1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 *
4 * Copyright (c) 2016-2020 Linaro LTD
5 * Copyright (c) 2016-2019 JUUL Labs
6 * Copyright (c) 2019-2023 Arm Limited
7 *
8 * Original license:
9 *
10 * Licensed to the Apache Software Foundation (ASF) under one
11 * or more contributor license agreements. See the NOTICE file
12 * distributed with this work for additional information
13 * regarding copyright ownership. The ASF licenses this file
14 * to you under the Apache License, Version 2.0 (the
15 * "License"); you may not use this file except in compliance
16 * with the License. You may obtain a copy of the License at
17 *
18 * http://www.apache.org/licenses/LICENSE-2.0
19 *
20 * Unless required by applicable law or agreed to in writing,
21 * software distributed under the License is distributed on an
22 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
23 * KIND, either express or implied. See the License for the
24 * specific language governing permissions and limitations
25 * under the License.
26 */
27
28 /**
29 * This file provides an interface to the boot loader. Functions defined in
30 * this file should only be called while the boot loader is running.
31 */
32
33 #include <stddef.h>
34 #include <stdbool.h>
35 #include <inttypes.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include "bootutil/bootutil.h"
39 #include "bootutil/bootutil_public.h"
40 #include "bootutil/image.h"
41 #include "bootutil_priv.h"
42 #include "swap_priv.h"
43 #include "bootutil/bootutil_log.h"
44 #include "bootutil/security_cnt.h"
45 #include "bootutil/boot_record.h"
46 #include "bootutil/fault_injection_hardening.h"
47 #include "bootutil/ramload.h"
48 #include "bootutil/boot_hooks.h"
49 #include "bootutil/mcuboot_status.h"
50
51 #ifdef MCUBOOT_ENC_IMAGES
52 #include "bootutil/enc_key.h"
53 #endif
54
55 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
56 #include <os/os_malloc.h>
57 #endif
58
59 #include "mcuboot_config/mcuboot_config.h"
60
61 BOOT_LOG_MODULE_DECLARE(mcuboot);
62
63 static struct boot_loader_state boot_data;
64
65 #if (BOOT_IMAGE_NUMBER > 1)
66 #define IMAGES_ITER(x) for ((x) = 0; (x) < BOOT_IMAGE_NUMBER; ++(x))
67 #else
68 #define IMAGES_ITER(x)
69 #endif
70
71 /*
72 * This macro allows some control on the allocation of local variables.
73 * When running natively on a target, we don't want to allocated huge
74 * variables on the stack, so make them global instead. For the simulator
75 * we want to run as many threads as there are tests, and it's safer
76 * to just make those variables stack allocated.
77 */
78 #if !defined(__BOOTSIM__)
79 #define TARGET_STATIC static
80 #else
81 #define TARGET_STATIC
82 #endif
83
84 #if BOOT_MAX_ALIGN > 1024
85 #define BUF_SZ BOOT_MAX_ALIGN
86 #else
87 #define BUF_SZ 1024
88 #endif
89
90 static int
boot_read_image_headers(struct boot_loader_state * state,bool require_all,struct boot_status * bs)91 boot_read_image_headers(struct boot_loader_state *state, bool require_all,
92 struct boot_status *bs)
93 {
94 int rc;
95 int i;
96
97 for (i = 0; i < BOOT_NUM_SLOTS; i++) {
98 rc = BOOT_HOOK_CALL(boot_read_image_header_hook, BOOT_HOOK_REGULAR,
99 BOOT_CURR_IMG(state), i, boot_img_hdr(state, i));
100 if (rc == BOOT_HOOK_REGULAR)
101 {
102 rc = boot_read_image_header(state, i, boot_img_hdr(state, i), bs);
103 }
104 if (rc != 0) {
105 /* If `require_all` is set, fail on any single fail, otherwise
106 * if at least the first slot's header was read successfully,
107 * then the boot loader can attempt a boot.
108 *
109 * Failure to read any headers is a fatal error.
110 */
111 if (i > 0 && !require_all) {
112 return 0;
113 } else {
114 return rc;
115 }
116 }
117 }
118
119 return 0;
120 }
121
122 /**
123 * Saves boot status and shared data for current image.
124 *
125 * @param state Boot loader status information.
126 * @param active_slot Index of the slot will be loaded for current image.
127 *
128 * @return 0 on success; nonzero on failure.
129 */
130 static int
boot_add_shared_data(struct boot_loader_state * state,uint8_t active_slot)131 boot_add_shared_data(struct boot_loader_state *state,
132 uint8_t active_slot)
133 {
134 #if defined(MCUBOOT_MEASURED_BOOT) || defined(MCUBOOT_DATA_SHARING)
135 int rc;
136
137 #ifdef MCUBOOT_DATA_SHARING
138 int max_app_size;
139 #endif
140
141 #ifdef MCUBOOT_MEASURED_BOOT
142 rc = boot_save_boot_status(BOOT_CURR_IMG(state),
143 boot_img_hdr(state, active_slot),
144 BOOT_IMG_AREA(state, active_slot));
145 if (rc != 0) {
146 BOOT_LOG_ERR("Failed to add image data to shared area");
147 return rc;
148 }
149 #endif /* MCUBOOT_MEASURED_BOOT */
150
151 #ifdef MCUBOOT_DATA_SHARING
152 max_app_size = app_max_size(state);
153 rc = boot_save_shared_data(boot_img_hdr(state, active_slot),
154 BOOT_IMG_AREA(state, active_slot),
155 active_slot, max_app_size);
156 if (rc != 0) {
157 BOOT_LOG_ERR("Failed to add data to shared memory area.");
158 return rc;
159 }
160 #endif /* MCUBOOT_DATA_SHARING */
161
162 return 0;
163
164 #else /* MCUBOOT_MEASURED_BOOT || MCUBOOT_DATA_SHARING */
165 (void) (state);
166 (void) (active_slot);
167
168 return 0;
169 #endif
170 }
171
172 /**
173 * Fills rsp to indicate how booting should occur.
174 *
175 * @param state Boot loader status information.
176 * @param rsp boot_rsp struct to fill.
177 */
178 static void
fill_rsp(struct boot_loader_state * state,struct boot_rsp * rsp)179 fill_rsp(struct boot_loader_state *state, struct boot_rsp *rsp)
180 {
181 uint32_t active_slot;
182
183 #if (BOOT_IMAGE_NUMBER > 1)
184 /* Always boot from the first enabled image. */
185 BOOT_CURR_IMG(state) = 0;
186 IMAGES_ITER(BOOT_CURR_IMG(state)) {
187 if (!state->img_mask[BOOT_CURR_IMG(state)]) {
188 break;
189 }
190 }
191 /* At least one image must be active, otherwise skip the execution */
192 if (BOOT_CURR_IMG(state) >= BOOT_IMAGE_NUMBER) {
193 return;
194 }
195 #endif
196
197 #if defined(MCUBOOT_DIRECT_XIP) || defined(MCUBOOT_RAM_LOAD)
198 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
199 #else
200 active_slot = BOOT_PRIMARY_SLOT;
201 #endif
202
203 rsp->br_flash_dev_id = flash_area_get_device_id(BOOT_IMG_AREA(state, active_slot));
204 rsp->br_image_off = boot_img_slot_off(state, active_slot);
205 rsp->br_hdr = boot_img_hdr(state, active_slot);
206 }
207
208 /**
209 * Closes all flash areas.
210 *
211 * @param state Boot loader status information.
212 */
213 static void
close_all_flash_areas(struct boot_loader_state * state)214 close_all_flash_areas(struct boot_loader_state *state)
215 {
216 uint32_t slot;
217
218 IMAGES_ITER(BOOT_CURR_IMG(state)) {
219 #if BOOT_IMAGE_NUMBER > 1
220 if (state->img_mask[BOOT_CURR_IMG(state)]) {
221 continue;
222 }
223 #endif
224 #if MCUBOOT_SWAP_USING_SCRATCH
225 flash_area_close(BOOT_SCRATCH_AREA(state));
226 #endif
227 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
228 flash_area_close(BOOT_IMG_AREA(state, BOOT_NUM_SLOTS - 1 - slot));
229 }
230 }
231 }
232
233 #if !defined(MCUBOOT_DIRECT_XIP)
234 /*
235 * Compute the total size of the given image. Includes the size of
236 * the TLVs.
237 */
238 #if !defined(MCUBOOT_OVERWRITE_ONLY) || defined(MCUBOOT_OVERWRITE_ONLY_FAST)
239 static int
boot_read_image_size(struct boot_loader_state * state,int slot,uint32_t * size)240 boot_read_image_size(struct boot_loader_state *state, int slot, uint32_t *size)
241 {
242 const struct flash_area *fap;
243 struct image_tlv_info info;
244 uint32_t off;
245 uint32_t protect_tlv_size;
246 int area_id;
247 int rc;
248
249 #if (BOOT_IMAGE_NUMBER == 1)
250 (void)state;
251 #endif
252
253 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
254 rc = flash_area_open(area_id, &fap);
255 if (rc != 0) {
256 rc = BOOT_EFLASH;
257 goto done;
258 }
259
260 off = BOOT_TLV_OFF(boot_img_hdr(state, slot));
261
262 if (flash_area_read(fap, off, &info, sizeof(info))) {
263 rc = BOOT_EFLASH;
264 goto done;
265 }
266
267 protect_tlv_size = boot_img_hdr(state, slot)->ih_protect_tlv_size;
268 if (info.it_magic == IMAGE_TLV_PROT_INFO_MAGIC) {
269 if (protect_tlv_size != info.it_tlv_tot) {
270 rc = BOOT_EBADIMAGE;
271 goto done;
272 }
273
274 if (flash_area_read(fap, off + info.it_tlv_tot, &info, sizeof(info))) {
275 rc = BOOT_EFLASH;
276 goto done;
277 }
278 } else if (protect_tlv_size != 0) {
279 rc = BOOT_EBADIMAGE;
280 goto done;
281 }
282
283 if (info.it_magic != IMAGE_TLV_INFO_MAGIC) {
284 rc = BOOT_EBADIMAGE;
285 goto done;
286 }
287
288 *size = off + protect_tlv_size + info.it_tlv_tot;
289 rc = 0;
290
291 done:
292 flash_area_close(fap);
293 return rc;
294 }
295 #endif /* !MCUBOOT_OVERWRITE_ONLY */
296
297 #if !defined(MCUBOOT_RAM_LOAD)
298 static uint32_t
boot_write_sz(struct boot_loader_state * state)299 boot_write_sz(struct boot_loader_state *state)
300 {
301 uint32_t elem_sz;
302 #if MCUBOOT_SWAP_USING_SCRATCH
303 uint32_t align;
304 #endif
305
306 /* Figure out what size to write update status update as. The size depends
307 * on what the minimum write size is for scratch area, active image slot.
308 * We need to use the bigger of those 2 values.
309 */
310 elem_sz = flash_area_align(BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT));
311 #if MCUBOOT_SWAP_USING_SCRATCH
312 align = flash_area_align(BOOT_SCRATCH_AREA(state));
313 if (align > elem_sz) {
314 elem_sz = align;
315 }
316 #endif
317
318 return elem_sz;
319 }
320
321 static int
boot_initialize_area(struct boot_loader_state * state,int flash_area)322 boot_initialize_area(struct boot_loader_state *state, int flash_area)
323 {
324 uint32_t num_sectors = BOOT_MAX_IMG_SECTORS;
325 boot_sector_t *out_sectors;
326 uint32_t *out_num_sectors;
327 int rc;
328
329 num_sectors = BOOT_MAX_IMG_SECTORS;
330
331 if (flash_area == FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state))) {
332 out_sectors = BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors;
333 out_num_sectors = &BOOT_IMG(state, BOOT_PRIMARY_SLOT).num_sectors;
334 } else if (flash_area == FLASH_AREA_IMAGE_SECONDARY(BOOT_CURR_IMG(state))) {
335 out_sectors = BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors;
336 out_num_sectors = &BOOT_IMG(state, BOOT_SECONDARY_SLOT).num_sectors;
337 #if MCUBOOT_SWAP_USING_SCRATCH
338 } else if (flash_area == FLASH_AREA_IMAGE_SCRATCH) {
339 out_sectors = state->scratch.sectors;
340 out_num_sectors = &state->scratch.num_sectors;
341 #endif
342 } else {
343 return BOOT_EFLASH;
344 }
345
346 #ifdef MCUBOOT_USE_FLASH_AREA_GET_SECTORS
347 rc = flash_area_get_sectors(flash_area, &num_sectors, out_sectors);
348 #else
349 _Static_assert(sizeof(int) <= sizeof(uint32_t), "Fix needed");
350 rc = flash_area_to_sectors(flash_area, (int *)&num_sectors, out_sectors);
351 #endif /* defined(MCUBOOT_USE_FLASH_AREA_GET_SECTORS) */
352 if (rc != 0) {
353 return rc;
354 }
355 *out_num_sectors = num_sectors;
356 return 0;
357 }
358
359 /**
360 * Determines the sector layout of both image slots and the scratch area.
361 * This information is necessary for calculating the number of bytes to erase
362 * and copy during an image swap. The information collected during this
363 * function is used to populate the state.
364 */
365 static int
boot_read_sectors(struct boot_loader_state * state)366 boot_read_sectors(struct boot_loader_state *state)
367 {
368 uint8_t image_index;
369 int rc;
370
371 image_index = BOOT_CURR_IMG(state);
372
373 rc = boot_initialize_area(state, FLASH_AREA_IMAGE_PRIMARY(image_index));
374 if (rc != 0) {
375 return BOOT_EFLASH;
376 }
377
378 rc = boot_initialize_area(state, FLASH_AREA_IMAGE_SECONDARY(image_index));
379 if (rc != 0) {
380 /* We need to differentiate from the primary image issue */
381 return BOOT_EFLASH_SEC;
382 }
383
384 #if MCUBOOT_SWAP_USING_SCRATCH
385 rc = boot_initialize_area(state, FLASH_AREA_IMAGE_SCRATCH);
386 if (rc != 0) {
387 return BOOT_EFLASH;
388 }
389 #endif
390
391 BOOT_WRITE_SZ(state) = boot_write_sz(state);
392
393 return 0;
394 }
395
396 void
boot_status_reset(struct boot_status * bs)397 boot_status_reset(struct boot_status *bs)
398 {
399 #ifdef MCUBOOT_ENC_IMAGES
400 memset(&bs->enckey, 0xff, BOOT_NUM_SLOTS * BOOT_ENC_KEY_ALIGN_SIZE);
401 #if MCUBOOT_SWAP_SAVE_ENCTLV
402 memset(&bs->enctlv, 0xff, BOOT_NUM_SLOTS * BOOT_ENC_TLV_ALIGN_SIZE);
403 #endif
404 #endif /* MCUBOOT_ENC_IMAGES */
405
406 bs->use_scratch = 0;
407 bs->swap_size = 0;
408 bs->source = 0;
409
410 bs->op = BOOT_STATUS_OP_MOVE;
411 bs->idx = BOOT_STATUS_IDX_0;
412 bs->state = BOOT_STATUS_STATE_0;
413 bs->swap_type = BOOT_SWAP_TYPE_NONE;
414 }
415
416 bool
boot_status_is_reset(const struct boot_status * bs)417 boot_status_is_reset(const struct boot_status *bs)
418 {
419 return (bs->op == BOOT_STATUS_OP_MOVE &&
420 bs->idx == BOOT_STATUS_IDX_0 &&
421 bs->state == BOOT_STATUS_STATE_0);
422 }
423
424 /**
425 * Writes the supplied boot status to the flash file system. The boot status
426 * contains the current state of an in-progress image copy operation.
