1 // The MIT License (MIT)
2 //
3 // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
4 //
5 // Permission is hereby granted, free of charge, to any person obtaining a copy
6 // of this software and associated documentation files (the "Software"), to deal
7 // in the Software without restriction, including without limitation the rights
8 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 // copies of the Software, and to permit persons to whom the Software is
10 // furnished to do so, subject to the following conditions:
11 //
12 // The above copyright notice and this permission notice shall be included in all
13 // copies or substantial portions of the Software.
14 //
15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 // SOFTWARE.
22 
23 // Some of this code is taken from the ref10 version of Ed25519 in SUPERCOP
24 // 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as
25 // public domain but parts have been replaced with code generated by Fiat
26 // (https://github.com/mit-plv/fiat-crypto), which is MIT licensed.
27 //
28 // The field functions are shared by Ed25519 and X25519 where possible.
29 
30 #include <string.h>
31 #include <stdint.h>
32 
33 #include <bootutil/bootutil_public.h>
34 
35 #if defined(MCUBOOT_USE_MBED_TLS)
36 #include <mbedtls/platform_util.h>
37 #include <mbedtls/sha512.h>
38 #include <mbedtls/version.h>
39     #if MBEDTLS_VERSION_NUMBER >= 0x03000000
40         #include <mbedtls/compat-2.x.h>
41     #endif
42 #else
43 #include <tinycrypt/constants.h>
44 #include <tinycrypt/utils.h>
45 #include <tinycrypt/sha512.h>
46 #endif
47 
48 #include "curve25519.h"
49 // Various pre-computed constants.
50 #include "curve25519_tables.h"
51 
52 #define SHA512_DIGEST_LENGTH 64
53 
54 // Low-level intrinsic operations
55 
load_3(const uint8_t * in)56 static uint64_t load_3(const uint8_t *in) {
57   uint64_t result;
58   result = (uint64_t)in[0];
59   result |= ((uint64_t)in[1]) << 8;
60   result |= ((uint64_t)in[2]) << 16;
61   return result;
62 }
63 
load_4(const uint8_t * in)64 static uint64_t load_4(const uint8_t *in) {
65   uint64_t result;
66   result = (uint64_t)in[0];
67   result |= ((uint64_t)in[1]) << 8;
68   result |= ((uint64_t)in[2]) << 16;
69   result |= ((uint64_t)in[3]) << 24;
70   return result;
71 }
72 
73 
74 // Field operations.
75 
76 typedef uint32_t fe_limb_t;
77 #define FE_NUM_LIMBS 10
78 
79 // assert_fe asserts that |f| satisfies bounds:
80 //
81 //  [[0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
82 //   [0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
83 //   [0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
84 //   [0x0 ~> 0x4666666], [0x0 ~> 0x2333333],
85 //   [0x0 ~> 0x4666666], [0x0 ~> 0x2333333]]
86 //
87 // See comments in curve25519_32.h for which functions use these bounds for
88 // inputs or outputs.
89 #define assert_fe(f)                                                     \
90   do {                                                                   \
91     for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \
92       assert(f[_assert_fe_i] <=                                          \
93              ((_assert_fe_i & 1) ? 0x2333333u : 0x4666666u));            \
94     }                                                                    \
95   } while (0)
96 
97 // assert_fe_loose asserts that |f| satisfies bounds:
98 //
99 //  [[0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
100 //   [0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
101 //   [0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
102 //   [0x0 ~> 0xd333332], [0x0 ~> 0x6999999],
103 //   [0x0 ~> 0xd333332], [0x0 ~> 0x6999999]]
104 //
105 // See comments in curve25519_32.h for which functions use these bounds for
106 // inputs or outputs.
107 #define assert_fe_loose(f)                                               \
108   do {                                                                   \
109     for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \
110       assert(f[_assert_fe_i] <=                                          \
111              ((_assert_fe_i & 1) ? 0x6999999u : 0xd333332u));            \
112     }                                                                    \
113   } while (0)
114 
115 //FIXME: use Zephyr macro
116 _Static_assert(sizeof(fe) == sizeof(fe_limb_t) * FE_NUM_LIMBS,
117                "fe_limb_t[FE_NUM_LIMBS] is inconsistent with fe");
118 
fe_frombytes_strict(fe * h,const uint8_t s[32])119 static void fe_frombytes_strict(fe *h, const uint8_t s[32]) {
120   // |fiat_25519_from_bytes| requires the top-most bit be clear.
121   assert((s[31] & 0x80) == 0);
122   fiat_25519_from_bytes(h->v, s);
123   assert_fe(h->v);
124 }
125 
fe_frombytes(fe * h,const uint8_t s[32])126 static void fe_frombytes(fe *h, const uint8_t s[32]) {
127   uint8_t s_copy[32];
128   memcpy(s_copy, s, 32);
129   s_copy[31] &= 0x7f;
130   fe_frombytes_strict(h, s_copy);
131 }
132 
fe_tobytes(uint8_t s[32],const fe * f)133 static void fe_tobytes(uint8_t s[32], const fe *f) {
134   assert_fe(f->v);
135   fiat_25519_to_bytes(s, f->v);
136 }
137 
138 // h = 0
fe_0(fe * h)139 static void fe_0(fe *h) {
140 #if defined(MCUBOOT_USE_MBED_TLS)
141   mbedtls_platform_zeroize(h, sizeof(fe));
142 #else
143   _set(h, 0, sizeof(fe));
144 #endif
145 }
146 
147 // h = 1
fe_1(fe * h)148 static void fe_1(fe *h) {
149 #if defined(MCUBOOT_USE_MBED_TLS)
150   mbedtls_platform_zeroize(h, sizeof(fe));
151 #else
152   _set(h, 0, sizeof(fe));
153 #endif
154   h->v[0] = 1;
155 }
156 
157 // h = f + g
158 // Can overlap h with f or g.
fe_add(fe_loose * h,const fe * f,const fe * g)159 static void fe_add(fe_loose *h, const fe *f, const fe *g) {
160   assert_fe(f->v);
161   assert_fe(g->v);
162   fiat_25519_add(h->v, f->v, g->v);
163   assert_fe_loose(h->v);
164 }
165 
166 // h = f - g
167 // Can overlap h with f or g.
