1 /** @file
2  * @brief Misc network utility functions
3  *
4  */
5 
6 /*
7  * Copyright (c) 2016 Intel Corporation
8  *
9  * SPDX-License-Identifier: Apache-2.0
10  */
11 
12 #include <zephyr/logging/log.h>
13 LOG_MODULE_REGISTER(net_utils, CONFIG_NET_UTILS_LOG_LEVEL);
14 
15 #include <zephyr/kernel.h>
16 #include <stdlib.h>
17 #include <zephyr/internal/syscall_handler.h>
18 #include <zephyr/types.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <ctype.h>
22 #include <errno.h>
23 
24 #include <zephyr/sys/byteorder.h>
25 #include <zephyr/net/net_ip.h>
26 #include <zephyr/net/net_pkt.h>
27 #include <zephyr/net/net_core.h>
28 #include <zephyr/net/socketcan.h>
29 
net_sprint_addr(sa_family_t af,const void * addr)30 char *net_sprint_addr(sa_family_t af, const void *addr)
31 {
32 #define NBUFS 3
33 	static char buf[NBUFS][NET_IPV6_ADDR_LEN];
34 	static int i;
35 	char *s = buf[++i % NBUFS];
36 
37 	return net_addr_ntop(af, addr, s, NET_IPV6_ADDR_LEN);
38 }
39 
net_verdict2str(enum net_verdict verdict)40 const char *net_verdict2str(enum net_verdict verdict)
41 {
42 	if (verdict == NET_OK) {
43 		return "NET_OK";
44 	} else if (verdict == NET_CONTINUE) {
45 		return "NET_CONTINUE";
46 	} else if (verdict == NET_DROP) {
47 		return "NET_DROP";
48 	}
49 
50 	return "<unknown>";
51 }
52 
net_proto2str(int family,int proto)53 const char *net_proto2str(int family, int proto)
54 {
55 	if (family == AF_INET || family == AF_INET6) {
56 		switch (proto) {
57 		case IPPROTO_ICMP:
58 			return "ICMPv4";
59 		case IPPROTO_TCP:
60 			return "TCP";
61 		case IPPROTO_UDP:
62 			return "UDP";
63 		case IPPROTO_ICMPV6:
64 			return "ICMPv6";
65 		default:
66 			break;
67 		}
68 	} else if (family == AF_CAN) {
69 		switch (proto) {
70 		case CAN_RAW:
71 			return "CAN_RAW";
72 		default:
73 			break;
74 		}
75 	}
76 
77 	return "UNK_PROTO";
78 }
79 
net_byte_to_hex(char * ptr,uint8_t byte,char base,bool pad)80 char *net_byte_to_hex(char *ptr, uint8_t byte, char base, bool pad)
81 {
82 	uint8_t high = (byte >> 4) & 0x0f;
83 	uint8_t low = byte & 0x0f;
84 
85 	if (pad || (high > 0)) {
86 		*ptr++ = (high < 10) ? (char) (high + '0') : (char) (high - 10 + base);
87 	}
88 
89 	*ptr++ = (low < 10) ? (char) (low + '0') : (char) (low - 10 + base);
90 
91 	*ptr = '\0';
92 
93 	return ptr;
94 }
95 
net_sprint_ll_addr_buf(const uint8_t * ll,uint8_t ll_len,char * buf,int buflen)96 char *net_sprint_ll_addr_buf(const uint8_t *ll, uint8_t ll_len,
97 			     char *buf, int buflen)
98 {
99 	uint8_t i, len, blen;
100 	char *ptr = buf;
101 
102 	if (ll == NULL) {
103 		return "<unknown>";
104 	}
105 
106 	switch (ll_len) {
107 	case 8:
108 		len = 8U;
109 		break;
110 	case 6:
111 		len = 6U;
112 		break;
113 	case 2:
114 		len = 2U;
115 		break;
116 	default:
117 		len = 6U;
118 		break;
119 	}
120 
121 	for (i = 0U, blen = buflen; i < len && blen > 0; i++) {
122 		ptr = net_byte_to_hex(ptr, (char)ll[i], 'A', true);
123 		*ptr++ = ':';
124 		blen -= 3U;
125 	}
126 
127 	if (!(ptr - buf)) {
128 		return NULL;
129 	}
130 
131 	*(ptr - 1) = '\0';
132 	return buf;
133 }
134 
net_value_to_udec(char * buf,uint32_t value,int precision)135 static int net_value_to_udec(char *buf, uint32_t value, int precision)
