1 /*
2  * Copyright (c) 2020 PHYTEC Messtechnik GmbH
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include <zephyr/logging/log.h>
8 LOG_MODULE_REGISTER(dw1000, LOG_LEVEL_INF);
9 
10 #include <errno.h>
11 #include <zephyr/kernel.h>
12 #include <zephyr/arch/cpu.h>
13 #include <zephyr/debug/stack.h>
14 #include <zephyr/device.h>
15 #include <zephyr/init.h>
16 #include <zephyr/net/net_if.h>
17 #include <zephyr/net/net_pkt.h>
18 
19 #include <zephyr/sys/byteorder.h>
20 #include <string.h>
21 #include <zephyr/random/random.h>
22 #include <zephyr/debug/stack.h>
23 #include <math.h>
24 
25 #include <zephyr/drivers/gpio.h>
26 #include <zephyr/drivers/spi.h>
27 
28 #include <zephyr/net/ieee802154_radio.h>
29 #include "ieee802154_dw1000_regs.h"
30 
31 #define DT_DRV_COMPAT decawave_dw1000
32 
33 #define DWT_FCS_LENGTH			2U
34 #define DWT_SPI_CSWAKEUP_FREQ		500000U
35 #define DWT_SPI_SLOW_FREQ		2000000U
36 #define DWT_SPI_TRANS_MAX_HDR_LEN	3
37 #define DWT_SPI_TRANS_REG_MAX_RANGE	0x3F
38 #define DWT_SPI_TRANS_SHORT_MAX_OFFSET	0x7F
39 #define DWT_SPI_TRANS_WRITE_OP		BIT(7)
40 #define DWT_SPI_TRANS_SUB_ADDR		BIT(6)
41 #define DWT_SPI_TRANS_EXTEND_ADDR	BIT(7)
42 
43 #define DWT_TS_TIME_UNITS_FS		15650U /* DWT_TIME_UNITS in fs */
44 
45 #define DW1000_TX_ANT_DLY		16450
46 #define DW1000_RX_ANT_DLY		16450
47 
48 /* SHR Symbol Duration in ns */
49 #define UWB_PHY_TPSYM_PRF64		IEEE802154_PHY_HRP_UWB_PRF64_TPSYM_SYMBOL_PERIOD_NS
50 #define UWB_PHY_TPSYM_PRF16		IEEE802154_PHY_HRP_UWB_PRF16_TPSYM_SYMBOL_PERIOD_NS
51 
52 #define UWB_PHY_NUMOF_SYM_SHR_SFD	8
53 
54 /* PHR Symbol Duration Tdsym in ns */
55 #define UWB_PHY_TDSYM_PHR_110K		8205.13
56 #define UWB_PHY_TDSYM_PHR_850K		1025.64
57 #define UWB_PHY_TDSYM_PHR_6M8		1025.64
58 
59 #define UWB_PHY_NUMOF_SYM_PHR		18
60 
61 /* Data Symbol Duration Tdsym in ns */
62 #define UWB_PHY_TDSYM_DATA_110K		8205.13
63 #define UWB_PHY_TDSYM_DATA_850K		1025.64
64 #define UWB_PHY_TDSYM_DATA_6M8		128.21
65 
66 #define DWT_WORK_QUEUE_STACK_SIZE	512
67 
68 static struct k_work_q dwt_work_queue;
69 static K_KERNEL_STACK_DEFINE(dwt_work_queue_stack,
70 			     DWT_WORK_QUEUE_STACK_SIZE);
71 
72 struct dwt_phy_config {
73 	uint8_t channel;	/* Channel 1, 2, 3, 4, 5, 7 */
74 	uint8_t dr;	/* Data rate DWT_BR_110K, DWT_BR_850K, DWT_BR_6M8 */
75 	uint8_t prf;	/* PRF DWT_PRF_16M or DWT_PRF_64M */
76 
77 	uint8_t rx_pac_l;		/* DWT_PAC8..DWT_PAC64 */
78 	uint8_t rx_shr_code;	/* RX SHR preamble code */
79 	uint8_t rx_ns_sfd;		/* non-standard SFD */
80 	uint16_t rx_sfd_to;	/* SFD timeout value (in symbols)
81 				 * (tx_shr_nsync + 1 + SFD_length - rx_pac_l)
82 				 */
83 
84 	uint8_t tx_shr_code;	/* TX SHR preamble code */
85 	uint32_t tx_shr_nsync;	/* PLEN index, e.g. DWT_PLEN_64 */
86 
87 	float t_shr;
88 	float t_phr;
89 	float t_dsym;
90 };
91 
92 struct dwt_hi_cfg {
93 	struct spi_dt_spec bus;
94 	struct gpio_dt_spec irq_gpio;
95 	struct gpio_dt_spec rst_gpio;
96 };
97 
98 #define DWT_STATE_TX		0
99 #define DWT_STATE_CCA		1
100 #define DWT_STATE_RX_DEF_ON	2
101 
102 struct dwt_context {
103 	const struct device *dev;
104 	struct net_if *iface;
105 	const struct spi_config *spi_cfg;
106 	struct spi_config spi_cfg_slow;
107 	struct gpio_callback gpio_cb;
108 	struct k_sem dev_lock;
109 	struct k_sem phy_sem;
110 	struct k_work irq_cb_work;
111 	struct k_thread thread;
112 	struct dwt_phy_config rf_cfg;
113 	atomic_t state;
114 	bool cca_busy;
115 	uint16_t sleep_mode;
116 	uint8_t mac_addr[8];
117 };
118 
119 static const struct dwt_hi_cfg dw1000_0_config = {
120 	.bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0),
121 	.irq_gpio = GPIO_DT_SPEC_INST_GET(0, int_gpios),
122 	.rst_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios),
123 };
124 
125 static struct dwt_context dwt_0_context = {
126 	.dev_lock = Z_SEM_INITIALIZER(dwt_0_context.dev_lock, 1,  1),
127 	.phy_sem = Z_SEM_INITIALIZER(dwt_0_context.phy_sem, 0,  1),
128 	.rf_cfg = {
129 		.channel = 5,
130 		.dr = DWT_BR_6M8,
131 		.prf = DWT_PRF_64M,
132 
133 		.rx_pac_l = DWT_PAC8,
134 		.rx_shr_code = 10,
135 		.rx_ns_sfd = 0,
136 		.rx_sfd_to = (129 + 8 - 8),
137 
138 		.tx_shr_code = 10,
139 		.tx_shr_nsync = DWT_PLEN_128,
140 	},
141 };
142 
143 /* This struct is used to read all additional RX frame info at one push */
144 struct dwt_rx_info_regs {
145 	uint8_t rx_fqual[DWT_RX_FQUAL_LEN];
146 	uint8_t rx_ttcki[DWT_RX_TTCKI_LEN];
147 	uint8_t rx_ttcko[DWT_RX_TTCKO_LEN];
148 	/* RX_TIME without RX_RAWST */
149 	uint8_t rx_time[DWT_RX_TIME_FP_RAWST_OFFSET];
150 } _packed;
151 
152 static int dwt_configure_rf_phy(const struct device *dev);
153 
dwt_spi_read(const struct device * dev,uint16_t hdr_len,const uint8_t * hdr_buf,uint32_t data_len,uint8_t * data)154 static int dwt_spi_read(const struct device *dev,
155 			uint16_t hdr_len, const uint8_t *hdr_buf,
156 			uint32_t data_len, uint8_t *data)
157 {
158 	struct dwt_context *ctx = dev->data;
159 	const struct dwt_hi_cfg *hi_cfg = dev->config;
160 	const struct spi_buf tx_buf = {
161 		.buf = (uint8_t *)hdr_buf,
162 		.len = hdr_len
163 	};
164 	const struct spi_buf_set tx = {
165 		.buffers = &tx_buf,
166 		.count = 1
167 	};
168 	struct spi_buf rx_buf[2] = {
169 		{
170 			.buf = NULL,
171 			.len = hdr_len,
172 		},
173 		{
174 			.buf = (uint8_t *)data,
175 			.len = data_len,
176 		},
177 	};
178 	const struct spi_buf_set rx = {
179 		.buffers = rx_buf,
180 		.count = 2
181 	};
182 
183 	LOG_DBG("spi read, header length %u, data length %u",
184 		(uint16_t)hdr_len, (uint32_t)data_len);
185 	LOG_HEXDUMP_DBG(hdr_buf, (uint16_t)hdr_len, "rd: header");
186 
187 	if (spi_transceive(hi_cfg->bus.bus, ctx->spi_cfg, &tx, &rx)) {
188 		LOG_ERR("SPI transfer failed");
189 		return -EIO;
190 	}
191 
192 	LOG_HEXDUMP_DBG(data, (uint32_t)data_len, "rd: data");
193 
194 	return 0;
195 }
196 
197 
dwt_spi_write(const struct device * dev,uint16_t hdr_len,const uint8_t * hdr_buf,uint32_t data_len,const uint8_t * data)198 static int dwt_spi_write(const struct device *dev,
199 			 uint16_t hdr_len, const uint8_t *hdr_buf,
200 			 uint32_t data_len, const uint8_t *data)
201 {
202 	struct dwt_context *ctx = dev->data;
203 	const struct dwt_hi_cfg *hi_cfg = dev->config;
204 	struct spi_buf buf[2] = {
205 		{.buf = (uint8_t *)hdr_buf, .len = hdr_len},
206 		{.buf = (uint8_t *)data, .len = data_len}
207 	};
208 	struct spi_buf_set buf_set = {.buffers = buf, .count = 2};
209 
210 	LOG_DBG("spi write, header length %u, data length %u",
211 		(uint16_t)hdr_len, (uint32_t)data_len);
212 	LOG_HEXDUMP_DBG(hdr_buf, (uint16_t)hdr_len, "wr: header");
213 	LOG_HEXDUMP_DBG(data, (uint32_t)data_len, "wr: data");
214 
215 	if (spi_write(hi_cfg->bus.bus, ctx->spi_cfg, &buf_set)) {
216 		LOG_ERR("SPI read failed");
217 		return -EIO;
218 	}
219 
220 	return 0;
221 }
222 
223 /* See 2.2.1.2 Transaction formats of the SPI interface */
dwt_spi_transfer(const struct device * dev,uint8_t reg,uint16_t offset,size_t buf_len,uint8_t * buf,bool write)224 static int dwt_spi_transfer(const struct device *dev,
225 			    uint8_t reg, uint16_t offset,
226 			    size_t buf_len, uint8_t *buf, bool write)
227 {
228 	uint8_t hdr[DWT_SPI_TRANS_MAX_HDR_LEN] = {0};
229 	size_t hdr_len = 0;
230 
231 	hdr[0] = reg & DWT_SPI_TRANS_REG_MAX_RANGE;
232 	hdr_len += 1;
233 
234 	if (offset != 0) {
235 		hdr[0] |= DWT_SPI_TRANS_SUB_ADDR;
236 		hdr[1] = (uint8_t)offset & DWT_SPI_TRANS_SHORT_MAX_OFFSET;
237 		hdr_len += 1;
238 
239 		if (offset > DWT_SPI_TRANS_SHORT_MAX_OFFSET) {
240 			hdr[1] |= DWT_SPI_TRANS_EXTEND_ADDR;
241 			hdr[2] =  (uint8_t)(offset >> 7);
242 			hdr_len += 1;
243 		}
244 
245 	}
246 
247 	if (write) {
248 		hdr[0] |= DWT_SPI_TRANS_WRITE_OP;
249 		return dwt_spi_write(dev, hdr_len, hdr, buf_len, buf);
250 	} else {
251 		return dwt_spi_read(dev, hdr_len, hdr, buf_len, buf);
252 	}
253 }
254 
