1 /** @file
2 * @brief Misc network utility functions
3 *
4 */
5
6 /*
7 * Copyright (c) 2016 Intel Corporation
8 *
9 * SPDX-License-Identifier: Apache-2.0
10 */
11
12 #include <zephyr/logging/log.h>
13 LOG_MODULE_REGISTER(net_utils, CONFIG_NET_UTILS_LOG_LEVEL);
14
15 #include <zephyr/kernel.h>
16 #include <stdlib.h>
17 #include <zephyr/internal/syscall_handler.h>
18 #include <zephyr/types.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <ctype.h>
22 #include <errno.h>
23
24 #include <zephyr/sys/byteorder.h>
25 #include <zephyr/net/net_ip.h>
26 #include <zephyr/net/net_pkt.h>
27 #include <zephyr/net/net_core.h>
28 #include <zephyr/net/socketcan.h>
29
net_sprint_addr(sa_family_t af,const void * addr)30 char *net_sprint_addr(sa_family_t af, const void *addr)
31 {
32 #define NBUFS 3
33 static char buf[NBUFS][NET_IPV6_ADDR_LEN];
34 static int i;
35 char *s = buf[++i % NBUFS];
36
37 return net_addr_ntop(af, addr, s, NET_IPV6_ADDR_LEN);
38 }
39
net_verdict2str(enum net_verdict verdict)40 const char *net_verdict2str(enum net_verdict verdict)
41 {
42 if (verdict == NET_OK) {
43 return "NET_OK";
44 } else if (verdict == NET_CONTINUE) {
45 return "NET_CONTINUE";
46 } else if (verdict == NET_DROP) {
47 return "NET_DROP";
48 }
49
50 return "<unknown>";
51 }
52
net_proto2str(int family,int proto)53 const char *net_proto2str(int family, int proto)
54 {
55 if (family == AF_INET || family == AF_INET6) {
56 switch (proto) {
57 case IPPROTO_ICMP:
58 return "ICMPv4";
59 case IPPROTO_TCP:
60 return "TCP";
61 case IPPROTO_UDP:
62 return "UDP";
63 case IPPROTO_ICMPV6:
64 return "ICMPv6";
65 default:
66 break;
67 }
68 } else if (family == AF_CAN) {
69 switch (proto) {
70 case CAN_RAW:
71 return "CAN_RAW";
72 default:
73 break;
74 }
75 }
76
77 return "UNK_PROTO";
78 }
79
net_byte_to_hex(char * ptr,uint8_t byte,char base,bool pad)80 char *net_byte_to_hex(char *ptr, uint8_t byte, char base, bool pad)
81 {
82 int i, val;
83
84 for (i = 0, val = (byte & 0xf0) >> 4; i < 2; i++, val = byte & 0x0f) {
85 if (i == 0 && !pad && !val) {
86 continue;
87 }
88 if (val < 10) {
89 *ptr++ = (char) (val + '0');
90 } else {
91 *ptr++ = (char) (val - 10 + base);
92 }
93 }
94
95 *ptr = '\0';
96
97 return ptr;
98 }
99
net_sprint_ll_addr_buf(const uint8_t * ll,uint8_t ll_len,char * buf,int buflen)100 char *net_sprint_ll_addr_buf(const uint8_t *ll, uint8_t ll_len,
101 char *buf, int buflen)
102 {
103 uint8_t i, len, blen;
104 char *ptr = buf;
105
106 if (ll == NULL) {
107 return "<unknown>";
108 }
109
110 switch (ll_len) {
111 case 8:
112 len = 8U;
113 break;
114 case 6:
115 len = 6U;
116 break;
117 case 2:
118 len = 2U;
119 break;
120 default:
121 len = 6U;
122 break;
123 }
124
125 for (i = 0U, blen = buflen; i < len && blen > 0; i++) {
126 ptr = net_byte_to_hex(ptr, (char)ll[i], 'A', true);
127 *ptr++ = ':';
128 blen -= 3U;
129 }
130
131 if (!(ptr - buf)) {
132 return NULL;
133 }
134
135 *(ptr - 1) = '\0';
136 return buf;
137 }
138
