1 /*
2 * Copyright (c) 2013-2023, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7
8 /*******************************************************************************
9 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10 * plug-in component to the Secure Monitor, registered as a runtime service. The
11 * SPD is expected to be a functional extension of the Secure Payload (SP) that
12 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13 * the Trusted OS/Applications range to the dispatcher. The SPD will either
14 * handle the request locally or delegate it to the Secure Payload. It is also
15 * responsible for initialising and maintaining communication with the SP.
16 ******************************************************************************/
17 #include <assert.h>
18 #include <errno.h>
19 #include <inttypes.h>
20 #include <stddef.h>
21
22 #include <arch_helpers.h>
23 #include <bl31/bl31.h>
24 #include <common/bl_common.h>
25 #include <common/debug.h>
26 #include <common/runtime_svc.h>
27 #include <lib/coreboot.h>
28 #include <lib/el3_runtime/context_mgmt.h>
29 #include <lib/optee_utils.h>
30 #include <lib/xlat_tables/xlat_tables_v2.h>
31 #if OPTEE_ALLOW_SMC_LOAD
32 #include <libfdt.h>
33 #endif /* OPTEE_ALLOW_SMC_LOAD */
34 #include <plat/common/platform.h>
35 #include <tools_share/uuid.h>
36
37 #include "opteed_private.h"
38 #include "teesmc_opteed.h"
39
40 /*******************************************************************************
41 * Address of the entrypoint vector table in OPTEE. It is
42 * initialised once on the primary core after a cold boot.
43 ******************************************************************************/
44 struct optee_vectors *optee_vector_table;
45
46 /*******************************************************************************
47 * Array to keep track of per-cpu OPTEE state
48 ******************************************************************************/
49 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
50 uint32_t opteed_rw;
51
52 #if OPTEE_ALLOW_SMC_LOAD
53 static bool opteed_allow_load;
54 /* OP-TEE image loading service UUID */
55 DEFINE_SVC_UUID2(optee_image_load_uuid,
56 0xb1eafba3, 0x5d31, 0x4612, 0xb9, 0x06,
57 0xc4, 0xc7, 0xa4, 0xbe, 0x3c, 0xc0);
58
59 #define OPTEED_FDT_SIZE 256
60 static uint8_t fdt_buf[OPTEED_FDT_SIZE] __aligned(CACHE_WRITEBACK_GRANULE);
61
62 #else
63 static int32_t opteed_init(void);
64 #endif
65
dual32to64(uint32_t high,uint32_t low)66 uint64_t dual32to64(uint32_t high, uint32_t low)
67 {
68 return ((uint64_t)high << 32) | low;
69 }
70
71 /*******************************************************************************
72 * This function is the handler registered for S-EL1 interrupts by the
73 * OPTEED. It validates the interrupt and upon success arranges entry into
74 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
75 ******************************************************************************/
opteed_sel1_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)76 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
77 uint32_t flags,
78 void *handle,
79 void *cookie)
80 {
81 uint32_t linear_id;
82 optee_context_t *optee_ctx;
83
84 /* Check the security state when the exception was generated */
85 assert(get_interrupt_src_ss(flags) == NON_SECURE);
86
87 /* Sanity check the pointer to this cpu's context */
88 assert(handle == cm_get_context(NON_SECURE));
89
90 /* Save the non-secure context before entering the OPTEE */
91 cm_el1_sysregs_context_save(NON_SECURE);
92
93 /* Get a reference to this cpu's OPTEE context */
94 linear_id = plat_my_core_pos();
95 optee_ctx = &opteed_sp_context[linear_id];
96 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
97
98 cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry);
99 cm_el1_sysregs_context_restore(SECURE);
100 cm_set_next_eret_context(SECURE);
101
102 /*
103 * Tell the OPTEE that it has to handle an FIQ (synchronously).
104 * Also the instruction in normal world where the interrupt was
105 * generated is passed for debugging purposes. It is safe to
106 * retrieve this address from ELR_EL3 as the secure context will
107 * not take effect until el3_exit().