136 {
137 	uint32_t divisor;
138 	int i;
139 	int temp;
140 	char *start = buf;
141 
142 	divisor = 1000000000U;
143 	if (precision < 0) {
144 		precision = 1;
145 	}
146 
147 	for (i = 9; i >= 0; i--, divisor /= 10U) {
148 		temp = value / divisor;
149 		value = value % divisor;
150 		if ((precision > i) || (temp != 0)) {
151 			precision = i;
152 			*buf++ = (char) (temp + '0');
153 		}
154 	}
155 	*buf = 0;
156 
157 	return buf - start;
158 }
159 
z_impl_net_addr_ntop(sa_family_t family,const void * src,char * dst,size_t size)160 char *z_impl_net_addr_ntop(sa_family_t family, const void *src,
161 			   char *dst, size_t size)
162 {
163 	struct in_addr *addr = NULL;
164 	struct in6_addr *addr6 = NULL;
165 	uint16_t *w = NULL;
166 	int i;
167 	uint8_t longest = 1U;
168 	int pos = -1;
169 	char delim = ':';
170 	uint8_t zeros[8] = { 0 };
171 	char *ptr = dst;
172 	int len = -1;
173 	uint16_t value;
174 	bool needcolon = false;
175 	bool mapped = false;
176 
177 	if (family == AF_INET6) {
178 		addr6 = (struct in6_addr *)src;
179 		w = (uint16_t *)addr6->s6_addr16;
180 		len = 8;
181 
182 		if (net_ipv6_addr_is_v4_mapped(addr6)) {
183 			mapped = true;
184 		}
185 
186 		for (i = 0; i < 8; i++) {
187 			for (int j = i; j < 8; j++) {
188 				if (UNALIGNED_GET(&w[j]) != 0) {
189 					break;
190 				}
191 
192 				zeros[i]++;
193 			}
194 		}
195 
196 		for (i = 0; i < 8; i++) {
197 			if (zeros[i] > longest) {
198 				longest = zeros[i];
199 				pos = i;
200 			}
201 		}
202 
203 		if (longest == 1U) {
204 			pos = -1;
205 		}
206 
207 	} else if (family == AF_INET) {
208 		addr = (struct in_addr *)src;
209 		len = 4;
210 		delim = '.';
211 	} else {
212 		return NULL;
213 	}
214 
215 print_mapped:
216 	for (i = 0; i < len; i++) {
217 		/* IPv4 address a.b.c.d */
218 		if (len == 4) {
219 			uint8_t l;
220 
221 			value = (uint16_t)addr->s4_addr[i];
222 
223 			/* net_byte_to_udec() eats 0 */
224 			if (value == 0U) {
225 				*ptr++ = '0';
226 				*ptr++ = delim;
227 				continue;
228 			}
229 
230 			l = net_value_to_udec(ptr, value, 0);
231 
232 			ptr += l;
233 			*ptr++ = delim;
234 
235 			continue;
236 		}
237 
238 		if (mapped && (i > 5)) {
239 			delim = '.';
240 			len = 4;
241 			addr = (struct in_addr *)(&addr6->s6_addr32[3]);
242 			*ptr++ = ':';
243 			family = AF_INET;
244 			goto print_mapped;
245 		}
246 
247 		/* IPv6 address */
248 		if (i == pos) {
249 			if (needcolon || i == 0U) {
250 				*ptr++ = ':';
251 			}
252 
253 			*ptr++ = ':';
254 			needcolon = false;
255 			i += (int)longest - 1;
256 
257 			continue;
258 		}
259 
260 		if (needcolon) {
261 			*ptr++ = ':';
262 		}
263 
264 		value = sys_be16_to_cpu(UNALIGNED_GET(&w[i]));
265 		uint8_t bh = value >> 8;
266 		uint8_t bl = value & 0xff;
267 
268 		if (bh) {
269 			/* Convert high byte to hex without padding */
270 			ptr = net_byte_to_hex(ptr, bh, 'a', false);
271 
272 			/* Always pad the low byte, since high byte is non - zero */
273 			ptr = net_byte_to_hex(ptr, bl, 'a', true);
274 		} else {
275 			/* For the case where the high byte is zero, only process the low byte
276 			 * Do not pad the low byte, since high byte is zero
277 			 */
278 			ptr = net_byte_to_hex(ptr, bl, 'a', false);