net_value_to_udec(char * buf,uint32_t value,int precision)139 static int net_value_to_udec(char *buf, uint32_t value, int precision)
140 {
141 uint32_t divisor;
142 int i;
143 int temp;
144 char *start = buf;
145
146 divisor = 1000000000U;
147 if (precision < 0) {
148 precision = 1;
149 }
150
151 for (i = 9; i >= 0; i--, divisor /= 10U) {
152 temp = value / divisor;
153 value = value % divisor;
154 if ((precision > i) || (temp != 0)) {
155 precision = i;
156 *buf++ = (char) (temp + '0');
157 }
158 }
159 *buf = 0;
160
161 return buf - start;
162 }
163
z_impl_net_addr_ntop(sa_family_t family,const void * src,char * dst,size_t size)164 char *z_impl_net_addr_ntop(sa_family_t family, const void *src,
165 char *dst, size_t size)
166 {
167 struct in_addr *addr = NULL;
168 struct in6_addr *addr6 = NULL;
169 uint16_t *w = NULL;
170 uint8_t i, bl, bh, longest = 1U;
171 int8_t pos = -1;
172 char delim = ':';
173 unsigned char zeros[8] = { 0 };
174 char *ptr = dst;
175 int len = -1;
176 uint16_t value;
177 bool needcolon = false;
178 bool mapped = false;
179
180 if (family == AF_INET6) {
181 addr6 = (struct in6_addr *)src;
182 w = (uint16_t *)addr6->s6_addr16;
183 len = 8;
184
185 if (net_ipv6_addr_is_v4_mapped(addr6)) {
186 mapped = true;
187 }
188
189 for (i = 0U; i < 8; i++) {
190 uint8_t j;
191
192 for (j = i; j < 8; j++) {
193 if (UNALIGNED_GET(&w[j]) != 0) {
194 break;
195 }
196
197 zeros[i]++;
198 }
199 }
200
201 for (i = 0U; i < 8; i++) {
202 if (zeros[i] > longest) {
203 longest = zeros[i];
204 pos = i;
205 }
206 }
207
208 if (longest == 1U) {
209 pos = -1;
210 }
211
212 } else if (family == AF_INET) {
213 addr = (struct in_addr *)src;
214 len = 4;
215 delim = '.';
216 } else {
217 return NULL;
218 }
219
220 print_mapped:
221 for (i = 0U; i < len; i++) {
222 /* IPv4 address a.b.c.d */
223 if (len == 4) {
224 uint8_t l;
225
226 value = (uint32_t)addr->s4_addr[i];
227
228 /* net_byte_to_udec() eats 0 */
229 if (value == 0U) {
230 *ptr++ = '0';
231 *ptr++ = delim;
232 continue;
233 }
234
235 l = net_value_to_udec(ptr, value, 0);
236
237 ptr += l;
238 *ptr++ = delim;
239
240 continue;
241 }
242
243 if (mapped && (i > 5)) {
244 delim = '.';
245 len = 4;
246 addr = (struct in_addr *)(&addr6->s6_addr32[3]);
247 *ptr++ = ':';
248 family = AF_INET;
249 goto print_mapped;
250 }
251
252 /* IPv6 address */
253 if (i == pos) {
254 if (needcolon || i == 0U) {
255 *ptr++ = ':';
256 }
257
258 *ptr++ = ':';
259 needcolon = false;
260 i += longest - 1U;
261
262 continue;
263 }
264
265 if (needcolon) {
266 *ptr++ = ':';
267 }
268
269 value = (uint32_t)sys_be16_to_cpu(UNALIGNED_GET(&w[i]));
270 bh = value >> 8;
271 bl = value & 0xff;
272
273 if (bh) {
274 if (bh > 0x0f) {
275 ptr = net_byte_to_hex(ptr, bh, 'a', false);
276 } else {
277 if (bh < 10) {
278 *ptr++ = (char)(bh + '0');
279 } else {
280 *ptr++ = (char) (bh - 10 + 'a');
281 }
282 }
283
284 ptr = net_byte_to_hex(ptr, bl, 'a', true);
285 } else if (bl > 0x0f) {
286 ptr = net_byte_to_hex(ptr, bl, 'a', false);
287 } else {
288 if (bl < 10) {