427 *
428 * @param bs The boot status to write.
429 *
430 * @return 0 on success; nonzero on failure.
431 */
432 int
boot_write_status(const struct boot_loader_state * state,struct boot_status * bs)433 boot_write_status(const struct boot_loader_state *state, struct boot_status *bs)
434 {
435 const struct flash_area *fap;
436 uint32_t off;
437 int area_id;
438 int rc = 0;
439 uint8_t buf[BOOT_MAX_ALIGN];
440 uint32_t align;
441 uint8_t erased_val;
442
443 /* NOTE: The first sector copied (that is the last sector on slot) contains
444 * the trailer. Since in the last step the primary slot is erased, the
445 * first two status writes go to the scratch which will be copied to
446 * the primary slot!
447 */
448
449 #if MCUBOOT_SWAP_USING_SCRATCH
450 if (bs->use_scratch) {
451 /* Write to scratch. */
452 area_id = FLASH_AREA_IMAGE_SCRATCH;
453 } else {
454 #endif
455 /* Write to the primary slot. */
456 area_id = FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state));
457 #if MCUBOOT_SWAP_USING_SCRATCH
458 }
459 #endif
460
461 rc = flash_area_open(area_id, &fap);
462 if (rc != 0) {
463 return BOOT_EFLASH;
464 }
465
466 off = boot_status_off(fap) +
467 boot_status_internal_off(bs, BOOT_WRITE_SZ(state));
468 align = flash_area_align(fap);
469 erased_val = flash_area_erased_val(fap);
470 memset(buf, erased_val, BOOT_MAX_ALIGN);
471 buf[0] = bs->state;
472
473 BOOT_LOG_DBG("writing swap status; fa_id=%d off=0x%lx (0x%lx)",
474 flash_area_get_id(fap), (unsigned long)off,
475 (unsigned long)flash_area_get_off(fap) + off);
476
477 rc = flash_area_write(fap, off, buf, align);
478 if (rc != 0) {
479 rc = BOOT_EFLASH;
480 }
481
482 flash_area_close(fap);
483
484 return rc;
485 }
486 #endif /* !MCUBOOT_RAM_LOAD */
487 #endif /* !MCUBOOT_DIRECT_XIP */
488
489 /*
490 * Validate image hash/signature and optionally the security counter in a slot.
491 */
492 static fih_ret
boot_image_check(struct boot_loader_state * state,struct image_header * hdr,const struct flash_area * fap,struct boot_status * bs)493 boot_image_check(struct boot_loader_state *state, struct image_header *hdr,
494 const struct flash_area *fap, struct boot_status *bs)
495 {
496 TARGET_STATIC uint8_t tmpbuf[BOOT_TMPBUF_SZ];
497 uint8_t image_index;
498 int rc;
499 FIH_DECLARE(fih_rc, FIH_FAILURE);
500
501 #if (BOOT_IMAGE_NUMBER == 1)
502 (void)state;
503 #endif
504
505 (void)bs;
506 (void)rc;
507
508 image_index = BOOT_CURR_IMG(state);
509
510 /* In the case of ram loading the image has already been decrypted as it is
511 * decrypted when copied in ram */
512 #if defined(MCUBOOT_ENC_IMAGES) && !defined(MCUBOOT_RAM_LOAD)
513 if (MUST_DECRYPT(fap, image_index, hdr)) {
514 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap, bs);
515 if (rc < 0) {
516 FIH_RET(fih_rc);
517 }
518 if (rc == 0 && boot_enc_set_key(BOOT_CURR_ENC(state), 1, bs)) {
519 FIH_RET(fih_rc);
520 }
521 }
522 #endif
523
524 FIH_CALL(bootutil_img_validate, fih_rc, BOOT_CURR_ENC(state), image_index,
525 hdr, fap, tmpbuf, BOOT_TMPBUF_SZ, NULL, 0, NULL);
526
527 FIH_RET(fih_rc);
528 }
529
530 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
531 static fih_ret
split_image_check(struct image_header * app_hdr,const struct flash_area * app_fap,struct image_header * loader_hdr,const struct flash_area * loader_fap)532 split_image_check(struct image_header *app_hdr,
533 const struct flash_area *app_fap,
534 struct image_header *loader_hdr,
535 const struct flash_area *loader_fap)
536 {
537 static void *tmpbuf;
538 uint8_t loader_hash[32];
539 FIH_DECLARE(fih_rc, FIH_FAILURE);
540
541 if (!tmpbuf) {
542 tmpbuf = malloc(BOOT_TMPBUF_SZ);
543 if (!tmpbuf) {
544 goto out;
545 }
546 }
547
548 FIH_CALL(bootutil_img_validate, fih_rc, NULL, 0, loader_hdr, loader_fap,
549 tmpbuf, BOOT_TMPBUF_SZ, NULL, 0, loader_hash);
550 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
551 FIH_RET(fih_rc);
552 }
553
554 FIH_CALL(bootutil_img_validate, fih_rc, NULL, 0, app_hdr, app_fap,
555 tmpbuf, BOOT_TMPBUF_SZ, loader_hash, 32, NULL);
556
557 out:
558 FIH_RET(fih_rc);
559 }
560 #endif /* !MCUBOOT_DIRECT_XIP && !MCUBOOT_RAM_LOAD */
561
562 /*
563 * Check that this is a valid header. Valid means that the magic is
564 * correct, and that the sizes/offsets are "sane". Sane means that
565 * there is no overflow on the arithmetic, and that the result fits
566 * within the flash area we are in.
567 */
568 static bool
boot_is_header_valid(const struct image_header * hdr,const struct flash_area * fap)569 boot_is_header_valid(const struct image_header *hdr, const struct flash_area *fap)
570 {
571 uint32_t size;
572
573 if (hdr->ih_magic != IMAGE_MAGIC) {
574 return false;
575 }
576
577 if (!boot_u32_safe_add(&size, hdr->ih_img_size, hdr->ih_hdr_size)) {
578 return false;
579 }
580
581 if (size >= flash_area_get_size(fap)) {
582 return false;
583 }
584
585 return true;
586 }
587
588 /*
589 * Check that a memory area consists of a given value.
590 */
591 static inline bool
boot_data_is_set_to(uint8_t val,void * data,size_t len)592 boot_data_is_set_to(uint8_t val, void *data, size_t len)
593 {
594 uint8_t i;
595 uint8_t *p = (uint8_t *)data;
596 for (i = 0; i < len; i++) {
597 if (val != p[i]) {
598 return false;
599 }
600 }
601 return true;
602 }
603
604 static int
boot_check_header_erased(struct boot_loader_state * state,int slot)605 boot_check_header_erased(struct boot_loader_state *state, int slot)
606 {
607 const struct flash_area *fap;
608 struct image_header *hdr;
609 uint8_t erased_val;
610 int area_id;
611 int rc;
612
613 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
614 rc = flash_area_open(area_id, &fap);
615 if (rc != 0) {
616 return -1;
617 }
618
619 erased_val = flash_area_erased_val(fap);
620 flash_area_close(fap);
621
622 hdr = boot_img_hdr(state, slot);
623 if (!boot_data_is_set_to(erased_val, &hdr->ih_magic, sizeof(hdr->ih_magic))) {
624 return -1;
625 }
626
627 return 0;
628 }
629
630 #if (BOOT_IMAGE_NUMBER > 1) || \
631 defined(MCUBOOT_DIRECT_XIP) || \
632 defined(MCUBOOT_RAM_LOAD) || \
633 defined(MCUBOOT_DOWNGRADE_PREVENTION)
634 /**
635 * Compare image version numbers
636 *
637 * By default, the comparison does not take build number into account.
638 * Enable MCUBOOT_VERSION_CMP_USE_BUILD_NUMBER to take the build number into account.
639 *
640 * @param ver1 Pointer to the first image version to compare.
641 * @param ver2 Pointer to the second image version to compare.
642 *
643 * @retval -1 If ver1 is less than ver2.
644 * @retval 0 If the image version numbers are equal.
645 * @retval 1 If ver1 is greater than ver2.
646 */
647 static int
boot_version_cmp(const struct image_version * ver1,const struct image_version * ver2)648 boot_version_cmp(const struct image_version *ver1,
649 const struct image_version *ver2)
650 {
651 if (ver1->iv_major > ver2->iv_major) {
652 return 1;
653 }
654 if (ver1->iv_major < ver2->iv_major) {
655 return -1;
656 }
657 /* The major version numbers are equal, continue comparison. */
658 if (ver1->iv_minor > ver2->iv_minor) {
659 return 1;
660 }
661 if (ver1->iv_minor < ver2->iv_minor) {
662 return -1;
663 }
664 /* The minor version numbers are equal, continue comparison. */
665 if (ver1->iv_revision > ver2->iv_revision) {
666 return 1;
667 }
668 if (ver1->iv_revision < ver2->iv_revision) {
669 return -1;
670 }
671
672 #if defined(MCUBOOT_VERSION_CMP_USE_BUILD_NUMBER)
673 /* The revisions are equal, continue comparison. */
674 if (ver1->iv_build_num > ver2->iv_build_num) {
675 return 1;
676 }
677 if (ver1->iv_build_num < ver2->iv_build_num) {
678 return -1;
679 }
680 #endif
681
682 return 0;
683 }
684 #endif
685
686 #if defined(MCUBOOT_DIRECT_XIP)
687 /**
688 * Check if image in slot has been set with specific ROM address to run from
689 * and whether the slot starts at that address.
690 *
691 * @returns 0 if IMAGE_F_ROM_FIXED flag is not set;
692 * 0 if IMAGE_F_ROM_FIXED flag is set and ROM address specified in
693 * header matches the slot address;
694 * 1 if IMF_F_ROM_FIXED flag is set but ROM address specified in header
695 * does not match the slot address.
696 */
697 static bool
boot_rom_address_check(struct boot_loader_state * state)698 boot_rom_address_check(struct boot_loader_state *state)
699 {
700 uint32_t active_slot;
701 const struct image_header *hdr;
702 uint32_t f_off;
703
704 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
705 hdr = boot_img_hdr(state, active_slot);
706 f_off = boot_img_slot_off(state, active_slot);
707
708 if (hdr->ih_flags & IMAGE_F_ROM_FIXED && hdr->ih_load_addr != f_off) {
709 BOOT_LOG_WRN("Image in %s slot at 0x%x has been built for offset 0x%x"\
710 ", skipping",
711 active_slot == 0 ? "primary" : "secondary", f_off,
712 hdr->ih_load_addr);
713
714 /* If there is address mismatch, the image is not bootable from this
715 * slot.
716 */
717 return 1;
718 }
719 return 0;
720 }
721 #endif
722
723 /*
724 * Check that there is a valid image in a slot
725 *
726 * @returns
727 * FIH_SUCCESS if image was successfully validated
728 * FIH_NO_BOOTABLE_IMAGE if no bootloable image was found
729 * FIH_FAILURE on any errors
730 */
731 static fih_ret
boot_validate_slot(struct boot_loader_state * state,int slot,struct boot_status * bs)732 boot_validate_slot(struct boot_loader_state *state, int slot,
733 struct boot_status *bs)
734 {
735 const struct flash_area *fap;
736 struct image_header *hdr;
737 int area_id;
738 FIH_DECLARE(fih_rc, FIH_FAILURE);
739 int rc;
740
741 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
742 rc = flash_area_open(area_id, &fap);
743 if (rc != 0) {
744 FIH_RET(fih_rc);
745 }
746
747 hdr = boot_img_hdr(state, slot);
748 if (boot_check_header_erased(state, slot) == 0 ||
749 (hdr->ih_flags & IMAGE_F_NON_BOOTABLE)) {
750
751 #if defined(MCUBOOT_SWAP_USING_SCRATCH) || defined(MCUBOOT_SWAP_USING_MOVE)
752 /*
753 * This fixes an issue where an image might be erased, but a trailer
754 * be left behind. It can happen if the image is in the secondary slot
755 * and did not pass validation, in which case the whole slot is erased.
756 * If during the erase operation, a reset occurs, parts of the slot
757 * might have been erased while some did not. The concerning part is
758 * the trailer because it might disable a new image from being loaded
759 * through mcumgr; so we just get rid of the trailer here, if the header
760 * is erased.
761 */
762 if (slot != BOOT_PRIMARY_SLOT) {
763 swap_erase_trailer_sectors(state, fap);
764 }
765 #endif
766
767 /* No bootable image in slot; continue booting from the primary slot. */
768 fih_rc = FIH_NO_BOOTABLE_IMAGE;
769 goto out;
770 }
771
772 #if defined(MCUBOOT_OVERWRITE_ONLY) && defined(MCUBOOT_DOWNGRADE_PREVENTION)
773 if (slot != BOOT_PRIMARY_SLOT) {
774 /* Check if version of secondary slot is sufficient */
775 rc = boot_version_cmp(
776 &boot_img_hdr(state, BOOT_SECONDARY_SLOT)->ih_ver,
777 &boot_img_hdr(state, BOOT_PRIMARY_SLOT)->ih_ver);
778 if (rc < 0 && boot_check_header_erased(state, BOOT_PRIMARY_SLOT)) {
779 BOOT_LOG_ERR("insufficient version in secondary slot");
780 flash_area_erase(fap, 0, flash_area_get_size(fap));
781 /* Image in the secondary slot does not satisfy version requirement.
782 * Erase the image and continue booting from the primary slot.
783 */
784 fih_rc = FIH_NO_BOOTABLE_IMAGE;
785 goto out;
786 }
787 }
788 #endif
789 BOOT_HOOK_CALL_FIH(boot_image_check_hook, FIH_BOOT_HOOK_REGULAR,
790 fih_rc, BOOT_CURR_IMG(state), slot);
791 if (FIH_EQ(fih_rc, FIH_BOOT_HOOK_REGULAR))
792 {
793 FIH_CALL(boot_image_check, fih_rc, state, hdr, fap, bs);
794 }
795 if (!boot_is_header_valid(hdr, fap) || FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
796 if ((slot != BOOT_PRIMARY_SLOT) || ARE_SLOTS_EQUIVALENT()) {
797 flash_area_erase(fap, 0, flash_area_get_size(fap));
798 /* Image is invalid, erase it to prevent further unnecessary
799 * attempts to validate and boot it.
800 */
801 }
802 #if !defined(__BOOTSIM__)
803 BOOT_LOG_ERR("Image in the %s slot is not valid!",
804 (slot == BOOT_PRIMARY_SLOT) ? "primary" : "secondary");
805 #endif
806 fih_rc = FIH_NO_BOOTABLE_IMAGE;
807 goto out;
808 }
809
810 #if MCUBOOT_IMAGE_NUMBER > 1 && !defined(MCUBOOT_ENC_IMAGES) && defined(MCUBOOT_VERIFY_IMG_ADDRESS)
811 /* Verify that the image in the secondary slot has a reset address
812 * located in the primary slot. This is done to avoid users incorrectly
813 * overwriting an application written to the incorrect slot.
814 * This feature is only supported by ARM platforms.
815 */
816 if (area_id == FLASH_AREA_IMAGE_SECONDARY(BOOT_CURR_IMG(state))) {
817 const struct flash_area *pri_fa = BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT);
818 struct image_header *secondary_hdr = boot_img_hdr(state, slot);
819 uint32_t reset_value = 0;
820 uint32_t reset_addr = secondary_hdr->ih_hdr_size + sizeof(reset_value);
821
822 rc = flash_area_read(fap, reset_addr, &reset_value, sizeof(reset_value));
823 if (rc != 0) {
824 fih_rc = FIH_NO_BOOTABLE_IMAGE;
825 goto out;
826 }
827
828 if (reset_value < pri_fa->fa_off || reset_value> (pri_fa->fa_off + pri_fa->fa_size)) {
829 BOOT_LOG_ERR("Reset address of image in secondary slot is not in the primary slot");
830 BOOT_LOG_ERR("Erasing image from secondary slot");
831
832 /* The vector table in the image located in the secondary
833 * slot does not target the primary slot. This might
834 * indicate that the image was loaded to the wrong slot.