108 */
109 SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
110 }
111
112 /*******************************************************************************
113 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
114 * (aarch32/aarch64) if not already known and initialises the context for entry
115 * into OPTEE for its initialization.
116 ******************************************************************************/
opteed_setup(void)117 static int32_t opteed_setup(void)
118 {
119 #if OPTEE_ALLOW_SMC_LOAD
120 opteed_allow_load = true;
121 INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n");
122 return 0;
123 #else
124 entry_point_info_t *optee_ep_info;
125 uint32_t linear_id;
126 uint64_t opteed_pageable_part;
127 uint64_t opteed_mem_limit;
128 uint64_t dt_addr;
129
130 linear_id = plat_my_core_pos();
131
132 /*
133 * Get information about the Secure Payload (BL32) image. Its
134 * absence is a critical failure. TODO: Add support to
135 * conditionally include the SPD service
136 */
137 optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
138 if (!optee_ep_info) {
139 WARN("No OPTEE provided by BL2 boot loader, Booting device"
140 " without OPTEE initialization. SMC`s destined for OPTEE"
141 " will return SMC_UNK\n");
142 return 1;
143 }
144
145 /*
146 * If there's no valid entry point for SP, we return a non-zero value
147 * signalling failure initializing the service. We bail out without
148 * registering any handlers
149 */
150 if (!optee_ep_info->pc)
151 return 1;
152
153 opteed_rw = optee_ep_info->args.arg0;
154 opteed_pageable_part = optee_ep_info->args.arg1;
155 opteed_mem_limit = optee_ep_info->args.arg2;
156 dt_addr = optee_ep_info->args.arg3;
157
158 opteed_init_optee_ep_state(optee_ep_info,
159 opteed_rw,
160 optee_ep_info->pc,
161 opteed_pageable_part,
162 opteed_mem_limit,
163 dt_addr,
164 &opteed_sp_context[linear_id]);
165
166 /*
167 * All OPTEED initialization done. Now register our init function with
168 * BL31 for deferred invocation
169 */
170 bl31_register_bl32_init(&opteed_init);
171
172 return 0;
173 #endif /* OPTEE_ALLOW_SMC_LOAD */
174 }
175
176 /*******************************************************************************
177 * This function passes control to the OPTEE image (BL32) for the first time
178 * on the primary cpu after a cold boot. It assumes that a valid secure
179 * context has already been created by opteed_setup() which can be directly
180 * used. It also assumes that a valid non-secure context has been
181 * initialised by PSCI so it does not need to save and restore any
182 * non-secure state. This function performs a synchronous entry into
183 * OPTEE. OPTEE passes control back to this routine through a SMC. This returns
184 * a non-zero value on success and zero on failure.
185 ******************************************************************************/
186 static int32_t
opteed_init_with_entry_point(entry_point_info_t * optee_entry_point)187 opteed_init_with_entry_point(entry_point_info_t *optee_entry_point)
188 {
189 uint32_t linear_id = plat_my_core_pos();
190 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
191 uint64_t rc;
192 assert(optee_entry_point);
193
194 cm_init_my_context(optee_entry_point);
195
196 /*
197 * Arrange for an entry into OPTEE. It will be returned via
198 * OPTEE_ENTRY_DONE case
199 */
200 rc = opteed_synchronous_sp_entry(optee_ctx);
201 assert(rc != 0);
202
203 return rc;
204 }
205
206 #if !OPTEE_ALLOW_SMC_LOAD
opteed_init(void)207 static int32_t opteed_init(void)
208 {
209 entry_point_info_t *optee_entry_point;
210 /*
211 * Get information about the OP-TEE (BL32) image. Its
212 * absence is a critical failure.
213 */
214 optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
215 return opteed_init_with_entry_point(optee_entry_point);
216 }
217 #endif /* !OPTEE_ALLOW_SMC_LOAD */
218
219 #if OPTEE_ALLOW_SMC_LOAD
220 #if COREBOOT
221 /*
222 * Adds a firmware/coreboot node with the coreboot table information to a device
223 * tree. Returns zero on success or if there is no coreboot table information;
224 * failure code otherwise.