dwt_register_read(const struct device * dev,uint8_t reg,uint16_t offset,size_t buf_len,uint8_t * buf)255 static int dwt_register_read(const struct device *dev,
256 			     uint8_t reg, uint16_t offset, size_t buf_len, uint8_t *buf)
257 {
258 	return dwt_spi_transfer(dev, reg, offset, buf_len, buf, false);
259 }
260 
dwt_register_write(const struct device * dev,uint8_t reg,uint16_t offset,size_t buf_len,uint8_t * buf)261 static int dwt_register_write(const struct device *dev,
262 			      uint8_t reg, uint16_t offset, size_t buf_len, uint8_t *buf)
263 {
264 	return dwt_spi_transfer(dev, reg, offset, buf_len, buf, true);
265 }
266 
dwt_reg_read_u32(const struct device * dev,uint8_t reg,uint16_t offset)267 static inline uint32_t dwt_reg_read_u32(const struct device *dev,
268 				     uint8_t reg, uint16_t offset)
269 {
270 	uint8_t buf[sizeof(uint32_t)];
271 
272 	dwt_spi_transfer(dev, reg, offset, sizeof(buf), buf, false);
273 
274 	return sys_get_le32(buf);
275 }
276 
dwt_reg_read_u8(const struct device * dev,uint8_t reg,uint16_t offset)277 static inline uint8_t dwt_reg_read_u8(const struct device *dev,
278 				   uint8_t reg, uint16_t offset)
279 {
280 	uint8_t buf;
281 
282 	dwt_spi_transfer(dev, reg, offset, sizeof(buf), &buf, false);
283 
284 	return buf;
285 }
286 
dwt_reg_write_u32(const struct device * dev,uint8_t reg,uint16_t offset,uint32_t val)287 static inline void dwt_reg_write_u32(const struct device *dev,
288 				     uint8_t reg, uint16_t offset, uint32_t val)
289 {
290 	uint8_t buf[sizeof(uint32_t)];
291 
292 	sys_put_le32(val, buf);
293 	dwt_spi_transfer(dev, reg, offset, sizeof(buf), buf, true);
294 }
295 
dwt_reg_write_u16(const struct device * dev,uint8_t reg,uint16_t offset,uint16_t val)296 static inline void dwt_reg_write_u16(const struct device *dev,
297 				     uint8_t reg, uint16_t offset, uint16_t val)
298 {
299 	uint8_t buf[sizeof(uint16_t)];
300 
301 	sys_put_le16(val, buf);
302 	dwt_spi_transfer(dev, reg, offset, sizeof(buf), buf, true);
303 }
304 
dwt_reg_write_u8(const struct device * dev,uint8_t reg,uint16_t offset,uint8_t val)305 static inline void dwt_reg_write_u8(const struct device *dev,
306 				    uint8_t reg, uint16_t offset, uint8_t val)
307 {
308 	dwt_spi_transfer(dev, reg, offset, sizeof(uint8_t), &val, true);
309 }
310 
dwt_setup_int(const struct device * dev,bool enable)311 static ALWAYS_INLINE void dwt_setup_int(const struct device *dev,
312 					bool enable)
313 {
314 	const struct dwt_hi_cfg *hi_cfg = dev->config;
315 
316 	unsigned int flags = enable
317 		? GPIO_INT_EDGE_TO_ACTIVE
318 		: GPIO_INT_DISABLE;
319 
320 	gpio_pin_interrupt_configure_dt(&hi_cfg->irq_gpio, flags);
321 }
322 
dwt_reset_rfrx(const struct device * dev)323 static void dwt_reset_rfrx(const struct device *dev)
324 {
325 	/*
326 	 * Apply a receiver-only soft reset,
327 	 * see SOFTRESET field description in DW1000 User Manual.
328 	 */
329 	dwt_reg_write_u8(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_SOFTRESET_OFFSET,
330 			 DWT_PMSC_CTRL0_RESET_RX);
331 	dwt_reg_write_u8(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_SOFTRESET_OFFSET,
332 			 DWT_PMSC_CTRL0_RESET_CLEAR);
333 }
334 
dwt_disable_txrx(const struct device * dev)335 static void dwt_disable_txrx(const struct device *dev)
336 {
337 	dwt_setup_int(dev, false);
338 
339 	dwt_reg_write_u8(dev, DWT_SYS_CTRL_ID, DWT_SYS_CTRL_OFFSET,
340 			 DWT_SYS_CTRL_TRXOFF);
341 
342 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, DWT_SYS_STATUS_OFFSET,
343 			  (DWT_SYS_STATUS_ALL_RX_GOOD |
344 			   DWT_SYS_STATUS_ALL_RX_TO |
345 			   DWT_SYS_STATUS_ALL_RX_ERR |
346 			   DWT_SYS_STATUS_ALL_TX));
347 
348 	dwt_setup_int(dev, true);
349 }
350 
351 /* timeout time in units of 1.026 microseconds */
dwt_enable_rx(const struct device * dev,uint16_t timeout)352 static int dwt_enable_rx(const struct device *dev, uint16_t timeout)
353 {
354 	uint32_t sys_cfg;
355 	uint16_t sys_ctrl = DWT_SYS_CTRL_RXENAB;
356 
357 	sys_cfg = dwt_reg_read_u32(dev, DWT_SYS_CFG_ID, 0);
358 
359 	if (timeout != 0) {
360 		dwt_reg_write_u16(dev, DWT_RX_FWTO_ID, DWT_RX_FWTO_OFFSET,
361 				  timeout);
362 		sys_cfg |= DWT_SYS_CFG_RXWTOE;
363 	} else {
364 		sys_cfg &= ~DWT_SYS_CFG_RXWTOE;
365 	}
366 
367 	dwt_reg_write_u32(dev, DWT_SYS_CFG_ID, 0, sys_cfg);
368 	dwt_reg_write_u16(dev, DWT_SYS_CTRL_ID, DWT_SYS_CTRL_OFFSET, sys_ctrl);
369 
370 	return 0;
371 }
372 
dwt_irq_handle_rx_cca(const struct device * dev)373 static inline void dwt_irq_handle_rx_cca(const struct device *dev)
374 {
375 	struct dwt_context *ctx = dev->data;
376 
377 	k_sem_give(&ctx->phy_sem);
378 	ctx->cca_busy = true;
379 
380 	/* Clear all RX event bits */
381 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, 0,
382 			  DWT_SYS_STATUS_ALL_RX_GOOD);
383 }
384 
dwt_irq_handle_rx(const struct device * dev,uint32_t sys_stat)385 static inline void dwt_irq_handle_rx(const struct device *dev, uint32_t sys_stat)
386 {
387 	struct dwt_context *ctx = dev->data;
388 	struct net_pkt *pkt = NULL;
389 	struct dwt_rx_info_regs rx_inf_reg;
390 	float a_const;
391 	uint32_t rx_finfo;
392 	uint32_t ttcki;
393 	uint32_t rx_pacc;
394 	uint32_t cir_pwr;
395 	uint32_t flags_to_clear;
396 	int32_t ttcko;
397 	uint16_t pkt_len;
398 	uint8_t *fctrl;
399 	int8_t rx_level = INT8_MIN;
400 
401 	LOG_DBG("RX OK event, SYS_STATUS 0x%08x", sys_stat);
402 	flags_to_clear = sys_stat & DWT_SYS_STATUS_ALL_RX_GOOD;
403 
404 	rx_finfo = dwt_reg_read_u32(dev, DWT_RX_FINFO_ID, DWT_RX_FINFO_OFFSET);
405 	pkt_len = rx_finfo & DWT_RX_FINFO_RXFLEN_MASK;
406 	rx_pacc = (rx_finfo & DWT_RX_FINFO_RXPACC_MASK) >>
407 		   DWT_RX_FINFO_RXPACC_SHIFT;
408 
409 	if (!IS_ENABLED(CONFIG_IEEE802154_L2_PKT_INCL_FCS)) {
410 		pkt_len -= DWT_FCS_LENGTH;
411 	}
412 
413 	pkt = net_pkt_rx_alloc_with_buffer(ctx->iface, pkt_len,
414 					   AF_UNSPEC, 0, K_NO_WAIT);
415 	if (!pkt) {
416 		LOG_ERR("No buf available");
417 		goto rx_out_enable_rx;
418 	}
419 
420 	dwt_register_read(dev, DWT_RX_BUFFER_ID, 0, pkt_len, pkt->buffer->data);
421 	dwt_register_read(dev, DWT_RX_FQUAL_ID, 0, sizeof(rx_inf_reg),
422 			  (uint8_t *)&rx_inf_reg);
423 	net_buf_add(pkt->buffer, pkt_len);
424 	fctrl = pkt->buffer->data;
425 
426 	/*
427 	 * Get Ranging tracking offset and tracking interval
428 	 * for Crystal characterization
429 	 */
430 	ttcki = sys_get_le32(rx_inf_reg.rx_ttcki);
431 	ttcko = sys_get_le32(rx_inf_reg.rx_ttcko) & DWT_RX_TTCKO_RXTOFS_MASK;
432 	/* Tracking offset value is a 19-bit signed integer */
433 	if (ttcko & BIT(18)) {
434 		ttcko |= ~DWT_RX_TTCKO_RXTOFS_MASK;
435 	}
436 
437 	/* TODO add:
438 	 * net_pkt_set_ieee802154_tcki(pkt, ttcki);
439 	 * net_pkt_set_ieee802154_tcko(pkt, ttcko);
440 	 */
441 	LOG_DBG("ttcko %d ttcki: 0x%08x", ttcko, ttcki);
442 
443 	if (IS_ENABLED(CONFIG_NET_PKT_TIMESTAMP)) {
444 		uint8_t ts_buf[sizeof(uint64_t)] = {0};
445 		uint64_t ts_nsec;
446 
447 		memcpy(ts_buf, rx_inf_reg.rx_time, DWT_RX_TIME_RX_STAMP_LEN);
448 		ts_nsec = (sys_get_le64(ts_buf) * DWT_TS_TIME_UNITS_FS) / 1000000U;
449 		net_pkt_set_timestamp_ns(pkt, ts_nsec);
450 	}
451 
452 	/* See 4.7.2 Estimating the receive signal power */
453 	cir_pwr = sys_get_le16(&rx_inf_reg.rx_fqual[6]);
454 	if (ctx->rf_cfg.prf == DWT_PRF_16M) {
455 		a_const = DWT_RX_SIG_PWR_A_CONST_PRF16;
456 	} else {
457 		a_const = DWT_RX_SIG_PWR_A_CONST_PRF64;
458 	}
459 
460 	if (rx_pacc != 0) {
461 #if defined(CONFIG_NEWLIB_LIBC)
462 		/* From 4.7.2 Estimating the receive signal power */
463 		rx_level = 10.0 * log10f(cir_pwr * BIT(17) /
464 					 (rx_pacc * rx_pacc)) - a_const;
465 #endif
466 	}
467 
468 	net_pkt_set_ieee802154_rssi_dbm(pkt, rx_level);
469 
470 	/*
471 	 * Workaround for AAT status bit issue,
472 	 * From 5.3.5 Host Notification in DW1000 User Manual:
473 	 * "Note: there is a situation that can result in the AAT bit being set
474 	 * for the current frame as a result of a previous frame that was
475 	 * received and rejected due to frame filtering."