835 *
836 * Erase the image and continue booting from the primary slot.
837 */
838 flash_area_erase(fap, 0, fap->fa_size);
839 fih_rc = FIH_NO_BOOTABLE_IMAGE;
840 goto out;
841 }
842 }
843 #endif
844
845 out:
846 flash_area_close(fap);
847
848 FIH_RET(fih_rc);
849 }
850
851 #ifdef MCUBOOT_HW_ROLLBACK_PROT
852 /**
853 * Updates the stored security counter value with the image's security counter
854 * value which resides in the given slot, only if it's greater than the stored
855 * value.
856 *
857 * @param image_index Index of the image to determine which security
858 * counter to update.
859 * @param slot Slot number of the image.
860 * @param hdr Pointer to the image header structure of the image
861 * that is currently stored in the given slot.
862 *
863 * @return 0 on success; nonzero on failure.
864 */
865 static int
boot_update_security_counter(uint8_t image_index,int slot,struct image_header * hdr)866 boot_update_security_counter(uint8_t image_index, int slot,
867 struct image_header *hdr)
868 {
869 const struct flash_area *fap = NULL;
870 uint32_t img_security_cnt;
871 int rc;
872
873 rc = flash_area_open(flash_area_id_from_multi_image_slot(image_index, slot),
874 &fap);
875 if (rc != 0) {
876 rc = BOOT_EFLASH;
877 goto done;
878 }
879
880 rc = bootutil_get_img_security_cnt(hdr, fap, &img_security_cnt);
881 if (rc != 0) {
882 goto done;
883 }
884
885 rc = boot_nv_security_counter_update(image_index, img_security_cnt);
886 if (rc != 0) {
887 goto done;
888 }
889
890 done:
891 flash_area_close(fap);
892 return rc;
893 }
894 #endif /* MCUBOOT_HW_ROLLBACK_PROT */
895
896 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
897 /**
898 * Determines which swap operation to perform, if any. If it is determined
899 * that a swap operation is required, the image in the secondary slot is checked
900 * for validity. If the image in the secondary slot is invalid, it is erased,
901 * and a swap type of "none" is indicated.
902 *
903 * @return The type of swap to perform (BOOT_SWAP_TYPE...)
904 */
905 static int
boot_validated_swap_type(struct boot_loader_state * state,struct boot_status * bs)906 boot_validated_swap_type(struct boot_loader_state *state,
907 struct boot_status *bs)
908 {
909 int swap_type;
910 FIH_DECLARE(fih_rc, FIH_FAILURE);
911
912 swap_type = boot_swap_type_multi(BOOT_CURR_IMG(state));
913 if (BOOT_IS_UPGRADE(swap_type)) {
914 /* Boot loader wants to switch to the secondary slot.
915 * Ensure image is valid.
916 */
917 FIH_CALL(boot_validate_slot, fih_rc, state, BOOT_SECONDARY_SLOT, bs);
918 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
919 if (FIH_EQ(fih_rc, FIH_NO_BOOTABLE_IMAGE)) {
920 swap_type = BOOT_SWAP_TYPE_NONE;
921 } else {
922 swap_type = BOOT_SWAP_TYPE_FAIL;
923 }
924 }
925 }
926
927 return swap_type;
928 }
929 #endif
930
931 /**
932 * Erases a region of flash.
933 *
934 * @param flash_area The flash_area containing the region to erase.
935 * @param off The offset within the flash area to start the
936 * erase.
937 * @param sz The number of bytes to erase.
938 *
939 * @return 0 on success; nonzero on failure.
940 */
941 int
boot_erase_region(const struct flash_area * fap,uint32_t off,uint32_t sz)942 boot_erase_region(const struct flash_area *fap, uint32_t off, uint32_t sz)
943 {
944 return flash_area_erase(fap, off, sz);
945 }
946
947 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
948
949 #if defined(MCUBOOT_ENC_IMAGES) || defined(MCUBOOT_SWAP_SAVE_ENCTLV)
950 /* Replacement for memset(p, 0, sizeof(*p) that does not get
951 * optimized out.
952 */
like_mbedtls_zeroize(void * p,size_t n)953 static void like_mbedtls_zeroize(void *p, size_t n)
954 {
955 volatile unsigned char *v = (unsigned char *)p;
956
957 for (size_t i = 0; i < n; i++) {
958 v[i] = 0;
959 }
960 }
961 #endif
962
963 /**
964 * Copies the contents of one flash region to another. You must erase the
965 * destination region prior to calling this function.
966 *
967 * @param flash_area_id_src The ID of the source flash area.
968 * @param flash_area_id_dst The ID of the destination flash area.
969 * @param off_src The offset within the source flash area to
970 * copy from.
971 * @param off_dst The offset within the destination flash area to
972 * copy to.
973 * @param sz The number of bytes to copy.
974 *
975 * @return 0 on success; nonzero on failure.
976 */
977 int
boot_copy_region(struct boot_loader_state * state,const struct flash_area * fap_src,const struct flash_area * fap_dst,uint32_t off_src,uint32_t off_dst,uint32_t sz)978 boot_copy_region(struct boot_loader_state *state,
979 const struct flash_area *fap_src,
980 const struct flash_area *fap_dst,
981 uint32_t off_src, uint32_t off_dst, uint32_t sz)
982 {
983 uint32_t bytes_copied;
984 int chunk_sz;
985 int rc;
986 #ifdef MCUBOOT_ENC_IMAGES
987 uint32_t off;
988 uint32_t tlv_off;
989 size_t blk_off;
990 struct image_header *hdr;
991 uint16_t idx;
992 uint32_t blk_sz;
993 uint8_t image_index;
994 #endif
995
996 TARGET_STATIC uint8_t buf[BUF_SZ] __attribute__((aligned(4)));
997
998 #if !defined(MCUBOOT_ENC_IMAGES)
999 (void)state;
1000 #endif
1001
1002 bytes_copied = 0;
1003 while (bytes_copied < sz) {
1004 if (sz - bytes_copied > sizeof buf) {
1005 chunk_sz = sizeof buf;
1006 } else {
1007 chunk_sz = sz - bytes_copied;
1008 }
1009
1010 rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz);
1011 if (rc != 0) {
1012 return BOOT_EFLASH;
1013 }
1014
1015 #ifdef MCUBOOT_ENC_IMAGES
1016 image_index = BOOT_CURR_IMG(state);
1017 if ((flash_area_get_id(fap_src) == FLASH_AREA_IMAGE_SECONDARY(image_index) ||
1018 flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index)) &&
1019 !(flash_area_get_id(fap_src) == FLASH_AREA_IMAGE_SECONDARY(image_index) &&
1020 flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index))) {
1021 /* assume the secondary slot as src, needs decryption */
1022 hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT);
1023 #if !defined(MCUBOOT_SWAP_USING_MOVE)
1024 off = off_src;
1025 if (flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
1026 /* might need encryption (metadata from the primary slot) */
1027 hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT);
1028 off = off_dst;
1029 }
1030 #else
1031 off = off_dst;
1032 if (flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
1033 hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT);
1034 }
1035 #endif
1036 if (IS_ENCRYPTED(hdr)) {
1037 uint32_t abs_off = off + bytes_copied;
1038 if (abs_off < hdr->ih_hdr_size) {
1039 /* do not decrypt header */
1040 if (abs_off + chunk_sz > hdr->ih_hdr_size) {
1041 /* The lower part of the chunk contains header data */
1042 blk_off = 0;
1043 blk_sz = chunk_sz - (hdr->ih_hdr_size - abs_off);
1044 idx = hdr->ih_hdr_size - abs_off;
1045 } else {
1046 /* The chunk contains exclusively header data */
1047 blk_sz = 0; /* nothing to decrypt */
1048 }
1049 } else {
1050 idx = 0;
1051 blk_sz = chunk_sz;
1052 blk_off = (abs_off - hdr->ih_hdr_size) & 0xf;
1053 }
1054
1055 if (blk_sz > 0)
1056 {
1057 tlv_off = BOOT_TLV_OFF(hdr);
1058 if (abs_off + chunk_sz > tlv_off) {
1059 /* do not decrypt TLVs */
1060 if (abs_off >= tlv_off) {
1061 blk_sz = 0;
1062 } else {
1063 blk_sz = tlv_off - abs_off;
1064 }
1065 }
1066 boot_encrypt(BOOT_CURR_ENC(state), image_index, fap_src,
1067 (abs_off + idx) - hdr->ih_hdr_size, blk_sz,
1068 blk_off, &buf[idx]);
1069 }
1070 }
1071 }
1072 #endif
1073
1074 rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz);
1075 if (rc != 0) {
1076 return BOOT_EFLASH;
1077 }
1078
1079 bytes_copied += chunk_sz;
1080
1081 MCUBOOT_WATCHDOG_FEED();
1082 }
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * Overwrite primary slot with the image contained in the secondary slot.
1089 * If a prior copy operation was interrupted by a system reset, this function
1090 * redos the copy.
1091 *
1092 * @param bs The current boot status. This function reads
1093 * this struct to determine if it is resuming
1094 * an interrupted swap operation. This
1095 * function writes the updated status to this
1096 * function on return.
1097 *
1098 * @return 0 on success; nonzero on failure.
1099 */
1100 #if defined(MCUBOOT_OVERWRITE_ONLY) || defined(MCUBOOT_BOOTSTRAP)
1101 static int
boot_copy_image(struct boot_loader_state * state,struct boot_status * bs)1102 boot_copy_image(struct boot_loader_state *state, struct boot_status *bs)
1103 {
1104 size_t sect_count;
1105 size_t sect;
1106 int rc;
1107 size_t size;
1108 size_t this_size;
1109 size_t last_sector;
1110 const struct flash_area *fap_primary_slot;
1111 const struct flash_area *fap_secondary_slot;
1112 uint8_t image_index;
1113
1114 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1115 uint32_t sector;
1116 uint32_t trailer_sz;
1117 uint32_t off;
1118 uint32_t sz;
1119 #endif
1120
1121 (void)bs;
1122
1123 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1124 uint32_t src_size = 0;
1125 rc = boot_read_image_size(state, BOOT_SECONDARY_SLOT, &src_size);
1126 assert(rc == 0);
1127 #endif
1128
1129 image_index = BOOT_CURR_IMG(state);
1130
1131 BOOT_LOG_INF("Image %d upgrade secondary slot -> primary slot", image_index);
1132 BOOT_LOG_INF("Erasing the primary slot");
1133
1134 rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index),
1135 &fap_primary_slot);
1136 assert (rc == 0);
1137
1138 rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index),
1139 &fap_secondary_slot);
1140 assert (rc == 0);
1141
1142 sect_count = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT);
1143 for (sect = 0, size = 0; sect < sect_count; sect++) {
1144 this_size = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, sect);
1145 rc = boot_erase_region(fap_primary_slot, size, this_size);
1146 assert(rc == 0);
1147
1148 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1149 if ((size + this_size) >= src_size) {
1150 size += src_size - size;
1151 size += BOOT_WRITE_SZ(state) - (size % BOOT_WRITE_SZ(state));
1152 break;
1153 }
1154 #endif
1155
1156 size += this_size;
1157 }
1158
1159 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1160 trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
1161 sector = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1;
1162 sz = 0;
1163 do {
1164 sz += boot_img_sector_size(state, BOOT_PRIMARY_SLOT, sector);
1165 off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, sector);
1166 sector--;
1167 } while (sz < trailer_sz);
1168
1169 rc = boot_erase_region(fap_primary_slot, off, sz);
1170 assert(rc == 0);
1171 #endif
1172
1173 #ifdef MCUBOOT_ENC_IMAGES
1174 if (IS_ENCRYPTED(boot_img_hdr(state, BOOT_SECONDARY_SLOT))) {
1175 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index,
1176 boot_img_hdr(state, BOOT_SECONDARY_SLOT),
1177 fap_secondary_slot, bs);
1178
1179 if (rc < 0) {
1180 return BOOT_EBADIMAGE;
1181 }
1182 if (rc == 0 && boot_enc_set_key(BOOT_CURR_ENC(state), 1, bs)) {
1183 return BOOT_EBADIMAGE;
1184 }
1185 }
1186 #endif
1187
1188 BOOT_LOG_INF("Image %d copying the secondary slot to the primary slot: 0x%zx bytes",
1189 image_index, size);
1190 rc = boot_copy_region(state, fap_secondary_slot, fap_primary_slot, 0, 0, size);
1191 if (rc != 0) {
1192 return rc;
1193 }
1194
1195 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1196 rc = boot_write_magic(fap_primary_slot);
1197 if (rc != 0) {
1198 return rc;
1199 }
1200 #endif
1201
1202 rc = BOOT_HOOK_CALL(boot_copy_region_post_hook, 0, BOOT_CURR_IMG(state),
1203 BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT), size);
1204 if (rc != 0) {
1205 return rc;
1206 }
1207
1208 #ifdef MCUBOOT_HW_ROLLBACK_PROT
1209 /* Update the stored security counter with the new image's security counter
1210 * value. Both slots hold the new image at this point, but the secondary
1211 * slot's image header must be passed since the image headers in the
1212 * boot_data structure have not been updated yet.
1213 */
1214 rc = boot_update_security_counter(BOOT_CURR_IMG(state), BOOT_PRIMARY_SLOT,
1215 boot_img_hdr(state, BOOT_SECONDARY_SLOT));
1216 if (rc != 0) {
1217 BOOT_LOG_ERR("Security counter update failed after image upgrade.");
1218 return rc;
1219 }
1220 #endif /* MCUBOOT_HW_ROLLBACK_PROT */
1221
1222 /*
1223 * Erases header and trailer. The trailer is erased because when a new
1224 * image is written without a trailer as is the case when using newt, the
1225 * trailer that was left might trigger a new upgrade.
1226 */
1227 BOOT_LOG_DBG("erasing secondary header");
1228 rc = boot_erase_region(fap_secondary_slot,
1229 boot_img_sector_off(state, BOOT_SECONDARY_SLOT, 0),
1230 boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0));
1231 assert(rc == 0);
1232 last_sector = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT) - 1;
1233 BOOT_LOG_DBG("erasing secondary trailer");
1234 rc = boot_erase_region(fap_secondary_slot,
1235 boot_img_sector_off(state, BOOT_SECONDARY_SLOT,
1236 last_sector),
1237 boot_img_sector_size(state, BOOT_SECONDARY_SLOT,
1238 last_sector));
1239 assert(rc == 0);
1240
1241 flash_area_close(fap_primary_slot);
1242 flash_area_close(fap_secondary_slot);
1243
1244 /* TODO: Perhaps verify the primary slot's signature again? */
1245
1246 return 0;
1247 }
1248 #endif
1249
1250 #if !defined(MCUBOOT_OVERWRITE_ONLY)
1251 /**
1252 * Swaps the two images in flash. If a prior copy operation was interrupted
1253 * by a system reset, this function completes that operation.
1254 *
1255 * @param bs The current boot status. This function reads
1256 * this struct to determine if it is resuming
1257 * an interrupted swap operation. This
1258 * function writes the updated status to this
1259 * function on return.
1260 *
1261 * @return 0 on success; nonzero on failure.