fe_sub(fe_loose * h,const fe * f,const fe * g)168 static void fe_sub(fe_loose *h, const fe *f, const fe *g) {
169   assert_fe(f->v);
170   assert_fe(g->v);
171   fiat_25519_sub(h->v, f->v, g->v);
172   assert_fe_loose(h->v);
173 }
174 
fe_carry(fe * h,const fe_loose * f)175 static void fe_carry(fe *h, const fe_loose* f) {
176   assert_fe_loose(f->v);
177   fiat_25519_carry(h->v, f->v);
178   assert_fe(h->v);
179 }
180 
fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS],const fe_limb_t in1[FE_NUM_LIMBS],const fe_limb_t in2[FE_NUM_LIMBS])181 static void fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS],
182                         const fe_limb_t in1[FE_NUM_LIMBS],
183                         const fe_limb_t in2[FE_NUM_LIMBS]) {
184   assert_fe_loose(in1);
185   assert_fe_loose(in2);
186   fiat_25519_carry_mul(out, in1, in2);
187   assert_fe(out);
188 }
189 
fe_mul_ltt(fe_loose * h,const fe * f,const fe * g)190 static void fe_mul_ltt(fe_loose *h, const fe *f, const fe *g) {
191   fe_mul_impl(h->v, f->v, g->v);
192 }
193 
fe_mul_ttt(fe * h,const fe * f,const fe * g)194 static void fe_mul_ttt(fe *h, const fe *f, const fe *g) {
195   fe_mul_impl(h->v, f->v, g->v);
196 }
197 
fe_mul_tlt(fe * h,const fe_loose * f,const fe * g)198 static void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) {
199   fe_mul_impl(h->v, f->v, g->v);
200 }
201 
fe_mul_ttl(fe * h,const fe * f,const fe_loose * g)202 static void fe_mul_ttl(fe *h, const fe *f, const fe_loose *g) {
203   fe_mul_impl(h->v, f->v, g->v);
204 }
205 
fe_mul_tll(fe * h,const fe_loose * f,const fe_loose * g)206 static void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) {
207   fe_mul_impl(h->v, f->v, g->v);
208 }
209 
fe_sq_tl(fe * h,const fe_loose * f)210 static void fe_sq_tl(fe *h, const fe_loose *f) {
211   assert_fe_loose(f->v);
212   fiat_25519_carry_square(h->v, f->v);
213   assert_fe(h->v);
214 }
215 
fe_sq_tt(fe * h,const fe * f)216 static void fe_sq_tt(fe *h, const fe *f) {
217   assert_fe_loose(f->v);
218   fiat_25519_carry_square(h->v, f->v);
219   assert_fe(h->v);
220 }
221 
222 // h = -f
fe_neg(fe_loose * h,const fe * f)223 static void fe_neg(fe_loose *h, const fe *f) {
224   assert_fe(f->v);
225   fiat_25519_opp(h->v, f->v);
226   assert_fe_loose(h->v);
227 }
228 
229 // h = f
fe_copy(fe * h,const fe * f)230 static void fe_copy(fe *h, const fe *f) {
231   memmove(h, f, sizeof(fe));
232 }
233 
fe_copy_lt(fe_loose * h,const fe * f)234 static void fe_copy_lt(fe_loose *h, const fe *f) {
235   //FIXME: use Zephyr macro
236   _Static_assert(sizeof(fe_loose) == sizeof(fe), "fe and fe_loose mismatch");
237   memmove(h, f, sizeof(fe));
238 }
239 
fe_loose_invert(fe * out,const fe_loose * z)240 static void fe_loose_invert(fe *out, const fe_loose *z) {
241   fe t0;
242   fe t1;
243   fe t2;
244   fe t3;
245   int i;
246 
247   fe_sq_tl(&t0, z);
248   fe_sq_tt(&t1, &t0);
249   for (i = 1; i < 2; ++i) {
250     fe_sq_tt(&t1, &t1);
251   }
252   fe_mul_tlt(&t1, z, &t1);
253   fe_mul_ttt(&t0, &t0, &t1);
254   fe_sq_tt(&t2, &t0);
255   fe_mul_ttt(&t1, &t1, &t2);
256   fe_sq_tt(&t2, &t1);
257   for (i = 1; i < 5; ++i) {
258     fe_sq_tt(&t2, &t2);
259   }
260   fe_mul_ttt(&t1, &t2, &t1);
261   fe_sq_tt(&t2, &t1);
262   for (i = 1; i < 10; ++i) {
263     fe_sq_tt(&t2, &t2);
264   }
265   fe_mul_ttt(&t2, &t2, &t1);
266   fe_sq_tt(&t3, &t2);
267   for (i = 1; i < 20; ++i) {
268     fe_sq_tt(&t3, &t3);
269   }
270   fe_mul_ttt(&t2, &t3, &t2);
271   fe_sq_tt(&t2, &t2);
272   for (i = 1; i < 10; ++i) {
273     fe_sq_tt(&t2, &t2);
274   }
275   fe_mul_ttt(&t1, &t2, &t1);
276   fe_sq_tt(&t2, &t1);
277   for (i = 1; i < 50; ++i) {
278     fe_sq_tt(&t2, &t2);
279   }
280   fe_mul_ttt(&t2, &t2, &t1);
281   fe_sq_tt(&t3, &t2);
282   for (i = 1; i < 100; ++i) {
283     fe_sq_tt(&t3, &t3);
284   }
285   fe_mul_ttt(&t2, &t3, &t2);
286   fe_sq_tt(&t2, &t2);
287   for (i = 1; i < 50; ++i) {
288     fe_sq_tt(&t2, &t2);
289   }
290   fe_mul_ttt(&t1, &t2, &t1);
291   fe_sq_tt(&t1, &t1);
292   for (i = 1; i < 5; ++i) {
293     fe_sq_tt(&t1, &t1);
294   }
295   fe_mul_ttt(out, &t1, &t0);
296 }
297 
fe_invert(fe * out,const fe * z)298 static void fe_invert(fe *out, const fe *z) {
299   fe_loose l;
300   fe_copy_lt(&l, z);
301   fe_loose_invert(out, &l);
302 }
303 
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)304 static int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
305   const uint8_t *a = in_a;
306   const uint8_t *b = in_b;
307   uint8_t x = 0;
308 
309   for (size_t i = 0; i < len; i++) {
310     x |= a[i] ^ b[i];
311   }
312 
313   return x;
314 }
315 
316 // return 0 if f == 0
317 // return 1 if f != 0
fe_isnonzero(const fe_loose * f)318 static int fe_isnonzero(const fe_loose *f) {
319   fe tight;
320   fe_carry(&tight, f);
321   uint8_t s[32];
322   fe_tobytes(s, &tight);
323 
324   static const uint8_t zero[32] = {0};
325   return CRYPTO_memcmp(s, zero, sizeof(zero)) != 0;
326 }
327 
328 // return 1 if f is in {1,3,5,...,q-2}
329 // return 0 if f is in {0,2,4,...,q-1}
fe_isnegative(const fe * f)330 static int fe_isnegative(const fe *f) {
331   uint8_t s[32];
332   fe_tobytes(s, f);
333   return s[0] & 1;
334 }
335 
fe_sq2_tt(fe * h,const fe * f)336 static void fe_sq2_tt(fe *h, const fe *f) {
337   // h = f^2
338   fe_sq_tt(h, f);
339 
340   // h = h + h
341   fe_loose tmp;
342   fe_add(&tmp, h, h);
343   fe_carry(h, &tmp);
344 }
345 
fe_pow22523(fe * out,const fe * z)346 static void fe_pow22523(fe *out, const fe *z) {
347   fe t0;
348   fe t1;
349   fe t2;
350   int i;
351 
352   fe_sq_tt(&t0, z);
353   fe_sq_tt(&t1, &t0);
354   for (i = 1; i < 2; ++i) {
355     fe_sq_tt(&t1, &t1);
356   }
357   fe_mul_ttt(&t1, z, &t1);
358   fe_mul_ttt(&t0, &t0, &t1);
359   fe_sq_tt(&t0, &t0);
360   fe_mul_ttt(&t0, &t1, &t0);
361   fe_sq_tt(&t1, &t0);
362   for (i = 1; i < 5; ++i) {
363     fe_sq_tt(&t1, &t1);
364   }
365   fe_mul_ttt(&t0, &t1, &t0);
366   fe_sq_tt(&t1, &t0);
367   for (i = 1; i < 10; ++i) {
368     fe_sq_tt(&t1, &t1);
369   }
370   fe_mul_ttt(&t1, &t1, &t0);
371   fe_sq_tt(&t2, &t1);
372   for (i = 1; i < 20; ++i) {
373     fe_sq_tt(&t2, &t2);
374   }
375   fe_mul_ttt(&t1, &t2, &t1);
376   fe_sq_tt(&t1, &t1);
377   for (i = 1; i < 10; ++i) {
378     fe_sq_tt(&t1, &t1);
379   }
380   fe_mul_ttt(&t0, &t1, &t0);
381   fe_sq_tt(&t1, &t0);
382   for (i = 1; i < 50; ++i) {
383     fe_sq_tt(&t1, &t1);
384   }
385   fe_mul_ttt(&t1, &t1, &t0);
386   fe_sq_tt(&t2, &t1);
387   for (i = 1; i < 100; ++i) {
388     fe_sq_tt(&t2, &t2);
389   }
390   fe_mul_ttt(&t1, &t2, &t1);
391   fe_sq_tt(&t1, &t1);
392   for (i = 1; i < 50; ++i) {
393     fe_sq_tt(&t1, &t1);
394   }
395   fe_mul_ttt(&t0, &t1, &t0);
396   fe_sq_tt(&t0, &t0);
397   for (i = 1; i < 2; ++i) {
398     fe_sq_tt(&t0, &t0);
399   }
400   fe_mul_ttt(out, &t0, z);
401 }
402 
403 
404 // Group operations.