476 	 */
477 	if ((sys_stat & DWT_SYS_STATUS_AAT) && ((fctrl[0] & 0x20) == 0)) {
478 		flags_to_clear |= DWT_SYS_STATUS_AAT;
479 	}
480 
481 	if (ieee802154_handle_ack(ctx->iface, pkt) == NET_OK) {
482 		LOG_INF("ACK packet handled");
483 		goto rx_out_unref_pkt;
484 	}
485 
486 	/* LQI not implemented */
487 	LOG_DBG("Caught a packet (%u) (RSSI: %d)", pkt_len, rx_level);
488 	LOG_HEXDUMP_DBG(pkt->buffer->data, pkt_len, "RX buffer:");
489 
490 	if (net_recv_data(ctx->iface, pkt) == NET_OK) {
491 		goto rx_out_enable_rx;
492 	} else {
493 		LOG_DBG("Packet dropped by NET stack");
494 	}
495 
496 rx_out_unref_pkt:
497 	if (pkt) {
498 		net_pkt_unref(pkt);
499 	}
500 
501 rx_out_enable_rx:
502 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, 0, flags_to_clear);
503 	LOG_DBG("Cleared SYS_STATUS flags 0x%08x", flags_to_clear);
504 	if (atomic_test_bit(&ctx->state, DWT_STATE_RX_DEF_ON)) {
505 		/*
506 		 * Re-enable reception but in contrast to dwt_enable_rx()
507 		 * without to read SYS_STATUS and set delayed option.
508 		 */
509 		dwt_reg_write_u16(dev, DWT_SYS_CTRL_ID, DWT_SYS_CTRL_OFFSET,
510 				  DWT_SYS_CTRL_RXENAB);
511 	}
512 }
513 
dwt_irq_handle_tx(const struct device * dev,uint32_t sys_stat)514 static void dwt_irq_handle_tx(const struct device *dev, uint32_t sys_stat)
515 {
516 	struct dwt_context *ctx = dev->data;
517 
518 	/* Clear TX event bits */
519 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, 0,
520 			  DWT_SYS_STATUS_ALL_TX);
521 
522 	LOG_DBG("TX confirmed event");
523 	k_sem_give(&ctx->phy_sem);
524 }
525 
dwt_irq_handle_rxto(const struct device * dev,uint32_t sys_stat)526 static void dwt_irq_handle_rxto(const struct device *dev, uint32_t sys_stat)
527 {
528 	struct dwt_context *ctx = dev->data;
529 
530 	/* Clear RX timeout event bits */
531 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, 0,
532 			  DWT_SYS_STATUS_RXRFTO);
533 
534 	dwt_disable_txrx(dev);
535 	/* Receiver reset necessary, see 4.1.6 RX Message timestamp */
536 	dwt_reset_rfrx(dev);
537 
538 	LOG_DBG("RX timeout event");
539 
540 	if (atomic_test_bit(&ctx->state, DWT_STATE_CCA)) {
541 		k_sem_give(&ctx->phy_sem);
542 		ctx->cca_busy = false;
543 	}
544 }
545 
dwt_irq_handle_error(const struct device * dev,uint32_t sys_stat)546 static void dwt_irq_handle_error(const struct device *dev, uint32_t sys_stat)
547 {
548 	struct dwt_context *ctx = dev->data;
549 
550 	/* Clear RX error event bits */
551 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, 0, DWT_SYS_STATUS_ALL_RX_ERR);
552 
553 	dwt_disable_txrx(dev);
554 	/* Receiver reset necessary, see 4.1.6 RX Message timestamp */
555 	dwt_reset_rfrx(dev);
556 
557 	LOG_INF("RX error event");
558 	if (atomic_test_bit(&ctx->state, DWT_STATE_CCA)) {
559 		k_sem_give(&ctx->phy_sem);
560 		ctx->cca_busy = true;
561 		return;
562 	}
563 
564 	if (atomic_test_bit(&ctx->state, DWT_STATE_RX_DEF_ON)) {
565 		dwt_enable_rx(dev, 0);
566 	}
567 }
568 
dwt_irq_work_handler(struct k_work * item)569 static void dwt_irq_work_handler(struct k_work *item)
570 {
571 	struct dwt_context *ctx = CONTAINER_OF(item, struct dwt_context,
572 					       irq_cb_work);
573 	const struct device *dev = ctx->dev;
574 	uint32_t sys_stat;
575 
576 	k_sem_take(&ctx->dev_lock, K_FOREVER);
577 
578 	sys_stat = dwt_reg_read_u32(dev, DWT_SYS_STATUS_ID, 0);
579 
580 	if (sys_stat & DWT_SYS_STATUS_RXFCG) {
581 		if (atomic_test_bit(&ctx->state, DWT_STATE_CCA)) {
582 			dwt_irq_handle_rx_cca(dev);
583 		} else {
584 			dwt_irq_handle_rx(dev, sys_stat);
585 		}
586 	}
587 
588 	if (sys_stat & DWT_SYS_STATUS_TXFRS) {
589 		dwt_irq_handle_tx(dev, sys_stat);
590 	}
591 
592 	if (sys_stat & DWT_SYS_STATUS_ALL_RX_TO) {
593 		dwt_irq_handle_rxto(dev, sys_stat);
594 	}
595 
596 	if (sys_stat & DWT_SYS_STATUS_ALL_RX_ERR) {
597 		dwt_irq_handle_error(dev, sys_stat);
598 	}
599 
600 	k_sem_give(&ctx->dev_lock);
601 }
602 
dwt_gpio_callback(const struct device * dev,struct gpio_callback * cb,uint32_t pins)603 static void dwt_gpio_callback(const struct device *dev,
604 			      struct gpio_callback *cb, uint32_t pins)
605 {
606 	struct dwt_context *ctx = CONTAINER_OF(cb, struct dwt_context, gpio_cb);
607 
608 	LOG_DBG("IRQ callback triggered %p", ctx);
609 	k_work_submit_to_queue(&dwt_work_queue, &ctx->irq_cb_work);
610 }
611 
dwt_get_capabilities(const struct device * dev)612 static enum ieee802154_hw_caps dwt_get_capabilities(const struct device *dev)
613 {
614 	/* TODO: Implement HW-supported AUTOACK + frame pending bit handling. */
615 	return IEEE802154_HW_FCS | IEEE802154_HW_FILTER |
616 	       IEEE802154_HW_TXTIME;
617 }
618 
dwt_get_pkt_duration_ns(struct dwt_context * ctx,uint8_t psdu_len)619 static uint32_t dwt_get_pkt_duration_ns(struct dwt_context *ctx, uint8_t psdu_len)
620 {
621 	struct dwt_phy_config *rf_cfg = &ctx->rf_cfg;
622 	float t_psdu = rf_cfg->t_dsym * psdu_len * 8;
623 
624 	return (rf_cfg->t_shr + rf_cfg->t_phr + t_psdu);
625 }
626 
dwt_cca(const struct device * dev)627 static int dwt_cca(const struct device *dev)
628 {
629 	struct dwt_context *ctx = dev->data;
630 	uint32_t cca_dur = (dwt_get_pkt_duration_ns(ctx, 127) +
631 			 dwt_get_pkt_duration_ns(ctx, 5)) /
632 			 UWB_PHY_TDSYM_PHR_6M8;
633 
634 	if (atomic_test_and_set_bit(&ctx->state, DWT_STATE_CCA)) {
635 		LOG_ERR("Transceiver busy");
636 		return -EBUSY;
637 	}
638 
639 	/* Perform CCA Mode 5 */
640 	k_sem_take(&ctx->dev_lock, K_FOREVER);
641 	dwt_disable_txrx(dev);
642 	LOG_DBG("CCA duration %u us", cca_dur);
643 
644 	dwt_enable_rx(dev, cca_dur);
645 	k_sem_give(&ctx->dev_lock);
646 
647 	k_sem_take(&ctx->phy_sem, K_FOREVER);
648 	LOG_DBG("CCA finished %p", ctx);
649 
650 	atomic_clear_bit(&ctx->state, DWT_STATE_CCA);
651 	if (atomic_test_bit(&ctx->state, DWT_STATE_RX_DEF_ON)) {
652 		k_sem_take(&ctx->dev_lock, K_FOREVER);
653 		dwt_enable_rx(dev, 0);
654 		k_sem_give(&ctx->dev_lock);
655 	}
656 
657 	return ctx->cca_busy ? -EBUSY : 0;
658 }
659 
dwt_ed(const struct device * dev,uint16_t duration,energy_scan_done_cb_t done_cb)660 static int dwt_ed(const struct device *dev, uint16_t duration,
661 		  energy_scan_done_cb_t done_cb)
662 {
663 	/* TODO: see description Sub-Register 0x23:02 – AGC_CTRL1 */
664 
665 	return -ENOTSUP;
666 }
667 
dwt_set_channel(const struct device * dev,uint16_t channel)668 static int dwt_set_channel(const struct device *dev, uint16_t channel)
669 {
670 	struct dwt_context *ctx = dev->data;
671 	struct dwt_phy_config *rf_cfg = &ctx->rf_cfg;
672 
673 	if (channel > 15) {
674 		return -EINVAL;
675 	}
676 
677 	if (channel == 0 || channel == 6 || channel > 7) {
678 		return -ENOTSUP;
679 	}
680 
681 	rf_cfg->channel = channel;
682 	LOG_INF("Set channel %u", channel);
683 
684 	k_sem_take(&ctx->dev_lock, K_FOREVER);
685 
686 	dwt_disable_txrx(dev);
687 	dwt_configure_rf_phy(dev);
688 
689 	if (atomic_test_bit(&ctx->state, DWT_STATE_RX_DEF_ON)) {
690 		dwt_enable_rx(dev, 0);
691 	}
692 
693 	k_sem_give(&ctx->dev_lock);
694 
695 	return 0;
696 }
697 
dwt_set_pan_id(const struct device * dev,uint16_t pan_id)698 static int dwt_set_pan_id(const struct device *dev, uint16_t pan_id)
699 {
700 	struct dwt_context *ctx = dev->data;
701 
702 	k_sem_take(&ctx->dev_lock, K_FOREVER);
703 	dwt_reg_write_u16(dev, DWT_PANADR_ID, DWT_PANADR_PAN_ID_OFFSET, pan_id);
704 	k_sem_give(&ctx->dev_lock);
705 
706 	LOG_INF("Set PAN ID 0x%04x %p", pan_id, ctx);
707 
708 	return 0;
709 }
710 
dwt_set_short_addr(const struct device * dev,uint16_t short_addr)711 static int dwt_set_short_addr(const struct device *dev, uint16_t short_addr)
712 {
713 	struct dwt_context *ctx = dev->data;
714 
715 	k_sem_take(&ctx->dev_lock, K_FOREVER);
716 	dwt_reg_write_u16(dev, DWT_PANADR_ID, DWT_PANADR_SHORT_ADDR_OFFSET,
717 			  short_addr);
718 	k_sem_give(&ctx->dev_lock);
719 
720 	LOG_INF("Set short 0x%x %p", short_addr, ctx);
721 
722 	return 0;
723 }
724 
dwt_set_ieee_addr(const struct device * dev,const uint8_t * ieee_addr)725 static int dwt_set_ieee_addr(const struct device *dev,
726 			     const uint8_t *ieee_addr)
