1 /*
2 * Armv8-A Cryptographic Extension support functions for Aarch64
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 #if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
21 defined(__clang__) && __clang_major__ >= 4
22 /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
23 *
24 * The intrinsic declaration are guarded by predefined ACLE macros in clang:
25 * these are normally only enabled by the -march option on the command line.
26 * By defining the macros ourselves we gain access to those declarations without
27 * requiring -march on the command line.
28 *
29 * `arm_neon.h` could be included by any header file, so we put these defines
30 * at the top of this file, before any includes.
31 */
32 #define __ARM_FEATURE_CRYPTO 1
33 /* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
34 *
35 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
36 * for older compilers.
37 */
38 #define __ARM_FEATURE_AES 1
39 #define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
40 #endif
41
42 #include <string.h>
43 #include "common.h"
44
45 #if defined(MBEDTLS_AESCE_C)
46
47 #include "aesce.h"
48
49 #if defined(MBEDTLS_HAVE_ARM64)
50
51 #if !defined(__ARM_FEATURE_AES) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
52 # if defined(__clang__)
53 # if __clang_major__ < 4
54 # error "A more recent Clang is required for MBEDTLS_AESCE_C"
55 # endif
56 # pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
57 # define MBEDTLS_POP_TARGET_PRAGMA
58 # elif defined(__GNUC__)
59 # if __GNUC__ < 6
60 # error "A more recent GCC is required for MBEDTLS_AESCE_C"
61 # endif
62 # pragma GCC push_options
63 # pragma GCC target ("arch=armv8-a+crypto")
64 # define MBEDTLS_POP_TARGET_PRAGMA
65 # else
66 # error "Only GCC and Clang supported for MBEDTLS_AESCE_C"
67 # endif
68 #endif /* !__ARM_FEATURE_AES || MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
69
70 #include <arm_neon.h>
71
72 #if defined(__linux__)
73 #include <asm/hwcap.h>
74 #include <sys/auxv.h>
75 #endif
76
77 /*
78 * AES instruction support detection routine
79 */
mbedtls_aesce_has_support(void)80 int mbedtls_aesce_has_support(void)
81 {
82 #if defined(__linux__)
83 unsigned long auxval = getauxval(AT_HWCAP);
84 return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
85 (HWCAP_ASIMD | HWCAP_AES);
86 #else
87 /* Assume AES instructions are supported. */
88 return 1;
89 #endif
90 }
91
aesce_encrypt_block(uint8x16_t block,unsigned char * keys,int rounds)92 static uint8x16_t aesce_encrypt_block(uint8x16_t block,
93 unsigned char *keys,
94 int rounds)
95 {
96 for (int i = 0; i < rounds - 1; i++) {
97 /* AES AddRoundKey, SubBytes, ShiftRows (in this order).
98 * AddRoundKey adds the round key for the previous round. */
99 block = vaeseq_u8(block, vld1q_u8(keys + i * 16));
100 /* AES mix columns */
101 block = vaesmcq_u8(block);
102 }
103
104 /* AES AddRoundKey for the previous round.
105 * SubBytes, ShiftRows for the final round. */
106 block = vaeseq_u8(block, vld1q_u8(keys + (rounds -1) * 16));
107
108 /* Final round: no MixColumns */
109
110 /* Final AddRoundKey */
111 block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
112
113 return block;
114 }
115
aesce_decrypt_block(uint8x16_t block,unsigned char * keys,int rounds)116 static uint8x16_t aesce_decrypt_block(uint8x16_t block,
117 unsigned char *keys,
118 int rounds)
119 {
120
121 for (int i = 0; i < rounds - 1; i++) {
122 /* AES AddRoundKey, SubBytes, ShiftRows */
123 block = vaesdq_u8(block, vld1q_u8(keys + i * 16));
124 /* AES inverse MixColumns for the next round.
125 *
126 * This means that we switch the order of the inverse AddRoundKey and
127 * inverse MixColumns operations. We have to do this as AddRoundKey is
128 * done in an atomic instruction together with the inverses of SubBytes
129 * and ShiftRows.
