_tls12_prf_input(psa_tls12_prf_key_derivation_t * prf,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5423 static psa_status_t psa_tls12_prf_input( psa_tls12_prf_key_derivation_t *prf,
5424 psa_key_derivation_step_t step,
5425 const uint8_t *data,
5426 size_t data_length )
5427 {
5428 switch( step )
5429 {
5430 case PSA_KEY_DERIVATION_INPUT_SEED:
5431 return( psa_tls12_prf_set_seed( prf, data, data_length ) );
5432 case PSA_KEY_DERIVATION_INPUT_SECRET:
5433 return( psa_tls12_prf_set_key( prf, data, data_length ) );
5434 case PSA_KEY_DERIVATION_INPUT_LABEL:
5435 return( psa_tls12_prf_set_label( prf, data, data_length ) );
5436 default:
5437 return( PSA_ERROR_INVALID_ARGUMENT );
5438 }
5439 }
5440 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
5441 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
5442
5443 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_tls12_prf_psk_to_ms_set_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5444 static psa_status_t psa_tls12_prf_psk_to_ms_set_key(
5445 psa_tls12_prf_key_derivation_t *prf,
5446 const uint8_t *data,
5447 size_t data_length )
5448 {
5449 psa_status_t status;
5450 const size_t pms_len = ( prf->state == PSA_TLS12_PRF_STATE_OTHER_KEY_SET ?
5451 4 + data_length + prf->other_secret_length :
5452 4 + 2 * data_length );
5453
5454 if( data_length > PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE )
5455 return( PSA_ERROR_INVALID_ARGUMENT );
5456
5457 uint8_t *pms = mbedtls_calloc( 1, pms_len );
5458 if( pms == NULL )
5459 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5460 uint8_t *cur = pms;
5461
5462 /* pure-PSK:
5463 * Quoting RFC 4279, Section 2:
5464 *
5465 * The premaster secret is formed as follows: if the PSK is N octets
5466 * long, concatenate a uint16 with the value N, N zero octets, a second
5467 * uint16 with the value N, and the PSK itself.
5468 *
5469 * mixed-PSK:
5470 * In a DHE-PSK, RSA-PSK, ECDHE-PSK the premaster secret is formed as
5471 * follows: concatenate a uint16 with the length of the other secret,
5472 * the other secret itself, uint16 with the length of PSK, and the
5473 * PSK itself.
5474 * For details please check:
5475 * - RFC 4279, Section 4 for the definition of RSA-PSK,
5476 * - RFC 4279, Section 3 for the definition of DHE-PSK,
5477 * - RFC 5489 for the definition of ECDHE-PSK.
5478 */
5479
5480 if( prf->state == PSA_TLS12_PRF_STATE_OTHER_KEY_SET )
5481 {
5482 *cur++ = MBEDTLS_BYTE_1( prf->other_secret_length );
5483 *cur++ = MBEDTLS_BYTE_0( prf->other_secret_length );
5484 if( prf->other_secret_length != 0 )
5485 {
5486 memcpy( cur, prf->other_secret, prf->other_secret_length );
5487 mbedtls_platform_zeroize( prf->other_secret, prf->other_secret_length );
5488 cur += prf->other_secret_length;
5489 }
5490 }
5491 else
5492 {
5493 *cur++ = MBEDTLS_BYTE_1( data_length );
5494 *cur++ = MBEDTLS_BYTE_0( data_length );
5495 memset( cur, 0, data_length );
5496 cur += data_length;
5497 }
5498
5499 *cur++ = MBEDTLS_BYTE_1( data_length );
5500 *cur++ = MBEDTLS_BYTE_0( data_length );
5501 memcpy( cur, data, data_length );
5502 cur += data_length;
5503
5504 status = psa_tls12_prf_set_key( prf, pms, cur - pms );
5505
5506 mbedtls_platform_zeroize( pms, pms_len );
5507 mbedtls_free( pms );
5508 return( status );
5509 }
5510
psa_tls12_prf_psk_to_ms_set_other_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5511 static psa_status_t psa_tls12_prf_psk_to_ms_set_other_key(
5512 psa_tls12_prf_key_derivation_t *prf,
5513 const uint8_t *data,
5514 size_t data_length )
5515 {
5516 if( prf->state != PSA_TLS12_PRF_STATE_SEED_SET )
5517 return( PSA_ERROR_BAD_STATE );
5518
5519 if( data_length != 0 )
5520 {
5521 prf->other_secret = mbedtls_calloc( 1, data_length );
5522 if( prf->other_secret == NULL )
5523 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5524
5525 memcpy( prf->other_secret, data, data_length );
5526 prf->other_secret_length = data_length;
5527 }
5528 else
5529 {
5530 prf->other_secret_length = 0;
5531 }
5532
5533 prf->state = PSA_TLS12_PRF_STATE_OTHER_KEY_SET;
5534
5535 return( PSA_SUCCESS );
5536 }
5537
psa_tls12_prf_psk_to_ms_input(psa_tls12_prf_key_derivation_t * prf,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5538 static psa_status_t psa_tls12_prf_psk_to_ms_input(