727 {
728 	struct dwt_context *ctx = dev->data;
729 
730 	LOG_INF("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
731 		ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
732 		ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
733 
734 	k_sem_take(&ctx->dev_lock, K_FOREVER);
735 	dwt_register_write(dev, DWT_EUI_64_ID, DWT_EUI_64_OFFSET,
736 			   DWT_EUI_64_LEN, (uint8_t *)ieee_addr);
737 	k_sem_give(&ctx->dev_lock);
738 
739 	return 0;
740 }
741 
dwt_filter(const struct device * dev,bool set,enum ieee802154_filter_type type,const struct ieee802154_filter * filter)742 static int dwt_filter(const struct device *dev,
743 		      bool set,
744 		      enum ieee802154_filter_type type,
745 		      const struct ieee802154_filter *filter)
746 {
747 	if (!set) {
748 		return -ENOTSUP;
749 	}
750 
751 	if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
752 		return dwt_set_ieee_addr(dev, filter->ieee_addr);
753 	} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
754 		return dwt_set_short_addr(dev, filter->short_addr);
755 	} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
756 		return dwt_set_pan_id(dev, filter->pan_id);
757 	}
758 
759 	return -ENOTSUP;
760 }
761 
dwt_set_power(const struct device * dev,int16_t dbm)762 static int dwt_set_power(const struct device *dev, int16_t dbm)
763 {
764 	struct dwt_context *ctx = dev->data;
765 
766 	LOG_INF("set_txpower not supported %p", ctx);
767 
768 	return 0;
769 }
770 
dwt_tx(const struct device * dev,enum ieee802154_tx_mode tx_mode,struct net_pkt * pkt,struct net_buf * frag)771 static int dwt_tx(const struct device *dev, enum ieee802154_tx_mode tx_mode,
772 		  struct net_pkt *pkt, struct net_buf *frag)
773 {
774 	struct dwt_context *ctx = dev->data;
775 	size_t len = frag->len;
776 	uint32_t tx_time = 0;
777 	uint64_t tmp_fs;
778 	uint32_t tx_fctrl;
779 	uint8_t sys_ctrl = DWT_SYS_CTRL_TXSTRT;
780 
781 	if (atomic_test_and_set_bit(&ctx->state, DWT_STATE_TX)) {
782 		LOG_ERR("Transceiver busy");
783 		return -EBUSY;
784 	}
785 
786 	k_sem_reset(&ctx->phy_sem);
787 	k_sem_take(&ctx->dev_lock, K_FOREVER);
788 
789 	switch (tx_mode) {
790 	case IEEE802154_TX_MODE_DIRECT:
791 		break;
792 	case IEEE802154_TX_MODE_TXTIME:
793 		/*
794 		 * tx_time is the high 32-bit of the 40-bit system
795 		 * time value at which to send the message.
796 		 */
797 		tmp_fs = net_pkt_timestamp_ns(pkt);
798 		tmp_fs *= 1000U * 1000U;
799 
800 		tx_time = (tmp_fs / DWT_TS_TIME_UNITS_FS) >> 8;
801 		sys_ctrl |= DWT_SYS_CTRL_TXDLYS;
802 		/* DX_TIME is 40-bit register */
803 		dwt_reg_write_u32(dev, DWT_DX_TIME_ID, 1, tx_time);
804 
805 		LOG_DBG("ntx hi32 %x", tx_time);
806 		LOG_DBG("sys hi32 %x",
807 			dwt_reg_read_u32(dev, DWT_SYS_TIME_ID, 1));
808 		break;
809 	default:
810 		LOG_ERR("TX mode %d not supported", tx_mode);
811 		goto error;
812 	}
813 
814 	LOG_HEXDUMP_DBG(frag->data, len, "TX buffer:");
815 
816 	/*
817 	 * See "3 Message Transmission" in DW1000 User Manual for
818 	 * more details about transmission configuration.
819 	 */
820 	if (dwt_register_write(dev, DWT_TX_BUFFER_ID, 0, len, frag->data)) {
821 		LOG_ERR("Failed to write TX data");
822 		goto error;
823 	}
824 
825 	tx_fctrl = dwt_reg_read_u32(dev, DWT_TX_FCTRL_ID, 0);
826 	/* Clear TX buffer index offset, frame length, and length extension */
827 	tx_fctrl &= ~(DWT_TX_FCTRL_TFLEN_MASK | DWT_TX_FCTRL_TFLE_MASK |
828 		      DWT_TX_FCTRL_TXBOFFS_MASK);
829 	/* Set frame length and ranging flag */
830 	tx_fctrl |= (len + DWT_FCS_LENGTH) & DWT_TX_FCTRL_TFLEN_MASK;
831 	tx_fctrl |= DWT_TX_FCTRL_TR;
832 	/* Update Transmit Frame Control register */
833 	dwt_reg_write_u32(dev, DWT_TX_FCTRL_ID, 0, tx_fctrl);
834 
835 	dwt_disable_txrx(dev);
836 
837 	/* Begin transmission */
838 	dwt_reg_write_u8(dev, DWT_SYS_CTRL_ID, DWT_SYS_CTRL_OFFSET, sys_ctrl);
839 
840 	if (sys_ctrl & DWT_SYS_CTRL_TXDLYS) {
841 		uint32_t sys_stat = dwt_reg_read_u32(dev, DWT_SYS_STATUS_ID, 0);
842 
843 		if (sys_stat & DWT_SYS_STATUS_HPDWARN) {
844 			LOG_WRN("Half Period Delay Warning");
845 		}
846 	}
847 
848 	k_sem_give(&ctx->dev_lock);
849 	/* Wait for the TX confirmed event */
850 	k_sem_take(&ctx->phy_sem, K_FOREVER);
851 
852 	if (IS_ENABLED(CONFIG_NET_PKT_TIMESTAMP)) {
853 		uint8_t ts_buf[sizeof(uint64_t)] = {0};
854 
855 		k_sem_take(&ctx->dev_lock, K_FOREVER);
856 		dwt_register_read(dev, DWT_TX_TIME_ID,
857 				  DWT_TX_TIME_TX_STAMP_OFFSET,
858 				  DWT_TX_TIME_TX_STAMP_LEN,
859 				  ts_buf);
860 		LOG_DBG("ts  hi32 %x", (uint32_t)(sys_get_le64(ts_buf) >> 8));
861 		LOG_DBG("sys hi32 %x",
862 			dwt_reg_read_u32(dev, DWT_SYS_TIME_ID, 1));
863 		k_sem_give(&ctx->dev_lock);
864 
865 		tmp_fs = sys_get_le64(ts_buf) * DWT_TS_TIME_UNITS_FS;
866 		net_pkt_set_timestamp_ns(pkt, tmp_fs / 1000000U);
867 	}
868 
869 	atomic_clear_bit(&ctx->state, DWT_STATE_TX);
870 
871 	if (atomic_test_bit(&ctx->state, DWT_STATE_RX_DEF_ON)) {
872 		k_sem_take(&ctx->dev_lock, K_FOREVER);
873 		dwt_enable_rx(dev, 0);
874 		k_sem_give(&ctx->dev_lock);
875 	}
876 
877 	return 0;
878 
879 error:
880 	atomic_clear_bit(&ctx->state, DWT_STATE_TX);
881 	k_sem_give(&ctx->dev_lock);
882 
883 	return -EIO;
884 }
885 
dwt_set_frame_filter(const struct device * dev,bool ff_enable,uint8_t ff_type)886 static void dwt_set_frame_filter(const struct device *dev,
887 				 bool ff_enable, uint8_t ff_type)
888 {
889 	uint32_t sys_cfg_ff = ff_enable ? DWT_SYS_CFG_FFE : 0;
890 
891 	sys_cfg_ff |= ff_type & DWT_SYS_CFG_FF_ALL_EN;
892 
893 	dwt_reg_write_u8(dev, DWT_SYS_CFG_ID, 0, (uint8_t)sys_cfg_ff);
894 }
895 
dwt_configure(const struct device * dev,enum ieee802154_config_type type,const struct ieee802154_config * config)896 static int dwt_configure(const struct device *dev,
897 			 enum ieee802154_config_type type,
898 			 const struct ieee802154_config *config)
899 {
900 	struct dwt_context *ctx = dev->data;
901 
902 	LOG_DBG("API configure %p", ctx);
903 
904 	switch (type) {
905 	case IEEE802154_CONFIG_AUTO_ACK_FPB:
906 		LOG_DBG("IEEE802154_CONFIG_AUTO_ACK_FPB");
907 		break;
908 
909 	case IEEE802154_CONFIG_ACK_FPB:
910 		LOG_DBG("IEEE802154_CONFIG_ACK_FPB");
911 		break;
912 
913 	case IEEE802154_CONFIG_PAN_COORDINATOR:
914 		LOG_DBG("IEEE802154_CONFIG_PAN_COORDINATOR");
915 		break;
916 
917 	case IEEE802154_CONFIG_PROMISCUOUS:
918 		LOG_DBG("IEEE802154_CONFIG_PROMISCUOUS");
919 		break;
920 
921 	case IEEE802154_CONFIG_EVENT_HANDLER:
922 		LOG_DBG("IEEE802154_CONFIG_EVENT_HANDLER");
923 		break;
924 
925 	default:
926 		return -EINVAL;
927 	}
928 
929 	return -ENOTSUP;
930 }
931 
932 /* driver-allocated attribute memory - constant across all driver instances */
933 static const struct {
934 	const struct ieee802154_phy_channel_range phy_channel_range[2];
935 	const struct ieee802154_phy_supported_channels phy_supported_channels;
936 } drv_attr = {
937 	.phy_channel_range = {
938 		{ .from_channel = 1, .to_channel = 5 },
939 		{ .from_channel = 7, .to_channel = 7 },
940 	},
941 	.phy_supported_channels = {
942 		.ranges = drv_attr.phy_channel_range,
943 		.num_ranges = 2U,
944 	},
945 };
946 
dwt_attr_get(const struct device * dev,enum ieee802154_attr attr,struct ieee802154_attr_value * value)947 static int dwt_attr_get(const struct device *dev, enum ieee802154_attr attr,
948 			struct ieee802154_attr_value *value)
949 {
950 	if (ieee802154_attr_get_channel_page_and_range(
951 		    attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_FOUR_HRP_UWB,
952 		    &drv_attr.phy_supported_channels, value) == 0) {
953 		return 0;
954 	}
955 
956 	switch (attr) {
957 	case IEEE802154_ATTR_PHY_HRP_UWB_SUPPORTED_PRFS: {
958 		struct dwt_context *ctx = dev->data;
959 		struct dwt_phy_config *rf_cfg = &ctx->rf_cfg;
960 
961 		value->phy_hrp_uwb_supported_nominal_prfs =
962 			rf_cfg->prf == DWT_PRF_64M ? IEEE802154_PHY_HRP_UWB_NOMINAL_64_M
963 						   : IEEE802154_PHY_HRP_UWB_NOMINAL_16_M;
964 		return 0;
965 	}
966 
967 	default:
968 		return -ENOENT;
969 	}
970 }
971 
972 /*
973  * Note, the DW_RESET pin should not be driven high externally.