1262 */
1263 static int
boot_swap_image(struct boot_loader_state * state,struct boot_status * bs)1264 boot_swap_image(struct boot_loader_state *state, struct boot_status *bs)
1265 {
1266 struct image_header *hdr;
1267 const struct flash_area *fap;
1268 #ifdef MCUBOOT_ENC_IMAGES
1269 uint8_t slot;
1270 uint8_t i;
1271 #endif
1272 uint32_t size;
1273 uint32_t copy_size;
1274 uint8_t image_index;
1275 int rc;
1276
1277 /* FIXME: just do this if asked by user? */
1278
1279 size = copy_size = 0;
1280 image_index = BOOT_CURR_IMG(state);
1281
1282 if (boot_status_is_reset(bs)) {
1283 /*
1284 * No swap ever happened, so need to find the largest image which
1285 * will be used to determine the amount of sectors to swap.
1286 */
1287 hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT);
1288 if (hdr->ih_magic == IMAGE_MAGIC) {
1289 rc = boot_read_image_size(state, BOOT_PRIMARY_SLOT, ©_size);
1290 assert(rc == 0);
1291 }
1292
1293 #ifdef MCUBOOT_ENC_IMAGES
1294 if (IS_ENCRYPTED(hdr)) {
1295 fap = BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT);
1296 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap, bs);
1297 assert(rc >= 0);
1298
1299 if (rc == 0) {
1300 rc = boot_enc_set_key(BOOT_CURR_ENC(state), 0, bs);
1301 assert(rc == 0);
1302 } else {
1303 rc = 0;
1304 }
1305 } else {
1306 memset(bs->enckey[0], 0xff, BOOT_ENC_KEY_ALIGN_SIZE);
1307 }
1308 #endif
1309
1310 hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT);
1311 if (hdr->ih_magic == IMAGE_MAGIC) {
1312 rc = boot_read_image_size(state, BOOT_SECONDARY_SLOT, &size);
1313 assert(rc == 0);
1314 }
1315
1316 #ifdef MCUBOOT_ENC_IMAGES
1317 hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT);
1318 if (IS_ENCRYPTED(hdr)) {
1319 fap = BOOT_IMG_AREA(state, BOOT_SECONDARY_SLOT);
1320 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap, bs);
1321 assert(rc >= 0);
1322
1323 if (rc == 0) {
1324 rc = boot_enc_set_key(BOOT_CURR_ENC(state), 1, bs);
1325 assert(rc == 0);
1326 } else {
1327 rc = 0;
1328 }
1329 } else {
1330 memset(bs->enckey[1], 0xff, BOOT_ENC_KEY_ALIGN_SIZE);
1331 }
1332 #endif
1333
1334 if (size > copy_size) {
1335 copy_size = size;
1336 }
1337
1338 bs->swap_size = copy_size;
1339 } else {
1340 /*
1341 * If a swap was under way, the swap_size should already be present
1342 * in the trailer...
1343 */
1344
1345 rc = boot_find_status(image_index, &fap);
1346 assert(fap != NULL);
1347 rc = boot_read_swap_size(fap, &bs->swap_size);
1348 assert(rc == 0);
1349
1350 copy_size = bs->swap_size;
1351
1352 #ifdef MCUBOOT_ENC_IMAGES
1353 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
1354 rc = boot_read_enc_key(fap, slot, bs);
1355 assert(rc == 0);
1356
1357 for (i = 0; i < BOOT_ENC_KEY_SIZE; i++) {
1358 if (bs->enckey[slot][i] != 0xff) {
1359 break;
1360 }
1361 }
1362
1363 if (i != BOOT_ENC_KEY_SIZE) {
1364 boot_enc_set_key(BOOT_CURR_ENC(state), slot, bs);
1365 }
1366 }
1367 #endif
1368 flash_area_close(fap);
1369 }
1370
1371 swap_run(state, bs, copy_size);
1372
1373 #ifdef MCUBOOT_VALIDATE_PRIMARY_SLOT
1374 extern int boot_status_fails;
1375 if (boot_status_fails > 0) {
1376 BOOT_LOG_WRN("%d status write fails performing the swap",
1377 boot_status_fails);
1378 }
1379 #endif
1380 rc = BOOT_HOOK_CALL(boot_copy_region_post_hook, 0, BOOT_CURR_IMG(state),
1381 BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT), size);
1382
1383 return 0;
1384 }
1385 #endif
1386
1387 #if (BOOT_IMAGE_NUMBER > 1)
1388 /**
1389 * Check the image dependency whether it is satisfied and modify
1390 * the swap type if necessary.
1391 *
1392 * @param dep Image dependency which has to be verified.
1393 *
1394 * @return 0 on success; nonzero on failure.
1395 */
1396 static int
boot_verify_slot_dependency(struct boot_loader_state * state,struct image_dependency * dep)1397 boot_verify_slot_dependency(struct boot_loader_state *state,
1398 struct image_dependency *dep)
1399 {
1400 struct image_version *dep_version;
1401 size_t dep_slot;
1402 int rc;
1403 uint8_t swap_type;
1404
1405 /* Determine the source of the image which is the subject of
1406 * the dependency and get it's version. */
1407 swap_type = state->swap_type[dep->image_id];
1408 dep_slot = BOOT_IS_UPGRADE(swap_type) ? BOOT_SECONDARY_SLOT
1409 : BOOT_PRIMARY_SLOT;
1410 dep_version = &state->imgs[dep->image_id][dep_slot].hdr.ih_ver;
1411
1412 rc = boot_version_cmp(dep_version, &dep->image_min_version);
1413 if (rc < 0) {
1414 /* Dependency not satisfied.
1415 * Modify the swap type to decrease the version number of the image
1416 * (which will be located in the primary slot after the boot process),
1417 * consequently the number of unsatisfied dependencies will be
1418 * decreased or remain the same.
1419 */
1420 switch (BOOT_SWAP_TYPE(state)) {
1421 case BOOT_SWAP_TYPE_TEST:
1422 case BOOT_SWAP_TYPE_PERM:
1423 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1424 break;
1425 case BOOT_SWAP_TYPE_NONE:
1426 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_REVERT;
1427 break;
1428 default:
1429 break;
1430 }
1431 } else {
1432 /* Dependency satisfied. */
1433 rc = 0;
1434 }
1435
1436 return rc;
1437 }
1438
1439 /**
1440 * Read all dependency TLVs of an image from the flash and verify
1441 * one after another to see if they are all satisfied.
1442 *
1443 * @param slot Image slot number.
1444 *
1445 * @return 0 on success; nonzero on failure.
1446 */
1447 static int
boot_verify_slot_dependencies(struct boot_loader_state * state,uint32_t slot)1448 boot_verify_slot_dependencies(struct boot_loader_state *state, uint32_t slot)
1449 {
1450 const struct flash_area *fap;
1451 struct image_tlv_iter it;
1452 struct image_dependency dep;
1453 uint32_t off;
1454 uint16_t len;
1455 int area_id;
1456 int rc;
1457
1458 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
1459 rc = flash_area_open(area_id, &fap);
1460 if (rc != 0) {
1461 rc = BOOT_EFLASH;
1462 goto done;
1463 }
1464
1465 rc = bootutil_tlv_iter_begin(&it, boot_img_hdr(state, slot), fap,
1466 IMAGE_TLV_DEPENDENCY, true);
1467 if (rc != 0) {
1468 goto done;
1469 }
1470
1471 while (true) {
1472 rc = bootutil_tlv_iter_next(&it, &off, &len, NULL);
1473 if (rc < 0) {
1474 return -1;
1475 } else if (rc > 0) {
1476 rc = 0;
1477 break;
1478 }
1479
1480 if (len != sizeof(dep)) {
1481 rc = BOOT_EBADIMAGE;
1482 goto done;
1483 }
1484
1485 rc = flash_area_read(fap, off, &dep, len);
1486 if (rc != 0) {
1487 rc = BOOT_EFLASH;
1488 goto done;
1489 }
1490
1491 if (dep.image_id >= BOOT_IMAGE_NUMBER) {
1492 rc = BOOT_EBADARGS;
1493 goto done;
1494 }
1495
1496 /* Verify dependency and modify the swap type if not satisfied. */
1497 rc = boot_verify_slot_dependency(state, &dep);
1498 if (rc != 0) {
1499 /* Dependency not satisfied. */
1500 goto done;
1501 }
1502 }
1503
1504 done:
1505 flash_area_close(fap);
1506 return rc;
1507 }
1508
1509 /**
1510 * Iterate over all the images and verify whether the image dependencies in the
1511 * TLV area are all satisfied and update the related swap type if necessary.
1512 */
1513 static int
boot_verify_dependencies(struct boot_loader_state * state)1514 boot_verify_dependencies(struct boot_loader_state *state)
1515 {
1516 int rc = -1;
1517 uint8_t slot;
1518
1519 BOOT_CURR_IMG(state) = 0;
1520 while (BOOT_CURR_IMG(state) < BOOT_IMAGE_NUMBER) {
1521 if (state->img_mask[BOOT_CURR_IMG(state)]) {
1522 BOOT_CURR_IMG(state)++;
1523 continue;
1524 }
1525 if (BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_NONE &&
1526 BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_FAIL) {
1527 slot = BOOT_SECONDARY_SLOT;
1528 } else {
1529 slot = BOOT_PRIMARY_SLOT;
1530 }
1531
1532 rc = boot_verify_slot_dependencies(state, slot);
1533 if (rc == 0) {
1534 /* All dependencies've been satisfied, continue with next image. */
1535 BOOT_CURR_IMG(state)++;
1536 } else {
1537 /* Cannot upgrade due to non-met dependencies, so disable all
1538 * image upgrades.
1539 */
1540 for (int idx = 0; idx < BOOT_IMAGE_NUMBER; idx++) {
1541 BOOT_CURR_IMG(state) = idx;
1542 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1543 }
1544 break;
1545 }
1546 }
1547 return rc;
1548 }
1549 #endif /* (BOOT_IMAGE_NUMBER > 1) */
1550
1551 /**
1552 * Performs a clean (not aborted) image update.
1553 *
1554 * @param bs The current boot status.
1555 *
1556 * @return 0 on success; nonzero on failure.
1557 */
1558 static int
boot_perform_update(struct boot_loader_state * state,struct boot_status * bs)1559 boot_perform_update(struct boot_loader_state *state, struct boot_status *bs)
1560 {
1561 int rc;
1562 #ifndef MCUBOOT_OVERWRITE_ONLY
1563 uint8_t swap_type;
1564 #endif
1565
1566 /* At this point there are no aborted swaps. */
1567 #if defined(MCUBOOT_OVERWRITE_ONLY)
1568 rc = boot_copy_image(state, bs);
1569 #elif defined(MCUBOOT_BOOTSTRAP)
1570 /* Check if the image update was triggered by a bad image in the
1571 * primary slot (the validity of the image in the secondary slot had
1572 * already been checked).
1573 */
1574 FIH_DECLARE(fih_rc, FIH_FAILURE);
1575 rc = boot_check_header_erased(state, BOOT_PRIMARY_SLOT);
1576 FIH_CALL(boot_validate_slot, fih_rc, state, BOOT_PRIMARY_SLOT, bs);
1577 if (rc == 0 || FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
1578 rc = boot_copy_image(state, bs);
1579 } else {
1580 rc = boot_swap_image(state, bs);
1581 }
1582 #else
1583 rc = boot_swap_image(state, bs);
1584 #endif
1585 assert(rc == 0);
1586
1587 #ifndef MCUBOOT_OVERWRITE_ONLY
1588 /* The following state needs image_ok be explicitly set after the
1589 * swap was finished to avoid a new revert.
1590 */
1591 swap_type = BOOT_SWAP_TYPE(state);
1592 if (swap_type == BOOT_SWAP_TYPE_REVERT ||
1593 swap_type == BOOT_SWAP_TYPE_PERM) {
1594 rc = swap_set_image_ok(BOOT_CURR_IMG(state));
1595 if (rc != 0) {
1596 BOOT_SWAP_TYPE(state) = swap_type = BOOT_SWAP_TYPE_PANIC;
1597 }
1598 }
1599
1600 #ifdef MCUBOOT_HW_ROLLBACK_PROT
1601 if (swap_type == BOOT_SWAP_TYPE_PERM) {
1602 /* Update the stored security counter with the new image's security
1603 * counter value. The primary slot holds the new image at this point,
1604 * but the secondary slot's image header must be passed since image
1605 * headers in the boot_data structure have not been updated yet.
1606 *
1607 * In case of a permanent image swap mcuboot will never attempt to
1608 * revert the images on the next reboot. Therefore, the security
1609 * counter must be increased right after the image upgrade.
1610 */
1611 rc = boot_update_security_counter(
1612 BOOT_CURR_IMG(state),
1613 BOOT_PRIMARY_SLOT,
1614 boot_img_hdr(state, BOOT_SECONDARY_SLOT));
1615 if (rc != 0) {
1616 BOOT_LOG_ERR("Security counter update failed after "
1617 "image upgrade.");
1618 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1619 }
1620 }
1621 #endif /* MCUBOOT_HW_ROLLBACK_PROT */
1622
1623 if (BOOT_IS_UPGRADE(swap_type)) {
1624 rc = swap_set_copy_done(BOOT_CURR_IMG(state));
1625 if (rc != 0) {
1626 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1627 }
1628 }
1629 #endif /* !MCUBOOT_OVERWRITE_ONLY */
1630
1631 return rc;
1632 }
1633
1634 /**
1635 * Completes a previously aborted image swap.
1636 *
1637 * @param bs The current boot status.
1638 *
1639 * @return 0 on success; nonzero on failure.
1640 */
1641 #if !defined(MCUBOOT_OVERWRITE_ONLY)
1642 static int
boot_complete_partial_swap(struct boot_loader_state * state,struct boot_status * bs)1643 boot_complete_partial_swap(struct boot_loader_state *state,
1644 struct boot_status *bs)
1645 {
1646 int rc;
1647
1648 /* Determine the type of swap operation being resumed from the
1649 * `swap-type` trailer field.
1650 */
1651 rc = boot_swap_image(state, bs);
1652 assert(rc == 0);
1653
1654 BOOT_SWAP_TYPE(state) = bs->swap_type;
1655
1656 /* The following states need image_ok be explicitly set after the
1657 * swap was finished to avoid a new revert.
1658 */
1659 if (bs->swap_type == BOOT_SWAP_TYPE_REVERT ||
1660 bs->swap_type == BOOT_SWAP_TYPE_PERM) {
1661 rc = swap_set_image_ok(BOOT_CURR_IMG(state));
1662 if (rc != 0) {
1663 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1664 }
1665 }
1666
1667 if (BOOT_IS_UPGRADE(bs->swap_type)) {
1668 rc = swap_set_copy_done(BOOT_CURR_IMG(state));
1669 if (rc != 0) {
1670 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1671 }
1672 }
1673
1674 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_PANIC) {
1675 BOOT_LOG_ERR("panic!");
1676 assert(0);
1677
1678 /* Loop forever... */
1679 while (1) {}
1680 }
1681
1682 return rc;
1683 }
1684 #endif /* !MCUBOOT_OVERWRITE_ONLY */
1685
1686 #if (BOOT_IMAGE_NUMBER > 1)
1687 /**
1688 * Review the validity of previously determined swap types of other images.
1689 *
1690 * @param aborted_swap The current image upgrade is a
1691 * partial/aborted swap.
1692 */
1693 static void
boot_review_image_swap_types(struct boot_loader_state * state,bool aborted_swap)1694 boot_review_image_swap_types(struct boot_loader_state *state,
1695 bool aborted_swap)
1696 {
1697 /* In that case if we rebooted in the middle of an image upgrade process, we
1698 * must review the validity of swap types, that were previously determined
1699 * for other images. The image_ok flag had not been set before the reboot
1700 * for any of the updated images (only the copy_done flag) and thus falsely
1701 * the REVERT swap type has been determined for the previous images that had
1702 * been updated before the reboot.