289 *ptr++ = (char)(bl + '0');
290 } else {
291 *ptr++ = (char) (bl - 10 + 'a');
292 }
293 }
294
295 needcolon = true;
296 }
297
298 if (!(ptr - dst)) {
299 return NULL;
300 }
301
302 if (family == AF_INET) {
303 *(ptr - 1) = '\0';
304 } else {
305 *ptr = '\0';
306 }
307
308 return dst;
309 }
310
311 #if defined(CONFIG_USERSPACE)
z_vrfy_net_addr_ntop(sa_family_t family,const void * src,char * dst,size_t size)312 char *z_vrfy_net_addr_ntop(sa_family_t family, const void *src,
313 char *dst, size_t size)
314 {
315 char str[INET6_ADDRSTRLEN];
316 struct in6_addr addr6;
317 struct in_addr addr4;
318 char *out;
319 const void *addr;
320
321 K_OOPS(K_SYSCALL_MEMORY_WRITE(dst, size));
322
323 if (family == AF_INET) {
324 K_OOPS(k_usermode_from_copy(&addr4, (const void *)src,
325 sizeof(addr4)));
326 addr = &addr4;
327 } else if (family == AF_INET6) {
328 K_OOPS(k_usermode_from_copy(&addr6, (const void *)src,
329 sizeof(addr6)));
330 addr = &addr6;
331 } else {
332 return 0;
333 }
334
335 out = z_impl_net_addr_ntop(family, addr, str, sizeof(str));
336 if (!out) {
337 return 0;
338 }
339
340 K_OOPS(k_usermode_to_copy((void *)dst, str, MIN(size, sizeof(str))));
341
342 return dst;
343 }
344 #include <zephyr/syscalls/net_addr_ntop_mrsh.c>
345 #endif /* CONFIG_USERSPACE */
346
z_impl_net_addr_pton(sa_family_t family,const char * src,void * dst)347 int z_impl_net_addr_pton(sa_family_t family, const char *src,
348 void *dst)
349 {
350 if (family == AF_INET) {
351 struct in_addr *addr = (struct in_addr *)dst;
352 size_t i, len;
353
354 len = strlen(src);
355 for (i = 0; i < len; i++) {
356 if (!(src[i] >= '0' && src[i] <= '9') &&
357 src[i] != '.') {
358 return -EINVAL;
359 }
360 }
361
362 (void)memset(addr, 0, sizeof(struct in_addr));
363
364 for (i = 0; i < sizeof(struct in_addr); i++) {
365 char *endptr;
366
367 addr->s4_addr[i] = strtol(src, &endptr, 10);
368
369 src = ++endptr;
370 }
371
372 } else if (family == AF_INET6) {
373 /* If the string contains a '.', it means it's of the form
374 * X:X:X:X:X:X:x.x.x.x, and contains only 6 16-bit pieces
375 */
376 int expected_groups = strchr(src, '.') ? 6 : 8;
377 struct in6_addr *addr = (struct in6_addr *)dst;
378 int i, len;
379
380 if (*src == ':') {
381 /* Ignore a leading colon, makes parsing neater */
382 src++;
383 }
384
385 len = strlen(src);
386 for (i = 0; i < len; i++) {
387 if (!(src[i] >= '0' && src[i] <= '9') &&
388 !(src[i] >= 'A' && src[i] <= 'F') &&
389 !(src[i] >= 'a' && src[i] <= 'f') &&
390 src[i] != '.' && src[i] != ':') {
391 return -EINVAL;
392 }
393 }
394
395 for (i = 0; i < expected_groups; i++) {
396 char *tmp;
397
398 if (!src || *src == '\0') {
399 return -EINVAL;
400 }
401
402 if (*src != ':') {
403 /* Normal IPv6 16-bit piece */
404 UNALIGNED_PUT(htons(strtol(src, NULL, 16)),
405 &addr->s6_addr16[i]);
406 src = strchr(src, ':');
407 if (src) {
408 src++;
409 } else {
410 if (i < expected_groups - 1) {
411 return -EINVAL;
412 }
413 }
414
415 continue;
416 }
417