974  */
dwt_hw_reset(const struct device * dev)975 static int dwt_hw_reset(const struct device *dev)
976 {
977 	const struct dwt_hi_cfg *hi_cfg = dev->config;
978 
979 	if (gpio_pin_configure_dt(&hi_cfg->rst_gpio, GPIO_OUTPUT_ACTIVE)) {
980 		LOG_ERR("Failed to configure GPIO pin %u", hi_cfg->rst_gpio.pin);
981 		return -EINVAL;
982 	}
983 
984 	k_sleep(K_MSEC(1));
985 	gpio_pin_set_dt(&hi_cfg->rst_gpio, 0);
986 	k_sleep(K_MSEC(5));
987 
988 	if (gpio_pin_configure_dt(&hi_cfg->rst_gpio, GPIO_INPUT)) {
989 		LOG_ERR("Failed to configure GPIO pin %u", hi_cfg->rst_gpio.pin);
990 		return -EINVAL;
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * SPI speed in INIT state or for wake-up sequence,
998  * see 2.3.2 Overview of main operational states
999  */
dwt_set_spi_slow(const struct device * dev,const uint32_t freq)1000 static void dwt_set_spi_slow(const struct device *dev, const uint32_t freq)
1001 {
1002 	struct dwt_context *ctx = dev->data;
1003 
1004 	ctx->spi_cfg_slow.frequency = freq;
1005 	ctx->spi_cfg = &ctx->spi_cfg_slow;
1006 }
1007 
1008 /* SPI speed in IDLE, RX, and TX state */
dwt_set_spi_fast(const struct device * dev)1009 static void dwt_set_spi_fast(const struct device *dev)
1010 {
1011 	const struct dwt_hi_cfg *hi_cfg = dev->config;
1012 	struct dwt_context *ctx = dev->data;
1013 
1014 	ctx->spi_cfg = &hi_cfg->bus.config;
1015 }
1016 
dwt_set_rx_mode(const struct device * dev)1017 static void dwt_set_rx_mode(const struct device *dev)
1018 {
1019 	struct dwt_context *ctx = dev->data;
1020 	struct dwt_phy_config *rf_cfg = &ctx->rf_cfg;
1021 	uint32_t pmsc_ctrl0;
1022 	uint32_t t_on_us;
1023 	uint8_t rx_sniff[2];
1024 
1025 	/* SNIFF Mode ON time in units of PAC */
1026 	rx_sniff[0] = CONFIG_IEEE802154_DW1000_SNIFF_ONT &
1027 		      DWT_RX_SNIFF_SNIFF_ONT_MASK;
1028 	/* SNIFF Mode OFF time in microseconds */
1029 	rx_sniff[1] = CONFIG_IEEE802154_DW1000_SNIFF_OFFT;
1030 
1031 	t_on_us = (rx_sniff[0] + 1) * (BIT(3) << rf_cfg->rx_pac_l);
1032 	LOG_INF("RX duty cycle %u%%", t_on_us * 100 / (t_on_us + rx_sniff[1]));
1033 
1034 	dwt_register_write(dev, DWT_RX_SNIFF_ID, DWT_RX_SNIFF_OFFSET,
1035 			   sizeof(rx_sniff), rx_sniff);
1036 
1037 	pmsc_ctrl0 = dwt_reg_read_u32(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_OFFSET);
1038 	/* Enable PLL2 on/off sequencing for SNIFF mode */
1039 	pmsc_ctrl0 |= DWT_PMSC_CTRL0_PLL2_SEQ_EN;
1040 	dwt_reg_write_u32(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_OFFSET, pmsc_ctrl0);
1041 }
1042 
dwt_start(const struct device * dev)1043 static int dwt_start(const struct device *dev)
1044 {
1045 	struct dwt_context *ctx = dev->data;
1046 	uint8_t cswakeup_buf[32] = {0};
1047 
1048 	k_sem_take(&ctx->dev_lock, K_FOREVER);
1049 
1050 	/* Set SPI clock to lowest frequency */
1051 	dwt_set_spi_slow(dev, DWT_SPI_CSWAKEUP_FREQ);
1052 
1053 	if (dwt_reg_read_u32(dev, DWT_DEV_ID_ID, 0) != DWT_DEVICE_ID) {
1054 		/* Keep SPI CS line low for 500 microseconds */
1055 		dwt_register_read(dev, 0, 0, sizeof(cswakeup_buf),
1056 				  cswakeup_buf);
1057 		/* Give device time to initialize */
1058 		k_sleep(K_MSEC(5));
1059 
1060 		if (dwt_reg_read_u32(dev, DWT_DEV_ID_ID, 0) != DWT_DEVICE_ID) {
1061 			LOG_ERR("Failed to wake-up %p", dev);
1062 			k_sem_give(&ctx->dev_lock);
1063 			return -1;
1064 		}
1065 	} else {
1066 		LOG_WRN("Device not in a sleep mode");
1067 	}
1068 
1069 	/* Restore SPI clock settings */
1070 	dwt_set_spi_slow(dev, DWT_SPI_SLOW_FREQ);
1071 	dwt_set_spi_fast(dev);
1072 
1073 	dwt_setup_int(dev, true);
1074 	dwt_disable_txrx(dev);
1075 	dwt_reset_rfrx(dev);
1076 
1077 	if (CONFIG_IEEE802154_DW1000_SNIFF_ONT != 0) {
1078 		dwt_set_rx_mode(dev);
1079 	}
1080 
1081 	/* Re-enable RX after packet reception */
1082 	atomic_set_bit(&ctx->state, DWT_STATE_RX_DEF_ON);
1083 	dwt_enable_rx(dev, 0);
1084 	k_sem_give(&ctx->dev_lock);
1085 
1086 	LOG_INF("Started %p", dev);
1087 
1088 	return 0;
1089 }
1090 
dwt_stop(const struct device * dev)1091 static int dwt_stop(const struct device *dev)
1092 {
1093 	struct dwt_context *ctx = dev->data;
1094 
1095 	k_sem_take(&ctx->dev_lock, K_FOREVER);
1096 	dwt_disable_txrx(dev);
1097 	dwt_reset_rfrx(dev);
1098 	dwt_setup_int(dev, false);
1099 
1100 	/* Copy the user configuration and enter sleep mode */
1101 	dwt_reg_write_u8(dev, DWT_AON_ID, DWT_AON_CTRL_OFFSET,
1102 			 DWT_AON_CTRL_SAVE);
1103 	k_sem_give(&ctx->dev_lock);
1104 
1105 	LOG_INF("Stopped %p", dev);
1106 
1107 	return 0;
1108 }
1109 
dwt_set_sysclks_xti(const struct device * dev,bool ldeload)1110 static inline void dwt_set_sysclks_xti(const struct device *dev, bool ldeload)
1111 {
1112 	uint16_t clks = BIT(9) | DWT_PMSC_CTRL0_SYSCLKS_19M;
1113 
1114 	/*
1115 	 * See Table 4: Register accesses required to load LDE microcode,
1116 	 * set PMSC_CTRL0 0x0301, load LDE, set PMSC_CTRL0 0x0200.