225 */
add_coreboot_node(void * fdt)226 static int add_coreboot_node(void *fdt)
227 {
228 int ret;
229 uint64_t coreboot_table_addr;
230 uint32_t coreboot_table_size;
231 struct {
232 uint64_t addr;
233 uint32_t size;
234 } reg_node;
235 coreboot_get_table_location(&coreboot_table_addr, &coreboot_table_size);
236 if (!coreboot_table_addr || !coreboot_table_size) {
237 WARN("Unable to get coreboot table location for device tree");
238 return 0;
239 }
240 ret = fdt_begin_node(fdt, "firmware");
241 if (ret)
242 return ret;
243
244 ret = fdt_property(fdt, "ranges", NULL, 0);
245 if (ret)
246 return ret;
247
248 ret = fdt_begin_node(fdt, "coreboot");
249 if (ret)
250 return ret;
251
252 ret = fdt_property_string(fdt, "compatible", "coreboot");
253 if (ret)
254 return ret;
255
256 reg_node.addr = cpu_to_fdt64(coreboot_table_addr);
257 reg_node.size = cpu_to_fdt32(coreboot_table_size);
258 ret = fdt_property(fdt, "reg", ®_node,
259 sizeof(uint64_t) + sizeof(uint32_t));
260 if (ret)
261 return ret;
262
263 ret = fdt_end_node(fdt);
264 if (ret)
265 return ret;
266
267 return fdt_end_node(fdt);
268 }
269 #endif /* COREBOOT */
270
271 /*
272 * Creates a device tree for passing into OP-TEE. Currently is populated with
273 * the coreboot table address.
274 * Returns 0 on success, error code otherwise.
275 */
create_opteed_dt(void)276 static int create_opteed_dt(void)
277 {
278 int ret;
279
280 ret = fdt_create(fdt_buf, OPTEED_FDT_SIZE);
281 if (ret)
282 return ret;
283
284 ret = fdt_finish_reservemap(fdt_buf);
285 if (ret)
286 return ret;
287
288 ret = fdt_begin_node(fdt_buf, "");
289 if (ret)
290 return ret;
291
292 #if COREBOOT
293 ret = add_coreboot_node(fdt_buf);
294 if (ret)
295 return ret;
296 #endif /* COREBOOT */
297
298 ret = fdt_end_node(fdt_buf);
299 if (ret)
300 return ret;
301
302 return fdt_finish(fdt_buf);
303 }
304
305 /*******************************************************************************
306 * This function is responsible for handling the SMC that loads the OP-TEE
307 * binary image via a non-secure SMC call. It takes the size and physical
308 * address of the payload as parameters.
309 ******************************************************************************/
opteed_handle_smc_load(uint64_t data_size,uint32_t data_pa)310 static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa)
311 {
312 uintptr_t data_va = data_pa;
313 uint64_t mapped_data_pa;
314 uintptr_t mapped_data_va;
315 uint64_t data_map_size;
316 int32_t rc;
317 optee_header_t *image_header;
318 uint8_t *image_ptr;
319 uint64_t target_pa;
320 uint64_t target_end_pa;
321 uint64_t image_pa;
322 uintptr_t image_va;
323 optee_image_t *curr_image;
324 uintptr_t target_va;
325 uint64_t target_size;
326 entry_point_info_t optee_ep_info;
327 uint32_t linear_id = plat_my_core_pos();
328 uint64_t dt_addr = 0;
329
330 mapped_data_pa = page_align(data_pa, DOWN);
331 mapped_data_va = mapped_data_pa;
332 data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP);
333
334 /*
335 * We do not validate the passed in address because we are trusting the
336 * non-secure world at this point still.
