1 /*
2 * Armv8-A Cryptographic Extension support functions for Aarch64
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 #if defined(__clang__) && (__clang_major__ >= 4)
9
10 /* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if,
11 * but that is defined by build_info.h, and we need this block to happen first. */
12 #if defined(__ARM_ARCH)
13 #if __ARM_ARCH >= 8
14 #define MBEDTLS_AESCE_ARCH_IS_ARMV8_A
15 #endif
16 #endif
17
18 #if defined(MBEDTLS_AESCE_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO)
19 /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
20 *
21 * The intrinsic declaration are guarded by predefined ACLE macros in clang:
22 * these are normally only enabled by the -march option on the command line.
23 * By defining the macros ourselves we gain access to those declarations without
24 * requiring -march on the command line.
25 *
26 * `arm_neon.h` is included by common.h, so we put these defines
27 * at the top of this file, before any includes.
28 */
29 #define __ARM_FEATURE_CRYPTO 1
30 /* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
31 *
32 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
33 * for older compilers.
34 */
35 #define __ARM_FEATURE_AES 1
36 #define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
37 #endif
38
39 #endif /* defined(__clang__) && (__clang_major__ >= 4) */
40
41 #include <string.h>
42 #include "common.h"
43
44 #if defined(MBEDTLS_AESCE_C)
45
46 #include "aesce.h"
47
48 #if defined(MBEDTLS_AESCE_HAVE_CODE)
49
50 /* Compiler version checks. */
51 #if defined(__clang__)
52 # if defined(MBEDTLS_ARCH_IS_ARM32) && (__clang_major__ < 11)
53 # error "Minimum version of Clang for MBEDTLS_AESCE_C on 32-bit Arm or Thumb is 11.0."
54 # elif defined(MBEDTLS_ARCH_IS_ARM64) && (__clang_major__ < 4)
55 # error "Minimum version of Clang for MBEDTLS_AESCE_C on aarch64 is 4.0."
56 # endif
57 #elif defined(__GNUC__)
58 # if __GNUC__ < 6
59 # error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
60 # endif
61 #elif defined(_MSC_VER)
62 /* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
63 * please update this and document of `MBEDTLS_AESCE_C` in
64 * `mbedtls_config.h`. */
65 # if _MSC_VER < 1929
66 # error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
67 # endif
68 #elif defined(__ARMCC_VERSION)
69 # if defined(MBEDTLS_ARCH_IS_ARM32) && (__ARMCC_VERSION < 6200002)
70 /* TODO: We haven't verified armclang for 32-bit Arm/Thumb prior to 6.20.
71 * If someone verified that, please update this and document of
72 * `MBEDTLS_AESCE_C` in `mbedtls_config.h`. */
73 # error "Minimum version of armclang for MBEDTLS_AESCE_C on 32-bit Arm is 6.20."
74 # elif defined(MBEDTLS_ARCH_IS_ARM64) && (__ARMCC_VERSION < 6060000)
75 # error "Minimum version of armclang for MBEDTLS_AESCE_C on aarch64 is 6.6."
76 # endif
77 #endif
78
79 #if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
80 defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
81 # if defined(__ARMCOMPILER_VERSION)
82 # if __ARMCOMPILER_VERSION <= 6090000
83 # error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
84 # else
85 # pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
86 # define MBEDTLS_POP_TARGET_PRAGMA
87 # endif
88 # elif defined(__clang__)
89 # pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
90 # define MBEDTLS_POP_TARGET_PRAGMA
91 # elif defined(__GNUC__)
92 # pragma GCC push_options
93 # pragma GCC target ("+crypto")
94 # define MBEDTLS_POP_TARGET_PRAGMA
95 # elif defined(_MSC_VER)
96 # error "Required feature(__ARM_FEATURE_AES) is not enabled."
97 # endif
98 #endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
99 MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
100
101 #if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
102
103 #include <sys/auxv.h>
104 #if !defined(HWCAP_NEON)
105 #define HWCAP_NEON (1 << 12)
106 #endif
107 #if !defined(HWCAP2_AES)
108 #define HWCAP2_AES (1 << 0)
109 #endif
110 #if !defined(HWCAP_AES)
111 #define HWCAP_AES (1 << 3)
112 #endif
113 #if !defined(HWCAP_ASIMD)
114 #define HWCAP_ASIMD (1 << 1)
115 #endif
116
117 signed char mbedtls_aesce_has_support_result = -1;
118
119 #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
120 /*
121 * AES instruction support detection routine
122 */
mbedtls_aesce_has_support_impl(void)123 int mbedtls_aesce_has_support_impl(void)
124 {
125 /* To avoid many calls to getauxval, cache the result. This is
126 * thread-safe, because we store the result in a char so cannot
127 * be vulnerable to non-atomic updates.