405 
x25519_ge_tobytes(uint8_t s[32],const ge_p2 * h)406 void x25519_ge_tobytes(uint8_t s[32], const ge_p2 *h) {
407   fe recip;
408   fe x;
409   fe y;
410 
411   fe_invert(&recip, &h->Z);
412   fe_mul_ttt(&x, &h->X, &recip);
413   fe_mul_ttt(&y, &h->Y, &recip);
414   fe_tobytes(s, &y);
415   s[31] ^= fe_isnegative(&x) << 7;
416 }
417 
x25519_ge_frombytes_vartime(ge_p3 * h,const uint8_t s[32])418 int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) {
419   fe u;
420   fe_loose v;
421   fe v3;
422   fe vxx;
423   fe_loose check;
424 
425   fe_frombytes(&h->Y, s);
426   fe_1(&h->Z);
427   fe_sq_tt(&v3, &h->Y);
428   fe_mul_ttt(&vxx, &v3, &d);
429   fe_sub(&v, &v3, &h->Z);  // u = y^2-1
430   fe_carry(&u, &v);
431   fe_add(&v, &vxx, &h->Z);  // v = dy^2+1
432 
433   fe_sq_tl(&v3, &v);
434   fe_mul_ttl(&v3, &v3, &v);  // v3 = v^3
435   fe_sq_tt(&h->X, &v3);
436   fe_mul_ttl(&h->X, &h->X, &v);
437   fe_mul_ttt(&h->X, &h->X, &u);  // x = uv^7
438 
439   fe_pow22523(&h->X, &h->X);  // x = (uv^7)^((q-5)/8)
440   fe_mul_ttt(&h->X, &h->X, &v3);
441   fe_mul_ttt(&h->X, &h->X, &u);  // x = uv^3(uv^7)^((q-5)/8)
442 
443   fe_sq_tt(&vxx, &h->X);
444   fe_mul_ttl(&vxx, &vxx, &v);
445   fe_sub(&check, &vxx, &u);
446   if (fe_isnonzero(&check)) {
447     fe_add(&check, &vxx, &u);
448     if (fe_isnonzero(&check)) {
449       return 0;
450     }
451     fe_mul_ttt(&h->X, &h->X, &sqrtm1);
452   }
453 
454   if (fe_isnegative(&h->X) != (s[31] >> 7)) {
455     fe_loose t;
456     fe_neg(&t, &h->X);
457     fe_carry(&h->X, &t);
458   }
459 
460   fe_mul_ttt(&h->T, &h->X, &h->Y);
461   return 1;
462 }
463 
ge_p2_0(ge_p2 * h)464 static void ge_p2_0(ge_p2 *h) {
465   fe_0(&h->X);
466   fe_1(&h->Y);
467   fe_1(&h->Z);
468 }
469 
470 // r = p
ge_p3_to_p2(ge_p2 * r,const ge_p3 * p)471 static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) {
472   fe_copy(&r->X, &p->X);
473   fe_copy(&r->Y, &p->Y);
474   fe_copy(&r->Z, &p->Z);
475 }
476 
477 // r = p
x25519_ge_p3_to_cached(ge_cached * r,const ge_p3 * p)478 void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p) {
479   fe_add(&r->YplusX, &p->Y, &p->X);
480   fe_sub(&r->YminusX, &p->Y, &p->X);
481   fe_copy_lt(&r->Z, &p->Z);
482   fe_mul_ltt(&r->T2d, &p->T, &d2);
483 }
484 
485 // r = p
x25519_ge_p1p1_to_p2(ge_p2 * r,const ge_p1p1 * p)486 void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) {
487   fe_mul_tll(&r->X, &p->X, &p->T);
488   fe_mul_tll(&r->Y, &p->Y, &p->Z);
489   fe_mul_tll(&r->Z, &p->Z, &p->T);
490 }
491 
492 // r = p
x25519_ge_p1p1_to_p3(ge_p3 * r,const ge_p1p1 * p)493 void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) {
494   fe_mul_tll(&r->X, &p->X, &p->T);
495   fe_mul_tll(&r->Y, &p->Y, &p->Z);
496   fe_mul_tll(&r->Z, &p->Z, &p->T);
497   fe_mul_tll(&r->T, &p->X, &p->Y);
498 }
499 
500 // r = 2 * p
ge_p2_dbl(ge_p1p1 * r,const ge_p2 * p)501 static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) {
502   fe trX, trZ, trT;
503   fe t0;
504 
505   fe_sq_tt(&trX, &p->X);
506   fe_sq_tt(&trZ, &p->Y);
507   fe_sq2_tt(&trT, &p->Z);
508   fe_add(&r->Y, &p->X, &p->Y);
509   fe_sq_tl(&t0, &r->Y);
510 
511   fe_add(&r->Y, &trZ, &trX);
512   fe_sub(&r->Z, &trZ, &trX);
513   fe_carry(&trZ, &r->Y);
514   fe_sub(&r->X, &t0, &trZ);
515   fe_carry(&trZ, &r->Z);
516   fe_sub(&r->T, &trT, &trZ);
517 }
518 
519 // r = 2 * p
ge_p3_dbl(ge_p1p1 * r,const ge_p3 * p)520 static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) {
521   ge_p2 q;
522   ge_p3_to_p2(&q, p);
523   ge_p2_dbl(r, &q);
524 }
525 
526 // r = p + q
ge_madd(ge_p1p1 * r,const ge_p3 * p,const ge_precomp * q)527 static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) {
528   fe trY, trZ, trT;
529 
530   fe_add(&r->X, &p->Y, &p->X);
531   fe_sub(&r->Y, &p->Y, &p->X);
532   fe_mul_tll(&trZ, &r->X, &q->yplusx);
533   fe_mul_tll(&trY, &r->Y, &q->yminusx);
534   fe_mul_tlt(&trT, &q->xy2d, &p->T);
535   fe_add(&r->T, &p->Z, &p->Z);
536   fe_sub(&r->X, &trZ, &trY);
537   fe_add(&r->Y, &trZ, &trY);
538   fe_carry(&trZ, &r->T);
539   fe_add(&r->Z, &trZ, &trT);
540   fe_sub(&r->T, &trZ, &trT);
541 }
542 
543 // r = p - q
ge_msub(ge_p1p1 * r,const ge_p3 * p,const ge_precomp * q)544 static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) {
545   fe trY, trZ, trT;
546 
547   fe_add(&r->X, &p->Y, &p->X);
548   fe_sub(&r->Y, &p->Y, &p->X);
549   fe_mul_tll(&trZ, &r->X, &q->yminusx);
550   fe_mul_tll(&trY, &r->Y, &q->yplusx);
551   fe_mul_tlt(&trT, &q->xy2d, &p->T);
552   fe_add(&r->T, &p->Z, &p->Z);
553   fe_sub(&r->X, &trZ, &trY);
554   fe_add(&r->Y, &trZ, &trY);
555   fe_carry(&trZ, &r->T);
556   fe_sub(&r->Z, &trZ, &trT);
557   fe_add(&r->T, &trZ, &trT);
558 }