418 /* Two colons in a row */
419
420 for (; i < expected_groups; i++) {
421 UNALIGNED_PUT(0, &addr->s6_addr16[i]);
422 }
423
424 tmp = strrchr(src, ':');
425 if (src == tmp && (expected_groups == 6 || !src[1])) {
426 src++;
427 break;
428 }
429
430 if (expected_groups == 6) {
431 /* we need to drop the trailing
432 * colon since it's between the
433 * ipv6 and ipv4 addresses, rather than being
434 * a part of the ipv6 address
435 */
436 tmp--;
437 }
438
439 /* Calculate the amount of skipped zeros */
440 i = expected_groups - 1;
441 do {
442 if (*tmp == ':') {
443 i--;
444 }
445
446 if (i < 0) {
447 return -EINVAL;
448 }
449 } while (tmp-- != src);
450
451 src++;
452 }
453
454 if (expected_groups == 6) {
455 /* Parse the IPv4 part */
456 for (i = 0; i < 4; i++) {
457 if (!src || !*src) {
458 return -EINVAL;
459 }
460
461 addr->s6_addr[12 + i] = strtol(src, NULL, 10);
462
463 src = strchr(src, '.');
464 if (src) {
465 src++;
466 } else {
467 if (i < 3) {
468 return -EINVAL;
469 }
470 }
471 }
472 }
473 } else {
474 return -EINVAL;
475 }
476
477 return 0;
478 }
479
480 #if defined(CONFIG_USERSPACE)
z_vrfy_net_addr_pton(sa_family_t family,const char * src,void * dst)481 int z_vrfy_net_addr_pton(sa_family_t family, const char *src,
482 void *dst)
483 {
484 char str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)] = {};
485 struct in6_addr addr6;
486 struct in_addr addr4;
487 void *addr;
488 size_t size;
489 int err;
490
491 if (family == AF_INET) {
492 size = sizeof(struct in_addr);
493 addr = &addr4;
494 } else if (family == AF_INET6) {
495 size = sizeof(struct in6_addr);
496 addr = &addr6;
497 } else {
498 return -EINVAL;
499 }
500
501 if (k_usermode_string_copy(str, (char *)src, sizeof(str)) != 0) {
502 return -EINVAL;
503 }
504
505 K_OOPS(K_SYSCALL_MEMORY_WRITE(dst, size));
506
507 err = z_impl_net_addr_pton(family, str, addr);
508 if (err) {
509 return err;
510 }
511
512 K_OOPS(k_usermode_to_copy((void *)dst, addr, size));
513
514 return 0;
515 }
516 #include <zephyr/syscalls/net_addr_pton_mrsh.c>
517 #endif /* CONFIG_USERSPACE */
518
519
520 #ifdef CONFIG_LITTLE_ENDIAN
521 #define CHECKSUM_BIG_ENDIAN 0
522 #else
523 #define CHECKSUM_BIG_ENDIAN 1
524 #endif
525
offset_based_swap8(const uint8_t * data)526 static uint16_t offset_based_swap8(const uint8_t *data)
527 {
528 uint16_t data16 = (uint16_t)*data;
529
530 if (((uintptr_t)(data) & 1) == CHECKSUM_BIG_ENDIAN) {
531 return data16;
532 } else {
533 return data16 << 8;
534 }
535 }
536
537 /* Word based checksum calculation based on:
538 * https://blogs.igalia.com/dpino/2018/06/14/fast-checksum-computation/
539 * It’s not necessary to add octets as 16-bit words. Due to the associative property of addition,
540 * it is possible to do parallel addition using larger word sizes such as 32-bit or 64-bit words.
541 * In those cases the variable that stores the accumulative sum has to be bigger too.
542 * Once the sum is computed a final step folds the sum to a 16-bit word (adding carry if any).