130 *
131 * It works because MixColumns is a linear operation over GF(2^8) and
132 * AddRoundKey is an exclusive or, which is equivalent to addition over
133 * GF(2^8). (The inverse of MixColumns needs to be applied to the
134 * affected round keys separately which has been done when the
135 * decryption round keys were calculated.) */
136 block = vaesimcq_u8(block);
137 }
138
139 /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
140 * last full round. */
141 block = vaesdq_u8(block, vld1q_u8(keys + (rounds - 1) * 16));
142
143 /* Inverse AddRoundKey for inverting the initial round key addition. */
144 block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
145
146 return block;
147 }
148
149 /*
150 * AES-ECB block en(de)cryption
151 */
mbedtls_aesce_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])152 int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
153 int mode,
154 const unsigned char input[16],
155 unsigned char output[16])
156 {
157 uint8x16_t block = vld1q_u8(&input[0]);
158 unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
159
160 if (mode == MBEDTLS_AES_ENCRYPT) {
161 block = aesce_encrypt_block(block, keys, ctx->nr);
162 } else {
163 block = aesce_decrypt_block(block, keys, ctx->nr);
164 }
165 vst1q_u8(&output[0], block);
166
167 return 0;
168 }
169
170 /*
171 * Compute decryption round keys from encryption round keys
172 */
mbedtls_aesce_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)173 void mbedtls_aesce_inverse_key(unsigned char *invkey,
174 const unsigned char *fwdkey,
175 int nr)
176 {
177 int i, j;
178 j = nr;
179 vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
180 for (i = 1, j--; j > 0; i++, j--) {
181 vst1q_u8(invkey + i * 16,
182 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
183 }
184 vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
185
186 }
187
aes_rot_word(uint32_t word)188 static inline uint32_t aes_rot_word(uint32_t word)
189 {
190 return (word << (32 - 8)) | (word >> 8);
191 }
192
aes_sub_word(uint32_t in)193 static inline uint32_t aes_sub_word(uint32_t in)
194 {
195 uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
196 uint8x16_t zero = vdupq_n_u8(0);
197
198 /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
199 * the correct result as ShiftRows doesn't change the first row. */
200 v = vaeseq_u8(zero, v);
201 return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
202 }
203
204 /*
205 * Key expansion function
206 */
aesce_setkey_enc(unsigned char * rk,const unsigned char * key,const size_t key_bit_length)207 static void aesce_setkey_enc(unsigned char *rk,
208 const unsigned char *key,
209 const size_t key_bit_length)
210 {
211 static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
212 0x20, 0x40, 0x80, 0x1b, 0x36 };
213 /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
214 * - Section 5, Nr = Nk + 6
215 * - Section 5.2, the length of round keys is Nb*(Nr+1)
216 */
217 const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
218 const size_t round_key_len_in_words = 4; /* Nb */
219 const size_t rounds_needed = key_len_in_words + 6; /* Nr */
220 const size_t round_keys_len_in_words =
221 round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
222 const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
223
224 memcpy(rk, key, key_len_in_words * 4);
225
226 for (uint32_t *rki = (uint32_t *) rk;
227 rki + key_len_in_words < rko_end;
228 rki += key_len_in_words) {
229
230 size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
231 uint32_t *rko;
232 rko = rki + key_len_in_words;
233 rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
234 rko[0] ^= rcon[iteration] ^ rki[0];
235 rko[1] = rko[0] ^ rki[1];
236 rko[2] = rko[1] ^ rki[2];
237 rko[3] = rko[2] ^ rki[3];
238 if (rko + key_len_in_words > rko_end) {
239 /* Do not write overflow words.*/
240 continue;
241 }
242 switch (key_bit_length) {
243 case 128:
244 break;
245 case 192:
246 rko[4] = rko[3] ^ rki[4];
247 rko[5] = rko[4] ^ rki[5];
248 break;
249 case 256:
250 rko[4] = aes_sub_word(rko[3]) ^ rki[4];
251 rko[5] = rko[4] ^ rki[5];
252 rko[6] = rko[5] ^ rki[6];
253 rko[7] = rko[6] ^ rki[7];
254 break;
255 }
256 }
257 }
258
259 /*
260 * Key expansion, wrapper
261 */
mbedtls_aesce_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)262 int mbedtls_aesce_setkey_enc(unsigned char *rk,
263 const unsigned char *key,
264 size_t bits)
265 {
266 switch (bits) {
267 case 128:
268 case 192:
269 case 256:
270 aesce_setkey_enc(rk, key, bits);
271 break;
272 default:
273 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
274 }
275
276 return 0;
277 }
278
279 #if defined(MBEDTLS_GCM_C)
280
281 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
282 /* Some intrinsics are not available for GCC 5.X. */
283 #define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
284 #define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
vget_low_p64(poly64x2_t __a)285 static inline poly64_t vget_low_p64(poly64x2_t __a)
286 {
287 uint64x2_t tmp = (uint64x2_t) (__a);
288 uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
289 return (poly64_t) (lo);
290 }
291 #endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
292
293 /* vmull_p64/vmull_high_p64 wrappers.
