1 /*
2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include "pico/multicore.h"
8 #include "hardware/sync.h"
9 #include "hardware/irq.h"
10 #include "pico/runtime_init.h"
11 #ifdef __riscv
12 #include "hardware/riscv.h"
13 #else
14 #include "hardware/structs/scb.h"
15 #endif
16 #include "hardware/structs/sio.h"
17 #include "hardware/regs/psm.h"
18 #include "hardware/claim.h"
19
20 #if !PICO_RP2040
21 #ifndef __riscv
22 #include "hardware/structs/m33.h"
23 #endif
24 #endif
25
26 // note that these are not reset by core reset, however for now, I think people resetting cores
27 // and then relying on multicore_lockout for that core without re-initializing, is probably
28 // something we can live with breaking.
29 //
30 // whilst we could clear this in core 1 reset path, that doesn't necessarily catch all,
31 // and means pulling in this array even if multicore_lockout is not used.
32 static bool lockout_victim_initialized[NUM_CORES];
33
multicore_fifo_push_blocking(uint32_t data)34 void multicore_fifo_push_blocking(uint32_t data) {
35 multicore_fifo_push_blocking_inline(data);
36 }
37
multicore_fifo_push_timeout_us(uint32_t data,uint64_t timeout_us)38 bool multicore_fifo_push_timeout_us(uint32_t data, uint64_t timeout_us) {
39 absolute_time_t end_time = make_timeout_time_us(timeout_us);
40 // We wait for the fifo to have some space
41 while (!multicore_fifo_wready()) {
42 tight_loop_contents();
43 if (time_reached(end_time)) return false;
44 }
45
46 sio_hw->fifo_wr = data;
47
48 // Fire off an event to the other core
49 __sev();
50 return true;
51 }
52
multicore_fifo_pop_blocking(void)53 uint32_t multicore_fifo_pop_blocking(void) {
54 return multicore_fifo_pop_blocking_inline();
55 }
56
multicore_fifo_pop_timeout_us(uint64_t timeout_us,uint32_t * out)57 bool multicore_fifo_pop_timeout_us(uint64_t timeout_us, uint32_t *out) {
58 absolute_time_t end_time = make_timeout_time_us(timeout_us);
59 // If nothing there yet, we wait for an event first,
60 // to try and avoid too much busy waiting
61 while (!multicore_fifo_rvalid()) {
62 if (best_effort_wfe_or_timeout(end_time)) return false;
63 }
64
65 *out = sio_hw->fifo_rd;
66 return true;
67 }
68
69 #if PICO_CORE1_STACK_SIZE > 0
70 // Default stack for core1 ... if multicore_launch_core1 is not included then .stack1 section will be garbage collected
71 static uint32_t __attribute__((section(".stack1"))) core1_stack[PICO_CORE1_STACK_SIZE / sizeof(uint32_t)];
72 #endif
73
core1_trampoline(void)74 static void __attribute__ ((naked)) core1_trampoline(void) {
75 #ifdef __riscv
76 // Do not add function calls here, because we want to preserve the return
77 // address pointing back to the bootrom launch routine.
78 pico_default_asm(
79 "lw a0, 0(sp)\n"
80 "lw a1, 4(sp)\n"
81 "lw a2, 8(sp)\n"
82 "lw gp, 12(sp)\n"
83 "addi sp, sp, 16\n"
84 "jr a2\n"
85 );
86 #else
87 pico_default_asm("pop {r0, r1, pc}");
88 #endif
89 }
90
core1_wrapper(int (* entry)(void),void * stack_base)91 int core1_wrapper(int (*entry)(void), void *stack_base) {
92 #if !PICO_RUNTIME_SKIP_INIT_PER_CORE_INSTALL_STACK_GUARD
93 // install core1 stack guard
94 runtime_init_per_core_install_stack_guard(stack_base);
95 #else
96 (void)stack_base;
97 #endif
98 runtime_run_per_core_initializers();
99 return (*entry)();
100 }
101
multicore_reset_core1(void)102 void multicore_reset_core1(void) {
103 // Use atomic aliases just in case core 1 is also manipulating some PSM state
104 io_rw_32 *power_off = (io_rw_32 *) (PSM_BASE + PSM_FRCE_OFF_OFFSET);
105 io_rw_32 *power_off_set = hw_set_alias(power_off);
106 io_rw_32 *power_off_clr = hw_clear_alias(power_off);
107
108 // Hard-reset core 1.