1703 *
1704 * There are two separate scenarios that we have to deal with:
1705 *
1706 * 1. The reboot has happened during swapping an image:
1707 * The current image upgrade has been determined as a
1708 * partial/aborted swap.
1709 * 2. The reboot has happened between two separate image upgrades:
1710 * In this scenario we must check the swap type of the current image.
1711 * In those cases if it is NONE or REVERT we cannot certainly determine
1712 * the fact of a reboot. In a consistent state images must move in the
1713 * same direction or stay in place, e.g. in practice REVERT and TEST
1714 * swap types cannot be present at the same time. If the swap type of
1715 * the current image is either TEST, PERM or FAIL we must review the
1716 * already determined swap types of other images and set each false
1717 * REVERT swap types to NONE (these images had been successfully
1718 * updated before the system rebooted between two separate image
1719 * upgrades).
1720 */
1721
1722 if (BOOT_CURR_IMG(state) == 0) {
1723 /* Nothing to do */
1724 return;
1725 }
1726
1727 if (!aborted_swap) {
1728 if ((BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) ||
1729 (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_REVERT)) {
1730 /* Nothing to do */
1731 return;
1732 }
1733 }
1734
1735 for (uint8_t i = 0; i < BOOT_CURR_IMG(state); i++) {
1736 if (state->swap_type[i] == BOOT_SWAP_TYPE_REVERT) {
1737 state->swap_type[i] = BOOT_SWAP_TYPE_NONE;
1738 }
1739 }
1740 }
1741 #endif
1742
1743 /**
1744 * Prepare image to be updated if required.
1745 *
1746 * Prepare image to be updated if required with completing an image swap
1747 * operation if one was aborted and/or determining the type of the
1748 * swap operation. In case of any error set the swap type to NONE.
1749 *
1750 * @param state TODO
1751 * @param bs Pointer where the read and possibly updated
1752 * boot status can be written to.
1753 */
1754 static void
boot_prepare_image_for_update(struct boot_loader_state * state,struct boot_status * bs)1755 boot_prepare_image_for_update(struct boot_loader_state *state,
1756 struct boot_status *bs)
1757 {
1758 int rc;
1759 FIH_DECLARE(fih_rc, FIH_FAILURE);
1760
1761 /* Determine the sector layout of the image slots and scratch area. */
1762 rc = boot_read_sectors(state);
1763 if (rc != 0) {
1764 BOOT_LOG_WRN("Failed reading sectors; BOOT_MAX_IMG_SECTORS=%d"
1765 " - too small?", BOOT_MAX_IMG_SECTORS);
1766 /* Unable to determine sector layout, continue with next image
1767 * if there is one.
1768 */
1769 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1770 if (rc == BOOT_EFLASH)
1771 {
1772 /* Only return on error from the primary image flash */
1773 return;
1774 }
1775 }
1776
1777 /* Attempt to read an image header from each slot. */
1778 rc = boot_read_image_headers(state, false, NULL);
1779 if (rc != 0) {
1780 /* Continue with next image if there is one. */
1781 BOOT_LOG_WRN("Failed reading image headers; Image=%u",
1782 BOOT_CURR_IMG(state));
1783 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1784 return;
1785 }
1786
1787 /* If the current image's slots aren't compatible, no swap is possible.
1788 * Just boot into primary slot.
1789 */
1790 if (boot_slots_compatible(state)) {
1791 boot_status_reset(bs);
1792
1793 #ifndef MCUBOOT_OVERWRITE_ONLY
1794 rc = swap_read_status(state, bs);
1795 if (rc != 0) {
1796 BOOT_LOG_WRN("Failed reading boot status; Image=%u",
1797 BOOT_CURR_IMG(state));
1798 /* Continue with next image if there is one. */
1799 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1800 return;
1801 }
1802 #endif
1803
1804 #ifdef MCUBOOT_SWAP_USING_MOVE
1805 /*
1806 * Must re-read image headers because the boot status might
1807 * have been updated in the previous function call.
1808 */
1809 rc = boot_read_image_headers(state, !boot_status_is_reset(bs), bs);
1810 #ifdef MCUBOOT_BOOTSTRAP
1811 /* When bootstrapping it's OK to not have image magic in the primary slot */
1812 if (rc != 0 && (BOOT_CURR_IMG(state) != BOOT_PRIMARY_SLOT ||
1813 boot_check_header_erased(state, BOOT_PRIMARY_SLOT) != 0)) {
1814 #else
1815 if (rc != 0) {
1816 #endif
1817
1818 /* Continue with next image if there is one. */
1819 BOOT_LOG_WRN("Failed reading image headers; Image=%u",
1820 BOOT_CURR_IMG(state));
1821 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1822 return;
1823 }
1824 #endif
1825
1826 /* Determine if we rebooted in the middle of an image swap
1827 * operation. If a partial swap was detected, complete it.
1828 */
1829 if (!boot_status_is_reset(bs)) {
1830
1831 #if (BOOT_IMAGE_NUMBER > 1)
1832 boot_review_image_swap_types(state, true);
1833 #endif
1834
1835 #ifdef MCUBOOT_OVERWRITE_ONLY
1836 /* Should never arrive here, overwrite-only mode has
1837 * no swap state.
1838 */
1839 assert(0);
1840 #else
1841 /* Determine the type of swap operation being resumed from the
1842 * `swap-type` trailer field.
1843 */
1844 rc = boot_complete_partial_swap(state, bs);
1845 assert(rc == 0);
1846 #endif
1847 /* Attempt to read an image header from each slot. Ensure that
1848 * image headers in slots are aligned with headers in boot_data.
1849 */
1850 rc = boot_read_image_headers(state, false, bs);
1851 assert(rc == 0);
1852
1853 /* Swap has finished set to NONE */
1854 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1855 } else {
1856 /* There was no partial swap, determine swap type. */
1857 if (bs->swap_type == BOOT_SWAP_TYPE_NONE) {
1858 BOOT_SWAP_TYPE(state) = boot_validated_swap_type(state, bs);
1859 } else {
1860 FIH_CALL(boot_validate_slot, fih_rc,
1861 state, BOOT_SECONDARY_SLOT, bs);
1862 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
1863 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_FAIL;
1864 } else {
1865 BOOT_SWAP_TYPE(state) = bs->swap_type;
1866 }
1867 }
1868
1869 #if (BOOT_IMAGE_NUMBER > 1)
1870 boot_review_image_swap_types(state, false);
1871 #endif
1872
1873 #ifdef MCUBOOT_BOOTSTRAP
1874 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) {
1875 /* Header checks are done first because they are
1876 * inexpensive. Since overwrite-only copies starting from
1877 * offset 0, if interrupted, it might leave a valid header
1878 * magic, so also run validation on the primary slot to be
1879 * sure it's not OK.
1880 */
1881 rc = boot_check_header_erased(state, BOOT_PRIMARY_SLOT);
1882 FIH_CALL(boot_validate_slot, fih_rc,
1883 state, BOOT_PRIMARY_SLOT, bs);
1884
1885 if (rc == 0 || FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
1886
1887 rc = (boot_img_hdr(state, BOOT_SECONDARY_SLOT)->ih_magic == IMAGE_MAGIC) ? 1: 0;
1888 FIH_CALL(boot_validate_slot, fih_rc,
1889 state, BOOT_SECONDARY_SLOT, bs);
1890
1891 if (rc == 1 && FIH_EQ(fih_rc, FIH_SUCCESS)) {
1892 /* Set swap type to REVERT to overwrite the primary
1893 * slot with the image contained in secondary slot
1894 * and to trigger the explicit setting of the
1895 * image_ok flag.
1896 */
1897 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_REVERT;
1898 }
1899 }
1900 }
1901 #endif
1902 }
1903 } else {
1904 /* In that case if slots are not compatible. */
1905 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1906 }
1907 }
1908
1909 /**
1910 * Updates the security counter for the current image.
1911 *
1912 * @param state Boot loader status information.
1913 *
1914 * @return 0 on success; nonzero on failure.
1915 */
1916 static int
1917 boot_update_hw_rollback_protection(struct boot_loader_state *state)
1918 {
1919 #ifdef MCUBOOT_HW_ROLLBACK_PROT
1920 int rc;
1921
1922 /* Update the stored security counter with the active image's security
1923 * counter value. It will only be updated if the new security counter is
1924 * greater than the stored value.
1925 *
1926 * In case of a successful image swapping when the swap type is TEST the
1927 * security counter can be increased only after a reset, when the swap
1928 * type is NONE and the image has marked itself "OK" (the image_ok flag
1929 * has been set). This way a "revert" can be performed when it's
1930 * necessary.
1931 */
1932 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) {
1933 rc = boot_update_security_counter(
1934 BOOT_CURR_IMG(state),
1935 BOOT_PRIMARY_SLOT,
1936 boot_img_hdr(state, BOOT_PRIMARY_SLOT));
1937 if (rc != 0) {
1938 BOOT_LOG_ERR("Security counter update failed after image "
1939 "validation.");
1940 return rc;
1941 }
1942 }
1943
1944 return 0;
1945
1946 #else /* MCUBOOT_HW_ROLLBACK_PROT */
1947 (void) (state);
1948
1949 return 0;
1950 #endif
1951 }
1952
1953 /**
1954 * Checks test swap downgrade prevention conditions.
1955 *
1956 * Function called only for swap upgrades test run. It may prevent
1957 * swap if slot 1 image has <= version number or < security counter
1958 *
1959 * @param state Boot loader status information.
1960 *
1961 * @return 0 - image can be swapped, -1 downgrade prevention
1962 */
1963 static int
1964 check_downgrade_prevention(struct boot_loader_state *state)
1965 {
1966 #if defined(MCUBOOT_DOWNGRADE_PREVENTION) && \
1967 (defined(MCUBOOT_SWAP_USING_MOVE) || defined(MCUBOOT_SWAP_USING_SCRATCH))
1968 uint32_t security_counter[2];
1969 int rc;
1970
1971 if (MCUBOOT_DOWNGRADE_PREVENTION_SECURITY_COUNTER) {
1972 /* If there was security no counter in slot 0, allow swap */
1973 rc = bootutil_get_img_security_cnt(&(BOOT_IMG(state, 0).hdr),
1974 BOOT_IMG(state, 0).area,
1975 &security_counter[0]);
1976 if (rc != 0) {
1977 return 0;
1978 }
1979 /* If there is no security counter in slot 1, or it's lower than
1980 * that of slot 0, prevent downgrade */
1981 rc = bootutil_get_img_security_cnt(&(BOOT_IMG(state, 1).hdr),
1982 BOOT_IMG(state, 1).area,
1983 &security_counter[1]);
1984 if (rc != 0 || security_counter[0] > security_counter[1]) {
1985 rc = -1;
1986 }
1987 }
1988 else {
1989 rc = boot_version_cmp(&boot_img_hdr(state, BOOT_SECONDARY_SLOT)->ih_ver,
1990 &boot_img_hdr(state, BOOT_PRIMARY_SLOT)->ih_ver);
1991 }
1992 if (rc < 0) {
1993 /* Image in slot 0 prevents downgrade, delete image in slot 1 */
1994 BOOT_LOG_INF("Image %d in slot 1 erased due to downgrade prevention", BOOT_CURR_IMG(state));
1995 flash_area_erase(BOOT_IMG(state, 1).area, 0,
1996 flash_area_get_size(BOOT_IMG(state, 1).area));
1997 } else {
1998 rc = 0;
1999 }
2000 return rc;
2001 #else
2002 (void)state;
2003 return 0;
2004 #endif
2005 }
2006
2007 fih_ret
2008 context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
2009 {
2010 size_t slot;
2011 struct boot_status bs;
2012 int rc = -1;
2013 FIH_DECLARE(fih_rc, FIH_FAILURE);
2014 int fa_id;
2015 int image_index;
2016 bool has_upgrade;
2017 volatile int fih_cnt;
2018
2019 /* The array of slot sectors are defined here (as opposed to file scope) so
2020 * that they don't get allocated for non-boot-loader apps. This is
2021 * necessary because the gcc option "-fdata-sections" doesn't seem to have
2022 * any effect in older gcc versions (e.g., 4.8.4).
2023 */
2024 TARGET_STATIC boot_sector_t primary_slot_sectors[BOOT_IMAGE_NUMBER][BOOT_MAX_IMG_SECTORS];
2025 TARGET_STATIC boot_sector_t secondary_slot_sectors[BOOT_IMAGE_NUMBER][BOOT_MAX_IMG_SECTORS];
2026 #if MCUBOOT_SWAP_USING_SCRATCH
2027 TARGET_STATIC boot_sector_t scratch_sectors[BOOT_MAX_IMG_SECTORS];
2028 #endif
2029
2030 has_upgrade = false;
2031
2032 #if (BOOT_IMAGE_NUMBER == 1)
2033 (void)has_upgrade;
2034 #endif
2035
2036 /* Iterate over all the images. By the end of the loop the swap type has
2037 * to be determined for each image and all aborted swaps have to be
2038 * completed.
2039 */
2040 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2041 #if BOOT_IMAGE_NUMBER > 1
2042 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2043 continue;
2044 }
2045 #endif
2046 #if defined(MCUBOOT_ENC_IMAGES) && (BOOT_IMAGE_NUMBER > 1)
2047 /* The keys used for encryption may no longer be valid (could belong to
2048 * another images). Therefore, mark them as invalid to force their reload
2049 * by boot_enc_load().
2050 */
2051 boot_enc_zeroize(BOOT_CURR_ENC(state));
2052 #endif
2053
2054 image_index = BOOT_CURR_IMG(state);
2055
2056 BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors =
2057 primary_slot_sectors[image_index];
2058 BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors =
2059 secondary_slot_sectors[image_index];
2060 #if MCUBOOT_SWAP_USING_SCRATCH
2061 state->scratch.sectors = scratch_sectors;
2062 #endif
2063
2064 /* Open primary and secondary image areas for the duration
2065 * of this call.
2066 */
2067 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2068 fa_id = flash_area_id_from_multi_image_slot(image_index, slot);
2069 rc = flash_area_open(fa_id, &BOOT_IMG_AREA(state, slot));
2070 assert(rc == 0);
2071
2072 if (rc != 0) {
2073 BOOT_LOG_ERR("Failed to open flash area ID %d (image %d slot %d): %d, "
2074 "cannot continue", fa_id, image_index, (int8_t)slot, rc);
2075 FIH_PANIC;
2076 }
2077 }
2078 #if MCUBOOT_SWAP_USING_SCRATCH
2079 rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH,
2080 &BOOT_SCRATCH_AREA(state));
2081 assert(rc == 0);
2082
2083 if (rc != 0) {
2084 BOOT_LOG_ERR("Failed to open scratch flash area: %d, cannot continue", rc);
2085 FIH_PANIC;
2086 }
2087 #endif
2088
2089 /* Determine swap type and complete swap if it has been aborted. */
2090 boot_prepare_image_for_update(state, &bs);
2091
2092 if (BOOT_IS_UPGRADE(BOOT_SWAP_TYPE(state))) {
2093 has_upgrade = true;
2094 }
2095 }
2096
2097 #if (BOOT_IMAGE_NUMBER > 1)
2098 if (has_upgrade) {
2099 /* Iterate over all the images and verify whether the image dependencies
2100 * are all satisfied and update swap type if necessary.