279 		}
280 
281 		needcolon = true;
282 	}
283 
284 	if (!(ptr - dst)) {
285 		return NULL;
286 	}
287 
288 	if (family == AF_INET) {
289 		*(ptr - 1) = '\0';
290 	} else {
291 		*ptr = '\0';
292 	}
293 
294 	return dst;
295 }
296 
297 #if defined(CONFIG_USERSPACE)
z_vrfy_net_addr_ntop(sa_family_t family,const void * src,char * dst,size_t size)298 char *z_vrfy_net_addr_ntop(sa_family_t family, const void *src,
299 			   char *dst, size_t size)
300 {
301 	char str[INET6_ADDRSTRLEN];
302 	struct in6_addr addr6;
303 	struct in_addr addr4;
304 	char *out;
305 	const void *addr;
306 
307 	K_OOPS(K_SYSCALL_MEMORY_WRITE(dst, size));
308 
309 	if (family == AF_INET) {
310 		K_OOPS(k_usermode_from_copy(&addr4, (const void *)src,
311 					sizeof(addr4)));
312 		addr = &addr4;
313 	} else if (family == AF_INET6) {
314 		K_OOPS(k_usermode_from_copy(&addr6, (const void *)src,
315 					sizeof(addr6)));
316 		addr = &addr6;
317 	} else {
318 		return 0;
319 	}
320 
321 	out = z_impl_net_addr_ntop(family, addr, str, sizeof(str));
322 	if (!out) {
323 		return 0;
324 	}
325 
326 	K_OOPS(k_usermode_to_copy((void *)dst, str, MIN(size, sizeof(str))));
327 
328 	return dst;
329 }
330 #include <zephyr/syscalls/net_addr_ntop_mrsh.c>
331 #endif /* CONFIG_USERSPACE */
332 
z_impl_net_addr_pton(sa_family_t family,const char * src,void * dst)333 int z_impl_net_addr_pton(sa_family_t family, const char *src,
334 			 void *dst)
335 {
336 	if (family == AF_INET) {
337 		struct in_addr *addr = (struct in_addr *)dst;
338 		size_t i, len;
339 
340 		len = strlen(src);
341 		for (i = 0; i < len; i++) {
342 			if (!(src[i] >= '0' && src[i] <= '9') &&
343 			    src[i] != '.') {
344 				return -EINVAL;
345 			}
346 		}
347 
348 		(void)memset(addr, 0, sizeof(struct in_addr));
349 
350 		for (i = 0; i < sizeof(struct in_addr); i++) {
351 			char *endptr;
352 
353 			addr->s4_addr[i] = strtol(src, &endptr, 10);
354 
355 			src = ++endptr;
356 		}
357 
358 	} else if (family == AF_INET6) {
359 		/* If the string contains a '.', it means it's of the form
360 		 * X:X:X:X:X:X:x.x.x.x, and contains only 6 16-bit pieces
361 		 */
362 		int expected_groups = strchr(src, '.') ? 6 : 8;
363 		struct in6_addr *addr = (struct in6_addr *)dst;
364 		int i, len;
365 
366 		if (*src == ':') {
367 			/* Ignore a leading colon, makes parsing neater */
368 			src++;
369 		}
370 
371 		len = strlen(src);
372 		for (i = 0; i < len; i++) {
373 			if (!(src[i] >= '0' && src[i] <= '9') &&
374 			    !(src[i] >= 'A' && src[i] <= 'F') &&
375 			    !(src[i] >= 'a' && src[i] <= 'f') &&
376 			    src[i] != '.' && src[i] != ':') {
377 				return -EINVAL;
378 			}
379 		}
380 
381 		for (i = 0; i < expected_groups; i++) {
382 			char *tmp;
383 
384 			if (!src || *src == '\0') {
385 				return -EINVAL;
386 			}
387 
388 			if (*src != ':') {
389 				/* Normal IPv6 16-bit piece */
390 				UNALIGNED_PUT(htons(strtol(src, NULL, 16)),
391 					      &addr->s6_addr16[i]);
392 				src = strchr(src, ':');
393 				if (src) {
394 					src++;
395 				} else {
396 					if (i < expected_groups - 1) {
397 						return -EINVAL;
398 					}
399 				}
400 
401 				continue;
402 			}
403 
404 			/* Two colons in a row */