128 * It is possible that we could end up setting result more than
129 * once, but that is harmless.
130 */
131 if (mbedtls_aesce_has_support_result == -1) {
132 #if defined(MBEDTLS_ARCH_IS_ARM32)
133 unsigned long auxval = getauxval(AT_HWCAP);
134 unsigned long auxval2 = getauxval(AT_HWCAP2);
135 if (((auxval & HWCAP_NEON) == HWCAP_NEON) &&
136 ((auxval2 & HWCAP2_AES) == HWCAP2_AES)) {
137 mbedtls_aesce_has_support_result = 1;
138 } else {
139 mbedtls_aesce_has_support_result = 0;
140 }
141 #else
142 unsigned long auxval = getauxval(AT_HWCAP);
143 if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
144 (HWCAP_ASIMD | HWCAP_AES)) {
145 mbedtls_aesce_has_support_result = 1;
146 } else {
147 mbedtls_aesce_has_support_result = 0;
148 }
149 #endif
150 }
151 return mbedtls_aesce_has_support_result;
152 }
153 #endif
154
155 #endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
156
157 /* Single round of AESCE encryption */
158 #define AESCE_ENCRYPT_ROUND \
159 block = vaeseq_u8(block, vld1q_u8(keys)); \
160 block = vaesmcq_u8(block); \
161 keys += 16
162 /* Two rounds of AESCE encryption */
163 #define AESCE_ENCRYPT_ROUND_X2 AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
164
165 MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
aesce_encrypt_block(uint8x16_t block,unsigned char * keys,int rounds)166 static uint8x16_t aesce_encrypt_block(uint8x16_t block,
167 unsigned char *keys,
168 int rounds)
169 {
170 /* 10, 12 or 14 rounds. Unroll loop. */
171 if (rounds == 10) {
172 goto rounds_10;
173 }
174 if (rounds == 12) {
175 goto rounds_12;
176 }
177 AESCE_ENCRYPT_ROUND_X2;
178 rounds_12:
179 AESCE_ENCRYPT_ROUND_X2;
180 rounds_10:
181 AESCE_ENCRYPT_ROUND_X2;
182 AESCE_ENCRYPT_ROUND_X2;
183 AESCE_ENCRYPT_ROUND_X2;
184 AESCE_ENCRYPT_ROUND_X2;
185 AESCE_ENCRYPT_ROUND;
186
187 /* AES AddRoundKey for the previous round.
188 * SubBytes, ShiftRows for the final round. */
189 block = vaeseq_u8(block, vld1q_u8(keys));
190 keys += 16;
191
192 /* Final round: no MixColumns */
193
194 /* Final AddRoundKey */
195 block = veorq_u8(block, vld1q_u8(keys));
196
197 return block;
198 }
199
200 /* Single round of AESCE decryption
201 *
202 * AES AddRoundKey, SubBytes, ShiftRows
203 *
204 * block = vaesdq_u8(block, vld1q_u8(keys));
205 *
206 * AES inverse MixColumns for the next round.
207 *
208 * This means that we switch the order of the inverse AddRoundKey and
209 * inverse MixColumns operations. We have to do this as AddRoundKey is
210 * done in an atomic instruction together with the inverses of SubBytes
211 * and ShiftRows.
212 *
213 * It works because MixColumns is a linear operation over GF(2^8) and
214 * AddRoundKey is an exclusive or, which is equivalent to addition over
215 * GF(2^8). (The inverse of MixColumns needs to be applied to the
216 * affected round keys separately which has been done when the
217 * decryption round keys were calculated.)