559 
560 // r = p + q
x25519_ge_add(ge_p1p1 * r,const ge_p3 * p,const ge_cached * q)561 void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) {
562   fe trX, trY, trZ, trT;
563 
564   fe_add(&r->X, &p->Y, &p->X);
565   fe_sub(&r->Y, &p->Y, &p->X);
566   fe_mul_tll(&trZ, &r->X, &q->YplusX);
567   fe_mul_tll(&trY, &r->Y, &q->YminusX);
568   fe_mul_tlt(&trT, &q->T2d, &p->T);
569   fe_mul_ttl(&trX, &p->Z, &q->Z);
570   fe_add(&r->T, &trX, &trX);
571   fe_sub(&r->X, &trZ, &trY);
572   fe_add(&r->Y, &trZ, &trY);
573   fe_carry(&trZ, &r->T);
574   fe_add(&r->Z, &trZ, &trT);
575   fe_sub(&r->T, &trZ, &trT);
576 }
577 
578 // r = p - q
x25519_ge_sub(ge_p1p1 * r,const ge_p3 * p,const ge_cached * q)579 void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) {
580   fe trX, trY, trZ, trT;
581 
582   fe_add(&r->X, &p->Y, &p->X);
583   fe_sub(&r->Y, &p->Y, &p->X);
584   fe_mul_tll(&trZ, &r->X, &q->YminusX);
585   fe_mul_tll(&trY, &r->Y, &q->YplusX);
586   fe_mul_tlt(&trT, &q->T2d, &p->T);
587   fe_mul_ttl(&trX, &p->Z, &q->Z);
588   fe_add(&r->T, &trX, &trX);
589   fe_sub(&r->X, &trZ, &trY);
590   fe_add(&r->Y, &trZ, &trY);
591   fe_carry(&trZ, &r->T);
592   fe_sub(&r->Z, &trZ, &trT);
593   fe_add(&r->T, &trZ, &trT);
594 }
595 
slide(signed char * r,const uint8_t * a)596 static void slide(signed char *r, const uint8_t *a) {
597   int i;
598   int b;
599   int k;
600 
601   for (i = 0; i < 256; ++i) {
602     r[i] = 1 & (a[i >> 3] >> (i & 7));
603   }
604 
605   for (i = 0; i < 256; ++i) {
606     if (r[i]) {
607       for (b = 1; b <= 6 && i + b < 256; ++b) {
608         if (r[i + b]) {
609           if (r[i] + (r[i + b] << b) <= 15) {
610             r[i] += r[i + b] << b;
611             r[i + b] = 0;
612           } else if (r[i] - (r[i + b] << b) >= -15) {
613             r[i] -= r[i + b] << b;
614             for (k = i + b; k < 256; ++k) {
615               if (!r[k]) {
616                 r[k] = 1;
617                 break;
618               }
619               r[k] = 0;
620             }
621           } else {
622             break;
623           }
624         }
625       }
626     }
627   }
628 }
629 
630 // r = a * A + b * B
631 // where a = a[0]+256*a[1]+...+256^31 a[31].
632 // and b = b[0]+256*b[1]+...+256^31 b[31].
633 // B is the Ed25519 base point (x,4/5) with x positive.
ge_double_scalarmult_vartime(ge_p2 * r,const uint8_t * a,const ge_p3 * A,const uint8_t * b)634 static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a,
635                                          const ge_p3 *A, const uint8_t *b) {
636   signed char aslide[256];
637   signed char bslide[256];
638   ge_cached Ai[8];  // A,3A,5A,7A,9A,11A,13A,15A
639   ge_p1p1 t;
640   ge_p3 u;
641   ge_p3 A2;
642   int i;
643 
644   slide(aslide, a);
645   slide(bslide, b);
646 
647   x25519_ge_p3_to_cached(&Ai[0], A);
648   ge_p3_dbl(&t, A);
649   x25519_ge_p1p1_to_p3(&A2, &t);
650   x25519_ge_add(&t, &A2, &Ai[0]);
651   x25519_ge_p1p1_to_p3(&u, &t);
652   x25519_ge_p3_to_cached(&Ai[1], &u);
653   x25519_ge_add(&t, &A2, &Ai[1]);
654   x25519_ge_p1p1_to_p3(&u, &t);
655   x25519_ge_p3_to_cached(&Ai[2], &u);
656   x25519_ge_add(&t, &A2, &Ai[2]);
657   x25519_ge_p1p1_to_p3(&u, &t);
658   x25519_ge_p3_to_cached(&Ai[3], &u);
659   x25519_ge_add(&t, &A2, &Ai[3]);
660   x25519_ge_p1p1_to_p3(&u, &t);
661   x25519_ge_p3_to_cached(&Ai[4], &u);
662   x25519_ge_add(&t, &A2, &Ai[4]);
663   x25519_ge_p1p1_to_p3(&u, &t);
664   x25519_ge_p3_to_cached(&Ai[5], &u);
665   x25519_ge_add(&t, &A2, &Ai[5]);
666   x25519_ge_p1p1_to_p3(&u, &t);
667   x25519_ge_p3_to_cached(&Ai[6], &u);
668   x25519_ge_add(&t, &A2, &Ai[6]);
669   x25519_ge_p1p1_to_p3(&u, &t);
670   x25519_ge_p3_to_cached(&Ai[7], &u);
671 
672   ge_p2_0(r);
673 
674   for (i = 255; i >= 0; --i) {
675     if (aslide[i] || bslide[i]) {
676       break;
677     }
678   }
679 
680   for (; i >= 0; --i) {
681     ge_p2_dbl(&t, r);
682 
683     if (aslide[i] > 0) {
684       x25519_ge_p1p1_to_p3(&u, &t);
685       x25519_ge_add(&t, &u, &Ai[aslide[i] / 2]);
686     } else if (aslide[i] < 0) {
687       x25519_ge_p1p1_to_p3(&u, &t);
688       x25519_ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]);
689     }
690 
691     if (bslide[i] > 0) {
692       x25519_ge_p1p1_to_p3(&u, &t);
693       ge_madd(&t, &u, &Bi[bslide[i] / 2]);
694     } else if (bslide[i] < 0) {
695       x25519_ge_p1p1_to_p3(&u, &t);
696       ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]);
697     }
698 
699     x25519_ge_p1p1_to_p2(r, &t);
700   }
701 }
702 
703 // int64_lshift21 returns |a << 21| but is defined when shifting bits into the
704 // sign bit. This works around a language flaw in C.