5539 psa_tls12_prf_key_derivation_t *prf,
5540 psa_key_derivation_step_t step,
5541 const uint8_t *data,
5542 size_t data_length )
5543 {
5544 switch( step )
5545 {
5546 case PSA_KEY_DERIVATION_INPUT_SECRET:
5547 return( psa_tls12_prf_psk_to_ms_set_key( prf,
5548 data, data_length ) );
5549 break;
5550 case PSA_KEY_DERIVATION_INPUT_OTHER_SECRET:
5551 return( psa_tls12_prf_psk_to_ms_set_other_key( prf,
5552 data,
5553 data_length ) );
5554 break;
5555 default:
5556 return( psa_tls12_prf_input( prf, step, data, data_length ) );
5557 break;
5558
5559 }
5560 }
5561 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
5562
5563 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
psa_tls12_ecjpake_to_pms_input(psa_tls12_ecjpake_to_pms_t * ecjpake,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5564 static psa_status_t psa_tls12_ecjpake_to_pms_input(
5565 psa_tls12_ecjpake_to_pms_t *ecjpake,
5566 psa_key_derivation_step_t step,
5567 const uint8_t *data,
5568 size_t data_length )
5569 {
5570 if( data_length != PSA_TLS12_ECJPAKE_TO_PMS_INPUT_SIZE ||
5571 step != PSA_KEY_DERIVATION_INPUT_SECRET )
5572 {
5573 return( PSA_ERROR_INVALID_ARGUMENT );
5574 }
5575
5576 /* Check if the passed point is in an uncompressed form */
5577 if( data[0] != 0x04 )
5578 return( PSA_ERROR_INVALID_ARGUMENT );
5579
5580 /* Only K.X has to be extracted - bytes 1 to 32 inclusive. */
5581 memcpy( ecjpake->data, data + 1, PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE );
5582
5583 return( PSA_SUCCESS );
5584 }
5585 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
5586 /** Check whether the given key type is acceptable for the given
5587 * input step of a key derivation.
5588 *
5589 * Secret inputs must have the type #PSA_KEY_TYPE_DERIVE.
5590 * Non-secret inputs must have the type #PSA_KEY_TYPE_RAW_DATA.
5591 * Both secret and non-secret inputs can alternatively have the type
5592 * #PSA_KEY_TYPE_NONE, which is never the type of a key object, meaning
5593 * that the input was passed as a buffer rather than via a key object.
5594 */
psa_key_derivation_check_input_type(psa_key_derivation_step_t step,psa_key_type_t key_type)5595 static int psa_key_derivation_check_input_type(
5596 psa_key_derivation_step_t step,
5597 psa_key_type_t key_type )
5598 {
5599 switch( step )
5600 {
5601 case PSA_KEY_DERIVATION_INPUT_SECRET:
5602 if( key_type == PSA_KEY_TYPE_DERIVE )
5603 return( PSA_SUCCESS );
5604 if( key_type == PSA_KEY_TYPE_NONE )
5605 return( PSA_SUCCESS );
5606 break;
5607 case PSA_KEY_DERIVATION_INPUT_OTHER_SECRET:
5608 if( key_type == PSA_KEY_TYPE_DERIVE )
5609 return( PSA_SUCCESS );
5610 if( key_type == PSA_KEY_TYPE_NONE )
5611 return( PSA_SUCCESS );
5612 break;
5613 case PSA_KEY_DERIVATION_INPUT_LABEL:
5614 case PSA_KEY_DERIVATION_INPUT_SALT:
5615 case PSA_KEY_DERIVATION_INPUT_INFO:
5616 case PSA_KEY_DERIVATION_INPUT_SEED:
5617 if( key_type == PSA_KEY_TYPE_RAW_DATA )
5618 return( PSA_SUCCESS );
5619 if( key_type == PSA_KEY_TYPE_NONE )
5620 return( PSA_SUCCESS );
5621 break;
5622 }
5623 return( PSA_ERROR_INVALID_ARGUMENT );
5624 }
5625
psa_key_derivation_input_internal(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,psa_key_type_t key_type,const uint8_t * data,size_t data_length)5626 static psa_status_t psa_key_derivation_input_internal(
5627 psa_key_derivation_operation_t *operation,
5628 psa_key_derivation_step_t step,
5629 psa_key_type_t key_type,
5630 const uint8_t *data,
5631 size_t data_length )
5632 {
5633 psa_status_t status;
5634 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
5635
5636 status = psa_key_derivation_check_input_type( step, key_type );
5637 if( status != PSA_SUCCESS )
5638 goto exit;
5639
5640 #if defined(BUILTIN_ALG_ANY_HKDF)
5641 if( PSA_ALG_IS_ANY_HKDF( kdf_alg ) )
5642 {
5643 status = psa_hkdf_input( &operation->ctx.hkdf, kdf_alg,
5644 step, data, data_length );
5645 }
5646 else
5647 #endif /* BUILTIN_ALG_ANY_HKDF */
5648 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
5649 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) )
5650 {
5651 status = psa_tls12_prf_input( &operation->ctx.tls12_prf,
5652 step, data, data_length );
5653 }