337 */
338 rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va,
339 data_map_size, MT_MEMORY | MT_RO | MT_NS);
340 if (rc != 0) {
341 return rc;
342 }
343
344 image_header = (optee_header_t *)data_va;
345 if (image_header->magic != TEE_MAGIC_NUM_OPTEE ||
346 image_header->version != 2 || image_header->nb_images != 1) {
347 mmap_remove_dynamic_region(mapped_data_va, data_map_size);
348 return -EINVAL;
349 }
350
351 image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) +
352 sizeof(optee_image_t);
353 if (image_header->arch == 1) {
354 opteed_rw = OPTEE_AARCH64;
355 } else {
356 opteed_rw = OPTEE_AARCH32;
357 }
358
359 curr_image = &image_header->optee_image_list[0];
360 image_pa = dual32to64(curr_image->load_addr_hi,
361 curr_image->load_addr_lo);
362 image_va = image_pa;
363 target_end_pa = image_pa + curr_image->size;
364
365 /* Now also map the memory we want to copy it to. */
366 target_pa = page_align(image_pa, DOWN);
367 target_va = target_pa;
368 target_size = page_align(target_end_pa, UP) - target_pa;
369
370 rc = mmap_add_dynamic_region(target_pa, target_va, target_size,
371 MT_MEMORY | MT_RW | MT_SECURE);
372 if (rc != 0) {
373 mmap_remove_dynamic_region(mapped_data_va, data_map_size);
374 return rc;
375 }
376
377 INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n",
378 curr_image->size, image_va);
379
380 memcpy((void *)image_va, image_ptr, curr_image->size);
381 flush_dcache_range(target_pa, target_size);
382
383 mmap_remove_dynamic_region(mapped_data_va, data_map_size);
384 mmap_remove_dynamic_region(target_va, target_size);
385
386 /* Save the non-secure state */
387 cm_el1_sysregs_context_save(NON_SECURE);
388
389 rc = create_opteed_dt();
390 if (rc) {
391 ERROR("Failed device tree creation %d\n", rc);
392 return rc;
393 }
394 dt_addr = (uint64_t)fdt_buf;
395 flush_dcache_range(dt_addr, OPTEED_FDT_SIZE);
396
397 opteed_init_optee_ep_state(&optee_ep_info,
398 opteed_rw,
399 image_pa,
400 0,
401 0,
402 dt_addr,
403 &opteed_sp_context[linear_id]);
404 if (opteed_init_with_entry_point(&optee_ep_info) == 0) {
405 rc = -EFAULT;
406 }
407
408 /* Restore non-secure state */
409 cm_el1_sysregs_context_restore(NON_SECURE);
410 cm_set_next_eret_context(NON_SECURE);
411
412 return rc;
413 }
414 #endif /* OPTEE_ALLOW_SMC_LOAD */
415
416 /*******************************************************************************
417 * This function is responsible for handling all SMCs in the Trusted OS/App
418 * range from the non-secure state as defined in the SMC Calling Convention
419 * Document. It is also responsible for communicating with the Secure
420 * payload to delegate work and return results back to the non-secure
421 * state. Lastly it will also return any information that OPTEE needs to do
422 * the work assigned to it.
423 ******************************************************************************/
opteed_smc_handler(uint32_t smc_fid,u_register_t x1,u_register_t x2,u_register_t x3,u_register_t x4,void * cookie,void * handle,u_register_t flags)424 static uintptr_t opteed_smc_handler(uint32_t smc_fid,
425 u_register_t x1,
426 u_register_t x2,
427 u_register_t x3,
428 u_register_t x4,
429 void *cookie,
430 void *handle,
431 u_register_t flags)
432 {
433 cpu_context_t *ns_cpu_context;
434 uint32_t linear_id = plat_my_core_pos();
435 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
436 uint64_t rc;
437
438 /*
439 * Determine which security state this SMC originated from
440 */
441
442 if (is_caller_non_secure(flags)) {
443 #if OPTEE_ALLOW_SMC_LOAD
444 if (opteed_allow_load && smc_fid == NSSMC_OPTEED_CALL_UID) {
445 /* Provide the UUID of the image loading service. */
446 SMC_UUID_RET(handle, optee_image_load_uuid);
447 }
448 if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) {
449 /*
450 * TODO: Consider wiping the code for SMC loading from
451 * memory after it has been invoked similar to what is
452 * done under RECLAIM_INIT, but extended to happen
453 * later.