405 
406 			for (; i < expected_groups; i++) {
407 				UNALIGNED_PUT(0, &addr->s6_addr16[i]);
408 			}
409 
410 			tmp = strrchr(src, ':');
411 			if (src == tmp && (expected_groups == 6 || !src[1])) {
412 				src++;
413 				break;
414 			}
415 
416 			if (expected_groups == 6) {
417 				/* we need to drop the trailing
418 				 * colon since it's between the
419 				 * ipv6 and ipv4 addresses, rather than being
420 				 * a part of the ipv6 address
421 				 */
422 				tmp--;
423 			}
424 
425 			/* Calculate the amount of skipped zeros */
426 			i = expected_groups - 1;
427 			do {
428 				if (*tmp == ':') {
429 					i--;
430 				}
431 
432 				if (i < 0) {
433 					return -EINVAL;
434 				}
435 			} while (tmp-- != src);
436 
437 			src++;
438 		}
439 
440 		if (expected_groups == 6) {
441 			/* Parse the IPv4 part */
442 			for (i = 0; i < 4; i++) {
443 				if (!src || !*src) {
444 					return -EINVAL;
445 				}
446 
447 				addr->s6_addr[12 + i] = strtol(src, NULL, 10);
448 
449 				src = strchr(src, '.');
450 				if (src) {
451 					src++;
452 				} else {
453 					if (i < 3) {
454 						return -EINVAL;
455 					}
456 				}
457 			}
458 		}
459 	} else {
460 		return -EINVAL;
461 	}
462 
463 	return 0;
464 }
465 
466 #if defined(CONFIG_USERSPACE)
z_vrfy_net_addr_pton(sa_family_t family,const char * src,void * dst)467 int z_vrfy_net_addr_pton(sa_family_t family, const char *src,
468 			 void *dst)
469 {
470 	char str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)] = {};
471 	struct in6_addr addr6;
472 	struct in_addr addr4;
473 	void *addr;
474 	size_t size;
475 	int err;
476 
477 	if (family == AF_INET) {
478 		size = sizeof(struct in_addr);
479 		addr = &addr4;
480 	} else if (family == AF_INET6) {
481 		size = sizeof(struct in6_addr);
482 		addr = &addr6;
483 	} else {
484 		return -EINVAL;
485 	}
486 
487 	if (k_usermode_string_copy(str, (char *)src, sizeof(str)) != 0) {
488 		return -EINVAL;
489 	}
490 
491 	K_OOPS(K_SYSCALL_MEMORY_WRITE(dst, size));
492 
493 	err = z_impl_net_addr_pton(family, str, addr);
494 	if (err) {
495 		return err;
496 	}
497 
498 	K_OOPS(k_usermode_to_copy((void *)dst, addr, size));
499 
500 	return 0;
501 }
502 #include <zephyr/syscalls/net_addr_pton_mrsh.c>
503 #endif /* CONFIG_USERSPACE */
504 
505 
506 #ifdef CONFIG_LITTLE_ENDIAN
507 #define CHECKSUM_BIG_ENDIAN 0
508 #else
509 #define CHECKSUM_BIG_ENDIAN 1
510 #endif
511 
offset_based_swap8(const uint8_t * data)512 static uint16_t offset_based_swap8(const uint8_t *data)
513 {
514 	uint16_t data16 = (uint16_t)*data;
515 
516 	if (((uintptr_t)(data) & 1) == CHECKSUM_BIG_ENDIAN) {
517 		return data16;
518 	} else {
519 		return data16 << 8;
520 	}
521 }
522 
523 /* Word based checksum calculation based on:
524  * https://blogs.igalia.com/dpino/2018/06/14/fast-checksum-computation/
525  * It’s not necessary to add octets as 16-bit words. Due to the associative property of addition,
526  * it is possible to do parallel addition using larger word sizes such as 32-bit or 64-bit words.
527  * In those cases the variable that stores the accumulative sum has to be bigger too.
528  * Once the sum is computed a final step folds the sum to a 16-bit word (adding carry if any).