int64_lshift21(int64_t a)705 static inline int64_t int64_lshift21(int64_t a) {
706   return (int64_t)((uint64_t)a << 21);
707 }
708 
709 // The set of scalars is \Z/l
710 // where l = 2^252 + 27742317777372353535851937790883648493.
711 
712 // Input:
713 //   s[0]+256*s[1]+...+256^63*s[63] = s
714 //
715 // Output:
716 //   s[0]+256*s[1]+...+256^31*s[31] = s mod l
717 //   where l = 2^252 + 27742317777372353535851937790883648493.
718 //   Overwrites s in place.
x25519_sc_reduce(uint8_t s[64])719 void x25519_sc_reduce(uint8_t s[64]) {
720   int64_t s0 = 2097151 & load_3(s);
721   int64_t s1 = 2097151 & (load_4(s + 2) >> 5);
722   int64_t s2 = 2097151 & (load_3(s + 5) >> 2);
723   int64_t s3 = 2097151 & (load_4(s + 7) >> 7);
724   int64_t s4 = 2097151 & (load_4(s + 10) >> 4);
725   int64_t s5 = 2097151 & (load_3(s + 13) >> 1);
726   int64_t s6 = 2097151 & (load_4(s + 15) >> 6);
727   int64_t s7 = 2097151 & (load_3(s + 18) >> 3);
728   int64_t s8 = 2097151 & load_3(s + 21);
729   int64_t s9 = 2097151 & (load_4(s + 23) >> 5);
730   int64_t s10 = 2097151 & (load_3(s + 26) >> 2);
731   int64_t s11 = 2097151 & (load_4(s + 28) >> 7);
732   int64_t s12 = 2097151 & (load_4(s + 31) >> 4);
733   int64_t s13 = 2097151 & (load_3(s + 34) >> 1);
734   int64_t s14 = 2097151 & (load_4(s + 36) >> 6);
735   int64_t s15 = 2097151 & (load_3(s + 39) >> 3);
736   int64_t s16 = 2097151 & load_3(s + 42);
737   int64_t s17 = 2097151 & (load_4(s + 44) >> 5);
738   int64_t s18 = 2097151 & (load_3(s + 47) >> 2);
739   int64_t s19 = 2097151 & (load_4(s + 49) >> 7);
740   int64_t s20 = 2097151 & (load_4(s + 52) >> 4);
741   int64_t s21 = 2097151 & (load_3(s + 55) >> 1);
742   int64_t s22 = 2097151 & (load_4(s + 57) >> 6);
743   int64_t s23 = (load_4(s + 60) >> 3);
744   int64_t carry0;
745   int64_t carry1;
746   int64_t carry2;
747   int64_t carry3;
748   int64_t carry4;
749   int64_t carry5;
750   int64_t carry6;
751   int64_t carry7;
752   int64_t carry8;
753   int64_t carry9;
754   int64_t carry10;
755   int64_t carry11;
756   int64_t carry12;
757   int64_t carry13;
758   int64_t carry14;
759   int64_t carry15;
760   int64_t carry16;
761 
762   s11 += s23 * 666643;
763   s12 += s23 * 470296;
764   s13 += s23 * 654183;
765   s14 -= s23 * 997805;
766   s15 += s23 * 136657;
767   s16 -= s23 * 683901;
768   s23 = 0;
769 
770   s10 += s22 * 666643;
771   s11 += s22 * 470296;
772   s12 += s22 * 654183;
773   s13 -= s22 * 997805;
774   s14 += s22 * 136657;
775   s15 -= s22 * 683901;
776   s22 = 0;
777 
778   s9 += s21 * 666643;
779   s10 += s21 * 470296;
780   s11 += s21 * 654183;
781   s12 -= s21 * 997805;
782   s13 += s21 * 136657;
783   s14 -= s21 * 683901;
784   s21 = 0;
785 
786   s8 += s20 * 666643;
787   s9 += s20 * 470296;
788   s10 += s20 * 654183;
789   s11 -= s20 * 997805;
790   s12 += s20 * 136657;
791   s13 -= s20 * 683901;
792   s20 = 0;
793 
794   s7 += s19 * 666643;
795   s8 += s19 * 470296;
796   s9 += s19 * 654183;
797   s10 -= s19 * 997805;
798   s11 += s19 * 136657;
799   s12 -= s19 * 683901;
800   s19 = 0;
801 
802   s6 += s18 * 666643;
803   s7 += s18 * 470296;
804   s8 += s18 * 654183;
805   s9 -= s18 * 997805;
806   s10 += s18 * 136657;
807   s11 -= s18 * 683901;
808   s18 = 0;
809 
810   carry6 = (s6 + (1 << 20)) >> 21;
811   s7 += carry6;
812   s6 -= int64_lshift21(carry6);
813   carry8 = (s8 + (1 << 20)) >> 21;
814   s9 += carry8;
815   s8 -= int64_lshift21(carry8);
816   carry10 = (s10 + (1 << 20)) >> 21;
817   s11 += carry10;
818   s10 -= int64_lshift21(carry10);
819   carry12 = (s12 + (1 << 20)) >> 21;
820   s13 += carry12;
821   s12 -= int64_lshift21(carry12);
822   carry14 = (s14 + (1 << 20)) >> 21;
823   s15 += carry14;
824   s14 -= int64_lshift21(carry14);
825   carry16 = (s16 + (1 << 20)) >> 21;
826   s17 += carry16;
827   s16 -= int64_lshift21(carry16);
828 
829   carry7 = (s7 + (1 << 20)) >> 21;
830   s8 += carry7;
831   s7 -= int64_lshift21(carry7);
832   carry9 = (s9 + (1 << 20)) >> 21;
833   s10 += carry9;
834   s9 -= int64_lshift21(carry9);
835   carry11 = (s11 + (1 << 20)) >> 21;
836   s12 += carry11;
837   s11 -= int64_lshift21(carry11);
838   carry13 = (s13 + (1 << 20)) >> 21;
839   s14 += carry13;
840   s13 -= int64_lshift21(carry13);
841   carry15 = (s15 + (1 << 20)) >> 21;
842   s16 += carry15;
843   s15 -= int64_lshift21(carry15);
844 
845   s5 += s17 * 666643;
846   s6 += s17 * 470296;
847   s7 += s17 * 654183;
848   s8 -= s17 * 997805;
849   s9 += s17 * 136657;
850   s10 -= s17 * 683901;
851   s17 = 0;
852 
853   s4 += s16 * 666643;
854   s5 += s16 * 470296;
855   s6 += s16 * 654183;
856   s7 -= s16 * 997805;
857   s8 += s16 * 136657;
858   s9 -= s16 * 683901;
859   s16 = 0;
860 
861   s3 += s15 * 666643;
862   s4 += s15 * 470296;
863   s5 += s15 * 654183;
864   s6 -= s15 * 997805;
865   s7 += s15 * 136657;
866   s8 -= s15 * 683901;
867   s15 = 0;
868 
869   s2 += s14 * 666643;
870   s3 += s14 * 470296;
871   s4 += s14 * 654183;
872   s5 -= s14 * 997805;
873   s6 += s14 * 136657;
874   s7 -= s14 * 683901;
875   s14 = 0;
876 
877   s1 += s13 * 666643;