5654 else
5655 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF */
5656 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
5657 if( PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
5658 {
5659 status = psa_tls12_prf_psk_to_ms_input( &operation->ctx.tls12_prf,
5660 step, data, data_length );
5661 }
5662 else
5663 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
5664 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
5665 if( kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS )
5666 {
5667 status = psa_tls12_ecjpake_to_pms_input(
5668 &operation->ctx.tls12_ecjpake_to_pms, step, data, data_length );
5669 }
5670 else
5671 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
5672 {
5673 /* This can't happen unless the operation object was not initialized */
5674 (void) data;
5675 (void) data_length;
5676 (void) kdf_alg;
5677 return( PSA_ERROR_BAD_STATE );
5678 }
5679
5680 exit:
5681 if( status != PSA_SUCCESS )
5682 psa_key_derivation_abort( operation );
5683 return( status );
5684 }
5685
psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5686 psa_status_t psa_key_derivation_input_bytes(
5687 psa_key_derivation_operation_t *operation,
5688 psa_key_derivation_step_t step,
5689 const uint8_t *data,
5690 size_t data_length )
5691 {
5692 return( psa_key_derivation_input_internal( operation, step,
5693 PSA_KEY_TYPE_NONE,
5694 data, data_length ) );
5695 }
5696
psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,mbedtls_svc_key_id_t key)5697 psa_status_t psa_key_derivation_input_key(
5698 psa_key_derivation_operation_t *operation,
5699 psa_key_derivation_step_t step,
5700 mbedtls_svc_key_id_t key )
5701 {
5702 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5703 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
5704 psa_key_slot_t *slot;
5705
5706 status = psa_get_and_lock_transparent_key_slot_with_policy(
5707 key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg );
5708 if( status != PSA_SUCCESS )
5709 {
5710 psa_key_derivation_abort( operation );
5711 return( status );
5712 }
5713
5714 /* Passing a key object as a SECRET input unlocks the permission
5715 * to output to a key object. */
5716 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
5717 operation->can_output_key = 1;
5718
5719 status = psa_key_derivation_input_internal( operation,
5720 step, slot->attr.type,
5721 slot->key.data,
5722 slot->key.bytes );
5723
5724 unlock_status = psa_unlock_key_slot( slot );
5725
5726 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
5727 }
5728
5729
5730
5731 /****************************************************************/
5732 /* Key agreement */
5733 /****************************************************************/
5734
psa_key_agreement_raw_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * peer_key,size_t peer_key_length,uint8_t * shared_secret,size_t shared_secret_size,size_t * shared_secret_length)5735 psa_status_t psa_key_agreement_raw_builtin( const psa_key_attributes_t *attributes,
5736 const uint8_t *key_buffer,
5737 size_t key_buffer_size,
5738 psa_algorithm_t alg,
5739 const uint8_t *peer_key,
5740 size_t peer_key_length,
5741 uint8_t *shared_secret,
5742 size_t shared_secret_size,
5743 size_t *shared_secret_length )
5744 {
5745 switch( alg )
5746 {
5747 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
5748 case PSA_ALG_ECDH:
5749 return( mbedtls_psa_key_agreement_ecdh( attributes, key_buffer,
5750 key_buffer_size, alg,
5751 peer_key, peer_key_length,
5752 shared_secret,
5753 shared_secret_size,
5754 shared_secret_length ) );
5755 #endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
5756 default:
5757 (void) attributes;
5758 (void) key_buffer;
5759 (void) key_buffer_size;
5760 (void) peer_key;
5761 (void) peer_key_length;
5762 (void) shared_secret;
5763 (void) shared_secret_size;
5764 (void) shared_secret_length;
5765 return( PSA_ERROR_NOT_SUPPORTED );
5766 }
5767 }
5768
5769 /** Internal function for raw key agreement
5770 * Calls the driver wrapper which will hand off key agreement task
5771 * to the driver's implementation if a driver is present.
5772 * Fallback specified in the driver wrapper is built-in raw key agreement
5773 * (psa_key_agreement_raw_builtin).