529  */
calc_chksum(uint16_t sum_in,const uint8_t * data,size_t len)530 uint16_t calc_chksum(uint16_t sum_in, const uint8_t *data, size_t len)
531 {
532 	uint64_t sum;
533 	uint32_t *p;
534 	size_t i = 0;
535 	size_t pending = len;
536 	int odd_start = ((uintptr_t)data & 0x01);
537 
538 	/* Sum in is in host endianness, working order endianness is both dependent on endianness
539 	 * and the offset of starting
540 	 */
541 	if (odd_start == CHECKSUM_BIG_ENDIAN) {
542 		sum = BSWAP_16(sum_in);
543 	} else {
544 		sum = sum_in;
545 	}
546 
547 	/* Process up to 3 data elements up front, so the data is aligned further down the line */
548 	if ((((uintptr_t)data & 0x01) != 0) && (pending >= 1)) {
549 		sum += offset_based_swap8(data);
550 		data++;
551 		pending--;
552 	}
553 	if ((((uintptr_t)data & 0x02) != 0) && (pending >= sizeof(uint16_t))) {
554 		pending -= sizeof(uint16_t);
555 		sum = sum + *((uint16_t *)data);
556 		data += sizeof(uint16_t);
557 	}
558 	p = (uint32_t *)data;
559 
560 	/* Do loop unrolling for the very large data sets */
561 	while (pending >= sizeof(uint32_t) * 4) {
562 		uint64_t sum_a = p[i];
563 		uint64_t sum_b = p[i + 1];
564 
565 		pending -= sizeof(uint32_t) * 4;
566 		sum_a += p[i + 2];
567 		sum_b += p[i + 3];
568 		i += 4;
569 		sum += sum_a + sum_b;
570 	}
571 	while (pending >= sizeof(uint32_t)) {
572 		pending -= sizeof(uint32_t);
573 		sum = sum + p[i++];
574 	}
575 	data = (uint8_t *)(p + i);
576 	if (pending >= 2) {
577 		pending -= sizeof(uint16_t);
578 		sum = sum + *((uint16_t *)data);
579 		data += sizeof(uint16_t);
580 	}
581 	if (pending == 1) {
582 		sum += offset_based_swap8(data);
583 	}
584 
585 	/* Fold sum into 16-bit word. */
586 	while (sum >> 16) {
587 		sum = (sum & 0xffff) + (sum >> 16);
588 	}
589 
590 	/* Sum in is in host endianness, working order endianness is both dependent on endianness
591 	 * and the offset of starting
592 	 */
593 	if (odd_start == CHECKSUM_BIG_ENDIAN) {
594 		return BSWAP_16((uint16_t)sum);
595 	} else {
596 		return sum;
597 	}
598 }
599 
pkt_calc_chksum(struct net_pkt * pkt,uint16_t sum)600 static inline uint16_t pkt_calc_chksum(struct net_pkt *pkt, uint16_t sum)
601 {
602 	struct net_pkt_cursor *cur = &pkt->cursor;
603 	size_t len;
604 
605 	if (!cur->buf || !cur->pos) {
606 		return sum;
607 	}
608 
609 	len = cur->buf->len - (cur->pos - cur->buf->data);
610 
611 	while (cur->buf) {
612 		sum = calc_chksum(sum, cur->pos, len);
613 
614 		cur->buf = cur->buf->frags;
615 		if (!cur->buf || !cur->buf->len) {
616 			break;
617 		}
618 
619 		cur->pos = cur->buf->data;
620 
621 		if (len % 2) {
622 			sum += *cur->pos;
623 			if (sum < *cur->pos) {
624 				sum++;
625 			}
626 
627 			cur->pos++;
628 			len = cur->buf->len - 1;
629 		} else {
630 			len = cur->buf->len;
631 		}
632 	}
633 
634 	return sum;
635 }
636 
637 #if defined(CONFIG_NET_NATIVE_IP)
net_calc_chksum(struct net_pkt * pkt,uint8_t proto)638 uint16_t net_calc_chksum(struct net_pkt *pkt, uint8_t proto)
639 {
640 	size_t len = 0U;
641 	uint16_t sum = 0U;
642 	struct net_pkt_cursor backup;
643 	bool ow;
644 
645 	if (IS_ENABLED(CONFIG_NET_IPV4) &&
646 	    net_pkt_family(pkt) == AF_INET) {
647 		if (proto != IPPROTO_ICMP && proto != IPPROTO_IGMP) {
