1 /*
2 * Core bignum functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 #include "common.h"
21
22 #if defined(MBEDTLS_BIGNUM_C)
23
24 #include <string.h>
25
26 #include "mbedtls/error.h"
27 #include "mbedtls/platform_util.h"
28 #include "constant_time_internal.h"
29
30 #include "mbedtls/platform.h"
31
32 #include "bignum_core.h"
33 #include "bn_mul.h"
34 #include "constant_time_internal.h"
35
mbedtls_mpi_core_clz(mbedtls_mpi_uint a)36 size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
37 {
38 size_t j;
39 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
40
41 for (j = 0; j < biL; j++) {
42 if (a & mask) {
43 break;
44 }
45
46 mask >>= 1;
47 }
48
49 return j;
50 }
51
mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint * A,size_t A_limbs)52 size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
53 {
54 size_t i, j;
55
56 if (A_limbs == 0) {
57 return 0;
58 }
59
60 for (i = A_limbs - 1; i > 0; i--) {
61 if (A[i] != 0) {
62 break;
63 }
64 }
65
66 j = biL - mbedtls_mpi_core_clz(A[i]);
67
68 return (i * biL) + j;
69 }
70
71 /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
72 * into the storage form used by mbedtls_mpi. */
mpi_bigendian_to_host_c(mbedtls_mpi_uint a)73 static mbedtls_mpi_uint mpi_bigendian_to_host_c(mbedtls_mpi_uint a)
74 {
75 uint8_t i;
76 unsigned char *a_ptr;
77 mbedtls_mpi_uint tmp = 0;
78
79 for (i = 0, a_ptr = (unsigned char *) &a; i < ciL; i++, a_ptr++) {
80 tmp <<= CHAR_BIT;
81 tmp |= (mbedtls_mpi_uint) *a_ptr;
82 }
83
84 return tmp;
85 }
86
mpi_bigendian_to_host(mbedtls_mpi_uint a)87 static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
88 {
89 if (MBEDTLS_IS_BIG_ENDIAN) {
90 /* Nothing to do on bigendian systems. */
91 return a;
92 } else {
93 switch (sizeof(mbedtls_mpi_uint)) {
94 case 4:
95 return (mbedtls_mpi_uint) MBEDTLS_BSWAP32((uint32_t) a);
96 case 8:
97 return (mbedtls_mpi_uint) MBEDTLS_BSWAP64((uint64_t) a);
98 }
99
100 /* Fall back to C-based reordering if we don't know the byte order
101 * or we couldn't use a compiler-specific builtin. */
102 return mpi_bigendian_to_host_c(a);
103 }
104 }
105
mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint * A,size_t A_limbs)106 void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
107 size_t A_limbs)
108 {
109 mbedtls_mpi_uint *cur_limb_left;
110 mbedtls_mpi_uint *cur_limb_right;
111 if (A_limbs == 0) {
112 return;
113 }
114
115 /*
116 * Traverse limbs and
117 * - adapt byte-order in each limb
118 * - swap the limbs themselves.
119 * For that, simultaneously traverse the limbs from left to right
120 * and from right to left, as long as the left index is not bigger
121 * than the right index (it's not a problem if limbs is odd and the
122 * indices coincide in the last iteration).
123 */
124 for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
125 cur_limb_left <= cur_limb_right;
126 cur_limb_left++, cur_limb_right--) {
127 mbedtls_mpi_uint tmp;
128 /* Note that if cur_limb_left == cur_limb_right,
129 * this code effectively swaps the bytes only once. */
130 tmp = mpi_bigendian_to_host(*cur_limb_left);
131 *cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
132 *cur_limb_right = tmp;
133 }
134 }
135
136 /* Whether min <= A, in constant time.