5774 */
psa_key_agreement_raw_internal(psa_algorithm_t alg,psa_key_slot_t * private_key,const uint8_t * peer_key,size_t peer_key_length,uint8_t * shared_secret,size_t shared_secret_size,size_t * shared_secret_length)5775 static psa_status_t psa_key_agreement_raw_internal( psa_algorithm_t alg,
5776 psa_key_slot_t *private_key,
5777 const uint8_t *peer_key,
5778 size_t peer_key_length,
5779 uint8_t *shared_secret,
5780 size_t shared_secret_size,
5781 size_t *shared_secret_length )
5782 {
5783 if( !PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
5784 return( PSA_ERROR_NOT_SUPPORTED );
5785
5786 psa_key_attributes_t attributes = {
5787 .core = private_key->attr
5788 };
5789
5790 return( psa_driver_wrapper_key_agreement( &attributes,
5791 private_key->key.data,
5792 private_key->key.bytes, alg,
5793 peer_key, peer_key_length,
5794 shared_secret,
5795 shared_secret_size,
5796 shared_secret_length ) );
5797 }
5798
5799 /* Note that if this function fails, you must call psa_key_derivation_abort()
5800 * to potentially free embedded data structures and wipe confidential data.
5801 */
psa_key_agreement_internal(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,psa_key_slot_t * private_key,const uint8_t * peer_key,size_t peer_key_length)5802 static psa_status_t psa_key_agreement_internal( psa_key_derivation_operation_t *operation,
5803 psa_key_derivation_step_t step,
5804 psa_key_slot_t *private_key,
5805 const uint8_t *peer_key,
5806 size_t peer_key_length )
5807 {
5808 psa_status_t status;
5809 uint8_t shared_secret[PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE];
5810 size_t shared_secret_length = 0;
5811 psa_algorithm_t ka_alg = PSA_ALG_KEY_AGREEMENT_GET_BASE( operation->alg );
5812
5813 /* Step 1: run the secret agreement algorithm to generate the shared
5814 * secret. */
5815 status = psa_key_agreement_raw_internal( ka_alg,
5816 private_key,
5817 peer_key, peer_key_length,
5818 shared_secret,
5819 sizeof( shared_secret ),
5820 &shared_secret_length );
5821 if( status != PSA_SUCCESS )
5822 goto exit;
5823
5824 /* Step 2: set up the key derivation to generate key material from
5825 * the shared secret. A shared secret is permitted wherever a key
5826 * of type DERIVE is permitted. */
5827 status = psa_key_derivation_input_internal( operation, step,
5828 PSA_KEY_TYPE_DERIVE,
5829 shared_secret,
5830 shared_secret_length );
5831 exit:
5832 mbedtls_platform_zeroize( shared_secret, shared_secret_length );
5833 return( status );
5834 }
5835
psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,mbedtls_svc_key_id_t private_key,const uint8_t * peer_key,size_t peer_key_length)5836 psa_status_t psa_key_derivation_key_agreement( psa_key_derivation_operation_t *operation,
5837 psa_key_derivation_step_t step,
5838 mbedtls_svc_key_id_t private_key,
5839 const uint8_t *peer_key,
5840 size_t peer_key_length )
5841 {
5842 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5843 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
5844 psa_key_slot_t *slot;
5845
5846 if( ! PSA_ALG_IS_KEY_AGREEMENT( operation->alg ) )
5847 return( PSA_ERROR_INVALID_ARGUMENT );
5848 status = psa_get_and_lock_transparent_key_slot_with_policy(
5849 private_key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg );
5850 if( status != PSA_SUCCESS )
5851 return( status );
5852 status = psa_key_agreement_internal( operation, step,
5853 slot,
5854 peer_key, peer_key_length );
5855 if( status != PSA_SUCCESS )
5856 psa_key_derivation_abort( operation );
5857 else
5858 {
5859 /* If a private key has been added as SECRET, we allow the derived
5860 * key material to be used as a key in PSA Crypto. */
5861 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
5862 operation->can_output_key = 1;
5863 }
5864
5865 unlock_status = psa_unlock_key_slot( slot );
5866
5867 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
5868 }
5869
psa_raw_key_agreement(psa_algorithm_t alg,mbedtls_svc_key_id_t private_key,const uint8_t * peer_key,size_t peer_key_length,uint8_t * output,size_t output_size,size_t * output_length)5870 psa_status_t psa_raw_key_agreement( psa_algorithm_t alg,
5871 mbedtls_svc_key_id_t private_key,
5872 const uint8_t *peer_key,
5873 size_t peer_key_length,
5874 uint8_t *output,
5875 size_t output_size,
5876 size_t *output_length )
5877 {
5878 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5879 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
5880 psa_key_slot_t *slot = NULL;
5881
5882 if( ! PSA_ALG_IS_KEY_AGREEMENT( alg ) )
5883 {
5884 status = PSA_ERROR_INVALID_ARGUMENT;
5885 goto exit;
5886 }
5887 status = psa_get_and_lock_transparent_key_slot_with_policy(
5888 private_key, &slot, PSA_KEY_USAGE_DERIVE, alg );
5889 if( status != PSA_SUCCESS )
5890 goto exit;
5891
5892 /* PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() is in general an upper bound
5893 * for the output size. The PSA specification only guarantees that this
5894 * function works if output_size >= PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(...),
5895 * but it might be nice to allow smaller buffers if the output fits.