218 *
219 * block = vaesimcq_u8(block);
220 */
221 #define AESCE_DECRYPT_ROUND \
222 block = vaesdq_u8(block, vld1q_u8(keys)); \
223 block = vaesimcq_u8(block); \
224 keys += 16
225 /* Two rounds of AESCE decryption */
226 #define AESCE_DECRYPT_ROUND_X2 AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
227
228 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
aesce_decrypt_block(uint8x16_t block,unsigned char * keys,int rounds)229 static uint8x16_t aesce_decrypt_block(uint8x16_t block,
230 unsigned char *keys,
231 int rounds)
232 {
233 /* 10, 12 or 14 rounds. Unroll loop. */
234 if (rounds == 10) {
235 goto rounds_10;
236 }
237 if (rounds == 12) {
238 goto rounds_12;
239 }
240 AESCE_DECRYPT_ROUND_X2;
241 rounds_12:
242 AESCE_DECRYPT_ROUND_X2;
243 rounds_10:
244 AESCE_DECRYPT_ROUND_X2;
245 AESCE_DECRYPT_ROUND_X2;
246 AESCE_DECRYPT_ROUND_X2;
247 AESCE_DECRYPT_ROUND_X2;
248 AESCE_DECRYPT_ROUND;
249
250 /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
251 * last full round. */
252 block = vaesdq_u8(block, vld1q_u8(keys));
253 keys += 16;
254
255 /* Inverse AddRoundKey for inverting the initial round key addition. */
256 block = veorq_u8(block, vld1q_u8(keys));
257
258 return block;
259 }
260 #endif
261
262 /*
263 * AES-ECB block en(de)cryption
264 */
mbedtls_aesce_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])265 int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
266 int mode,
267 const unsigned char input[16],
268 unsigned char output[16])
269 {
270 uint8x16_t block = vld1q_u8(&input[0]);
271 unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
272
273 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
274 if (mode == MBEDTLS_AES_DECRYPT) {
275 block = aesce_decrypt_block(block, keys, ctx->nr);
276 } else
277 #else
278 (void) mode;
279 #endif
280 {
281 block = aesce_encrypt_block(block, keys, ctx->nr);
282 }
283 vst1q_u8(&output[0], block);
284
285 return 0;
286 }
287
288 /*
289 * Compute decryption round keys from encryption round keys
290 */
291 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
mbedtls_aesce_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)292 void mbedtls_aesce_inverse_key(unsigned char *invkey,
293 const unsigned char *fwdkey,
294 int nr)
295 {
296 int i, j;
297 j = nr;
298 vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
299 for (i = 1, j--; j > 0; i++, j--) {
300 vst1q_u8(invkey + i * 16,
301 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
302 }
303 vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
304
305 }
306 #endif
307
aes_rot_word(uint32_t word)308 static inline uint32_t aes_rot_word(uint32_t word)
309 {
310 return (word << (32 - 8)) | (word >> 8);
311 }
312
aes_sub_word(uint32_t in)313 static inline uint32_t aes_sub_word(uint32_t in)
314 {
315 uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
316 uint8x16_t zero = vdupq_n_u8(0);
317
318 /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
319 * the correct result as ShiftRows doesn't change the first row. */
320 v = vaeseq_u8(zero, v);
321 return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
322 }
323
324 /*
325 * Key expansion function
326 */
aesce_setkey_enc(unsigned char * rk,const unsigned char * key,const size_t key_bit_length)327 static void aesce_setkey_enc(unsigned char *rk,
328 const unsigned char *key,
329 const size_t key_bit_length)
330 {
331 static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
332 0x20, 0x40, 0x80, 0x1b, 0x36 };
333 /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
334 * - Section 5, Nr = Nk + 6
335 * - Section 5.2, the length of round keys is Nb*(Nr+1)
336 */
337 const size_t key_len_in_words = key_bit_length / 32; /* Nk */
338 const size_t round_key_len_in_words = 4; /* Nb */
339 const size_t rounds_needed = key_len_in_words + 6; /* Nr */
340 const size_t round_keys_len_in_words =
341 round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
342 const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
343
344 memcpy(rk, key, key_len_in_words * 4);
345
346 for (uint32_t *rki = (uint32_t *) rk;
347 rki + key_len_in_words < rko_end;
348 rki += key_len_in_words) {
349
350 size_t iteration = (size_t) (rki - (uint32_t *) rk) / key_len_in_words;
351 uint32_t *rko;
352 rko = rki + key_len_in_words;
353 rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
354 rko[0] ^= rcon[iteration] ^ rki[0];
355 rko[1] = rko[0] ^ rki[1];
356 rko[2] = rko[1] ^ rki[2];
357 rko[3] = rko[2] ^ rki[3];
358 if (rko + key_len_in_words > rko_end) {
359 /* Do not write overflow words.*/
360 continue;
361 }
362 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
363 switch (key_bit_length) {
364 case 128:
365 break;
366 case 192:
367 rko[4] = rko[3] ^ rki[4];
368 rko[5] = rko[4] ^ rki[5];
369 break;
370 case 256:
371 rko[4] = aes_sub_word(rko[3]) ^ rki[4];
372 rko[5] = rko[4] ^ rki[5];
373 rko[6] = rko[5] ^ rki[6];
374 rko[7] = rko[6] ^ rki[7];
375 break;
376 }
377 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
378 }
379 }
380
381 /*
382 * Key expansion, wrapper
383 */
mbedtls_aesce_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)384 int mbedtls_aesce_setkey_enc(unsigned char *rk,
385 const unsigned char *key,
386 size_t bits)
387 {
388 switch (bits) {
389 case 128:
390 case 192:
391 case 256:
392 aesce_setkey_enc(rk, key, bits);
393 break;
394 default:
395 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
396 }
397
398 return 0;
399 }
400
401 #if defined(MBEDTLS_GCM_C)
402
403 #if defined(MBEDTLS_ARCH_IS_ARM32)
404
405 #if defined(__clang__)
406 /* On clang for A32/T32, work around some missing intrinsics and types which are listed in
407 * [ACLE](https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#polynomial-1)
408 * These are only required for GCM.