294 *
295 * Older compilers miss some intrinsic functions for `poly*_t`. We use
296 * uint8x16_t and uint8x16x3_t as input/output parameters.
297 */
pmull_low(uint8x16_t a,uint8x16_t b)298 static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
299 {
300 return vreinterpretq_u8_p128(
301 vmull_p64(
302 (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
303 (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))));
304 }
305
pmull_high(uint8x16_t a,uint8x16_t b)306 static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
307 {
308 return vreinterpretq_u8_p128(
309 vmull_high_p64(vreinterpretq_p64_u8(a),
310 vreinterpretq_p64_u8(b)));
311 }
312
313 /* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
314 * `x^128 + x^7 + x^2 + x + 1`.
315 *
316 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
317 * multiplies to generate a 128b.
318 *
319 * `poly_mult_128` executes polynomial multiplication and outputs 256b that
320 * represented by 3 128b due to code size optimization.
321 *
322 * Output layout:
323 * | | | |
324 * |------------|-------------|-------------|
325 * | ret.val[0] | h3:h2:00:00 | high 128b |
326 * | ret.val[1] | :m2:m1:00 | middle 128b |
327 * | ret.val[2] | : :l1:l0 | low 128b |
328 */
poly_mult_128(uint8x16_t a,uint8x16_t b)329 static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
330 {
331 uint8x16x3_t ret;
332 uint8x16_t h, m, l; /* retval high/middle/low */
333 uint8x16_t c, d, e;
334
335 h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
336 l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
337 c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
338 d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
339 e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
340 m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
341
342 ret.val[0] = h;
343 ret.val[1] = m;
344 ret.val[2] = l;
345 return ret;
346 }
347
348 /*
349 * Modulo reduction.
350 *
351 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
352 *
353 * Section 4.3
354 *
355 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
356 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
357 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
358 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
359 * simply multiply the higher part of the operand by r(z) and add it to l(z). If
360 * the result is still larger than 128 bits, we reduce again.
361 */
poly_mult_reduce(uint8x16x3_t input)362 static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
363 {
364 uint8x16_t const ZERO = vdupq_n_u8(0);
365 /* use 'asm' as an optimisation barrier to prevent loading MODULO from memory */
366 uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
367 asm ("" : "+w" (r));
368 uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
369 uint8x16_t h, m, l; /* input high/middle/low 128b */
370 uint8x16_t c, d, e, f, g, n, o;
371 h = input.val[0]; /* h3:h2:00:00 */
372 m = input.val[1]; /* :m2:m1:00 */
373 l = input.val[2]; /* : :l1:l0 */
374 c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
375 d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
376 e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
377 f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
378 g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
379 n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
380 o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
381 return veorq_u8(o, g); /* = o1:o0 + g1:00 */
382 }
383
384 /*
385 * GCM multiplication: c = a times b in GF(2^128)
386 */
mbedtls_aesce_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])387 void mbedtls_aesce_gcm_mult(unsigned char c[16],
388 const unsigned char a[16],
389 const unsigned char b[16])
390 {
391 uint8x16_t va, vb, vc;
392 va = vrbitq_u8(vld1q_u8(&a[0]));
393 vb = vrbitq_u8(vld1q_u8(&b[0]));
394 vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
395 vst1q_u8(&c[0], vc);
396 }
397
398 #endif /* MBEDTLS_GCM_C */
399
400 #if defined(MBEDTLS_POP_TARGET_PRAGMA)
401 #if defined(__clang__)
402 #pragma clang attribute pop
403 #elif defined(__GNUC__)
404 #pragma GCC pop_options
405 #endif
406 #undef MBEDTLS_POP_TARGET_PRAGMA
407 #endif
408
409 #endif /* MBEDTLS_HAVE_ARM64 */
410
411 #endif /* MBEDTLS_AESCE_C */
412