5896 * At the time of writing this comment, with only ECDH implemented,
5897 * PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() is exact so the point is moot.
5898 * If FFDH is implemented, PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() can easily
5899 * be exact for it as well. */
5900 size_t expected_length =
5901 PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE( slot->attr.type, slot->attr.bits );
5902 if( output_size < expected_length )
5903 {
5904 status = PSA_ERROR_BUFFER_TOO_SMALL;
5905 goto exit;
5906 }
5907
5908 status = psa_key_agreement_raw_internal( alg, slot,
5909 peer_key, peer_key_length,
5910 output, output_size,
5911 output_length );
5912
5913 exit:
5914 if( status != PSA_SUCCESS )
5915 {
5916 /* If an error happens and is not handled properly, the output
5917 * may be used as a key to protect sensitive data. Arrange for such
5918 * a key to be random, which is likely to result in decryption or
5919 * verification errors. This is better than filling the buffer with
5920 * some constant data such as zeros, which would result in the data
5921 * being protected with a reproducible, easily knowable key.
5922 */
5923 psa_generate_random( output, output_size );
5924 *output_length = output_size;
5925 }
5926
5927 unlock_status = psa_unlock_key_slot( slot );
5928
5929 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
5930 }
5931
5932
5933
5934 /****************************************************************/
5935 /* Random generation */
5936 /****************************************************************/
5937
5938 /** Initialize the PSA random generator.
5939 */
mbedtls_psa_random_init(mbedtls_psa_random_context_t * rng)5940 static void mbedtls_psa_random_init( mbedtls_psa_random_context_t *rng )
5941 {
5942 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5943 memset( rng, 0, sizeof( *rng ) );
5944 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5945
5946 /* Set default configuration if
5947 * mbedtls_psa_crypto_configure_entropy_sources() hasn't been called. */
5948 if( rng->entropy_init == NULL )
5949 rng->entropy_init = mbedtls_entropy_init;
5950 if( rng->entropy_free == NULL )
5951 rng->entropy_free = mbedtls_entropy_free;
5952
5953 rng->entropy_init( &rng->entropy );
5954 #if defined(MBEDTLS_PSA_INJECT_ENTROPY) && \
5955 defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
5956 /* The PSA entropy injection feature depends on using NV seed as an entropy
5957 * source. Add NV seed as an entropy source for PSA entropy injection. */
5958 mbedtls_entropy_add_source( &rng->entropy,
5959 mbedtls_nv_seed_poll, NULL,
5960 MBEDTLS_ENTROPY_BLOCK_SIZE,
5961 MBEDTLS_ENTROPY_SOURCE_STRONG );
5962 #endif
5963
5964 mbedtls_psa_drbg_init( MBEDTLS_PSA_RANDOM_STATE );
5965 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5966 }
5967
5968 /** Deinitialize the PSA random generator.
5969 */
mbedtls_psa_random_free(mbedtls_psa_random_context_t * rng)5970 static void mbedtls_psa_random_free( mbedtls_psa_random_context_t *rng )
5971 {
5972 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5973 memset( rng, 0, sizeof( *rng ) );
5974 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5975 mbedtls_psa_drbg_free( MBEDTLS_PSA_RANDOM_STATE );
5976 rng->entropy_free( &rng->entropy );
5977 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5978 }
5979
5980 /** Seed the PSA random generator.
5981 */
mbedtls_psa_random_seed(mbedtls_psa_random_context_t * rng)5982 static psa_status_t mbedtls_psa_random_seed( mbedtls_psa_random_context_t *rng )
5983 {
5984 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5985 /* Do nothing: the external RNG seeds itself. */
5986 (void) rng;
5987 return( PSA_SUCCESS );
5988 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5989 const unsigned char drbg_seed[] = "PSA";
5990 int ret = mbedtls_psa_drbg_seed( &rng->entropy,
5991 drbg_seed, sizeof( drbg_seed ) - 1 );
5992 return mbedtls_to_psa_error( ret );
5993 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5994 }
5995
psa_generate_random(uint8_t * output,size_t output_size)5996 psa_status_t psa_generate_random( uint8_t *output,
5997 size_t output_size )
5998 {
5999 GUARD_MODULE_INITIALIZED;
6000
6001 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
6002
6003 size_t output_length = 0;
6004 psa_status_t status = mbedtls_psa_external_get_random( &global_data.rng,
6005 output, output_size,
6006 &output_length );
6007 if( status != PSA_SUCCESS )
6008 return( status );
6009 /* Breaking up a request into smaller chunks is currently not supported
6010 * for the external RNG interface. */
6011 if( output_length != output_size )
6012 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
6013 return( PSA_SUCCESS );
6014
6015 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
6016
6017 while( output_size > 0 )
6018 {
6019 size_t request_size =
6020 ( output_size > MBEDTLS_PSA_RANDOM_MAX_REQUEST ?