2101 */
2102 rc = boot_verify_dependencies(state);
2103 if (rc != 0) {
2104 /*
2105 * It was impossible to upgrade because the expected dependency version
2106 * was not available. Here we already changed the swap_type so that
2107 * instead of asserting the bootloader, we continue and no upgrade is
2108 * performed.
2109 */
2110 rc = 0;
2111 }
2112 }
2113 #endif
2114
2115 /* Trigger status change callback with upgrading status */
2116 mcuboot_status_change(MCUBOOT_STATUS_UPGRADING);
2117
2118 /* Iterate over all the images. At this point there are no aborted swaps
2119 * and the swap types are determined for each image. By the end of the loop
2120 * all required update operations will have been finished.
2121 */
2122 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2123 #if (BOOT_IMAGE_NUMBER > 1)
2124 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2125 continue;
2126 }
2127
2128 #ifdef MCUBOOT_ENC_IMAGES
2129 /* The keys used for encryption may no longer be valid (could belong to
2130 * another images). Therefore, mark them as invalid to force their reload
2131 * by boot_enc_load().
2132 */
2133 boot_enc_zeroize(BOOT_CURR_ENC(state));
2134 #endif /* MCUBOOT_ENC_IMAGES */
2135
2136 /* Indicate that swap is not aborted */
2137 boot_status_reset(&bs);
2138 #endif /* (BOOT_IMAGE_NUMBER > 1) */
2139
2140 /* Set the previously determined swap type */
2141 bs.swap_type = BOOT_SWAP_TYPE(state);
2142
2143 switch (BOOT_SWAP_TYPE(state)) {
2144 case BOOT_SWAP_TYPE_NONE:
2145 break;
2146
2147 case BOOT_SWAP_TYPE_TEST:
2148 /* fallthrough */
2149 case BOOT_SWAP_TYPE_PERM:
2150 if (check_downgrade_prevention(state) != 0) {
2151 /* Downgrade prevented */
2152 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
2153 break;
2154 }
2155 /* fallthrough */
2156 case BOOT_SWAP_TYPE_REVERT:
2157 rc = BOOT_HOOK_CALL(boot_perform_update_hook, BOOT_HOOK_REGULAR,
2158 BOOT_CURR_IMG(state), &(BOOT_IMG(state, 1).hdr),
2159 BOOT_IMG_AREA(state, BOOT_SECONDARY_SLOT));
2160 if (rc == BOOT_HOOK_REGULAR)
2161 {
2162 rc = boot_perform_update(state, &bs);
2163 }
2164 assert(rc == 0);
2165 break;
2166
2167 case BOOT_SWAP_TYPE_FAIL:
2168 /* The image in secondary slot was invalid and is now erased. Ensure
2169 * we don't try to boot into it again on the next reboot. Do this by
2170 * pretending we just reverted back to primary slot.
2171 */
2172 #ifndef MCUBOOT_OVERWRITE_ONLY
2173 /* image_ok needs to be explicitly set to avoid a new revert. */
2174 rc = swap_set_image_ok(BOOT_CURR_IMG(state));
2175 if (rc != 0) {
2176 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
2177 }
2178 #endif /* !MCUBOOT_OVERWRITE_ONLY */
2179 break;
2180
2181 default:
2182 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
2183 }
2184
2185 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_PANIC) {
2186 BOOT_LOG_ERR("panic!");
2187 assert(0);
2188
2189 /* Loop forever... */
2190 FIH_PANIC;
2191 }
2192 }
2193
2194 /* Iterate over all the images. At this point all required update operations
2195 * have finished. By the end of the loop each image in the primary slot will
2196 * have been re-validated.
2197 */
2198 FIH_SET(fih_cnt, 0);
2199 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2200 #if BOOT_IMAGE_NUMBER > 1
2201 /* Hardenned to prevent from skipping check of a given image,
2202 * tmp_img_mask is declared volatile
2203 */
2204 volatile bool tmp_img_mask;
2205 FIH_SET(tmp_img_mask, state->img_mask[BOOT_CURR_IMG(state)]);
2206 if (FIH_EQ(tmp_img_mask, true)) {
2207 ++fih_cnt;
2208 continue;
2209 }
2210 #endif
2211 if (BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_NONE) {
2212 /* Attempt to read an image header from each slot. Ensure that image
2213 * headers in slots are aligned with headers in boot_data.
2214 */
2215 rc = boot_read_image_headers(state, false, &bs);
2216 if (rc != 0) {
2217 FIH_SET(fih_rc, FIH_FAILURE);
2218 goto out;
2219 }
2220 /* Since headers were reloaded, it can be assumed we just performed
2221 * a swap or overwrite. Now the header info that should be used to
2222 * provide the data for the bootstrap, which previously was at
2223 * secondary slot, was updated to primary slot.
2224 */
2225 }
2226
2227 #ifdef MCUBOOT_VALIDATE_PRIMARY_SLOT
2228 FIH_CALL(boot_validate_slot, fih_rc, state, BOOT_PRIMARY_SLOT, NULL);
2229 /* Check for all possible values is redundant in normal operation it
2230 * is meant to prevent FI attack.
2231 */
2232 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS) ||
2233 FIH_EQ(fih_rc, FIH_FAILURE) ||
2234 FIH_EQ(fih_rc, FIH_NO_BOOTABLE_IMAGE)) {
2235 FIH_SET(fih_rc, FIH_FAILURE);
2236 goto out;
2237 }
2238 #else
2239 /* Even if we're not re-validating the primary slot, we could be booting
2240 * onto an empty flash chip. At least do a basic sanity check that
2241 * the magic number on the image is OK.
2242 */
2243 if (BOOT_IMG(state, BOOT_PRIMARY_SLOT).hdr.ih_magic != IMAGE_MAGIC) {
2244 BOOT_LOG_ERR("bad image magic 0x%lx; Image=%u", (unsigned long)
2245 BOOT_IMG(state, BOOT_PRIMARY_SLOT).hdr.ih_magic,
2246 BOOT_CURR_IMG(state));
2247 rc = BOOT_EBADIMAGE;
2248 FIH_SET(fih_rc, FIH_FAILURE);
2249 goto out;
2250 }
2251 #endif /* MCUBOOT_VALIDATE_PRIMARY_SLOT */
2252
2253 rc = boot_update_hw_rollback_protection(state);
2254 if (rc != 0) {
2255 FIH_SET(fih_rc, FIH_FAILURE);
2256 goto out;
2257 }
2258
2259 rc = boot_add_shared_data(state, BOOT_PRIMARY_SLOT);
2260 if (rc != 0) {
2261 FIH_SET(fih_rc, FIH_FAILURE);
2262 goto out;
2263 }
2264 ++fih_cnt;
2265 }
2266 /*
2267 * fih_cnt should be equal to BOOT_IMAGE_NUMBER now.
2268 * If this is not the case, at least one iteration of the loop
2269 * has been skipped.
2270 */
2271 if(FIH_NOT_EQ(fih_cnt, BOOT_IMAGE_NUMBER)) {
2272 FIH_PANIC;
2273 }
2274
2275 fill_rsp(state, rsp);
2276
2277 fih_rc = FIH_SUCCESS;
2278 out:
2279 /*
2280 * Since the boot_status struct stores plaintext encryption keys, reset
2281 * them here to avoid the possibility of jumping into an image that could
2282 * easily recover them.
2283 */
2284 #if defined(MCUBOOT_ENC_IMAGES) || defined(MCUBOOT_SWAP_SAVE_ENCTLV)
2285 like_mbedtls_zeroize(&bs, sizeof(bs));
2286 #else
2287 memset(&bs, 0, sizeof(struct boot_status));
2288 #endif
2289
2290 close_all_flash_areas(state);
2291 FIH_RET(fih_rc);
2292 }
2293
2294 fih_ret
2295 split_go(int loader_slot, int split_slot, void **entry)
2296 {
2297 boot_sector_t *sectors;
2298 uintptr_t entry_val;
2299 int loader_flash_id;
2300 int split_flash_id;
2301 int rc;
2302 FIH_DECLARE(fih_rc, FIH_FAILURE);
2303
2304 sectors = malloc(BOOT_MAX_IMG_SECTORS * 2 * sizeof *sectors);
2305 if (sectors == NULL) {
2306 FIH_RET(FIH_FAILURE);
2307 }
2308 BOOT_IMG(&boot_data, loader_slot).sectors = sectors + 0;
2309 BOOT_IMG(&boot_data, split_slot).sectors = sectors + BOOT_MAX_IMG_SECTORS;
2310
2311 loader_flash_id = flash_area_id_from_image_slot(loader_slot);
2312 rc = flash_area_open(loader_flash_id,
2313 &BOOT_IMG_AREA(&boot_data, loader_slot));
2314 assert(rc == 0);
2315 split_flash_id = flash_area_id_from_image_slot(split_slot);
2316 rc = flash_area_open(split_flash_id,
2317 &BOOT_IMG_AREA(&boot_data, split_slot));
2318 assert(rc == 0);
2319
2320 /* Determine the sector layout of the image slots and scratch area. */
2321 rc = boot_read_sectors(&boot_data);
2322 if (rc != 0) {
2323 rc = SPLIT_GO_ERR;
2324 goto done;
2325 }
2326
2327 rc = boot_read_image_headers(&boot_data, true, NULL);
2328 if (rc != 0) {
2329 goto done;
2330 }
2331
2332 /* Don't check the bootable image flag because we could really call a
2333 * bootable or non-bootable image. Just validate that the image check
2334 * passes which is distinct from the normal check.
2335 */
2336 FIH_CALL(split_image_check, fih_rc,
2337 boot_img_hdr(&boot_data, split_slot),
2338 BOOT_IMG_AREA(&boot_data, split_slot),
2339 boot_img_hdr(&boot_data, loader_slot),
2340 BOOT_IMG_AREA(&boot_data, loader_slot));
2341 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
2342 goto done;
2343 }
2344
2345 entry_val = boot_img_slot_off(&boot_data, split_slot) +
2346 boot_img_hdr(&boot_data, split_slot)->ih_hdr_size;
2347 *entry = (void *) entry_val;
2348 rc = SPLIT_GO_OK;
2349
2350 done:
2351 flash_area_close(BOOT_IMG_AREA(&boot_data, split_slot));
2352 flash_area_close(BOOT_IMG_AREA(&boot_data, loader_slot));
2353 free(sectors);
2354
2355 if (rc) {
2356 FIH_SET(fih_rc, FIH_FAILURE);
2357 }
2358
2359 FIH_RET(fih_rc);
2360 }
2361
2362 #else /* MCUBOOT_DIRECT_XIP || MCUBOOT_RAM_LOAD */
2363
2364 #define NO_ACTIVE_SLOT UINT32_MAX
2365
2366 /**
2367 * Opens all flash areas and checks which contain an image with a valid header.
2368 *
2369 * @param state Boot loader status information.
2370 *
2371 * @return 0 on success; nonzero on failure.
2372 */
2373 static int
2374 boot_get_slot_usage(struct boot_loader_state *state)
2375 {
2376 uint32_t slot;
2377 int fa_id;
2378 int rc;
2379 struct image_header *hdr = NULL;
2380
2381 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2382 #if BOOT_IMAGE_NUMBER > 1
2383 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2384 continue;
2385 }
2386 #endif
2387 /* Open all the slots */
2388 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2389 fa_id = flash_area_id_from_multi_image_slot(
2390 BOOT_CURR_IMG(state), slot);
2391 rc = flash_area_open(fa_id, &BOOT_IMG_AREA(state, slot));
2392 assert(rc == 0);
2393 }
2394
2395 /* Attempt to read an image header from each slot. */
2396 rc = boot_read_image_headers(state, false, NULL);
2397 if (rc != 0) {
2398 BOOT_LOG_WRN("Failed reading image headers.");
2399 return rc;
2400 }
2401
2402 /* Check headers in all slots */
2403 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2404 hdr = boot_img_hdr(state, slot);
2405
2406 if (boot_is_header_valid(hdr, BOOT_IMG_AREA(state, slot))) {
2407 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[slot] = true;
2408 BOOT_LOG_IMAGE_INFO(slot, hdr);
2409 } else {
2410 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[slot] = false;
2411 BOOT_LOG_INF("Image %d %s slot: Image not found",
2412 BOOT_CURR_IMG(state),
2413 (slot == BOOT_PRIMARY_SLOT)
2414 ? "Primary" : "Secondary");
2415 }
2416 }
2417
2418 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
2419 }
2420
2421 return 0;
2422 }
2423
2424 /**
2425 * Finds the slot containing the image with the highest version number for the
2426 * current image.
2427 *
2428 * @param state Boot loader status information.
2429 *
2430 * @return NO_ACTIVE_SLOT if no available slot found, number of
2431 * the found slot otherwise.
2432 */
2433 static uint32_t
2434 find_slot_with_highest_version(struct boot_loader_state *state)
2435 {
2436 uint32_t slot;
2437 uint32_t candidate_slot = NO_ACTIVE_SLOT;
2438 int rc;
2439
2440 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2441 if (state->slot_usage[BOOT_CURR_IMG(state)].slot_available[slot]) {
2442 if (candidate_slot == NO_ACTIVE_SLOT) {
2443 candidate_slot = slot;
2444 } else {
2445 rc = boot_version_cmp(
2446 &boot_img_hdr(state, slot)->ih_ver,
2447 &boot_img_hdr(state, candidate_slot)->ih_ver);
2448 if (rc == 1) {
2449 /* The version of the image being examined is greater than
2450 * the version of the current candidate.
2451 */
2452 candidate_slot = slot;
2453 }
2454 }
2455 }
2456 }
2457
2458 return candidate_slot;
2459 }
2460
2461 #ifdef MCUBOOT_HAVE_LOGGING
2462 /**
2463 * Prints the state of the loaded images.
2464 *
2465 * @param state Boot loader status information.
2466 */
2467 static void
2468 print_loaded_images(struct boot_loader_state *state)
2469 {
2470 uint32_t active_slot;
2471
2472 (void)state;
2473
2474 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2475 #if BOOT_IMAGE_NUMBER > 1
2476 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2477 continue;
2478 }
2479 #endif
2480 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
2481
2482 BOOT_LOG_INF("Image %d loaded from the %s slot",
2483 BOOT_CURR_IMG(state),
2484 (active_slot == BOOT_PRIMARY_SLOT) ?
2485 "primary" : "secondary");
2486 }
2487 }
2488 #endif
2489
2490 #if defined(MCUBOOT_DIRECT_XIP) && defined(MCUBOOT_DIRECT_XIP_REVERT)
2491 /**
2492 * Checks whether the active slot of the current image was previously selected
2493 * to run. Erases the image if it was selected but its execution failed,
2494 * otherwise marks it as selected if it has not been before.
2495 *
2496 * @param state Boot loader status information.
2497 *
2498 * @return 0 on success; nonzero on failure.
2499 */
2500 static int
2501 boot_select_or_erase(struct boot_loader_state *state)
2502 {
2503 const struct flash_area *fap;
2504 int fa_id;
2505 int rc;
2506 uint32_t active_slot;
2507 struct boot_swap_state* active_swap_state;
2508
2509 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
2510
2511 fa_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), active_slot);
2512 rc = flash_area_open(fa_id, &fap);
2513 assert(rc == 0);
2514
2515 active_swap_state = &(state->slot_usage[BOOT_CURR_IMG(state)].swap_state);
2516
2517 memset(active_swap_state, 0, sizeof(struct boot_swap_state));
2518 rc = boot_read_swap_state(fap, active_swap_state);
2519 assert(rc == 0);
2520
2521 if (active_swap_state->magic != BOOT_MAGIC_GOOD ||
2522 (active_swap_state->copy_done == BOOT_FLAG_SET &&
2523 active_swap_state->image_ok != BOOT_FLAG_SET)) {
2524 /*
2525 * A reboot happened without the image being confirmed at
2526 * runtime or its trailer is corrupted/invalid. Erase the image
2527 * to prevent it from being selected again on the next reboot.