454 */
455 if (!opteed_allow_load) {
456 SMC_RET1(handle, -EPERM);
457 }
458
459 opteed_allow_load = false;
460 uint64_t data_size = dual32to64(x1, x2);
461 uint64_t data_pa = dual32to64(x3, x4);
462 if (!data_size || !data_pa) {
463 /*
464 * This is invoked when the OP-TEE image didn't
465 * load correctly in the kernel but we want to
466 * block off loading of it later for security
467 * reasons.
468 */
469 SMC_RET1(handle, -EINVAL);
470 }
471 SMC_RET1(handle, opteed_handle_smc_load(
472 data_size, data_pa));
473 }
474 #endif /* OPTEE_ALLOW_SMC_LOAD */
475 /*
476 * This is a fresh request from the non-secure client.
477 * The parameters are in x1 and x2. Figure out which
478 * registers need to be preserved, save the non-secure
479 * state and send the request to the secure payload.
480 */
481 assert(handle == cm_get_context(NON_SECURE));
482
483 cm_el1_sysregs_context_save(NON_SECURE);
484
485 /*
486 * We are done stashing the non-secure context. Ask the
487 * OP-TEE to do the work now. If we are loading vi an SMC,
488 * then we also need to init this CPU context if not done
489 * already.
490 */
491 if (optee_vector_table == NULL) {
492 SMC_RET1(handle, -EINVAL);
493 }
494
495 if (get_optee_pstate(optee_ctx->state) ==
496 OPTEE_PSTATE_UNKNOWN) {
497 opteed_cpu_on_finish_handler(0);
498 }
499
500 /*
501 * Verify if there is a valid context to use, copy the
502 * operation type and parameters to the secure context
503 * and jump to the fast smc entry point in the secure
504 * payload. Entry into S-EL1 will take place upon exit
505 * from this function.
506 */
507 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
508
509 /* Set appropriate entry for SMC.
510 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
511 * flags as appropriate.
512 */
513 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
514 cm_set_elr_el3(SECURE, (uint64_t)
515 &optee_vector_table->fast_smc_entry);
516 } else {
517 cm_set_elr_el3(SECURE, (uint64_t)
518 &optee_vector_table->yield_smc_entry);
519 }
520
521 cm_el1_sysregs_context_restore(SECURE);
522 cm_set_next_eret_context(SECURE);
523
524 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
525 CTX_GPREG_X4,
526 read_ctx_reg(get_gpregs_ctx(handle),
527 CTX_GPREG_X4));
528 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
529 CTX_GPREG_X5,
530 read_ctx_reg(get_gpregs_ctx(handle),
531 CTX_GPREG_X5));
532 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
533 CTX_GPREG_X6,
534 read_ctx_reg(get_gpregs_ctx(handle),
535 CTX_GPREG_X6));
536 /* Propagate hypervisor client ID */
537 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
538 CTX_GPREG_X7,
539 read_ctx_reg(get_gpregs_ctx(handle),
540 CTX_GPREG_X7));
541
542 SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
543 }
544
545 /*
546 * Returning from OPTEE
547 */
548
549 switch (smc_fid) {
550 /*
551 * OPTEE has finished initialising itself after a cold boot
552 */
553 case TEESMC_OPTEED_RETURN_ENTRY_DONE:
554 /*
555 * Stash the OPTEE entry points information. This is done
556 * only once on the primary cpu
557 */
558 assert(optee_vector_table == NULL);
559 optee_vector_table = (optee_vectors_t *) x1;
560
561 if (optee_vector_table) {
562 set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
563
564 /*
565 * OPTEE has been successfully initialized.