409 */
410 #define vreinterpretq_u64_p64(a) ((uint64x2_t) a)
411
412 typedef uint8x16_t poly128_t;
413
vmull_p64(poly64_t a,poly64_t b)414 static inline poly128_t vmull_p64(poly64_t a, poly64_t b)
415 {
416 poly128_t r;
417 asm ("vmull.p64 %[r], %[a], %[b]" : [r] "=w" (r) : [a] "w" (a), [b] "w" (b) :);
418 return r;
419 }
420
421 /* This is set to cause some more missing intrinsics to be defined below */
422 #define COMMON_MISSING_INTRINSICS
423
vmull_high_p64(poly64x2_t a,poly64x2_t b)424 static inline poly128_t vmull_high_p64(poly64x2_t a, poly64x2_t b)
425 {
426 return vmull_p64((poly64_t) (vget_high_u64((uint64x2_t) a)),
427 (poly64_t) (vget_high_u64((uint64x2_t) b)));
428 }
429
430 #endif /* defined(__clang__) */
431
vrbitq_u8(uint8x16_t x)432 static inline uint8x16_t vrbitq_u8(uint8x16_t x)
433 {
434 /* There is no vrbitq_u8 instruction in A32/T32, so provide
435 * an equivalent non-Neon implementation. Reverse bit order in each
436 * byte with 4x rbit, rev. */
437 asm ("ldm %[p], { r2-r5 } \n\t"
438 "rbit r2, r2 \n\t"
439 "rev r2, r2 \n\t"
440 "rbit r3, r3 \n\t"
441 "rev r3, r3 \n\t"
442 "rbit r4, r4 \n\t"
443 "rev r4, r4 \n\t"
444 "rbit r5, r5 \n\t"
445 "rev r5, r5 \n\t"
446 "stm %[p], { r2-r5 } \n\t"
447 :
448 /* Output: 16 bytes of memory pointed to by &x */
449 "+m" (*(uint8_t(*)[16]) &x)
450 :
451 [p] "r" (&x)
452 :
453 "r2", "r3", "r4", "r5"
454 );
455 return x;
456 }
457
458 #endif /* defined(MBEDTLS_ARCH_IS_ARM32) */
459
460 #if defined(MBEDTLS_COMPILER_IS_GCC) && __GNUC__ == 5
461 /* Some intrinsics are not available for GCC 5.X. */
462 #define COMMON_MISSING_INTRINSICS
463 #endif /* MBEDTLS_COMPILER_IS_GCC && __GNUC__ == 5 */
464
465
466 #if defined(COMMON_MISSING_INTRINSICS)
467
468 /* Missing intrinsics common to both GCC 5, and Clang on 32-bit */
469
470 #define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
471 #define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
472
vget_low_p64(poly64x2_t a)473 static inline poly64x1_t vget_low_p64(poly64x2_t a)
474 {
475 uint64x1_t r = vget_low_u64(vreinterpretq_u64_p64(a));
476 return (poly64x1_t) r;
477
478 }
479
480 #endif /* COMMON_MISSING_INTRINSICS */
481
482 /* vmull_p64/vmull_high_p64 wrappers.