6021 MBEDTLS_PSA_RANDOM_MAX_REQUEST :
6022 output_size );
6023 int ret = mbedtls_psa_get_random( MBEDTLS_PSA_RANDOM_STATE,
6024 output, request_size );
6025 if( ret != 0 )
6026 return( mbedtls_to_psa_error( ret ) );
6027 output_size -= request_size;
6028 output += request_size;
6029 }
6030 return( PSA_SUCCESS );
6031 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
6032 }
6033
6034 /* Wrapper function allowing the classic API to use the PSA RNG.
6035 *
6036 * `mbedtls_psa_get_random(MBEDTLS_PSA_RANDOM_STATE, ...)` calls
6037 * `psa_generate_random(...)`. The state parameter is ignored since the
6038 * PSA API doesn't support passing an explicit state.
6039 *
6040 * In the non-external case, psa_generate_random() calls an
6041 * `mbedtls_xxx_drbg_random` function which has exactly the same signature
6042 * and semantics as mbedtls_psa_get_random(). As an optimization,
6043 * instead of doing this back-and-forth between the PSA API and the
6044 * classic API, psa_crypto_random_impl.h defines `mbedtls_psa_get_random`
6045 * as a constant function pointer to `mbedtls_xxx_drbg_random`.
6046 */
6047 #if defined (MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_psa_get_random(void * p_rng,unsigned char * output,size_t output_size)6048 int mbedtls_psa_get_random( void *p_rng,
6049 unsigned char *output,
6050 size_t output_size )
6051 {
6052 /* This function takes a pointer to the RNG state because that's what
6053 * classic mbedtls functions using an RNG expect. The PSA RNG manages
6054 * its own state internally and doesn't let the caller access that state.
6055 * So we just ignore the state parameter, and in practice we'll pass
6056 * NULL. */
6057 (void) p_rng;
6058 psa_status_t status = psa_generate_random( output, output_size );
6059 if( status == PSA_SUCCESS )
6060 return( 0 );
6061 else
6062 return( MBEDTLS_ERR_ENTROPY_SOURCE_FAILED );
6063 }
6064 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
6065
6066 #if defined(MBEDTLS_PSA_INJECT_ENTROPY)
6067 #include "entropy_poll.h"
6068
mbedtls_psa_inject_entropy(const uint8_t * seed,size_t seed_size)6069 psa_status_t mbedtls_psa_inject_entropy( const uint8_t *seed,
6070 size_t seed_size )
6071 {
6072 if( global_data.initialized )
6073 return( PSA_ERROR_NOT_PERMITTED );
6074
6075 if( ( ( seed_size < MBEDTLS_ENTROPY_MIN_PLATFORM ) ||
6076 ( seed_size < MBEDTLS_ENTROPY_BLOCK_SIZE ) ) ||
6077 ( seed_size > MBEDTLS_ENTROPY_MAX_SEED_SIZE ) )
6078 return( PSA_ERROR_INVALID_ARGUMENT );
6079
6080 return( mbedtls_psa_storage_inject_entropy( seed, seed_size ) );
6081 }
6082 #endif /* MBEDTLS_PSA_INJECT_ENTROPY */
6083
6084 /** Validate the key type and size for key generation
6085 *
6086 * \param type The key type
6087 * \param bits The number of bits of the key
6088 *
6089 * \retval #PSA_SUCCESS
6090 * The key type and size are valid.
6091 * \retval #PSA_ERROR_INVALID_ARGUMENT
6092 * The size in bits of the key is not valid.
6093 * \retval #PSA_ERROR_NOT_SUPPORTED
6094 * The type and/or the size in bits of the key or the combination of
6095 * the two is not supported.