543 */
calc_chksum(uint16_t sum_in,const uint8_t * data,size_t len)544 uint16_t calc_chksum(uint16_t sum_in, const uint8_t *data, size_t len)
545 {
546 uint64_t sum;
547 uint32_t *p;
548 size_t i = 0;
549 size_t pending = len;
550 int odd_start = ((uintptr_t)data & 0x01);
551
552 /* Sum in is in host endianness, working order endianness is both dependent on endianness
553 * and the offset of starting
554 */
555 if (odd_start == CHECKSUM_BIG_ENDIAN) {
556 sum = BSWAP_16(sum_in);
557 } else {
558 sum = sum_in;
559 }
560
561 /* Process up to 3 data elements up front, so the data is aligned further down the line */
562 if ((((uintptr_t)data & 0x01) != 0) && (pending >= 1)) {
563 sum += offset_based_swap8(data);
564 data++;
565 pending--;
566 }
567 if ((((uintptr_t)data & 0x02) != 0) && (pending >= sizeof(uint16_t))) {
568 pending -= sizeof(uint16_t);
569 sum = sum + *((uint16_t *)data);
570 data += sizeof(uint16_t);
571 }
572 p = (uint32_t *)data;
573
574 /* Do loop unrolling for the very large data sets */
575 while (pending >= sizeof(uint32_t) * 4) {
576 uint64_t sum_a = p[i];
577 uint64_t sum_b = p[i + 1];
578
579 pending -= sizeof(uint32_t) * 4;
580 sum_a += p[i + 2];
581 sum_b += p[i + 3];
582 i += 4;
583 sum += sum_a + sum_b;
584 }
585 while (pending >= sizeof(uint32_t)) {
586 pending -= sizeof(uint32_t);
587 sum = sum + p[i++];
588 }
589 data = (uint8_t *)(p + i);
590 if (pending >= 2) {
591 pending -= sizeof(uint16_t);
592 sum = sum + *((uint16_t *)data);
593 data += sizeof(uint16_t);
594 }
595 if (pending == 1) {
596 sum += offset_based_swap8(data);
597 }
598
599 /* Fold sum into 16-bit word. */
600 while (sum >> 16) {
601 sum = (sum & 0xffff) + (sum >> 16);
602 }
603
604 /* Sum in is in host endianness, working order endianness is both dependent on endianness
605 * and the offset of starting
606 */
607 if (odd_start == CHECKSUM_BIG_ENDIAN) {
608 return BSWAP_16((uint16_t)sum);
609 } else {
610 return sum;
611 }
612 }
613
pkt_calc_chksum(struct net_pkt * pkt,uint16_t sum)614 static inline uint16_t pkt_calc_chksum(struct net_pkt *pkt, uint16_t sum)
615 {
616 struct net_pkt_cursor *cur = &pkt->cursor;
617 size_t len;
618
619 if (!cur->buf || !cur->pos) {
620 return sum;
621 }
622
623 len = cur->buf->len - (cur->pos - cur->buf->data);
624
625 while (cur->buf) {
626 sum = calc_chksum(sum, cur->pos, len);
627
628 cur->buf = cur->buf->frags;
629 if (!cur->buf || !cur->buf->len) {
630 break;
631 }
632
633 cur->pos = cur->buf->data;
634
635 if (len % 2) {
636 sum += *cur->pos;
637 if (sum < *cur->pos) {
638 sum++;
639 }
640
641 cur->pos++;
642 len = cur->buf->len - 1;
643 } else {
644 len = cur->buf->len;
645 }
646 }
647
648 return sum;
649 }
650
651 #if defined(CONFIG_NET_IP)
net_calc_chksum(struct net_pkt * pkt,uint8_t proto)652 uint16_t net_calc_chksum(struct net_pkt *pkt, uint8_t proto)
653 {
654 size_t len = 0U;
655 uint16_t sum = 0U;
656 struct net_pkt_cursor backup;
657 bool ow;
658
659 if (IS_ENABLED(CONFIG_NET_IPV4) &&
660 net_pkt_family(pkt) == AF_INET) {
661 if (proto != IPPROTO_ICMP && proto != IPPROTO_IGMP) {