878   s2 += s13 * 470296;
879   s3 += s13 * 654183;
880   s4 -= s13 * 997805;
881   s5 += s13 * 136657;
882   s6 -= s13 * 683901;
883   s13 = 0;
884 
885   s0 += s12 * 666643;
886   s1 += s12 * 470296;
887   s2 += s12 * 654183;
888   s3 -= s12 * 997805;
889   s4 += s12 * 136657;
890   s5 -= s12 * 683901;
891   s12 = 0;
892 
893   carry0 = (s0 + (1 << 20)) >> 21;
894   s1 += carry0;
895   s0 -= int64_lshift21(carry0);
896   carry2 = (s2 + (1 << 20)) >> 21;
897   s3 += carry2;
898   s2 -= int64_lshift21(carry2);
899   carry4 = (s4 + (1 << 20)) >> 21;
900   s5 += carry4;
901   s4 -= int64_lshift21(carry4);
902   carry6 = (s6 + (1 << 20)) >> 21;
903   s7 += carry6;
904   s6 -= int64_lshift21(carry6);
905   carry8 = (s8 + (1 << 20)) >> 21;
906   s9 += carry8;
907   s8 -= int64_lshift21(carry8);
908   carry10 = (s10 + (1 << 20)) >> 21;
909   s11 += carry10;
910   s10 -= int64_lshift21(carry10);
911 
912   carry1 = (s1 + (1 << 20)) >> 21;
913   s2 += carry1;
914   s1 -= int64_lshift21(carry1);
915   carry3 = (s3 + (1 << 20)) >> 21;
916   s4 += carry3;
917   s3 -= int64_lshift21(carry3);
918   carry5 = (s5 + (1 << 20)) >> 21;
919   s6 += carry5;
920   s5 -= int64_lshift21(carry5);
921   carry7 = (s7 + (1 << 20)) >> 21;
922   s8 += carry7;
923   s7 -= int64_lshift21(carry7);
924   carry9 = (s9 + (1 << 20)) >> 21;
925   s10 += carry9;
926   s9 -= int64_lshift21(carry9);
927   carry11 = (s11 + (1 << 20)) >> 21;
928   s12 += carry11;
929   s11 -= int64_lshift21(carry11);
930 
931   s0 += s12 * 666643;
932   s1 += s12 * 470296;
933   s2 += s12 * 654183;
934   s3 -= s12 * 997805;
935   s4 += s12 * 136657;
936   s5 -= s12 * 683901;
937   s12 = 0;
938 
939   carry0 = s0 >> 21;
940   s1 += carry0;
941   s0 -= int64_lshift21(carry0);
942   carry1 = s1 >> 21;
943   s2 += carry1;
944   s1 -= int64_lshift21(carry1);
945   carry2 = s2 >> 21;
946   s3 += carry2;
947   s2 -= int64_lshift21(carry2);
948   carry3 = s3 >> 21;
949   s4 += carry3;
950   s3 -= int64_lshift21(carry3);
951   carry4 = s4 >> 21;
952   s5 += carry4;
953   s4 -= int64_lshift21(carry4);
954   carry5 = s5 >> 21;
955   s6 += carry5;
956   s5 -= int64_lshift21(carry5);
957   carry6 = s6 >> 21;
958   s7 += carry6;
959   s6 -= int64_lshift21(carry6);
960   carry7 = s7 >> 21;
961   s8 += carry7;
962   s7 -= int64_lshift21(carry7);
963   carry8 = s8 >> 21;
964   s9 += carry8;
965   s8 -= int64_lshift21(carry8);
966   carry9 = s9 >> 21;
967   s10 += carry9;
968   s9 -= int64_lshift21(carry9);
969   carry10 = s10 >> 21;
970   s11 += carry10;
971   s10 -= int64_lshift21(carry10);
972   carry11 = s11 >> 21;
973   s12 += carry11;
974   s11 -= int64_lshift21(carry11);
975 
976   s0 += s12 * 666643;
977   s1 += s12 * 470296;
978   s2 += s12 * 654183;
979   s3 -= s12 * 997805;
980   s4 += s12 * 136657;
981   s5 -= s12 * 683901;
982   s12 = 0;
983 
984   carry0 = s0 >> 21;
985   s1 += carry0;
986   s0 -= int64_lshift21(carry0);
987   carry1 = s1 >> 21;
988   s2 += carry1;
989   s1 -= int64_lshift21(carry1);
990   carry2 = s2 >> 21;
991   s3 += carry2;
992   s2 -= int64_lshift21(carry2);
993   carry3 = s3 >> 21;
994   s4 += carry3;
995   s3 -= int64_lshift21(carry3);
996   carry4 = s4 >> 21;
997   s5 += carry4;
998   s4 -= int64_lshift21(carry4);
999   carry5 = s5 >> 21;
1000   s6 += carry5;
1001   s5 -= int64_lshift21(carry5);
1002   carry6 = s6 >> 21;
1003   s7 += carry6;
1004   s6 -= int64_lshift21(carry6);
1005   carry7 = s7 >> 21;
1006   s8 += carry7;
1007   s7 -= int64_lshift21(carry7);
1008   carry8 = s8 >> 21;
1009   s9 += carry8;
1010   s8 -= int64_lshift21(carry8);
1011   carry9 = s9 >> 21;
1012   s10 += carry9;
1013   s9 -= int64_lshift21(carry9);
1014   carry10 = s10 >> 21;
1015   s11 += carry10;
1016   s10 -= int64_lshift21(carry10);
1017 
1018   s[0] = s0 >> 0;
1019   s[1] = s0 >> 8;
1020   s[2] = (s0 >> 16) | (s1 << 5);
1021   s[3] = s1 >> 3;
1022   s[4] = s1 >> 11;
1023   s[5] = (s1 >> 19) | (s2 << 2);
1024   s[6] = s2 >> 6;
1025   s[7] = (s2 >> 14) | (s3 << 7);
1026   s[8] = s3 >> 1;
1027   s[9] = s3 >> 9;
1028   s[10] = (s3 >> 17) | (s4 << 4);
1029   s[11] = s4 >> 4;
1030   s[12] = s4 >> 12;
1031   s[13] = (s4 >> 20) | (s5 << 1);
1032   s[14] = s5 >> 7;
1033   s[15] = (s5 >> 15) | (s6 << 6);
1034   s[16] = s6 >> 2;
1035   s[17] = s6 >> 10;
1036   s[18] = (s6 >> 18) | (s7 << 3);
1037   s[19] = s7 >> 5;
1038   s[20] = s7 >> 13;
1039   s[21] = s8 >> 0;
1040   s[22] = s8 >> 8;
1041   s[23] = (s8 >> 16) | (s9 << 5);
1042   s[24] = s9 >> 3;
1043   s[25] = s9 >> 11;
1044   s[26] = (s9 >> 19) | (s10 << 2);
1045   s[27] = s10 >> 6;
1046   s[28] = (s10 >> 14) | (s11 << 7);
1047   s[29] = s11 >> 1;
1048   s[30] = s11 >> 9;
1049   s[31] = s11 >> 17;
1050 }
1051 
ED25519_verify(const uint8_t * message,size_t message_len,const uint8_t signature[64],const uint8_t public_key[32])1052 int ED25519_verify(const uint8_t *message, size_t message_len,
1053                    const uint8_t signature[64], const uint8_t public_key[32]) {
1054   ge_p3 A;
1055   if ((signature[63] & 224) != 0 ||
1056       !x25519_ge_frombytes_vartime(&A, public_key)) {