2528 */
2529 BOOT_LOG_DBG("Erasing faulty image in the %s slot.",
2530 (active_slot == BOOT_PRIMARY_SLOT) ? "primary" : "secondary");
2531 rc = flash_area_erase(fap, 0, flash_area_get_size(fap));
2532 assert(rc == 0);
2533
2534 flash_area_close(fap);
2535 rc = -1;
2536 } else {
2537 if (active_swap_state->copy_done != BOOT_FLAG_SET) {
2538 if (active_swap_state->copy_done == BOOT_FLAG_BAD) {
2539 BOOT_LOG_DBG("The copy_done flag had an unexpected value. Its "
2540 "value was neither 'set' nor 'unset', but 'bad'.");
2541 }
2542 /*
2543 * Set the copy_done flag, indicating that the image has been
2544 * selected to boot. It can be set in advance, before even
2545 * validating the image, because in case the validation fails, the
2546 * entire image slot will be erased (including the trailer).
2547 */
2548 rc = boot_write_copy_done(fap);
2549 if (rc != 0) {
2550 BOOT_LOG_WRN("Failed to set copy_done flag of the image in "
2551 "the %s slot.", (active_slot == BOOT_PRIMARY_SLOT) ?
2552 "primary" : "secondary");
2553 rc = 0;
2554 }
2555 }
2556 flash_area_close(fap);
2557 }
2558
2559 return rc;
2560 }
2561 #endif /* MCUBOOT_DIRECT_XIP && MCUBOOT_DIRECT_XIP_REVERT */
2562
2563 #ifdef MCUBOOT_RAM_LOAD
2564
2565 #ifndef MULTIPLE_EXECUTABLE_RAM_REGIONS
2566 #if !defined(IMAGE_EXECUTABLE_RAM_START) || !defined(IMAGE_EXECUTABLE_RAM_SIZE)
2567 #error "Platform MUST define executable RAM bounds in case of RAM_LOAD"
2568 #endif
2569 #endif
2570
2571 /**
2572 * Verifies that the active slot of the current image can be loaded within the
2573 * predefined bounds that are allowed to be used by executable images.
2574 *
2575 * @param state Boot loader status information.
2576 *
2577 * @return 0 on success; nonzero on failure.
2578 */
2579 static int
2580 boot_verify_ram_load_address(struct boot_loader_state *state)
2581 {
2582 uint32_t img_dst;
2583 uint32_t img_sz;
2584 uint32_t img_end_addr;
2585 uint32_t exec_ram_start;
2586 uint32_t exec_ram_size;
2587
2588 (void)state;
2589
2590 #ifdef MULTIPLE_EXECUTABLE_RAM_REGIONS
2591 int rc;
2592
2593 rc = boot_get_image_exec_ram_info(BOOT_CURR_IMG(state), &exec_ram_start,
2594 &exec_ram_size);
2595 if (rc != 0) {
2596 return BOOT_EBADSTATUS;
2597 }
2598 #else
2599 exec_ram_start = IMAGE_EXECUTABLE_RAM_START;
2600 exec_ram_size = IMAGE_EXECUTABLE_RAM_SIZE;
2601 #endif
2602
2603 img_dst = state->slot_usage[BOOT_CURR_IMG(state)].img_dst;
2604 img_sz = state->slot_usage[BOOT_CURR_IMG(state)].img_sz;
2605
2606 if (img_dst < exec_ram_start) {
2607 return BOOT_EBADIMAGE;
2608 }
2609
2610 if (!boot_u32_safe_add(&img_end_addr, img_dst, img_sz)) {
2611 return BOOT_EBADIMAGE;
2612 }
2613
2614 if (img_end_addr > (exec_ram_start + exec_ram_size)) {
2615 return BOOT_EBADIMAGE;
2616 }
2617
2618 return 0;
2619 }
2620
2621 #ifdef MCUBOOT_ENC_IMAGES
2622
2623 /**
2624 * Copies and decrypts an image from a slot in the flash to an SRAM address.
2625 *
2626 * @param state Boot loader status information.
2627 * @param slot The flash slot of the image to be copied to SRAM.
2628 * @param hdr The image header.
2629 * @param src_sz Size of the image.
2630 * @param img_dst Pointer to the address at which the image needs to be
2631 * copied to SRAM.
2632 *
2633 * @return 0 on success; nonzero on failure.
2634 */
2635 static int
2636 boot_decrypt_and_copy_image_to_sram(struct boot_loader_state *state,
2637 uint32_t slot, struct image_header *hdr,
2638 uint32_t src_sz, uint32_t img_dst)
2639 {
2640 /* The flow for the decryption and copy of the image is as follows :
2641 * 1. The whole image is copied to the RAM (header + payload + TLV).
2642 * 2. The encryption key is loaded from the TLV in flash.
2643 * 3. The image is then decrypted chunk by chunk in RAM (1 chunk
2644 * is 1024 bytes). Only the payload section is decrypted.
2645 * 4. The image is authenticated in RAM.
2646 */
2647 const struct flash_area *fap_src = NULL;
2648 struct boot_status bs;
2649 uint32_t blk_off;
2650 uint32_t tlv_off;
2651 uint32_t blk_sz;
2652 uint32_t bytes_copied = hdr->ih_hdr_size;
2653 uint32_t chunk_sz;
2654 uint32_t max_sz = 1024;
2655 uint16_t idx;
2656 uint8_t image_index;
2657 uint8_t * cur_dst;
2658 int area_id;
2659 int rc;
2660 uint8_t * ram_dst = (void *)(IMAGE_RAM_BASE + img_dst);
2661
2662 image_index = BOOT_CURR_IMG(state);
2663 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
2664 rc = flash_area_open(area_id, &fap_src);
2665 if (rc != 0){
2666 return BOOT_EFLASH;
2667 }
2668
2669 tlv_off = BOOT_TLV_OFF(hdr);
2670
2671 /* Copying the whole image in RAM */
2672 rc = flash_area_read(fap_src, 0, ram_dst, src_sz);
2673 if (rc != 0) {
2674 goto done;
2675 }
2676
2677 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap_src, &bs);
2678 if (rc < 0) {
2679 goto done;
2680 }
2681
2682 /* if rc > 0 then the key has already been loaded */
2683 if (rc == 0 && boot_enc_set_key(BOOT_CURR_ENC(state), slot, &bs)) {
2684 goto done;
2685 }
2686
2687 /* Starting at the end of the header as the header section is not encrypted */
2688 while (bytes_copied < tlv_off) { /* TLV section copied previously */
2689 if (src_sz - bytes_copied > max_sz) {
2690 chunk_sz = max_sz;
2691 } else {
2692 chunk_sz = src_sz - bytes_copied;
2693 }
2694
2695 cur_dst = ram_dst + bytes_copied;
2696 blk_sz = chunk_sz;
2697 idx = 0;
2698 if (bytes_copied + chunk_sz > tlv_off) {
2699 /* Going over TLV section
2700 * Part of the chunk is encrypted payload */
2701 blk_off = ((bytes_copied) - hdr->ih_hdr_size) & 0xf;
2702 blk_sz = tlv_off - (bytes_copied);
2703 boot_encrypt(BOOT_CURR_ENC(state), image_index, fap_src,
2704 (bytes_copied + idx) - hdr->ih_hdr_size, blk_sz,
2705 blk_off, cur_dst);
2706 } else {
2707 /* Image encrypted payload section */
2708 blk_off = ((bytes_copied) - hdr->ih_hdr_size) & 0xf;
2709 boot_encrypt(BOOT_CURR_ENC(state), image_index, fap_src,
2710 (bytes_copied + idx) - hdr->ih_hdr_size, blk_sz,
2711 blk_off, cur_dst);
2712 }
2713
2714 bytes_copied += chunk_sz;
2715 }
2716 rc = 0;
2717
2718 done:
2719 flash_area_close(fap_src);
2720
2721 return rc;
2722 }
2723
2724 #endif /* MCUBOOT_ENC_IMAGES */
2725 /**
2726 * Copies a slot of the current image into SRAM.
2727 *
2728 * @param state Boot loader status information.
2729 * @param slot The flash slot of the image to be copied to SRAM.
2730 * @param img_dst The address at which the image needs to be copied to
2731 * SRAM.
2732 * @param img_sz The size of the image that needs to be copied to SRAM.
2733 *
2734 * @return 0 on success; nonzero on failure.
2735 */
2736 static int
2737 boot_copy_image_to_sram(struct boot_loader_state *state, int slot,
2738 uint32_t img_dst, uint32_t img_sz)
2739 {
2740 int rc;
2741 const struct flash_area *fap_src = NULL;
2742 int area_id;
2743
2744 #if (BOOT_IMAGE_NUMBER == 1)
2745 (void)state;
2746 #endif
2747
2748 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
2749
2750 rc = flash_area_open(area_id, &fap_src);
2751 if (rc != 0) {
2752 return BOOT_EFLASH;
2753 }
2754
2755 /* Direct copy from flash to its new location in SRAM. */
2756 rc = flash_area_read(fap_src, 0, (void *)(IMAGE_RAM_BASE + img_dst), img_sz);
2757 if (rc != 0) {
2758 BOOT_LOG_INF("Error whilst copying image %d from Flash to SRAM: %d",
2759 BOOT_CURR_IMG(state), rc);
2760 }
2761
2762 flash_area_close(fap_src);
2763
2764 return rc;
2765 }
2766
2767 #if (BOOT_IMAGE_NUMBER > 1)
2768 /**
2769 * Checks if two memory regions (A and B) are overlap or not.
2770 *
2771 * @param start_a Start of the A region.
2772 * @param end_a End of the A region.
2773 * @param start_b Start of the B region.
2774 * @param end_b End of the B region.
2775 *
2776 * @return true if there is overlap; false otherwise.
2777 */
2778 static bool
2779 do_regions_overlap(uint32_t start_a, uint32_t end_a,
2780 uint32_t start_b, uint32_t end_b)
2781 {
2782 if (start_b > end_a) {
2783 return false;
2784 } else if (start_b >= start_a) {
2785 return true;
2786 } else if (end_b > start_a) {
2787 return true;
2788 }
2789
2790 return false;
2791 }
2792
2793 /**
2794 * Checks if the image we want to load to memory overlap with an already
2795 * ramloaded image.
2796 *
2797 * @param state Boot loader status information.
2798 *
2799 * @return 0 if there is no overlap; nonzero otherwise.
2800 */
2801 static int
2802 boot_check_ram_load_overlapping(struct boot_loader_state *state)
2803 {
2804 uint32_t i;
2805
2806 uint32_t start_a;
2807 uint32_t end_a;
2808 uint32_t start_b;
2809 uint32_t end_b;
2810 uint32_t image_id_to_check = BOOT_CURR_IMG(state);
2811
2812 start_a = state->slot_usage[image_id_to_check].img_dst;
2813 /* Safe to add here, values are already verified in
2814 * boot_verify_ram_load_address() */
2815 end_a = start_a + state->slot_usage[image_id_to_check].img_sz;
2816
2817 for (i = 0; i < BOOT_IMAGE_NUMBER; i++) {
2818 if (state->slot_usage[i].active_slot == NO_ACTIVE_SLOT
2819 || i == image_id_to_check) {
2820 continue;
2821 }
2822
2823 start_b = state->slot_usage[i].img_dst;
2824 /* Safe to add here, values are already verified in
2825 * boot_verify_ram_load_address() */
2826 end_b = start_b + state->slot_usage[i].img_sz;
2827
2828 if (do_regions_overlap(start_a, end_a, start_b, end_b)) {
2829 return -1;
2830 }
2831 }
2832
2833 return 0;
2834 }
2835 #endif
2836
2837 /**
2838 * Loads the active slot of the current image into SRAM. The load address and
2839 * image size is extracted from the image header.
2840 *
2841 * @param state Boot loader status information.
2842 *
2843 * @return 0 on success; nonzero on failure.
2844 */
2845 static int
2846 boot_load_image_to_sram(struct boot_loader_state *state)
2847 {
2848 uint32_t active_slot;
2849 struct image_header *hdr = NULL;
2850 uint32_t img_dst;
2851 uint32_t img_sz;
2852 int rc;
2853
2854 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
2855 hdr = boot_img_hdr(state, active_slot);
2856
2857 if (hdr->ih_flags & IMAGE_F_RAM_LOAD) {
2858
2859 img_dst = hdr->ih_load_addr;
2860
2861 rc = boot_read_image_size(state, active_slot, &img_sz);
2862 if (rc != 0) {
2863 return rc;
2864 }
2865
2866 state->slot_usage[BOOT_CURR_IMG(state)].img_dst = img_dst;
2867 state->slot_usage[BOOT_CURR_IMG(state)].img_sz = img_sz;
2868
2869 rc = boot_verify_ram_load_address(state);
2870 if (rc != 0) {
2871 BOOT_LOG_INF("Image %d RAM load address 0x%x is invalid.", BOOT_CURR_IMG(state), img_dst);
2872 return rc;
2873 }
2874
2875 #if (BOOT_IMAGE_NUMBER > 1)
2876 rc = boot_check_ram_load_overlapping(state);
2877 if (rc != 0) {
2878 BOOT_LOG_INF("Image %d RAM loading to address 0x%x would overlap with\
2879 another image.", BOOT_CURR_IMG(state), img_dst);
2880 return rc;
2881 }
2882 #endif
2883 #ifdef MCUBOOT_ENC_IMAGES
2884 /* decrypt image if encrypted and copy it to RAM */
2885 if (IS_ENCRYPTED(hdr)) {
2886 rc = boot_decrypt_and_copy_image_to_sram(state, active_slot, hdr, img_sz, img_dst);
2887 } else {
2888 rc = boot_copy_image_to_sram(state, active_slot, img_dst, img_sz);
2889 }
2890 #else
2891 /* Copy image to the load address from where it currently resides in
2892 * flash.
2893 */
2894 rc = boot_copy_image_to_sram(state, active_slot, img_dst, img_sz);
2895 #endif
2896 if (rc != 0) {
2897 BOOT_LOG_INF("Image %d RAM loading to 0x%x is failed.", BOOT_CURR_IMG(state), img_dst);
2898 } else {
2899 BOOT_LOG_INF("Image %d RAM loading to 0x%x is succeeded.", BOOT_CURR_IMG(state), img_dst);
2900 }
2901 } else {
2902 /* Only images that support IMAGE_F_RAM_LOAD are allowed if
2903 * MCUBOOT_RAM_LOAD is set.
2904 */
2905 rc = BOOT_EBADIMAGE;
2906 }
2907
2908 if (rc != 0) {
2909 state->slot_usage[BOOT_CURR_IMG(state)].img_dst = 0;
2910 state->slot_usage[BOOT_CURR_IMG(state)].img_sz = 0;
2911 }
2912
2913 return rc;
2914 }
2915
2916 /**
2917 * Removes an image from SRAM, by overwriting it with zeros.
2918 *
2919 * @param state Boot loader status information.
2920 *
2921 * @return 0 on success; nonzero on failure.