662 len = 2 * sizeof(struct in_addr);
663 sum = net_pkt_get_len(pkt) -
664 net_pkt_ip_hdr_len(pkt) -
665 net_pkt_ipv4_opts_len(pkt) + proto;
666 }
667 } else if (IS_ENABLED(CONFIG_NET_IPV6) &&
668 net_pkt_family(pkt) == AF_INET6) {
669 len = 2 * sizeof(struct in6_addr);
670 sum = net_pkt_get_len(pkt) -
671 net_pkt_ip_hdr_len(pkt) -
672 net_pkt_ipv6_ext_len(pkt) + proto;
673 } else {
674 NET_DBG("Unknown protocol family %d", net_pkt_family(pkt));
675 return 0;
676 }
677
678 net_pkt_cursor_backup(pkt, &backup);
679 net_pkt_cursor_init(pkt);
680
681 ow = net_pkt_is_being_overwritten(pkt);
682 net_pkt_set_overwrite(pkt, true);
683
684 net_pkt_skip(pkt, net_pkt_ip_hdr_len(pkt) - len);
685
686 sum = calc_chksum(sum, pkt->cursor.pos, len);
687 net_pkt_skip(pkt, len + net_pkt_ip_opts_len(pkt));
688
689 sum = pkt_calc_chksum(pkt, sum);
690
691 sum = (sum == 0U) ? 0xffff : htons(sum);
692
693 net_pkt_cursor_restore(pkt, &backup);
694
695 net_pkt_set_overwrite(pkt, ow);
696
697 return ~sum;
698 }
699 #endif
700
701 #if defined(CONFIG_NET_IPV4)
net_calc_chksum_ipv4(struct net_pkt * pkt)702 uint16_t net_calc_chksum_ipv4(struct net_pkt *pkt)
703 {
704 uint16_t sum;
705
706 sum = calc_chksum(0, pkt->buffer->data,
707 net_pkt_ip_hdr_len(pkt) +
708 net_pkt_ipv4_opts_len(pkt));
709
710 sum = (sum == 0U) ? 0xffff : htons(sum);
711
712 return ~sum;
713 }
714 #endif /* CONFIG_NET_IPV4 */
715
716 #if defined(CONFIG_NET_IPV4_IGMP)
net_calc_chksum_igmp(struct net_pkt * pkt)717 uint16_t net_calc_chksum_igmp(struct net_pkt *pkt)
718 {
719 return net_calc_chksum(pkt, IPPROTO_IGMP);
720 }
721 #endif /* CONFIG_NET_IPV4_IGMP */
722
723 #if defined(CONFIG_NET_IP)
convert_port(const char * buf,uint16_t * port)724 static bool convert_port(const char *buf, uint16_t *port)
725 {
726 unsigned long tmp;
727 char *endptr;
728
729 tmp = strtoul(buf, &endptr, 10);
730 if ((endptr == buf && tmp == 0) ||
731 !(*buf != '\0' && *endptr == '\0') ||
732 ((unsigned long)(unsigned short)tmp != tmp)) {
733 return false;
734 }
735
736 *port = tmp;
737
738 return true;
739 }
740 #endif /* CONFIG_NET_IP */
741
742 #if defined(CONFIG_NET_IPV6)
parse_ipv6(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)743 static bool parse_ipv6(const char *str, size_t str_len,
744 struct sockaddr *addr, bool has_port)
745 {
746 char *ptr = NULL;
747 struct in6_addr *addr6;
748 char ipaddr[INET6_ADDRSTRLEN + 1];
749 int end, len, ret, i;
750 uint16_t port;
751
752 len = MIN(INET6_ADDRSTRLEN, str_len);
753
754 for (i = 0; i < len; i++) {
755 if (!str[i]) {
756 len = i;
757 break;
758 }
759 }
760
761 if (has_port) {
762 /* IPv6 address with port number */
763 ptr = memchr(str, ']', len);
764 if (!ptr) {
765 return false;
766 }
767
768 end = MIN(len, ptr - (str + 1));
769 memcpy(ipaddr, str + 1, end);
770 } else {
771 end = len;
772 memcpy(ipaddr, str, end);
773 }
774
775 ipaddr[end] = '\0';
776
777 addr6 = &net_sin6(addr)->sin6_addr;
778
779 ret = net_addr_pton(AF_INET6, ipaddr, addr6);
780 if (ret < 0) {
781 return false;
782 }
783
784 net_sin6(addr)->sin6_family = AF_INET6;
785