566 * Register power management hooks with PSCI
567 */
568 psci_register_spd_pm_hook(&opteed_pm);
569
570 /*
571 * Register an interrupt handler for S-EL1 interrupts
572 * when generated during code executing in the
573 * non-secure state.
574 */
575 flags = 0;
576 set_interrupt_rm_flag(flags, NON_SECURE);
577 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
578 opteed_sel1_interrupt_handler,
579 flags);
580 if (rc)
581 panic();
582 }
583
584 /*
585 * OPTEE reports completion. The OPTEED must have initiated
586 * the original request through a synchronous entry into
587 * OPTEE. Jump back to the original C runtime context.
588 */
589 opteed_synchronous_sp_exit(optee_ctx, x1);
590 break;
591
592
593 /*
594 * These function IDs is used only by OP-TEE to indicate it has
595 * finished:
596 * 1. turning itself on in response to an earlier psci
597 * cpu_on request
598 * 2. resuming itself after an earlier psci cpu_suspend
599 * request.
600 */
601 case TEESMC_OPTEED_RETURN_ON_DONE:
602 case TEESMC_OPTEED_RETURN_RESUME_DONE:
603
604
605 /*
606 * These function IDs is used only by the SP to indicate it has
607 * finished:
608 * 1. suspending itself after an earlier psci cpu_suspend
609 * request.
610 * 2. turning itself off in response to an earlier psci
611 * cpu_off request.
612 */
613 case TEESMC_OPTEED_RETURN_OFF_DONE:
614 case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
615 case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
616 case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
617
618 /*
619 * OPTEE reports completion. The OPTEED must have initiated the
620 * original request through a synchronous entry into OPTEE.
621 * Jump back to the original C runtime context, and pass x1 as
622 * return value to the caller
623 */
624 opteed_synchronous_sp_exit(optee_ctx, x1);
625 break;
626
627 /*
628 * OPTEE is returning from a call or being preempted from a call, in
629 * either case execution should resume in the normal world.
630 */
631 case TEESMC_OPTEED_RETURN_CALL_DONE:
632 /*
633 * This is the result from the secure client of an
634 * earlier request. The results are in x0-x3. Copy it
635 * into the non-secure context, save the secure state
636 * and return to the non-secure state.
637 */
638 assert(handle == cm_get_context(SECURE));
639 cm_el1_sysregs_context_save(SECURE);
640
641 /* Get a reference to the non-secure context */
642 ns_cpu_context = cm_get_context(NON_SECURE);
643 assert(ns_cpu_context);
644
645 /* Restore non-secure state */
646 cm_el1_sysregs_context_restore(NON_SECURE);
647 cm_set_next_eret_context(NON_SECURE);
648
649 SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
650
651 /*
652 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
653 * should resume in the normal world.
654 */
655 case TEESMC_OPTEED_RETURN_FIQ_DONE:
656 /* Get a reference to the non-secure context */
657 ns_cpu_context = cm_get_context(NON_SECURE);
658 assert(ns_cpu_context);
659
660 /*
661 * Restore non-secure state. There is no need to save the
662 * secure system register context since OPTEE was supposed
663 * to preserve it during S-EL1 interrupt handling.
664 */
665 cm_el1_sysregs_context_restore(NON_SECURE);
666 cm_set_next_eret_context(NON_SECURE);
667
668 SMC_RET0((uint64_t) ns_cpu_context);
669
670 default:
671 panic();
672 }
673 }
674
675 /* Define an OPTEED runtime service descriptor for fast SMC calls */
676 DECLARE_RT_SVC(
677 opteed_fast,
678
679 OEN_TOS_START,
680 OEN_TOS_END,
681 SMC_TYPE_FAST,
682 opteed_setup,
683 opteed_smc_handler
684 );
685
686 /* Define an OPTEED runtime service descriptor for yielding SMC calls */
687 DECLARE_RT_SVC(
688 opteed_std,
689
690 OEN_TOS_START,
691 OEN_TOS_END,
692 SMC_TYPE_YIELD,
693 NULL,
694 opteed_smc_handler
695 );
696