648 			len = 2 * sizeof(struct in_addr);
649 			sum = net_pkt_get_len(pkt) -
650 				net_pkt_ip_hdr_len(pkt) -
651 				net_pkt_ipv4_opts_len(pkt) + proto;
652 		}
653 	} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
654 		   net_pkt_family(pkt) == AF_INET6) {
655 		len = 2 * sizeof(struct in6_addr);
656 		sum =  net_pkt_get_len(pkt) -
657 			net_pkt_ip_hdr_len(pkt) -
658 			net_pkt_ipv6_ext_len(pkt) + proto;
659 	} else {
660 		NET_DBG("Unknown protocol family %d", net_pkt_family(pkt));
661 		return 0;
662 	}
663 
664 	net_pkt_cursor_backup(pkt, &backup);
665 	net_pkt_cursor_init(pkt);
666 
667 	ow = net_pkt_is_being_overwritten(pkt);
668 	net_pkt_set_overwrite(pkt, true);
669 
670 	net_pkt_skip(pkt, net_pkt_ip_hdr_len(pkt) - len);
671 
672 	sum = calc_chksum(sum, pkt->cursor.pos, len);
673 	net_pkt_skip(pkt, len + net_pkt_ip_opts_len(pkt));
674 
675 	sum = pkt_calc_chksum(pkt, sum);
676 
677 	sum = (sum == 0U) ? 0xffff : htons(sum);
678 
679 	net_pkt_cursor_restore(pkt, &backup);
680 
681 	net_pkt_set_overwrite(pkt, ow);
682 
683 	return ~sum;
684 }
685 #endif
686 
687 #if defined(CONFIG_NET_NATIVE_IPV4)
net_calc_chksum_ipv4(struct net_pkt * pkt)688 uint16_t net_calc_chksum_ipv4(struct net_pkt *pkt)
689 {
690 	uint16_t sum;
691 
692 	sum = calc_chksum(0, pkt->buffer->data,
693 			  net_pkt_ip_hdr_len(pkt) +
694 			  net_pkt_ipv4_opts_len(pkt));
695 
696 	sum = (sum == 0U) ? 0xffff : htons(sum);
697 
698 	return ~sum;
699 }
700 #endif /* CONFIG_NET_NATIVE_IPV4 */
701 
702 #if defined(CONFIG_NET_IPV4_IGMP)
net_calc_chksum_igmp(struct net_pkt * pkt)703 uint16_t net_calc_chksum_igmp(struct net_pkt *pkt)
704 {
705 	return net_calc_chksum(pkt, IPPROTO_IGMP);
706 }
707 #endif /* CONFIG_NET_IPV4_IGMP */
708 
709 #if defined(CONFIG_NET_IP)
convert_port(const char * buf,uint16_t * port)710 static bool convert_port(const char *buf, uint16_t *port)
711 {
712 	unsigned long tmp;
713 	char *endptr;
714 
715 	tmp = strtoul(buf, &endptr, 10);
716 	if ((endptr == buf && tmp == 0) ||
717 	    !(*buf != '\0' && *endptr == '\0') ||
718 	    ((unsigned long)(unsigned short)tmp != tmp)) {
719 		return false;
720 	}
721 
722 	*port = tmp;
723 
724 	return true;
725 }
726 #endif /* CONFIG_NET_IP */
727 
728 #if defined(CONFIG_NET_IPV6)
parse_ipv6(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)729 static bool parse_ipv6(const char *str, size_t str_len,
730 		       struct sockaddr *addr, bool has_port)
731 {
732 	char *ptr = NULL;
733 	struct in6_addr *addr6;
734 	char ipaddr[INET6_ADDRSTRLEN + 1];
735 	int end, len, ret, i;
736 	uint16_t port;
737 
738 	len = MIN(INET6_ADDRSTRLEN, str_len);
739 
740 	for (i = 0; i < len; i++) {
741 		if (!str[i]) {
742 			len = i;
743 			break;
744 		}
745 	}
746 
747 	if (has_port) {
748 		/* IPv6 address with port number */
749 		ptr = memchr(str, ']', len);
750 		if (!ptr) {
751 			return false;
752 		}
753 
754 		end = MIN(len, ptr - (str + 1));
755 		memcpy(ipaddr, str + 1, end);
756 	} else {
757 		end = len;
758 		memcpy(ipaddr, str, end);
759 	}
760 
761 	ipaddr[end] = '\0';
762 
763 	addr6 = &net_sin6(addr)->sin6_addr;
764 
765 	ret = net_addr_pton(AF_INET6, ipaddr, addr6);
766 	if (ret < 0) {
767 		return false;
768 	}
769 