6096 */
psa_validate_key_type_and_size_for_key_generation(psa_key_type_t type,size_t bits)6097 static psa_status_t psa_validate_key_type_and_size_for_key_generation(
6098 psa_key_type_t type, size_t bits )
6099 {
6100 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
6101
6102 if( key_type_is_raw_bytes( type ) )
6103 {
6104 status = psa_validate_unstructured_key_bit_size( type, bits );
6105 if( status != PSA_SUCCESS )
6106 return( status );
6107 }
6108 else
6109 #if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR)
6110 if( PSA_KEY_TYPE_IS_RSA( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
6111 {
6112 if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS )
6113 return( PSA_ERROR_NOT_SUPPORTED );
6114
6115 /* Accept only byte-aligned keys, for the same reasons as
6116 * in psa_import_rsa_key(). */
6117 if( bits % 8 != 0 )
6118 return( PSA_ERROR_NOT_SUPPORTED );
6119 }
6120 else
6121 #endif /* defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR) */
6122
6123 #if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR)
6124 if( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
6125 {
6126 /* To avoid empty block, return successfully here. */
6127 return( PSA_SUCCESS );
6128 }
6129 else
6130 #endif /* defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR) */
6131 {
6132 return( PSA_ERROR_NOT_SUPPORTED );
6133 }
6134
6135 return( PSA_SUCCESS );
6136 }
6137
psa_generate_key_internal(const psa_key_attributes_t * attributes,uint8_t * key_buffer,size_t key_buffer_size,size_t * key_buffer_length)6138 psa_status_t psa_generate_key_internal(
6139 const psa_key_attributes_t *attributes,
6140 uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length )
6141 {
6142 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
6143 psa_key_type_t type = attributes->core.type;
6144
6145 if( ( attributes->domain_parameters == NULL ) &&
6146 ( attributes->domain_parameters_size != 0 ) )
6147 return( PSA_ERROR_INVALID_ARGUMENT );
6148
6149 if( key_type_is_raw_bytes( type ) )
6150 {
6151 status = psa_generate_random( key_buffer, key_buffer_size );
6152 if( status != PSA_SUCCESS )
6153 return( status );
6154
6155 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
6156 if( type == PSA_KEY_TYPE_DES )
6157 psa_des_set_key_parity( key_buffer, key_buffer_size );
6158 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
6159 }
6160 else
6161
6162 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) && \
6163 defined(MBEDTLS_GENPRIME)
6164 if ( type == PSA_KEY_TYPE_RSA_KEY_PAIR )
6165 {
6166 return( mbedtls_psa_rsa_generate_key( attributes,
6167 key_buffer,
6168 key_buffer_size,
6169 key_buffer_length ) );
6170 }
6171 else
6172 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR)
6173 * defined(MBEDTLS_GENPRIME) */
6174
6175 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR)
6176 if ( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
6177 {
6178 return( mbedtls_psa_ecp_generate_key( attributes,
6179 key_buffer,
6180 key_buffer_size,
6181 key_buffer_length ) );
6182 }
6183 else
6184 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) */
6185 {
6186 (void)key_buffer_length;
6187 return( PSA_ERROR_NOT_SUPPORTED );
6188 }
6189
6190 return( PSA_SUCCESS );
6191 }
6192
psa_generate_key(const psa_key_attributes_t * attributes,mbedtls_svc_key_id_t * key)6193 psa_status_t psa_generate_key( const psa_key_attributes_t *attributes,
6194 mbedtls_svc_key_id_t *key )
6195 {
6196 psa_status_t status;
6197 psa_key_slot_t *slot = NULL;
6198 psa_se_drv_table_entry_t *driver = NULL;
6199 size_t key_buffer_size;
6200
6201 *key = MBEDTLS_SVC_KEY_ID_INIT;
6202
6203 /* Reject any attempt to create a zero-length key so that we don't
6204 * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
6205 if( psa_get_key_bits( attributes ) == 0 )
6206 return( PSA_ERROR_INVALID_ARGUMENT );
6207
6208 /* Reject any attempt to create a public key. */
6209 if( PSA_KEY_TYPE_IS_PUBLIC_KEY(attributes->core.type) )
6210 return( PSA_ERROR_INVALID_ARGUMENT );
6211
6212 status = psa_start_key_creation( PSA_KEY_CREATION_GENERATE, attributes,
6213 &slot, &driver );
6214 if( status != PSA_SUCCESS )
6215 goto exit;
6216
6217 /* In the case of a transparent key or an opaque key stored in local
6218 * storage ( thus not in the case of generating a key in a secure element
6219 * with storage ( MBEDTLS_PSA_CRYPTO_SE_C ) ),we have to allocate a
6220 * buffer to hold the generated key material. */
6221 if( slot->key.data == NULL )
6222 {
6223 if ( PSA_KEY_LIFETIME_GET_LOCATION( attributes->core.lifetime ) ==
6224 PSA_KEY_LOCATION_LOCAL_STORAGE )
6225 {
6226 status = psa_validate_key_type_and_size_for_key_generation(
6227 attributes->core.type, attributes->core.bits );
6228 if( status != PSA_SUCCESS )
6229 goto exit;
6230
6231 key_buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