1117 	 */
1118 	if (ldeload) {
1119 		clks |= BIT(8);
1120 	}
1121 
1122 	/* Force system clock to be the 19.2 MHz XTI clock */
1123 	dwt_reg_write_u16(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_OFFSET, clks);
1124 }
1125 
dwt_set_sysclks_auto(const struct device * dev)1126 static inline void dwt_set_sysclks_auto(const struct device *dev)
1127 {
1128 	uint8_t sclks = DWT_PMSC_CTRL0_SYSCLKS_AUTO |
1129 		     DWT_PMSC_CTRL0_RXCLKS_AUTO |
1130 		     DWT_PMSC_CTRL0_TXCLKS_AUTO;
1131 
1132 	dwt_reg_write_u8(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_OFFSET, sclks);
1133 }
1134 
dwt_otpmem_read(const struct device * dev,uint16_t otp_addr)1135 static uint32_t dwt_otpmem_read(const struct device *dev, uint16_t otp_addr)
1136 {
1137 	dwt_reg_write_u16(dev, DWT_OTP_IF_ID, DWT_OTP_ADDR, otp_addr);
1138 
1139 	dwt_reg_write_u8(dev, DWT_OTP_IF_ID, DWT_OTP_CTRL,
1140 				DWT_OTP_CTRL_OTPREAD | DWT_OTP_CTRL_OTPRDEN);
1141 	/* OTPREAD is self clearing but OTPRDEN is not */
1142 	dwt_reg_write_u8(dev, DWT_OTP_IF_ID, DWT_OTP_CTRL, 0x00);
1143 
1144 	/* Read read data, available 40ns after rising edge of OTP_READ */
1145 	return dwt_reg_read_u32(dev, DWT_OTP_IF_ID, DWT_OTP_RDAT);
1146 }
1147 
dwt_initialise_dev(const struct device * dev)1148 static int dwt_initialise_dev(const struct device *dev)
1149 {
1150 	struct dwt_context *ctx = dev->data;
1151 	uint32_t otp_val = 0;
1152 	uint8_t xtal_trim;
1153 
1154 	dwt_set_sysclks_xti(dev, false);
1155 	ctx->sleep_mode = 0;
1156 
1157 	/* Disable PMSC control of analog RF subsystem */
1158 	dwt_reg_write_u16(dev, DWT_PMSC_ID, DWT_PMSC_CTRL1_OFFSET,
1159 			  DWT_PMSC_CTRL1_PKTSEQ_DISABLE);
1160 
1161 	/* Clear all status flags */
1162 	dwt_reg_write_u32(dev, DWT_SYS_STATUS_ID, 0, DWT_SYS_STATUS_MASK_32);
1163 
1164 	/*
1165 	 * Apply soft reset,
1166 	 * see SOFTRESET field description in DW1000 User Manual.
1167 	 */
1168 	dwt_reg_write_u8(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_SOFTRESET_OFFSET,
1169 			 DWT_PMSC_CTRL0_RESET_ALL);
1170 	k_sleep(K_MSEC(1));
1171 	dwt_reg_write_u8(dev, DWT_PMSC_ID, DWT_PMSC_CTRL0_SOFTRESET_OFFSET,
1172 			 DWT_PMSC_CTRL0_RESET_CLEAR);
1173 
1174 	dwt_set_sysclks_xti(dev, false);
1175 
1176 	/*
1177 	 * This bit (a.k.a PLLLDT) should be set to ensure reliable
1178 	 * operation of the CPLOCK bit.
1179 	 */
1180 	dwt_reg_write_u8(dev, DWT_EXT_SYNC_ID, DWT_EC_CTRL_OFFSET,
1181 			 DWT_EC_CTRL_PLLLCK);
1182 
1183 	/* Kick LDO if there is a value programmed. */
1184 	otp_val = dwt_otpmem_read(dev, DWT_OTP_LDOTUNE_ADDR);
1185 	if ((otp_val & 0xFF) != 0) {
1186 		dwt_reg_write_u8(dev, DWT_OTP_IF_ID, DWT_OTP_SF,
1187 				 DWT_OTP_SF_LDO_KICK);
1188 		ctx->sleep_mode |= DWT_AON_WCFG_ONW_LLDO;
1189 		LOG_INF("Load LDOTUNE_CAL parameter");
1190 	}
1191 
1192 	otp_val = dwt_otpmem_read(dev, DWT_OTP_XTRIM_ADDR);
1193 	xtal_trim = otp_val & DWT_FS_XTALT_MASK;
1194 	LOG_INF("OTP Revision 0x%02x, XTAL Trim 0x%02x",
1195 		(uint8_t)(otp_val >> 8), xtal_trim);
1196 
1197 	LOG_DBG("CHIP ID 0x%08x", dwt_otpmem_read(dev, DWT_OTP_PARTID_ADDR));
1198 	LOG_DBG("LOT ID 0x%08x", dwt_otpmem_read(dev, DWT_OTP_LOTID_ADDR));
1199 	LOG_DBG("Vbat 0x%02x", dwt_otpmem_read(dev, DWT_OTP_VBAT_ADDR));
1200 	LOG_DBG("Vtemp 0x%02x", dwt_otpmem_read(dev, DWT_OTP_VTEMP_ADDR));
1201 
1202 	if (xtal_trim == 0) {
1203 		/* Set to default */
1204 		xtal_trim = DWT_FS_XTALT_MIDRANGE;
1205 	}
1206 
1207 	/* For FS_XTALT bits 7:5 must always be set to binary “011” */
1208 	xtal_trim |= BIT(6) | BIT(5);
1209 	dwt_reg_write_u8(dev, DWT_FS_CTRL_ID, DWT_FS_XTALT_OFFSET, xtal_trim);
1210 
1211 	/* Load LDE microcode into RAM, see 2.5.5.10 LDELOAD */
1212 	dwt_set_sysclks_xti(dev, true);
1213 	dwt_reg_write_u16(dev, DWT_OTP_IF_ID, DWT_OTP_CTRL,
1214 			  DWT_OTP_CTRL_LDELOAD);
1215 	k_sleep(K_MSEC(1));
1216 	dwt_set_sysclks_xti(dev, false);
1217 	ctx->sleep_mode |= DWT_AON_WCFG_ONW_LLDE;
1218 
1219 	dwt_set_sysclks_auto(dev);
1220 
1221 	if (!(dwt_reg_read_u8(dev, DWT_SYS_STATUS_ID, 0) &
1222 	     DWT_SYS_STATUS_CPLOCK)) {
1223 		LOG_WRN("PLL has not locked");
1224 		return -EIO;
1225 	}
1226 
1227 	dwt_set_spi_fast(dev);
1228 
1229 	/* Setup antenna delay values */
1230 	dwt_reg_write_u16(dev, DWT_LDE_IF_ID, DWT_LDE_RXANTD_OFFSET,
1231 			  DW1000_RX_ANT_DLY);
1232 	dwt_reg_write_u16(dev, DWT_TX_ANTD_ID, DWT_TX_ANTD_OFFSET,
1233 			  DW1000_TX_ANT_DLY);
1234 
1235 	/* Clear AON_CFG1 register */
1236 	dwt_reg_write_u8(dev, DWT_AON_ID, DWT_AON_CFG1_OFFSET, 0);
1237 	/*
1238 	 * Configure sleep mode:
1239 	 *  - On wake-up load configurations from the AON memory
1240 	 *  - preserve sleep mode configuration
1241 	 *  - On Wake-up load the LDE microcode
1242 	 *  - When available, on wake-up load the LDO tune value
1243 	 */
1244 	ctx->sleep_mode |= DWT_AON_WCFG_ONW_LDC |
1245 			   DWT_AON_WCFG_PRES_SLEEP;
1246 	dwt_reg_write_u16(dev, DWT_AON_ID, DWT_AON_WCFG_OFFSET,
1247 			  ctx->sleep_mode);
1248 	LOG_DBG("sleep mode 0x%04x", ctx->sleep_mode);
1249 	/* Enable sleep and wake using SPI CSn */
1250 	dwt_reg_write_u8(dev, DWT_AON_ID, DWT_AON_CFG0_OFFSET,
1251 			 DWT_AON_CFG0_WAKE_SPI | DWT_AON_CFG0_SLEEP_EN);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * RF PHY configuration. Must be carried out as part of initialization and
1258  * for every channel change. See also 2.5 Default Configuration on Power Up.