1057     return 0;
1058   }
1059 
1060   fe_loose t;
1061   fe_neg(&t, &A.X);
1062   fe_carry(&A.X, &t);
1063   fe_neg(&t, &A.T);
1064   fe_carry(&A.T, &t);
1065 
1066   uint8_t pkcopy[32];
1067   memcpy(pkcopy, public_key, 32);
1068   uint8_t rcopy[32];
1069   memcpy(rcopy, signature, 32);
1070   union {
1071     uint64_t u64[4];
1072     uint8_t u8[32];
1073   } scopy;
1074   memcpy(&scopy.u8[0], signature + 32, 32);
1075 
1076   // https://tools.ietf.org/html/rfc8032#section-5.1.7 requires that s be in
1077   // the range [0, order) in order to prevent signature malleability.
1078 
1079   // kOrder is the order of Curve25519 in little-endian form.
1080   static const uint64_t kOrder[4] = {
1081     UINT64_C(0x5812631a5cf5d3ed),
1082     UINT64_C(0x14def9dea2f79cd6),
1083     0,
1084     UINT64_C(0x1000000000000000),
1085   };
1086   for (size_t i = 3;; i--) {
1087     if (scopy.u64[i] > kOrder[i]) {
1088       return 0;
1089     } else if (scopy.u64[i] < kOrder[i]) {
1090       break;
1091     } else if (i == 0) {
1092       return 0;
1093     }
1094   }
1095 
1096 #if defined(MCUBOOT_USE_MBED_TLS)
1097 
1098   mbedtls_sha512_context ctx;
1099   int ret;
1100 
1101   mbedtls_sha512_init(&ctx);
1102 
1103   ret = mbedtls_sha512_starts_ret(&ctx, 0);
1104   assert(ret == 0);
1105 
1106   ret = mbedtls_sha512_update_ret(&ctx, signature, 32);
1107   assert(ret == 0);
1108   ret = mbedtls_sha512_update_ret(&ctx, public_key, 32);
1109   assert(ret == 0);
1110   ret = mbedtls_sha512_update_ret(&ctx, message, message_len);
1111   assert(ret == 0);
1112 
1113   uint8_t h[SHA512_DIGEST_LENGTH];
1114   ret = mbedtls_sha512_finish_ret(&ctx, h);
1115   assert(ret == 0);
1116   mbedtls_sha512_free(&ctx);
1117 
1118 #else
1119 
1120   struct tc_sha512_state_struct s;
1121   int rc;
1122 
1123   rc = tc_sha512_init(&s);
1124   assert(rc == TC_CRYPTO_SUCCESS);
1125 
1126   rc = tc_sha512_update(&s, signature, 32);
1127   assert(rc == TC_CRYPTO_SUCCESS);
1128   rc = tc_sha512_update(&s, public_key, 32);
1129   assert(rc == TC_CRYPTO_SUCCESS);
1130   rc = tc_sha512_update(&s, message, message_len);
1131   assert(rc == TC_CRYPTO_SUCCESS);
1132 
1133   uint8_t h[TC_SHA512_DIGEST_SIZE];
1134   rc = tc_sha512_final(h, &s);
1135   assert(rc == TC_CRYPTO_SUCCESS);
1136 
1137 #endif
1138 
1139   x25519_sc_reduce(h);
1140 
1141   ge_p2 R;
1142   ge_double_scalarmult_vartime(&R, h, &A, scopy.u8);
1143 
1144   uint8_t rcheck[32];
1145   x25519_ge_tobytes(rcheck, &R);
1146 
1147   return CRYPTO_memcmp(rcheck, rcopy, sizeof(rcheck)) == 0;
1148 }
1149 
fe_cswap(fe * f,fe * g,fe_limb_t b)1150 static void fe_cswap(fe *f, fe *g, fe_limb_t b) {
1151   b = 0-b;
1152   for (unsigned i = 0; i < FE_NUM_LIMBS; i++) {
1153     fe_limb_t x = f->v[i] ^ g->v[i];
1154     x &= b;
1155     f->v[i] ^= x;
1156     g->v[i] ^= x;
1157   }
1158 }
1159 
fiat_25519_carry_scmul_121666(uint32_t out1[10],const uint32_t arg1[10])1160 static void fiat_25519_carry_scmul_121666(uint32_t out1[10], const uint32_t arg1[10]) {
1161   uint64_t x1 = ((uint64_t)UINT32_C(0x1db42) * (arg1[9]));
1162   uint64_t x2 = ((uint64_t)UINT32_C(0x1db42) * (arg1[8]));
1163   uint64_t x3 = ((uint64_t)UINT32_C(0x1db42) * (arg1[7]));
1164   uint64_t x4 = ((uint64_t)UINT32_C(0x1db42) * (arg1[6]));
1165   uint64_t x5 = ((uint64_t)UINT32_C(0x1db42) * (arg1[5]));
1166   uint64_t x6 = ((uint64_t)UINT32_C(0x1db42) * (arg1[4]));
1167   uint64_t x7 = ((uint64_t)UINT32_C(0x1db42) * (arg1[3]));
1168   uint64_t x8 = ((uint64_t)UINT32_C(0x1db42) * (arg1[2]));
1169   uint64_t x9 = ((uint64_t)UINT32_C(0x1db42) * (arg1[1]));
1170   uint64_t x10 = ((uint64_t)UINT32_C(0x1db42) * (arg1[0]));
1171   uint32_t x11 = (uint32_t)(x10 >> 26);
1172   uint32_t x12 = (uint32_t)(x10 & UINT32_C(0x3ffffff));
1173   uint64_t x13 = (x11 + x9);
1174   uint32_t x14 = (uint32_t)(x13 >> 25);
1175   uint32_t x15 = (uint32_t)(x13 & UINT32_C(0x1ffffff));
1176   uint64_t x16 = (x14 + x8);
1177   uint32_t x17 = (uint32_t)(x16 >> 26);
1178   uint32_t x18 = (uint32_t)(x16 & UINT32_C(0x3ffffff));
1179   uint64_t x19 = (x17 + x7);
1180   uint32_t x20 = (uint32_t)(x19 >> 25);
1181   uint32_t x21 = (uint32_t)(x19 & UINT32_C(0x1ffffff));
1182   uint64_t x22 = (x20 + x6);
1183   uint32_t x23 = (uint32_t)(x22 >> 26);
1184   uint32_t x24 = (uint32_t)(x22 & UINT32_C(0x3ffffff));
1185   uint64_t x25 = (x23 + x5);
1186   uint32_t x26 = (uint32_t)(x25 >> 25);
1187   uint32_t x27 = (uint32_t)(x25 & UINT32_C(0x1ffffff));
1188   uint64_t x28 = (x26 + x4);
1189   uint32_t x29 = (uint32_t)(x28 >> 26);
1190   uint32_t x30 = (uint32_t)(x28 & UINT32_C(0x3ffffff));
1191   uint64_t x31 = (x29 + x3);
1192   uint32_t x32 = (uint32_t)(x31 >> 25);
1193   uint32_t x33 = (uint32_t)(x31 & UINT32_C(0x1ffffff));
1194   uint64_t x34 = (x32 + x2);
1195   uint32_t x35 = (uint32_t)(x34 >> 26);
1196   uint32_t x36 = (uint32_t)(x34 & UINT32_C(0x3ffffff));
1197   uint64_t x37 = (x35 + x1);
1198   uint32_t x38 = (uint32_t)(x37 >> 25);
1199   uint32_t x39 = (uint32_t)(x37 & UINT32_C(0x1ffffff));
1200   uint32_t x40 = (x38 * (uint32_t)UINT8_C(0x13));