786 if (!has_port) {
787 return true;
788 }
789
790 if ((ptr + 1) < (str + str_len) && *(ptr + 1) == ':') {
791 /* -1 as end does not contain first [
792 * -2 as pointer is advanced by 2, skipping ]:
793 */
794 len = str_len - end - 1 - 2;
795
796 ptr += 2;
797
798 for (i = 0; i < len; i++) {
799 if (!ptr[i]) {
800 len = i;
801 break;
802 }
803 }
804
805 /* Re-use the ipaddr buf for port conversion */
806 memcpy(ipaddr, ptr, len);
807 ipaddr[len] = '\0';
808
809 ret = convert_port(ipaddr, &port);
810 if (!ret) {
811 return false;
812 }
813
814 net_sin6(addr)->sin6_port = htons(port);
815
816 NET_DBG("IPv6 host %s port %d",
817 net_addr_ntop(AF_INET6, addr6, ipaddr, sizeof(ipaddr) - 1),
818 port);
819 } else {
820 NET_DBG("IPv6 host %s",
821 net_addr_ntop(AF_INET6, addr6, ipaddr, sizeof(ipaddr) - 1));
822 }
823
824 return true;
825 }
826 #else
parse_ipv6(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)827 static inline bool parse_ipv6(const char *str, size_t str_len,
828 struct sockaddr *addr, bool has_port)
829 {
830 return false;
831 }
832 #endif /* CONFIG_NET_IPV6 */
833
834 #if defined(CONFIG_NET_IPV4)
parse_ipv4(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)835 static bool parse_ipv4(const char *str, size_t str_len,
836 struct sockaddr *addr, bool has_port)
837 {
838 char *ptr = NULL;
839 char ipaddr[NET_IPV4_ADDR_LEN + 1];
840 struct in_addr *addr4;
841 int end, len, ret, i;
842 uint16_t port;
843
844 len = MIN(NET_IPV4_ADDR_LEN, str_len);
845
846 for (i = 0; i < len; i++) {
847 if (!str[i]) {
848 len = i;
849 break;
850 }
851 }
852
853 if (has_port) {
854 /* IPv4 address with port number */
855 ptr = memchr(str, ':', len);
856 if (!ptr) {
857 return false;
858 }
859
860 end = MIN(len, ptr - str);
861 } else {
862 end = len;
863 }
864
865 memcpy(ipaddr, str, end);
866 ipaddr[end] = '\0';
867
868 addr4 = &net_sin(addr)->sin_addr;
869
870 ret = net_addr_pton(AF_INET, ipaddr, addr4);
871 if (ret < 0) {
872 return false;
873 }
874
875 net_sin(addr)->sin_family = AF_INET;
876
877 if (!has_port) {
878 return true;
879 }
880
881 memcpy(ipaddr, ptr + 1, str_len - end);
882 ipaddr[str_len - end] = '\0';
883
884 ret = convert_port(ipaddr, &port);
885 if (!ret) {
886 return false;
887 }
888
889 net_sin(addr)->sin_port = htons(port);
890
891 NET_DBG("IPv4 host %s port %d",
892 net_addr_ntop(AF_INET, addr4, ipaddr, sizeof(ipaddr) - 1),
893 port);
894 return true;
895 }
896 #else
parse_ipv4(const char * str,size_t str_len,struct sockaddr * addr,bool has_port)897 static inline bool parse_ipv4(const char *str, size_t str_len,
898 struct sockaddr *addr, bool has_port)
899 {
900 return false;
901 }
902 #endif /* CONFIG_NET_IPV4 */
903
net_ipaddr_parse(const char * str,size_t str_len,struct sockaddr * addr)904 bool net_ipaddr_parse(const char *str, size_t str_len, struct sockaddr *addr)
905 {
906 int i, count;
907
908 if (!str || str_len == 0) {
909 return false;
910 }
911
912 /* We cannot accept empty string here */
913 if (*str == '\0') {
914 return false;
915 }
916
917 if (*str == '[') {
918 return parse_ipv6(str, str_len, addr, true);