483 *
484 * Older compilers miss some intrinsic functions for `poly*_t`. We use
485 * uint8x16_t and uint8x16x3_t as input/output parameters.
486 */
487 #if defined(MBEDTLS_COMPILER_IS_GCC)
488 /* GCC reports incompatible type error without cast. GCC think poly64_t and
489 * poly64x1_t are different, that is different with MSVC and Clang. */
490 #define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
491 #else
492 /* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
493 * error with/without cast. And I think poly64_t and poly64x1_t are same, no
494 * cast for clang also. */
495 #define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
496 #endif /* MBEDTLS_COMPILER_IS_GCC */
497
pmull_low(uint8x16_t a,uint8x16_t b)498 static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
499 {
500
501 return vreinterpretq_u8_p128(
502 MBEDTLS_VMULL_P64(
503 (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
504 (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))
505 ));
506 }
507
pmull_high(uint8x16_t a,uint8x16_t b)508 static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
509 {
510 return vreinterpretq_u8_p128(
511 vmull_high_p64(vreinterpretq_p64_u8(a),
512 vreinterpretq_p64_u8(b)));
513 }
514
515 /* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
516 * `x^128 + x^7 + x^2 + x + 1`.
517 *
518 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
519 * multiplies to generate a 128b.
520 *
521 * `poly_mult_128` executes polynomial multiplication and outputs 256b that
522 * represented by 3 128b due to code size optimization.
523 *
524 * Output layout:
525 * | | | |
526 * |------------|-------------|-------------|
527 * | ret.val[0] | h3:h2:00:00 | high 128b |
528 * | ret.val[1] | :m2:m1:00 | middle 128b |
529 * | ret.val[2] | : :l1:l0 | low 128b |
530 */
poly_mult_128(uint8x16_t a,uint8x16_t b)531 static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
532 {
533 uint8x16x3_t ret;
534 uint8x16_t h, m, l; /* retval high/middle/low */
535 uint8x16_t c, d, e;
536
537 h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
538 l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
539 c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
540 d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
541 e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
542 m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
543
544 ret.val[0] = h;
545 ret.val[1] = m;
546 ret.val[2] = l;
547 return ret;
548 }
549
550 /*
551 * Modulo reduction.
552 *
553 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
554 *
555 * Section 4.3
556 *
557 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
558 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
559 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
560 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
561 * simply multiply the higher part of the operand by r(z) and add it to l(z). If
562 * the result is still larger than 128 bits, we reduce again.
563 */
poly_mult_reduce(uint8x16x3_t input)564 static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
565 {
566 uint8x16_t const ZERO = vdupq_n_u8(0);
567
568 uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
569 #if defined(__GNUC__)
570 /* use 'asm' as an optimisation barrier to prevent loading MODULO from
571 * memory. It is for GNUC compatible compilers.
572 */
573 asm volatile ("" : "+w" (r));
574 #endif
575 uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
576 uint8x16_t h, m, l; /* input high/middle/low 128b */
577 uint8x16_t c, d, e, f, g, n, o;
578 h = input.val[0]; /* h3:h2:00:00 */
579 m = input.val[1]; /* :m2:m1:00 */
580 l = input.val[2]; /* : :l1:l0 */
581 c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
582 d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
583 e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
584 f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
585 g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
586 n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
587 o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
588 return veorq_u8(o, g); /* = o1:o0 + g1:00 */
589 }
590
591 /*
592 * GCM multiplication: c = a times b in GF(2^128)
593 */
mbedtls_aesce_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])594 void mbedtls_aesce_gcm_mult(unsigned char c[16],
595 const unsigned char a[16],
596 const unsigned char b[16])
597 {
598 uint8x16_t va, vb, vc;
599 va = vrbitq_u8(vld1q_u8(&a[0]));
600 vb = vrbitq_u8(vld1q_u8(&b[0]));
601 vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
602 vst1q_u8(&c[0], vc);
603 }
604
605 #endif /* MBEDTLS_GCM_C */
606
607 #if defined(MBEDTLS_POP_TARGET_PRAGMA)
608 #if defined(__clang__)
609 #pragma clang attribute pop
610 #elif defined(__GNUC__)
611 #pragma GCC pop_options
612 #endif
613 #undef MBEDTLS_POP_TARGET_PRAGMA
614 #endif
615
616 #endif /* MBEDTLS_AESCE_HAVE_CODE */
617
618 #endif /* MBEDTLS_AESCE_C */
619