109 // Reading back confirms the core 1 reset is in the correct state, but also
110 // forces APB IO bridges to fence on any internal store buffering
111 *power_off_set = PSM_FRCE_OFF_PROC1_BITS;
112 while (!(*power_off & PSM_FRCE_OFF_PROC1_BITS)) tight_loop_contents();
113
114 // Allow for the fact that the caller may have already enabled the FIFO IRQ for their
115 // own purposes (expecting FIFO content after core 1 is launched). We must disable
116 // the IRQ during the handshake, then restore afterward
117 uint irq_num = SIO_FIFO_IRQ_NUM(0);
118 bool enabled = pico_irq_is_enabled(irq_num);
119 irq_set_enabled(irq_num, false);
120
121 // Bring core 1 back out of reset. It will drain its own mailbox FIFO, then push
122 // a 0 to our mailbox to tell us it has done this.
123 *power_off_clr = PSM_FRCE_OFF_PROC1_BITS;
124
125 // check the pushed value
126 uint32_t value = multicore_fifo_pop_blocking();
127 assert(value == 0);
128 (void) value; // silence warning
129
130 // restore interrupt state
131 irq_set_enabled(irq_num, enabled);
132 }
133
multicore_launch_core1_with_stack(void (* entry)(void),uint32_t * stack_bottom,size_t stack_size_bytes)134 void multicore_launch_core1_with_stack(void (*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes) {
135 assert(!(stack_size_bytes & 3u));
136 uint32_t *stack_ptr = stack_bottom + stack_size_bytes / sizeof(uint32_t);
137 // Push values onto top of stack for core1_trampoline
138 #ifdef __riscv
139 // On RISC-V we also need to initialise the global pointer
140 stack_ptr -= 4;
141 uint32_t vector_table = riscv_read_csr(mtvec);
142 asm volatile ("mv %0, gp" : "=r"(stack_ptr[3]));
143 #else
144 stack_ptr -= 3;
145 uint32_t vector_table = scb_hw->vtor;
146 #endif
147 stack_ptr[0] = (uintptr_t) entry;
148 stack_ptr[1] = (uintptr_t) stack_bottom;
149 stack_ptr[2] = (uintptr_t) core1_wrapper;
150 #if PICO_VTABLE_PER_CORE
151 #warning PICO_VTABLE_PER_CORE==1 is not currently supported in pico_multicore
152 panic_unsupported();
153 #endif
154 multicore_launch_core1_raw(core1_trampoline, stack_ptr, vector_table);
155 }
156
multicore_launch_core1(void (* entry)(void))157 void multicore_launch_core1(void (*entry)(void)) {
158 #if PICO_CORE1_STACK_SIZE > 0
159 extern uint32_t __StackOneBottom;
160 uint32_t *stack_limit = (uint32_t *) &__StackOneBottom;
161 // hack to reference core1_stack although that pointer is wrong.... core1_stack should always be <= stack_limit, if not boom!
162 uint32_t *stack = core1_stack <= stack_limit ? stack_limit : (uint32_t *) -1;
163 multicore_launch_core1_with_stack(entry, stack, sizeof(core1_stack));
164 #else
165 panic("multicore_launch_core1() can't be used when PICO_CORE1_STACK_SIZE == 0");
166 #endif
167 }
168
multicore_launch_core1_raw(void (* entry)(void),uint32_t * sp,uint32_t vector_table)169 void multicore_launch_core1_raw(void (*entry)(void), uint32_t *sp, uint32_t vector_table) {
170 // Allow for the fact that the caller may have already enabled the FIFO IRQ for their
171 // own purposes (expecting FIFO content after core 1 is launched). We must disable
172 // the IRQ during the handshake, then restore afterwards.
173 uint irq_num = SIO_FIFO_IRQ_NUM(0);
174 bool enabled = pico_irq_is_enabled(irq_num);
175 irq_set_enabled(irq_num, false);
176
177 // Values to be sent in order over the FIFO from core 0 to core 1
178 //
179 // vector_table is value for VTOR register
180 // sp is initial stack pointer (SP)
181 // entry is the initial program counter (PC) (don't forget to set the thumb bit!)