6232 attributes->core.type,
6233 attributes->core.bits );
6234 }
6235 else
6236 {
6237 status = psa_driver_wrapper_get_key_buffer_size(
6238 attributes, &key_buffer_size );
6239 if( status != PSA_SUCCESS )
6240 goto exit;
6241 }
6242
6243 status = psa_allocate_buffer_to_slot( slot, key_buffer_size );
6244 if( status != PSA_SUCCESS )
6245 goto exit;
6246 }
6247
6248 status = psa_driver_wrapper_generate_key( attributes,
6249 slot->key.data, slot->key.bytes, &slot->key.bytes );
6250
6251 if( status != PSA_SUCCESS )
6252 psa_remove_key_data_from_memory( slot );
6253
6254 exit:
6255 if( status == PSA_SUCCESS )
6256 status = psa_finish_key_creation( slot, driver, key );
6257 if( status != PSA_SUCCESS )
6258 psa_fail_key_creation( slot, driver );
6259
6260 return( status );
6261 }
6262
6263 /****************************************************************/
6264 /* Module setup */
6265 /****************************************************************/
6266
6267 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_psa_crypto_configure_entropy_sources(void (* entropy_init)(mbedtls_entropy_context * ctx),void (* entropy_free)(mbedtls_entropy_context * ctx))6268 psa_status_t mbedtls_psa_crypto_configure_entropy_sources(
6269 void (* entropy_init )( mbedtls_entropy_context *ctx ),
6270 void (* entropy_free )( mbedtls_entropy_context *ctx ) )
6271 {
6272 if( global_data.rng_state != RNG_NOT_INITIALIZED )
6273 return( PSA_ERROR_BAD_STATE );
6274 global_data.rng.entropy_init = entropy_init;
6275 global_data.rng.entropy_free = entropy_free;
6276 return( PSA_SUCCESS );
6277 }
6278 #endif /* !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) */
6279
mbedtls_psa_crypto_free(void)6280 void mbedtls_psa_crypto_free( void )
6281 {
6282 psa_wipe_all_key_slots( );
6283 if( global_data.rng_state != RNG_NOT_INITIALIZED )
6284 {
6285 mbedtls_psa_random_free( &global_data.rng );
6286 }
6287 /* Wipe all remaining data, including configuration.
6288 * In particular, this sets all state indicator to the value
6289 * indicating "uninitialized". */
6290 mbedtls_platform_zeroize( &global_data, sizeof( global_data ) );
6291
6292 /* Terminate drivers */
6293 psa_driver_wrapper_free( );
6294 }
6295
6296 #if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
6297 /** Recover a transaction that was interrupted by a power failure.
6298 *
6299 * This function is called during initialization, before psa_crypto_init()
6300 * returns. If this function returns a failure status, the initialization
6301 * fails.
6302 */
psa_crypto_recover_transaction(const psa_crypto_transaction_t * transaction)6303 static psa_status_t psa_crypto_recover_transaction(
6304 const psa_crypto_transaction_t *transaction )
6305 {
6306 switch( transaction->unknown.type )
6307 {
6308 case PSA_CRYPTO_TRANSACTION_CREATE_KEY:
6309 case PSA_CRYPTO_TRANSACTION_DESTROY_KEY:
6310 /* TODO - fall through to the failure case until this
6311 * is implemented.
6312 * https://github.com/ARMmbed/mbed-crypto/issues/218
6313 */
6314 default:
6315 /* We found an unsupported transaction in the storage.
6316 * We don't know what state the storage is in. Give up. */
6317 return( PSA_ERROR_DATA_INVALID );
6318 }
6319 }
6320 #endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
6321
psa_crypto_init(void)6322 psa_status_t psa_crypto_init( void )
6323 {
6324 psa_status_t status;
6325
6326 /* Double initialization is explicitly allowed. */
6327 if( global_data.initialized != 0 )
6328 return( PSA_SUCCESS );
6329
6330 /* Init drivers */
6331 status = psa_driver_wrapper_init( );
6332 if( status != PSA_SUCCESS )
6333 goto exit;
6334
6335 /* Initialize and seed the random generator. */
6336 mbedtls_psa_random_init( &global_data.rng );
6337 global_data.rng_state = RNG_INITIALIZED;
6338 status = mbedtls_psa_random_seed( &global_data.rng );
6339 if( status != PSA_SUCCESS )
6340 goto exit;
6341 global_data.rng_state = RNG_SEEDED;
6342
6343 status = psa_initialize_key_slots( );
6344 if( status != PSA_SUCCESS )
6345 goto exit;
6346
6347 #if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
6348 status = psa_crypto_load_transaction( );
6349 if( status == PSA_SUCCESS )
6350 {
6351 status = psa_crypto_recover_transaction( &psa_crypto_transaction );
6352 if( status != PSA_SUCCESS )
6353 goto exit;
6354 status = psa_crypto_stop_transaction( );
6355 }
6356 else if( status == PSA_ERROR_DOES_NOT_EXIST )
6357 {
6358 /* There's no transaction to complete. It's all good. */
6359 status = PSA_SUCCESS;
6360 }
6361 #endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
6362
6363 /* All done. */
6364 global_data.initialized = 1;
6365
6366 exit:
6367 if( status != PSA_SUCCESS )
6368 mbedtls_psa_crypto_free( );
6369 return( status );
6370 }
6371
6372 #endif /* MBEDTLS_PSA_CRYPTO_C */
6373