770 	net_sin6(addr)->sin6_family = AF_INET6;
771 
772 	if (!has_port) {
773 		return true;
774 	}
775 
776 	if ((ptr + 1) < (str + str_len) && *(ptr + 1) == ':') {
777 		/* -1 as end does not contain first [
778 		 * -2 as pointer is advanced by 2, skipping ]:
779 		 */
780 		len = str_len - end - 1 - 2;
781 
782 		ptr += 2;
783 
784 		for (i = 0; i < len; i++) {
785 			if (!ptr[i]) {
786 				len = i;
787 				break;
788 			}
789 		}
790 
791 		/* Re-use the ipaddr buf for port conversion */
792 		memcpy(ipaddr, ptr, len);
793 		ipaddr[len] = '\0';
794 
795 		ret = convert_port(ipaddr, &port);
796 		if (!ret) {
797 			return false;
798 		}
799 
800 		net_sin6(addr)->sin6_port = htons(port);
801 
802 		NET_DBG("IPv6 host %s port %d",
803 			net_addr_ntop(AF_INET6, addr6, ipaddr, sizeof(ipaddr) - 1),
804 			port);
805 	} else {
806 		NET_DBG("IPv6 host %s",
807 			net_addr_ntop(AF_INET6, addr6, ipaddr, sizeof(ipaddr) - 1));
808 	}
809 
810 	return true;
811 }
812 #else
parse_ipv6(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)813 static inline bool parse_ipv6(const char *str, size_t str_len,
814 			      struct sockaddr *addr, bool has_port)
815 {
816 	return false;
817 }
818 #endif /* CONFIG_NET_IPV6 */
819 
820 #if defined(CONFIG_NET_IPV4)
parse_ipv4(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)821 static bool parse_ipv4(const char *str, size_t str_len,
822 		       struct sockaddr *addr, bool has_port)
823 {
824 	char *ptr = NULL;
825 	char ipaddr[NET_IPV4_ADDR_LEN + 1];
826 	struct in_addr *addr4;
827 	int end, len, ret, i;
828 	uint16_t port;
829 
830 	len = MIN(NET_IPV4_ADDR_LEN, str_len);
831 
832 	for (i = 0; i < len; i++) {
833 		if (!str[i]) {
834 			len = i;
835 			break;
836 		}
837 	}
838 
839 	if (has_port) {
840 		/* IPv4 address with port number */
841 		ptr = memchr(str, ':', len);
842 		if (!ptr) {
843 			return false;
844 		}
845 
846 		end = MIN(len, ptr - str);
847 	} else {
848 		end = len;
849 	}
850 
851 	memcpy(ipaddr, str, end);
852 	ipaddr[end] = '\0';
853 
854 	addr4 = &net_sin(addr)->sin_addr;
855 
856 	ret = net_addr_pton(AF_INET, ipaddr, addr4);
857 	if (ret < 0) {
858 		return false;
859 	}
860 
861 	net_sin(addr)->sin_family = AF_INET;
862 
863 	if (!has_port) {
864 		return true;
865 	}
866 
867 	memcpy(ipaddr, ptr + 1, str_len - end - 1);
868 	ipaddr[str_len - end - 1] = '\0';
869 
870 	ret = convert_port(ipaddr, &port);
871 	if (!ret) {
872 		return false;
873 	}
874 
875 	net_sin(addr)->sin_port = htons(port);
876 
877 	NET_DBG("IPv4 host %s port %d",
878 		net_addr_ntop(AF_INET, addr4, ipaddr, sizeof(ipaddr) - 1),
879 		port);
880 	return true;
881 }
882 #else
parse_ipv4(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)883 static inline bool parse_ipv4(const char *str, size_t str_len,
884 			      struct sockaddr *addr, bool has_port)
885 {
886 	return false;
887 }
888 #endif /* CONFIG_NET_IPV4 */
889 
net_ipaddr_parse(const char * str,size_t str_len,struct sockaddr * addr)890 bool net_ipaddr_parse(const char *str, size_t str_len, struct sockaddr *addr)
891 {
892 	int i, count;
893 
894 	if (!str || str_len == 0) {
895 		return false;
896 	}
897 
898 	/* We cannot accept empty string here */
899 	if (*str == '\0') {
900 		return false;
901 	}