1201   uint32_t x41 = (x12 + x40);
1202   uint32_t x42 = (x41 >> 26);
1203   uint32_t x43 = (x41 & UINT32_C(0x3ffffff));
1204   uint32_t x44 = (x42 + x15);
1205   uint32_t x45 = (x44 >> 25);
1206   uint32_t x46 = (x44 & UINT32_C(0x1ffffff));
1207   uint32_t x47 = (x45 + x18);
1208   out1[0] = x43;
1209   out1[1] = x46;
1210   out1[2] = x47;
1211   out1[3] = x21;
1212   out1[4] = x24;
1213   out1[5] = x27;
1214   out1[6] = x30;
1215   out1[7] = x33;
1216   out1[8] = x36;
1217   out1[9] = x39;
1218 }
1219 
fe_mul121666(fe * h,const fe_loose * f)1220 static void fe_mul121666(fe *h, const fe_loose *f) {
1221   assert_fe_loose(f->v);
1222   fiat_25519_carry_scmul_121666(h->v, f->v);
1223   assert_fe(h->v);
1224 }
1225 
x25519_scalar_mult_generic(uint8_t out[32],const uint8_t scalar[32],const uint8_t point[32])1226 static void x25519_scalar_mult_generic(uint8_t out[32],
1227                                        const uint8_t scalar[32],
1228                                        const uint8_t point[32]) {
1229   fe x1, x2, z2, x3, z3, tmp0, tmp1;
1230   fe_loose x2l, z2l, x3l, tmp0l, tmp1l;
1231 
1232   uint8_t e[32];
1233   memcpy(e, scalar, 32);
1234   e[0] &= 248;
1235   e[31] &= 127;
1236   e[31] |= 64;
1237 
1238   // The following implementation was transcribed to Coq and proven to
1239   // correspond to unary scalar multiplication in affine coordinates given that
1240   // x1 != 0 is the x coordinate of some point on the curve. It was also checked
1241   // in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2
1242   // = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the
1243   // underlying field, so it applies to Curve25519 itself and the quadratic
1244   // twist of Curve25519. It was not proven in Coq that prime-field arithmetic
1245   // correctly simulates extension-field arithmetic on prime-field values.
1246   // The decoding of the byte array representation of e was not considered.
1247   // Specification of Montgomery curves in affine coordinates:
1248   // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
1249   // Proof that these form a group that is isomorphic to a Weierstrass curve:
1250   // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
1251   // Coq transcription and correctness proof of the loop (where scalarbits=255):
1252   // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
1253   // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
1254   // preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0
1255   fe_frombytes(&x1, point);
1256   fe_1(&x2);
1257   fe_0(&z2);
1258   fe_copy(&x3, &x1);
1259   fe_1(&z3);
1260 
1261   unsigned swap = 0;
1262   int pos;
1263   for (pos = 254; pos >= 0; --pos) {
1264     // loop invariant as of right before the test, for the case where x1 != 0:
1265     //   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero
1266     //   let r := e >> (pos+1) in the following equalities of projective points:
1267     //   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
1268     //   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
1269     //   x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P)
1270     unsigned b = 1 & (e[pos / 8] >> (pos & 7));
1271     swap ^= b;
1272     fe_cswap(&x2, &x3, swap);
1273     fe_cswap(&z2, &z3, swap);
1274     swap = b;
1275     // Coq transcription of ladderstep formula (called from transcribed loop):
1276     // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
1277     // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
1278     // x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
1279     // x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
1280     fe_sub(&tmp0l, &x3, &z3);
1281     fe_sub(&tmp1l, &x2, &z2);
1282     fe_add(&x2l, &x2, &z2);
1283     fe_add(&z2l, &x3, &z3);
1284     fe_mul_tll(&z3, &tmp0l, &x2l);
1285     fe_mul_tll(&z2, &z2l, &tmp1l);
1286     fe_sq_tl(&tmp0, &tmp1l);
1287     fe_sq_tl(&tmp1, &x2l);
1288     fe_add(&x3l, &z3, &z2);
1289     fe_sub(&z2l, &z3, &z2);
1290     fe_mul_ttt(&x2, &tmp1, &tmp0);
1291     fe_sub(&tmp1l, &tmp1, &tmp0);
1292     fe_sq_tl(&z2, &z2l);
1293     fe_mul121666(&z3, &tmp1l);
1294     fe_sq_tl(&x3, &x3l);
1295     fe_add(&tmp0l, &tmp0, &z3);
1296     fe_mul_ttt(&z3, &x1, &z2);
1297     fe_mul_tll(&z2, &tmp1l, &tmp0l);
1298   }
1299   // here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2)
1300   fe_cswap(&x2, &x3, swap);
1301   fe_cswap(&z2, &z3, swap);
1302 
1303   fe_invert(&z2, &z2);
1304   fe_mul_ttt(&x2, &x2, &z2);
1305   fe_tobytes(out, &x2);
1306 }
1307 
X25519(uint8_t out_shared_key[32],const uint8_t private_key[32],const uint8_t peer_public_value[32])1308 int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32],
1309            const uint8_t peer_public_value[32]) {
1310   static const uint8_t kZeros[32] = {0};
1311   x25519_scalar_mult_generic(out_shared_key, private_key, peer_public_value);
1312   // The all-zero output results when the input is a point of small order.
1313   return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0;
1314 }
1315