1259  */
dwt_configure_rf_phy(const struct device * dev)1260 static int dwt_configure_rf_phy(const struct device *dev)
1261 {
1262 	struct dwt_context *ctx = dev->data;
1263 	struct dwt_phy_config *rf_cfg = &ctx->rf_cfg;
1264 	uint8_t chan = rf_cfg->channel;
1265 	uint8_t prf_idx = rf_cfg->prf;
1266 	uint32_t chan_ctrl = 0;
1267 	uint8_t rxctrlh;
1268 	uint8_t pll_tune;
1269 	uint8_t tune4h;
1270 	uint8_t pgdelay;
1271 	uint16_t lde_repc;
1272 	uint16_t agc_tune1;
1273 	uint16_t sfdto;
1274 	uint16_t tune1a;
1275 	uint16_t tune0b;
1276 	uint16_t tune1b;
1277 	uint32_t txctrl;
1278 	uint32_t pll_cfg;
1279 	uint32_t tune2;
1280 	uint32_t sys_cfg;
1281 	uint32_t tx_fctrl;
1282 	uint32_t power;
1283 
1284 	if ((chan < 1) || (chan > 7) || (chan == 6)) {
1285 		LOG_ERR("Channel not supported %u", chan);
1286 		return -ENOTSUP;
1287 	}
1288 
1289 	if (rf_cfg->rx_shr_code >= ARRAY_SIZE(dwt_lde_repc_defs)) {
1290 		LOG_ERR("Preamble code not supported %u",
1291 			rf_cfg->rx_shr_code);
1292 		return -ENOTSUP;
1293 	}
1294 
1295 	if (prf_idx >= DWT_NUMOF_PRFS) {
1296 		LOG_ERR("PRF not supported %u", prf_idx);
1297 		return -ENOTSUP;
1298 	}
1299 
1300 	if (rf_cfg->rx_pac_l >= DWT_NUMOF_PACS) {
1301 		LOG_ERR("RX PAC not supported %u", rf_cfg->rx_pac_l);
1302 		return -ENOTSUP;
1303 	}
1304 
1305 	if (rf_cfg->rx_ns_sfd > 1) {
1306 		LOG_ERR("Wrong NS SFD configuration");
1307 		return -ENOTSUP;
1308 	}
1309 
1310 	if (rf_cfg->tx_shr_nsync >= DWT_NUM_OF_PLEN) {
1311 		LOG_ERR("Wrong SHR configuration");
1312 		return -ENOTSUP;
1313 	}
1314 
1315 	lde_repc = dwt_lde_repc_defs[rf_cfg->rx_shr_code];
1316 	agc_tune1 = dwt_agc_tune1_defs[prf_idx];
1317 	sfdto = rf_cfg->rx_sfd_to;
1318 	rxctrlh = dwt_rxctrlh_defs[dwt_ch_to_cfg[chan]];
1319 	txctrl = dwt_txctrl_defs[dwt_ch_to_cfg[chan]];
1320 	pll_tune = dwt_plltune_defs[dwt_ch_to_cfg[chan]];
1321 	pll_cfg = dwt_pllcfg_defs[dwt_ch_to_cfg[chan]];
1322 	tune2 = dwt_tune2_defs[prf_idx][rf_cfg->rx_pac_l];
1323 	tune1a = dwt_tune1a_defs[prf_idx];
1324 	tune0b = dwt_tune0b_defs[rf_cfg->dr][rf_cfg->rx_ns_sfd];
1325 	pgdelay = dwt_pgdelay_defs[dwt_ch_to_cfg[chan]];
1326 
1327 	sys_cfg = dwt_reg_read_u32(dev, DWT_SYS_CFG_ID, 0);
1328 	tx_fctrl = dwt_reg_read_u32(dev, DWT_TX_FCTRL_ID, 0);
1329 
1330 	/* Don't allow 0 - SFD timeout will always be enabled */
1331 	if (sfdto == 0) {
1332 		sfdto = DWT_SFDTOC_DEF;
1333 	}
1334 
1335 	/* Set IEEE 802.15.4 compliant mode */
1336 	sys_cfg &= ~DWT_SYS_CFG_PHR_MODE_11;
1337 
1338 	if (rf_cfg->dr == DWT_BR_110K) {
1339 		/* Set Receiver Mode 110 kbps data rate */
1340 		sys_cfg |= DWT_SYS_CFG_RXM110K;
1341 		lde_repc = lde_repc >> 3;
1342 		tune1b = DWT_DRX_TUNE1b_110K;
1343 		tune4h = DWT_DRX_TUNE4H_PRE64;
1344 	} else {
1345 		sys_cfg &= ~DWT_SYS_CFG_RXM110K;
1346 		if (rf_cfg->tx_shr_nsync == DWT_PLEN_64) {
1347 			tune1b = DWT_DRX_TUNE1b_6M8_PRE64;
1348 			tune4h = DWT_DRX_TUNE4H_PRE64;
1349 		} else {
1350 			tune1b = DWT_DRX_TUNE1b_850K_6M8;
1351 			tune4h = DWT_DRX_TUNE4H_PRE128PLUS;
1352 		}
1353 	}
1354 
1355 	if (sys_cfg & DWT_SYS_CFG_DIS_STXP) {
1356 		if (rf_cfg->prf == DWT_PRF_64M) {
1357 			power = dwt_txpwr_stxp1_64[dwt_ch_to_cfg[chan]];
1358 		} else {
1359 			power = dwt_txpwr_stxp1_16[dwt_ch_to_cfg[chan]];
1360 		}
1361 	} else {
1362 		if (rf_cfg->prf == DWT_PRF_64M) {
1363 			power = dwt_txpwr_stxp0_64[dwt_ch_to_cfg[chan]];
1364 		} else {
1365 			power = dwt_txpwr_stxp0_16[dwt_ch_to_cfg[chan]];
1366 		}
1367 	}
1368 
1369 	dwt_reg_write_u32(dev, DWT_SYS_CFG_ID, 0, sys_cfg);
1370 	LOG_DBG("SYS_CFG: 0x%08x", sys_cfg);
1371 
1372 	dwt_reg_write_u16(dev, DWT_LDE_IF_ID, DWT_LDE_REPC_OFFSET, lde_repc);
1373 	LOG_DBG("LDE_REPC: 0x%04x", lde_repc);
1374 
1375 	dwt_reg_write_u8(dev, DWT_LDE_IF_ID, DWT_LDE_CFG1_OFFSET,
1376 			 DWT_DEFAULT_LDE_CFG1);
1377 
1378 	if (rf_cfg->prf == DWT_PRF_64M) {
1379 		dwt_reg_write_u16(dev, DWT_LDE_IF_ID, DWT_LDE_CFG2_OFFSET,
1380 				  DWT_DEFAULT_LDE_CFG2_PRF64);
1381 		LOG_DBG("LDE_CFG2: 0x%04x", DWT_DEFAULT_LDE_CFG2_PRF64);
1382 	} else {
1383 		dwt_reg_write_u16(dev, DWT_LDE_IF_ID, DWT_LDE_CFG2_OFFSET,
1384 				  DWT_DEFAULT_LDE_CFG2_PRF16);
1385 		LOG_DBG("LDE_CFG2: 0x%04x", DWT_DEFAULT_LDE_CFG2_PRF16);
1386 	}
1387 
1388 	/* Configure PLL2/RF PLL block CFG/TUNE (for a given channel) */
1389 	dwt_reg_write_u32(dev, DWT_FS_CTRL_ID, DWT_FS_PLLCFG_OFFSET, pll_cfg);
1390 	LOG_DBG("PLLCFG: 0x%08x", pll_cfg);
1391 	dwt_reg_write_u8(dev, DWT_FS_CTRL_ID, DWT_FS_PLLTUNE_OFFSET, pll_tune);
1392 	LOG_DBG("PLLTUNE: 0x%02x", pll_tune);
1393 	/* Configure RF RX blocks (for specified channel/bandwidth) */
1394 	dwt_reg_write_u8(dev, DWT_RF_CONF_ID, DWT_RF_RXCTRLH_OFFSET, rxctrlh);
1395 	LOG_DBG("RXCTRLH: 0x%02x", rxctrlh);
1396 	/* Configure RF/TX blocks for specified channel and PRF */
1397 	dwt_reg_write_u32(dev, DWT_RF_CONF_ID, DWT_RF_TXCTRL_OFFSET, txctrl);
1398 	LOG_DBG("TXCTRL: 0x%08x", txctrl);
1399 
1400 	/* Digital receiver configuration, DRX_CONF */
1401 	dwt_reg_write_u16(dev, DWT_DRX_CONF_ID, DWT_DRX_TUNE0b_OFFSET, tune0b);
1402 	LOG_DBG("DRX_TUNE0b: 0x%04x", tune0b);
1403 	dwt_reg_write_u16(dev, DWT_DRX_CONF_ID, DWT_DRX_TUNE1a_OFFSET, tune1a);
1404 	LOG_DBG("DRX_TUNE1a: 0x%04x", tune1a);
1405 	dwt_reg_write_u16(dev, DWT_DRX_CONF_ID, DWT_DRX_TUNE1b_OFFSET, tune1b);
1406 	LOG_DBG("DRX_TUNE1b: 0x%04x", tune1b);
1407 	dwt_reg_write_u32(dev, DWT_DRX_CONF_ID, DWT_DRX_TUNE2_OFFSET, tune2);
1408 	LOG_DBG("DRX_TUNE2: 0x%08x", tune2);
1409 	dwt_reg_write_u8(dev, DWT_DRX_CONF_ID, DWT_DRX_TUNE4H_OFFSET, tune4h);
1410 	LOG_DBG("DRX_TUNE4H: 0x%02x", tune4h);
1411 	dwt_reg_write_u16(dev, DWT_DRX_CONF_ID, DWT_DRX_SFDTOC_OFFSET, sfdto);
1412 	LOG_DBG("DRX_SFDTOC: 0x%04x", sfdto);
1413 
1414 	/* Automatic Gain Control configuration and control, AGC_CTRL */
1415 	dwt_reg_write_u16(dev, DWT_AGC_CTRL_ID, DWT_AGC_TUNE1_OFFSET,
1416 			  agc_tune1);
1417 	LOG_DBG("AGC_TUNE1: 0x%04x", agc_tune1);
1418 	dwt_reg_write_u32(dev, DWT_AGC_CTRL_ID, DWT_AGC_TUNE2_OFFSET,
1419 			  DWT_AGC_TUNE2_VAL);
1420 
1421 	if (rf_cfg->rx_ns_sfd) {
1422 		/*
1423 		 * SFD_LENGTH, length of the SFD sequence used when
1424 		 * the data rate is 850 kbps or 6.8 Mbps,
1425 		 * must be set to either 8 or 16.
1426 		 */
1427 		dwt_reg_write_u8(dev, DWT_USR_SFD_ID, 0x00,
1428 				 dwt_ns_sfdlen[rf_cfg->dr]);
1429 		LOG_DBG("USR_SFDLEN: 0x%02x", dwt_ns_sfdlen[rf_cfg->dr]);
1430 		chan_ctrl |= DWT_CHAN_CTRL_DWSFD;
1431 	}
1432 
1433 	/* Set RX_CHAN and TX CHAN */
1434 	chan_ctrl |= (chan & DWT_CHAN_CTRL_TX_CHAN_MASK) |
1435 		     ((chan << DWT_CHAN_CTRL_RX_CHAN_SHIFT) &
1436 		      DWT_CHAN_CTRL_RX_CHAN_MASK);
1437 
1438 	/* Set RXPRF */
1439 	chan_ctrl |= (BIT(rf_cfg->prf) << DWT_CHAN_CTRL_RXFPRF_SHIFT) &
1440 		     DWT_CHAN_CTRL_RXFPRF_MASK;
1441 
1442 	/* Set TX_PCOD */
1443 	chan_ctrl |= (rf_cfg->tx_shr_code << DWT_CHAN_CTRL_TX_PCOD_SHIFT) &
1444 		     DWT_CHAN_CTRL_TX_PCOD_MASK;
1445 
1446 	/* Set RX_PCOD */
1447 	chan_ctrl |= (rf_cfg->rx_shr_code << DWT_CHAN_CTRL_RX_PCOD_SHIFT) &
1448 		     DWT_CHAN_CTRL_RX_PCOD_MASK;
1449 
1450 	/* Set Channel Control */
1451 	dwt_reg_write_u32(dev, DWT_CHAN_CTRL_ID, 0, chan_ctrl);
1452 	LOG_DBG("CHAN_CTRL 0x%08x", chan_ctrl);
1453 
1454 	/* Set up TX Preamble Size, PRF and Data Rate */
1455 	tx_fctrl = dwt_plen_cfg[rf_cfg->tx_shr_nsync] |
1456 		   (BIT(rf_cfg->prf) << DWT_TX_FCTRL_TXPRF_SHFT) |
1457 		   (rf_cfg->dr << DWT_TX_FCTRL_TXBR_SHFT);
1458 
1459 	dwt_reg_write_u32(dev, DWT_TX_FCTRL_ID, 0, tx_fctrl);
1460 	LOG_DBG("TX_FCTRL 0x%08x", tx_fctrl);
1461 
1462 	/* Set the Pulse Generator Delay */
1463 	dwt_reg_write_u8(dev, DWT_TX_CAL_ID, DWT_TC_PGDELAY_OFFSET, pgdelay);
1464 	LOG_DBG("PGDELAY 0x%02x", pgdelay);
1465 	/* Set Transmit Power Control */
1466 	dwt_reg_write_u32(dev, DWT_TX_POWER_ID, 0, power);
1467 	LOG_DBG("TX_POWER 0x%08x", power);
1468 
1469 	/*
1470 	 * From 5.3.1.2 SFD Initialisation,
1471 	 * SFD sequence initialisation for Auto ACK frame.