902 
903 	if (*str == '[') {
904 		return parse_ipv6(str, str_len, addr, true);
905 	}
906 
907 	for (count = i = 0; i < str_len && str[i]; i++) {
908 		if (str[i] == ':') {
909 			count++;
910 		}
911 	}
912 
913 	if (count == 1) {
914 		return parse_ipv4(str, str_len, addr, true);
915 	}
916 
917 #if defined(CONFIG_NET_IPV4) && defined(CONFIG_NET_IPV6)
918 	if (!parse_ipv4(str, str_len, addr, false)) {
919 		return parse_ipv6(str, str_len, addr, false);
920 	}
921 
922 	return true;
923 #endif
924 
925 #if defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
926 	return parse_ipv4(str, str_len, addr, false);
927 #endif
928 
929 #if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
930 	return parse_ipv6(str, str_len, addr, false);
931 #endif
932 	return false;
933 }
934 
net_port_set_default(struct sockaddr * addr,uint16_t default_port)935 int net_port_set_default(struct sockaddr *addr, uint16_t default_port)
936 {
937 	if (IS_ENABLED(CONFIG_NET_IPV4) && addr->sa_family == AF_INET &&
938 	    net_sin(addr)->sin_port == 0) {
939 		net_sin(addr)->sin_port = htons(default_port);
940 	} else if (IS_ENABLED(CONFIG_NET_IPV6) && addr->sa_family == AF_INET6 &&
941 		   net_sin6(addr)->sin6_port == 0) {
942 		net_sin6(addr)->sin6_port = htons(default_port);
943 	} else if ((IS_ENABLED(CONFIG_NET_IPV4) && addr->sa_family == AF_INET) ||
944 		   (IS_ENABLED(CONFIG_NET_IPV6) && addr->sa_family == AF_INET6)) {
945 		; /* Port is already set */
946 	} else {
947 		LOG_ERR("Unknown address family");
948 		return -EINVAL;
949 	}
950 
951 	return 0;
952 }
953 
net_bytes_from_str(uint8_t * buf,int buf_len,const char * src)954 int net_bytes_from_str(uint8_t *buf, int buf_len, const char *src)
955 {
956 	size_t i;
957 	size_t src_len = strlen(src);
958 	char *endptr;
959 
960 	for (i = 0U; i < src_len; i++) {
961 		if (!isxdigit((unsigned char)src[i]) &&
962 		    src[i] != ':') {
963 			return -EINVAL;
964 		}
965 	}
966 
967 	(void)memset(buf, 0, buf_len);
968 
969 	for (i = 0U; i < (size_t)buf_len; i++) {
970 		buf[i] = (uint8_t)strtol(src, &endptr, 16);
971 		src = ++endptr;
972 	}
973 
974 	return 0;
975 }
976 
net_family2str(sa_family_t family)977 const char *net_family2str(sa_family_t family)
978 {
979 	switch (family) {
980 	case AF_UNSPEC:
981 		return "AF_UNSPEC";
982 	case AF_INET:
983 		return "AF_INET";
984 	case AF_INET6:
985 		return "AF_INET6";
986 	case AF_PACKET:
987 		return "AF_PACKET";
988 	case AF_CAN:
989 		return "AF_CAN";
990 	}
991 
992 	return NULL;
993 }
994 
net_ipv4_unspecified_address(void)995 const struct in_addr *net_ipv4_unspecified_address(void)
996 {
997 	static const struct in_addr addr;
998 
999 	return &addr;
1000 }
1001 
net_ipv4_broadcast_address(void)1002 const struct in_addr *net_ipv4_broadcast_address(void)
1003 {
1004 	static const struct in_addr addr = { { { 255, 255, 255, 255 } } };
1005 
1006 	return &addr;
1007 }
1008 
1009 /* IPv6 wildcard and loopback address defined by RFC2553 */
1010 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
1011 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
1012 
net_ipv6_unspecified_address(void)1013 const struct in6_addr *net_ipv6_unspecified_address(void)
1014 {
1015 	return &in6addr_any;
1016 }
1017