919 }
920
921 for (count = i = 0; i < str_len && str[i]; i++) {
922 if (str[i] == ':') {
923 count++;
924 }
925 }
926
927 if (count == 1) {
928 return parse_ipv4(str, str_len, addr, true);
929 }
930
931 #if defined(CONFIG_NET_IPV4) && defined(CONFIG_NET_IPV6)
932 if (!parse_ipv4(str, str_len, addr, false)) {
933 return parse_ipv6(str, str_len, addr, false);
934 }
935
936 return true;
937 #endif
938
939 #if defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
940 return parse_ipv4(str, str_len, addr, false);
941 #endif
942
943 #if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
944 return parse_ipv6(str, str_len, addr, false);
945 #endif
946 return false;
947 }
948
net_port_set_default(struct sockaddr * addr,uint16_t default_port)949 int net_port_set_default(struct sockaddr *addr, uint16_t default_port)
950 {
951 if (IS_ENABLED(CONFIG_NET_IPV4) && addr->sa_family == AF_INET &&
952 net_sin(addr)->sin_port == 0) {
953 net_sin(addr)->sin_port = htons(default_port);
954 } else if (IS_ENABLED(CONFIG_NET_IPV6) && addr->sa_family == AF_INET6 &&
955 net_sin6(addr)->sin6_port == 0) {
956 net_sin6(addr)->sin6_port = htons(default_port);
957 } else if ((IS_ENABLED(CONFIG_NET_IPV4) && addr->sa_family == AF_INET) ||
958 (IS_ENABLED(CONFIG_NET_IPV6) && addr->sa_family == AF_INET6)) {
959 ; /* Port is already set */
960 } else {
961 LOG_ERR("Unknown address family");
962 return -EINVAL;
963 }
964
965 return 0;
966 }
967
net_bytes_from_str(uint8_t * buf,int buf_len,const char * src)968 int net_bytes_from_str(uint8_t *buf, int buf_len, const char *src)
969 {
970 size_t i;
971 size_t src_len = strlen(src);
972 char *endptr;
973
974 for (i = 0U; i < src_len; i++) {
975 if (!isxdigit((unsigned char)src[i]) &&
976 src[i] != ':') {
977 return -EINVAL;
978 }
979 }
980
981 (void)memset(buf, 0, buf_len);
982
983 for (i = 0U; i < (size_t)buf_len; i++) {
984 buf[i] = (uint8_t)strtol(src, &endptr, 16);
985 src = ++endptr;
986 }
987
988 return 0;
989 }
990
net_family2str(sa_family_t family)991 const char *net_family2str(sa_family_t family)
992 {
993 switch (family) {
994 case AF_UNSPEC:
995 return "AF_UNSPEC";
996 case AF_INET:
997 return "AF_INET";
998 case AF_INET6:
999 return "AF_INET6";
1000 case AF_PACKET:
1001 return "AF_PACKET";
1002 case AF_CAN:
1003 return "AF_CAN";
1004 }
1005
1006 return NULL;
1007 }
1008
net_ipv4_unspecified_address(void)1009 const struct in_addr *net_ipv4_unspecified_address(void)
1010 {
1011 static const struct in_addr addr;
1012
1013 return &addr;
1014 }
1015
net_ipv4_broadcast_address(void)1016 const struct in_addr *net_ipv4_broadcast_address(void)
1017 {
1018 static const struct in_addr addr = { { { 255, 255, 255, 255 } } };
1019
1020 return &addr;
1021 }
1022
1023 /* IPv6 wildcard and loopback address defined by RFC2553 */
1024 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
1025 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
1026
net_ipv6_unspecified_address(void)1027 const struct in6_addr *net_ipv6_unspecified_address(void)
1028 {
1029 return &in6addr_any;
1030 }
1031