182 const uint32_t cmd_sequence[] =
183 {0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};
184
185 uint seq = 0;
186 do {
187 uint cmd = cmd_sequence[seq];
188 // Always drain the READ FIFO (from core 1) before sending a 0
189 if (!cmd) {
190 multicore_fifo_drain();
191 // Execute a SEV as core 1 may be waiting for FIFO space via WFE
192 __sev();
193 }
194 multicore_fifo_push_blocking(cmd);
195 uint32_t response = multicore_fifo_pop_blocking();
196 // Move to next state on correct response (echo-d value) otherwise start over
197 seq = cmd == response ? seq + 1 : 0;
198 } while (seq < count_of(cmd_sequence));
199
200 irq_set_enabled(irq_num, enabled);
201 }
202
203 #define LOCKOUT_MAGIC_START 0x73a8831eu
204 #define LOCKOUT_MAGIC_END (~LOCKOUT_MAGIC_START)
205
206 static mutex_t lockout_mutex;
207 static bool lockout_in_progress;
208
209 // note this method is in RAM because lockout is used when writing to flash
210 // it only makes inline calls
__not_in_flash_func(multicore_lockout_handler)211 static void __isr __not_in_flash_func(multicore_lockout_handler)(void) {
212 multicore_fifo_clear_irq();
213 while (multicore_fifo_rvalid()) {
214 if (sio_hw->fifo_rd == LOCKOUT_MAGIC_START) {
215 uint32_t save = save_and_disable_interrupts();
216 multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_START);
217 while (multicore_fifo_pop_blocking_inline() != LOCKOUT_MAGIC_END) {
218 tight_loop_contents(); // not tight but endless potentially
219 }
220 restore_interrupts_from_disabled(save);
221 multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_END);
222 }
223 }
224 }
225
check_lockout_mutex_init(void)226 static void check_lockout_mutex_init(void) {
227 // use known available lock - we only need it briefly
228 uint32_t save = hw_claim_lock();
229 if (!mutex_is_initialized(&lockout_mutex)) {
230 mutex_init(&lockout_mutex);
231 }
232 hw_claim_unlock(save);
233 }
234
multicore_lockout_victim_init(void)235 void multicore_lockout_victim_init(void) {
236 check_lockout_mutex_init();
237 // On platforms other than RP2040, these are actually the same IRQ number
238 // (each core only sees its own IRQ, always at the same IRQ number).
239 uint core_num = get_core_num();
240 uint fifo_irq_this_core = SIO_FIFO_IRQ_NUM(core_num);
241 irq_set_exclusive_handler(fifo_irq_this_core, multicore_lockout_handler);
242 irq_set_enabled(fifo_irq_this_core, true);
243 lockout_victim_initialized[core_num] = true;
244 }
245
multicore_lockout_handshake(uint32_t magic,absolute_time_t until)246 static bool multicore_lockout_handshake(uint32_t magic, absolute_time_t until) {
247 uint irq_num = SIO_FIFO_IRQ_NUM(get_core_num());
248 bool enabled = pico_irq_is_enabled(irq_num);
249 if (enabled) irq_set_enabled(irq_num, false);
250 bool rc = false;
251 do {
252 int64_t next_timeout_us = absolute_time_diff_us(get_absolute_time(), until);
253 if (next_timeout_us < 0) {
254 break;
255 }
256 multicore_fifo_push_timeout_us(magic, (uint64_t)next_timeout_us);
257 next_timeout_us = absolute_time_diff_us(get_absolute_time(), until);
258 if (next_timeout_us < 0) {
259 break;
260 }
261 uint32_t word = 0;
262 if (!multicore_fifo_pop_timeout_us((uint64_t)next_timeout_us, &word)) {
263 break;
264 }
265 if (word == magic) {
266 rc = true;
267 }
268 } while (!rc);
269 if (enabled) irq_set_enabled(irq_num, true);
270 return rc;
271 }
272
multicore_lockout_start_block_until(absolute_time_t until)273 static bool multicore_lockout_start_block_until(absolute_time_t until) {
274 check_lockout_mutex_init();
275 if (!mutex_enter_block_until(&lockout_mutex, until)) {
276 return false;
277 }
278 hard_assert(!lockout_in_progress);
279 bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_START, until);
280 lockout_in_progress = rc;
281 mutex_exit(&lockout_mutex);
282 return rc;
283 }
284
multicore_lockout_start_timeout_us(uint64_t timeout_us)285 bool multicore_lockout_start_timeout_us(uint64_t timeout_us) {
286 return multicore_lockout_start_block_until(make_timeout_time_us(timeout_us));