2922 */
2923 static inline int
2924 boot_remove_image_from_sram(struct boot_loader_state *state)
2925 {
2926 (void)state;
2927
2928 BOOT_LOG_INF("Removing image %d from SRAM at address 0x%x",
2929 BOOT_CURR_IMG(state),
2930 state->slot_usage[BOOT_CURR_IMG(state)].img_dst);
2931
2932 memset((void*)(IMAGE_RAM_BASE + state->slot_usage[BOOT_CURR_IMG(state)].img_dst),
2933 0, state->slot_usage[BOOT_CURR_IMG(state)].img_sz);
2934
2935 state->slot_usage[BOOT_CURR_IMG(state)].img_dst = 0;
2936 state->slot_usage[BOOT_CURR_IMG(state)].img_sz = 0;
2937
2938 return 0;
2939 }
2940
2941 /**
2942 * Removes an image from flash by erasing the corresponding flash area
2943 *
2944 * @param state Boot loader status information.
2945 * @param slot The flash slot of the image to be erased.
2946 *
2947 * @return 0 on success; nonzero on failure.
2948 */
2949 static inline int
2950 boot_remove_image_from_flash(struct boot_loader_state *state, uint32_t slot)
2951 {
2952 int area_id;
2953 int rc;
2954 const struct flash_area *fap;
2955
2956 (void)state;
2957
2958 BOOT_LOG_INF("Removing image %d slot %d from flash", BOOT_CURR_IMG(state),
2959 slot);
2960 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
2961 rc = flash_area_open(area_id, &fap);
2962 if (rc == 0) {
2963 flash_area_erase(fap, 0, flash_area_get_size(fap));
2964 flash_area_close(fap);
2965 }
2966
2967 return rc;
2968 }
2969 #endif /* MCUBOOT_RAM_LOAD */
2970
2971 #if (BOOT_IMAGE_NUMBER > 1)
2972 /**
2973 * Checks the image dependency whether it is satisfied.
2974 *
2975 * @param state Boot loader status information.
2976 * @param dep Image dependency which has to be verified.
2977 *
2978 * @return 0 if dependencies are met; nonzero otherwise.
2979 */
2980 static int
2981 boot_verify_slot_dependency(struct boot_loader_state *state,
2982 struct image_dependency *dep)
2983 {
2984 struct image_version *dep_version;
2985 uint32_t dep_slot;
2986 int rc;
2987
2988 /* Determine the source of the image which is the subject of
2989 * the dependency and get it's version.
2990 */
2991 dep_slot = state->slot_usage[dep->image_id].active_slot;
2992 dep_version = &state->imgs[dep->image_id][dep_slot].hdr.ih_ver;
2993
2994 rc = boot_version_cmp(dep_version, &dep->image_min_version);
2995 if (rc >= 0) {
2996 /* Dependency satisfied. */
2997 rc = 0;
2998 }
2999
3000 return rc;
3001 }
3002
3003 /**
3004 * Reads all dependency TLVs of an image and verifies one after another to see
3005 * if they are all satisfied.
3006 *
3007 * @param state Boot loader status information.
3008 *
3009 * @return 0 if dependencies are met; nonzero otherwise.
3010 */
3011 static int
3012 boot_verify_slot_dependencies(struct boot_loader_state *state)
3013 {
3014 uint32_t active_slot;
3015 const struct flash_area *fap;
3016 struct image_tlv_iter it;
3017 struct image_dependency dep;
3018 uint32_t off;
3019 uint16_t len;
3020 int area_id;
3021 int rc;
3022
3023 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
3024
3025 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state),
3026 active_slot);
3027 rc = flash_area_open(area_id, &fap);
3028 if (rc != 0) {
3029 rc = BOOT_EFLASH;
3030 goto done;
3031 }
3032
3033 rc = bootutil_tlv_iter_begin(&it, boot_img_hdr(state, active_slot), fap,
3034 IMAGE_TLV_DEPENDENCY, true);
3035 if (rc != 0) {
3036 goto done;
3037 }
3038
3039 while (true) {
3040 rc = bootutil_tlv_iter_next(&it, &off, &len, NULL);
3041 if (rc < 0) {
3042 return -1;
3043 } else if (rc > 0) {
3044 rc = 0;
3045 break;
3046 }
3047
3048 if (len != sizeof(dep)) {
3049 rc = BOOT_EBADIMAGE;
3050 goto done;
3051 }
3052
3053 rc = LOAD_IMAGE_DATA(boot_img_hdr(state, active_slot),
3054 fap, off, &dep, len);
3055 if (rc != 0) {
3056 rc = BOOT_EFLASH;
3057 goto done;
3058 }
3059
3060 if (dep.image_id >= BOOT_IMAGE_NUMBER) {
3061 rc = BOOT_EBADARGS;
3062 goto done;
3063 }
3064
3065 rc = boot_verify_slot_dependency(state, &dep);
3066 if (rc != 0) {
3067 /* Dependency not satisfied. */
3068 goto done;
3069 }
3070 }
3071
3072 done:
3073 flash_area_close(fap);
3074 return rc;
3075 }
3076
3077 /**
3078 * Checks the dependency of all the active slots. If an image found with
3079 * invalid or not satisfied dependencies the image is removed from SRAM (in
3080 * case of MCUBOOT_RAM_LOAD strategy) and its slot is set to unavailable.
3081 *
3082 * @param state Boot loader status information.
3083 *
3084 * @return 0 if dependencies are met; nonzero otherwise.
3085 */
3086 static int
3087 boot_verify_dependencies(struct boot_loader_state *state)
3088 {
3089 int rc = -1;
3090 uint32_t active_slot;
3091
3092 IMAGES_ITER(BOOT_CURR_IMG(state)) {
3093 if (state->img_mask[BOOT_CURR_IMG(state)]) {
3094 continue;
3095 }
3096 rc = boot_verify_slot_dependencies(state);
3097 if (rc != 0) {
3098 /* Dependencies not met or invalid dependencies. */
3099
3100 #ifdef MCUBOOT_RAM_LOAD
3101 boot_remove_image_from_sram(state);
3102 #endif /* MCUBOOT_RAM_LOAD */
3103
3104 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
3105 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3106 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3107
3108 return rc;
3109 }
3110 }
3111
3112 return rc;
3113 }
3114 #endif /* (BOOT_IMAGE_NUMBER > 1) */
3115
3116 /**
3117 * Tries to load a slot for all the images with validation.
3118 *
3119 * @param state Boot loader status information.
3120 *
3121 * @return 0 on success; nonzero on failure.
3122 */
3123 fih_ret
3124 boot_load_and_validate_images(struct boot_loader_state *state)
3125 {
3126 uint32_t active_slot;
3127 int rc;
3128 fih_ret fih_rc;
3129
3130 /* Go over all the images and try to load one */
3131 IMAGES_ITER(BOOT_CURR_IMG(state)) {
3132 /* All slots tried until a valid image found. Breaking from this loop
3133 * means that a valid image found or already loaded. If no slot is
3134 * found the function returns with error code. */
3135 while (true) {
3136 /* Go over all the slots and try to load one */
3137 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
3138 if (active_slot != NO_ACTIVE_SLOT){
3139 /* A slot is already active, go to next image. */
3140 break;
3141 }
3142
3143 active_slot = find_slot_with_highest_version(state);
3144 if (active_slot == NO_ACTIVE_SLOT) {
3145 BOOT_LOG_INF("No slot to load for image %d",
3146 BOOT_CURR_IMG(state));
3147 FIH_RET(FIH_FAILURE);
3148 }
3149
3150 /* Save the number of the active slot. */
3151 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = active_slot;
3152
3153 #if BOOT_IMAGE_NUMBER > 1
3154 if (state->img_mask[BOOT_CURR_IMG(state)]) {
3155 continue;
3156 }
3157 #endif
3158
3159 #ifdef MCUBOOT_DIRECT_XIP
3160 rc = boot_rom_address_check(state);
3161 if (rc != 0) {
3162 /* The image is placed in an unsuitable slot. */
3163 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3164 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3165 continue;
3166 }
3167
3168 #ifdef MCUBOOT_DIRECT_XIP_REVERT
3169 rc = boot_select_or_erase(state);
3170 if (rc != 0) {
3171 /* The selected image slot has been erased. */
3172 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3173 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3174 continue;
3175 }
3176 #endif /* MCUBOOT_DIRECT_XIP_REVERT */
3177 #endif /* MCUBOOT_DIRECT_XIP */
3178
3179 #ifdef MCUBOOT_RAM_LOAD
3180 /* Image is first loaded to RAM and authenticated there in order to
3181 * prevent TOCTOU attack during image copy. This could be applied
3182 * when loading images from external (untrusted) flash to internal
3183 * (trusted) RAM and image is authenticated before copying.
3184 */
3185 rc = boot_load_image_to_sram(state);
3186 if (rc != 0 ) {
3187 /* Image cannot be ramloaded. */
3188 boot_remove_image_from_flash(state, active_slot);
3189 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3190 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3191 continue;
3192 }
3193 #endif /* MCUBOOT_RAM_LOAD */
3194
3195 FIH_CALL(boot_validate_slot, fih_rc, state, active_slot, NULL);
3196 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
3197 /* Image is invalid. */
3198 #ifdef MCUBOOT_RAM_LOAD
3199 boot_remove_image_from_sram(state);
3200 #endif /* MCUBOOT_RAM_LOAD */
3201 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3202 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3203 continue;
3204 }
3205
3206 /* Valid image loaded from a slot, go to next image. */
3207 break;
3208 }
3209 }
3210
3211 FIH_RET(FIH_SUCCESS);
3212 }
3213
3214 /**
3215 * Updates the security counter for the current image.
3216 *
3217 * @param state Boot loader status information.
3218 *
3219 * @return 0 on success; nonzero on failure.
3220 */
3221 static int
3222 boot_update_hw_rollback_protection(struct boot_loader_state *state)
3223 {
3224 #ifdef MCUBOOT_HW_ROLLBACK_PROT
3225 int rc;
3226
3227 /* Update the stored security counter with the newer (active) image's
3228 * security counter value.
3229 */
3230 #if defined(MCUBOOT_DIRECT_XIP) && defined(MCUBOOT_DIRECT_XIP_REVERT)
3231 /* When the 'revert' mechanism is enabled in direct-xip mode, the
3232 * security counter can be increased only after reboot, if the image
3233 * has been confirmed at runtime (the image_ok flag has been set).
3234 * This way a 'revert' can be performed when it's necessary.
3235 */
3236 if (state->slot_usage[BOOT_CURR_IMG(state)].swap_state.image_ok == BOOT_FLAG_SET) {
3237 #endif
3238 rc = boot_update_security_counter(BOOT_CURR_IMG(state),
3239 state->slot_usage[BOOT_CURR_IMG(state)].active_slot,
3240 boot_img_hdr(state, state->slot_usage[BOOT_CURR_IMG(state)].active_slot));
3241 if (rc != 0) {
3242 BOOT_LOG_ERR("Security counter update failed after image %d validation.", BOOT_CURR_IMG(state));
3243 return rc;
3244 }
3245 #if defined(MCUBOOT_DIRECT_XIP) && defined(MCUBOOT_DIRECT_XIP_REVERT)
3246 }
3247 #endif
3248
3249 return 0;
3250
3251 #else /* MCUBOOT_HW_ROLLBACK_PROT */
3252 (void) (state);
3253 return 0;
3254 #endif
3255 }
3256
3257 fih_ret
3258 context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
3259 {
3260 int rc;
3261 FIH_DECLARE(fih_rc, FIH_FAILURE);
3262
3263 rc = boot_get_slot_usage(state);
3264 if (rc != 0) {
3265 goto out;
3266 }
3267
3268 #if (BOOT_IMAGE_NUMBER > 1)
3269 while (true) {
3270 #endif
3271 FIH_CALL(boot_load_and_validate_images, fih_rc, state);
3272 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
3273 FIH_SET(fih_rc, FIH_FAILURE);
3274 goto out;
3275 }
3276
3277 #if (BOOT_IMAGE_NUMBER > 1)
3278 rc = boot_verify_dependencies(state);
3279 if (rc != 0) {
3280 /* Dependency check failed for an image, it has been removed from
3281 * SRAM in case of MCUBOOT_RAM_LOAD strategy, and set to
3282 * unavailable. Try to load an image from another slot.
3283 */
3284 continue;
3285 }
3286 /* Dependency check was successful. */
3287 break;
3288 }
3289 #endif
3290
3291 IMAGES_ITER(BOOT_CURR_IMG(state)) {
3292 #if BOOT_IMAGE_NUMBER > 1
3293 if (state->img_mask[BOOT_CURR_IMG(state)]) {
3294 continue;
3295 }
3296 #endif
3297 rc = boot_update_hw_rollback_protection(state);
3298 if (rc != 0) {
3299 FIH_SET(fih_rc, FIH_FAILURE);
3300 goto out;
3301 }
3302
3303 rc = boot_add_shared_data(state, (uint8_t)state->slot_usage[BOOT_CURR_IMG(state)].active_slot);
3304 if (rc != 0) {
3305 FIH_SET(fih_rc, FIH_FAILURE);
3306 goto out;
3307 }
3308 }
3309
3310 /* All image loaded successfully. */
3311 #ifdef MCUBOOT_HAVE_LOGGING
3312 print_loaded_images(state);
3313 #endif
3314
3315 fill_rsp(state, rsp);
3316
3317 out:
3318 close_all_flash_areas(state);
3319
3320 if (rc != 0) {
3321 FIH_SET(fih_rc, FIH_FAILURE);
3322 }
3323
3324 FIH_RET(fih_rc);
3325 }
3326 #endif /* MCUBOOT_DIRECT_XIP || MCUBOOT_RAM_LOAD */
3327
3328 /**
3329 * Prepares the booting process. This function moves images around in flash as
3330 * appropriate, and tells you what address to boot from.
3331 *
3332 * @param rsp On success, indicates how booting should occur.
3333 *
3334 * @return FIH_SUCCESS on success; nonzero on failure.
3335 */
3336 fih_ret
3337 boot_go(struct boot_rsp *rsp)
3338 {
3339 FIH_DECLARE(fih_rc, FIH_FAILURE);
3340
3341 boot_state_clear(NULL);
3342
3343 FIH_CALL(context_boot_go, fih_rc, &boot_data, rsp);
3344 FIH_RET(fih_rc);
3345 }
3346
3347 /**
3348 * Prepares the booting process, considering only a single image. This function
3349 * moves images around in flash as appropriate, and tells you what address to
3350 * boot from.
3351 *
3352 * @param rsp On success, indicates how booting should occur.
3353 *
3354 * @param image_id The image ID to prepare the boot process for.
3355 *
3356 * @return FIH_SUCCESS on success; nonzero on failure.
3357 */
3358 fih_ret
3359 boot_go_for_image_id(struct boot_rsp *rsp, uint32_t image_id)
3360 {
3361 FIH_DECLARE(fih_rc, FIH_FAILURE);
3362
3363 if (image_id >= BOOT_IMAGE_NUMBER) {
3364 FIH_RET(FIH_FAILURE);
3365 }
3366
3367 #if BOOT_IMAGE_NUMBER > 1
3368 memset(&boot_data.img_mask, 1, BOOT_IMAGE_NUMBER);
3369 boot_data.img_mask[image_id] = 0;
3370 #endif
3371
3372 FIH_CALL(context_boot_go, fih_rc, &boot_data, rsp);
3373 FIH_RET(fih_rc);
3374 }
3375
3376 /**
3377 * Clears the boot state, so that previous operations have no effect on new
3378 * ones.
3379 *
3380 * @param state The state that should be cleared. If the value
3381 * is NULL, the default bootloader state will be
3382 * cleared.
3383 */
3384 void boot_state_clear(struct boot_loader_state *state)
3385 {
3386 if (state != NULL) {
3387 memset(state, 0, sizeof(struct boot_loader_state));
3388 } else {
3389 memset(&boot_data, 0, sizeof(struct boot_loader_state));
3390 }
3391 }
3392