1472 	 */
1473 	dwt_reg_write_u8(dev, DWT_SYS_CTRL_ID, DWT_SYS_CTRL_OFFSET,
1474 			 DWT_SYS_CTRL_TXSTRT | DWT_SYS_CTRL_TRXOFF);
1475 
1476 	/*
1477 	 * Calculate PHY timing parameters
1478 	 *
1479 	 * From (9.4) Std 802.15.4-2011
1480 	 * Tshr = Tpsym * (NSYNC + NSFD )
1481 	 * Tphr = NPHR * Tdsym1m
1482 	 * Tpsdu = Tdsym * NPSDU * NSYMPEROCTET / Rfec
1483 	 *
1484 	 * PRF: pulse repetition frequency
1485 	 * PSR: preamble symbol repetitions
1486 	 * SFD: start of frame delimiter
1487 	 * SHR: synchronisation header (SYNC + SFD)
1488 	 * PHR: PHY header
1489 	 */
1490 	uint16_t nsync = BIT(rf_cfg->tx_shr_nsync + 6);
1491 
1492 	if (rf_cfg->prf == DWT_PRF_64M) {
1493 		rf_cfg->t_shr = UWB_PHY_TPSYM_PRF64 *
1494 				(nsync + UWB_PHY_NUMOF_SYM_SHR_SFD);
1495 	} else {
1496 		rf_cfg->t_shr = UWB_PHY_TPSYM_PRF16 *
1497 				(nsync + UWB_PHY_NUMOF_SYM_SHR_SFD);
1498 	}
1499 
1500 	if (rf_cfg->dr == DWT_BR_6M8) {
1501 		rf_cfg->t_phr = UWB_PHY_NUMOF_SYM_PHR * UWB_PHY_TDSYM_PHR_6M8;
1502 		rf_cfg->t_dsym = UWB_PHY_TDSYM_DATA_6M8 / 0.44;
1503 	} else if (rf_cfg->dr == DWT_BR_850K) {
1504 		rf_cfg->t_phr = UWB_PHY_NUMOF_SYM_PHR * UWB_PHY_TDSYM_PHR_850K;
1505 		rf_cfg->t_dsym = UWB_PHY_TDSYM_DATA_850K / 0.44;
1506 	} else {
1507 		rf_cfg->t_phr = UWB_PHY_NUMOF_SYM_PHR * UWB_PHY_TDSYM_PHR_110K;
1508 		rf_cfg->t_dsym = UWB_PHY_TDSYM_DATA_110K / 0.44;
1509 	}
1510 
1511 	return 0;
1512 }
1513 
dw1000_init(const struct device * dev)1514 static int dw1000_init(const struct device *dev)
1515 {
1516 	struct dwt_context *ctx = dev->data;
1517 	const struct dwt_hi_cfg *hi_cfg = dev->config;
1518 
1519 	LOG_INF("Initialize DW1000 Transceiver");
1520 	k_sem_init(&ctx->phy_sem, 0, 1);
1521 
1522 	/* slow SPI config */
1523 	memcpy(&ctx->spi_cfg_slow, &hi_cfg->bus.config, sizeof(ctx->spi_cfg_slow));
1524 	ctx->spi_cfg_slow.frequency = DWT_SPI_SLOW_FREQ;
1525 
1526 	if (!spi_is_ready_dt(&hi_cfg->bus)) {
1527 		LOG_ERR("SPI device not ready");
1528 		return -ENODEV;
1529 	}
1530 
1531 	dwt_set_spi_slow(dev, DWT_SPI_SLOW_FREQ);
1532 
1533 	/* Initialize IRQ GPIO */
1534 	if (!gpio_is_ready_dt(&hi_cfg->irq_gpio)) {
1535 		LOG_ERR("IRQ GPIO device not ready");
1536 		return -ENODEV;
1537 	}
1538 
1539 	if (gpio_pin_configure_dt(&hi_cfg->irq_gpio, GPIO_INPUT)) {
1540 		LOG_ERR("Unable to configure GPIO pin %u", hi_cfg->irq_gpio.pin);
1541 		return -EINVAL;
1542 	}
1543 
1544 	gpio_init_callback(&(ctx->gpio_cb), dwt_gpio_callback,
1545 			   BIT(hi_cfg->irq_gpio.pin));
1546 
1547 	if (gpio_add_callback(hi_cfg->irq_gpio.port, &(ctx->gpio_cb))) {
1548 		LOG_ERR("Failed to add IRQ callback");
1549 		return -EINVAL;
1550 	}
1551 
1552 	/* Initialize RESET GPIO */
1553 	if (!gpio_is_ready_dt(&hi_cfg->rst_gpio)) {
1554 		LOG_ERR("Reset GPIO device not ready");
1555 		return -ENODEV;
1556 	}
1557 
1558 	if (gpio_pin_configure_dt(&hi_cfg->rst_gpio, GPIO_INPUT)) {
1559 		LOG_ERR("Unable to configure GPIO pin %u", hi_cfg->rst_gpio.pin);
1560 		return -EINVAL;
1561 	}
1562 
1563 	LOG_INF("GPIO and SPI configured");
1564 
1565 	dwt_hw_reset(dev);
1566 
1567 	if (dwt_reg_read_u32(dev, DWT_DEV_ID_ID, 0) != DWT_DEVICE_ID) {
1568 		LOG_ERR("Failed to read device ID %p", dev);
1569 		return -ENODEV;
1570 	}
1571 
1572 	if (dwt_initialise_dev(dev)) {
1573 		LOG_ERR("Failed to initialize DW1000");
1574 		return -EIO;
1575 	}
1576 
1577 	if (dwt_configure_rf_phy(dev)) {
1578 		LOG_ERR("Failed to configure RF PHY");
1579 		return -EIO;
1580 	}
1581 
1582 	/* Allow Beacon, Data, Acknowledgement, MAC command */
1583 	dwt_set_frame_filter(dev, true, DWT_SYS_CFG_FFAB | DWT_SYS_CFG_FFAD |
1584 			     DWT_SYS_CFG_FFAA | DWT_SYS_CFG_FFAM);
1585 
1586 	/*
1587 	 * Enable system events:
1588 	 *  - transmit frame sent,
1589 	 *  - receiver FCS good,
1590 	 *  - receiver PHY header error,
1591 	 *  - receiver FCS error,
1592 	 *  - receiver Reed Solomon Frame Sync Loss,
1593 	 *  - receive Frame Wait Timeout,
1594 	 *  - preamble detection timeout,
1595 	 *  - receive SFD timeout
1596 	 */
1597 	dwt_reg_write_u32(dev, DWT_SYS_MASK_ID, 0,
1598 			  DWT_SYS_MASK_MTXFRS |
1599 			  DWT_SYS_MASK_MRXFCG |
1600 			  DWT_SYS_MASK_MRXPHE |
1601 			  DWT_SYS_MASK_MRXFCE |
1602 			  DWT_SYS_MASK_MRXRFSL |
1603 			  DWT_SYS_MASK_MRXRFTO |
1604 			  DWT_SYS_MASK_MRXPTO |
1605 			  DWT_SYS_MASK_MRXSFDTO);
1606 
1607 	/* Initialize IRQ event work queue */
1608 	ctx->dev = dev;
1609 
1610 	k_work_queue_start(&dwt_work_queue, dwt_work_queue_stack,
1611 			   K_KERNEL_STACK_SIZEOF(dwt_work_queue_stack),
1612 			   CONFIG_SYSTEM_WORKQUEUE_PRIORITY, NULL);
1613 
1614 	k_work_init(&ctx->irq_cb_work, dwt_irq_work_handler);
1615 
1616 	dwt_setup_int(dev, true);
1617 
1618 	LOG_INF("DW1000 device initialized and configured");
1619 
1620 	return 0;
1621 }
1622 
get_mac(const struct device * dev)1623 static inline uint8_t *get_mac(const struct device *dev)
1624 {
1625 	struct dwt_context *dw1000 = dev->data;
1626 
1627 	sys_rand_get(dw1000->mac_addr, sizeof(dw1000->mac_addr));
1628 
1629 	dw1000->mac_addr[0] = (dw1000->mac_addr[0] & ~0x01) | 0x02;
1630 
1631 	return dw1000->mac_addr;
1632 }
1633 
dwt_iface_api_init(struct net_if * iface)1634 static void dwt_iface_api_init(struct net_if *iface)
1635 {
1636 	const struct device *dev = net_if_get_device(iface);
1637 	struct dwt_context *dw1000 = dev->data;
1638 	uint8_t *mac = get_mac(dev);
1639 
1640 	net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
1641 
1642 	dw1000->iface = iface;
1643 
1644 	ieee802154_init(iface);
1645 
1646 	LOG_INF("Iface initialized");
1647 }
1648 
1649 static const struct ieee802154_radio_api dwt_radio_api = {
1650 	.iface_api.init		= dwt_iface_api_init,
1651 
1652 	.get_capabilities	= dwt_get_capabilities,
1653 	.cca			= dwt_cca,
1654 	.set_channel		= dwt_set_channel,
1655 	.filter			= dwt_filter,
1656 	.set_txpower		= dwt_set_power,
1657 	.start			= dwt_start,
1658 	.stop			= dwt_stop,
1659 	.configure		= dwt_configure,
1660 	.ed_scan		= dwt_ed,
1661 	.tx			= dwt_tx,
1662 	.attr_get		= dwt_attr_get,
1663 };
1664 
1665 #define DWT_PSDU_LENGTH		(127 - DWT_FCS_LENGTH)
1666 
1667 #if defined(CONFIG_IEEE802154_RAW_MODE)
1668 DEVICE_DT_INST_DEFINE(0, dw1000_init, NULL,
1669 		    &dwt_0_context, &dw1000_0_config,
1670 		    POST_KERNEL, CONFIG_IEEE802154_DW1000_INIT_PRIO,
1671 		    &dwt_radio_api);
1672 #else
1673 NET_DEVICE_DT_INST_DEFINE(0,
1674 		dw1000_init,
1675 		NULL,
1676 		&dwt_0_context,
1677 		&dw1000_0_config,
1678 		CONFIG_IEEE802154_DW1000_INIT_PRIO,
1679 		&dwt_radio_api,
1680 		IEEE802154_L2,
1681 		NET_L2_GET_CTX_TYPE(IEEE802154_L2),
1682 		DWT_PSDU_LENGTH);
1683 #endif
1684