287 }
288
multicore_lockout_start_blocking(void)289 void multicore_lockout_start_blocking(void) {
290 multicore_lockout_start_block_until(at_the_end_of_time);
291 }
292
multicore_lockout_end_block_until(absolute_time_t until)293 static bool multicore_lockout_end_block_until(absolute_time_t until) {
294 assert(mutex_is_initialized(&lockout_mutex));
295 if (!mutex_enter_block_until(&lockout_mutex, until)) {
296 return false;
297 }
298 assert(lockout_in_progress);
299 bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_END, until);
300 if (rc) {
301 lockout_in_progress = false;
302 }
303 mutex_exit(&lockout_mutex);
304 return rc;
305 }
306
multicore_lockout_end_timeout_us(uint64_t timeout_us)307 bool multicore_lockout_end_timeout_us(uint64_t timeout_us) {
308 return multicore_lockout_end_block_until(make_timeout_time_us(timeout_us));
309 }
310
multicore_lockout_end_blocking(void)311 void multicore_lockout_end_blocking(void) {
312 multicore_lockout_end_block_until(at_the_end_of_time);
313 }
314
multicore_lockout_victim_is_initialized(uint core_num)315 bool multicore_lockout_victim_is_initialized(uint core_num) {
316 return lockout_victim_initialized[core_num];
317 }
318
319 #if NUM_DOORBELLS
320
321 static uint8_t doorbell_claimed[NUM_CORES][(NUM_DOORBELLS + 7) >> 3];
322
is_bit_claimed(const uint8_t * bits,uint bit_index)323 static inline bool is_bit_claimed(const uint8_t *bits, uint bit_index) {
324 return (bits[bit_index >> 3u] & (1u << (bit_index & 7u)));
325 }
326
set_claimed_bit(uint8_t * bits,uint bit_index)327 static inline void set_claimed_bit(uint8_t *bits, uint bit_index) {
328 bits[bit_index >> 3u] |= ( uint8_t ) ( 1u << ( bit_index & 7u ));
329 }
330
clear_claimed_bit(uint8_t * bits,uint bit_index)331 static inline void clear_claimed_bit(uint8_t *bits, uint bit_index) {
332 bits[bit_index >> 3u] &= ( uint8_t ) ~( 1u << ( bit_index & 7u ));
333 }
334
multicore_doorbell_claim_under_lock(uint doorbell_num,uint core_mask,bool required)335 static bool multicore_doorbell_claim_under_lock(uint doorbell_num, uint core_mask, bool required) {
336 static_assert(NUM_CORES == 2, "");
337 uint claimed_cores_for_doorbell = (uint) (is_bit_claimed(doorbell_claimed[0], doorbell_num) |
338 (is_bit_claimed(doorbell_claimed[1], doorbell_num + 1u) << 1));
339 if (claimed_cores_for_doorbell & core_mask) {
340 if (required) {
341 panic( "Multicoore doorbell %d already claimed on core mask 0x%x; requested core mask 0x%x\n",
342 claimed_cores_for_doorbell, core_mask);
343 }
344 return false;
345 } else {
346 for(uint i=0; i<NUM_CORES; i++) {
347 if (core_mask & (1u << i)) {
348 set_claimed_bit(doorbell_claimed[i], doorbell_num);
349 }
350 }
351 return true;
352 }
353 }
354
multicore_doorbell_claim(uint doorbell_num,uint core_mask)355 void multicore_doorbell_claim(uint doorbell_num, uint core_mask) {
356 check_doorbell_num_param(doorbell_num);
357 uint32_t save = hw_claim_lock();
358 multicore_doorbell_claim_under_lock(doorbell_num, core_mask, true);
359 hw_claim_unlock(save);
360 }
361
multicore_doorbell_claim_unused(uint core_mask,bool required)362 int multicore_doorbell_claim_unused(uint core_mask, bool required) {
363 int rc = PICO_ERROR_INSUFFICIENT_RESOURCES;
364 uint32_t save = hw_claim_lock();
365 for(int i=NUM_DOORBELLS-1; i>=0; i--) {
366 if (multicore_doorbell_claim_under_lock((uint) i, core_mask, false)) {
367 rc = i;
368 break;
369 }
370 }
371 if (required && rc < 0) {
372 panic("No free doorbells");
373 }
374 hw_claim_unlock(save);
375 return rc;
376 }
377
multicore_doorbell_unclaim(uint doorbell_num,uint core_mask)378 void multicore_doorbell_unclaim(uint doorbell_num, uint core_mask) {
379 check_doorbell_num_param(doorbell_num);
380 uint32_t save = hw_claim_lock();
381 for(uint i=0; i < NUM_CORES; i++) {
382 if (core_mask & (1u << i)) {
383 assert(is_bit_claimed(doorbell_claimed[i], doorbell_num));
384 clear_claimed_bit(doorbell_claimed[i], doorbell_num);
385 }
386 }
387 hw_claim_unlock(save);
388 }
389
390
391 #endif