137 * A_limbs must be at least 1. */
mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,const mbedtls_mpi_uint * A,size_t A_limbs)138 unsigned mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
139 const mbedtls_mpi_uint *A,
140 size_t A_limbs)
141 {
142 /* min <= least significant limb? */
143 unsigned min_le_lsl = 1 ^ mbedtls_ct_mpi_uint_lt(A[0], min);
144
145 /* limbs other than the least significant one are all zero? */
146 mbedtls_mpi_uint msll_mask = 0;
147 for (size_t i = 1; i < A_limbs; i++) {
148 msll_mask |= A[i];
149 }
150 /* The most significant limbs of A are not all zero iff msll_mask != 0. */
151 unsigned msll_nonzero = mbedtls_ct_mpi_uint_mask(msll_mask) & 1;
152
153 /* min <= A iff the lowest limb of A is >= min or the other limbs
154 * are not all zero. */
155 return min_le_lsl | msll_nonzero;
156 }
157
mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,size_t limbs,unsigned char assign)158 void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
159 const mbedtls_mpi_uint *A,
160 size_t limbs,
161 unsigned char assign)
162 {
163 if (X == A) {
164 return;
165 }
166
167 mbedtls_ct_mpi_uint_cond_assign(limbs, X, A, assign);
168 }
169
mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint * X,mbedtls_mpi_uint * Y,size_t limbs,unsigned char swap)170 void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
171 mbedtls_mpi_uint *Y,
172 size_t limbs,
173 unsigned char swap)
174 {
175 if (X == Y) {
176 return;
177 }
178
179 /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
180 mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(swap);
181
182 for (size_t i = 0; i < limbs; i++) {
183 mbedtls_mpi_uint tmp = X[i];
184 X[i] = (X[i] & ~limb_mask) | (Y[i] & limb_mask);
185 Y[i] = (Y[i] & ~limb_mask) | (tmp & limb_mask);
186 }
187 }
188
mbedtls_mpi_core_read_le(mbedtls_mpi_uint * X,size_t X_limbs,const unsigned char * input,size_t input_length)189 int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
190 size_t X_limbs,
191 const unsigned char *input,
192 size_t input_length)
193 {
194 const size_t limbs = CHARS_TO_LIMBS(input_length);
195
196 if (X_limbs < limbs) {
197 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
198 }
199
200 if (X != NULL) {
201 memset(X, 0, X_limbs * ciL);
202
203 for (size_t i = 0; i < input_length; i++) {
204 size_t offset = ((i % ciL) << 3);
205 X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
206 }
207 }
208
209 return 0;
210 }
211
mbedtls_mpi_core_read_be(mbedtls_mpi_uint * X,size_t X_limbs,const unsigned char * input,size_t input_length)212 int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
213 size_t X_limbs,
214 const unsigned char *input,
215 size_t input_length)
216 {
217 const size_t limbs = CHARS_TO_LIMBS(input_length);
218
219 if (X_limbs < limbs) {
220 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
221 }
222
223 /* If X_limbs is 0, input_length must also be 0 (from previous test).
224 * Nothing to do. */
225 if (X_limbs == 0) {
226 return 0;
227 }
228
229 memset(X, 0, X_limbs * ciL);
230
231 /* memcpy() with (NULL, 0) is undefined behaviour */
232 if (input_length != 0) {
233 size_t overhead = (X_limbs * ciL) - input_length;
234 unsigned char *Xp = (unsigned char *) X;
235 memcpy(Xp + overhead, input, input_length);
236 }
237
238 mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
239
240 return 0;
241 }
242
mbedtls_mpi_core_write_le(const mbedtls_mpi_uint * A,size_t A_limbs,unsigned char * output,size_t output_length)243 int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
244 size_t A_limbs,
245 unsigned char *output,
246 size_t output_length)
247 {
248 size_t stored_bytes = A_limbs * ciL;
249 size_t bytes_to_copy;
250
251 if (stored_bytes < output_length) {
252 bytes_to_copy = stored_bytes;
253 } else {
254 bytes_to_copy = output_length;
255
256 /* The output buffer is smaller than the allocated size of A.
257 * However A may fit if its leading bytes are zero. */
258 for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
259 if (GET_BYTE(A, i) != 0) {
260 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
261 }
262 }
263 }
264
265 for (size_t i = 0; i < bytes_to_copy; i++) {
266 output[i] = GET_BYTE(A, i);
267 }
268
269 if (stored_bytes < output_length) {
270 /* Write trailing 0 bytes */
271 memset(output + stored_bytes, 0, output_length - stored_bytes);
272 }
273
274 return 0;
275 }
276
mbedtls_mpi_core_write_be(const mbedtls_mpi_uint * X,size_t X_limbs,unsigned char * output,size_t output_length)277 int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
278 size_t X_limbs,
279 unsigned char *output,
280 size_t output_length)
281 {
282 size_t stored_bytes;
283 size_t bytes_to_copy;
284 unsigned char *p;
285
286 stored_bytes = X_limbs * ciL;
287
288 if (stored_bytes < output_length) {
289 /* There is enough space in the output buffer. Write initial
290 * null bytes and record the position at which to start
291 * writing the significant bytes. In this case, the execution
292 * trace of this function does not depend on the value of the
293 * number. */
294 bytes_to_copy = stored_bytes;
295 p = output + output_length - stored_bytes;
296 memset(output, 0, output_length - stored_bytes);
297 } else {
298 /* The output buffer is smaller than the allocated size of X.
299 * However X may fit if its leading bytes are zero. */
300 bytes_to_copy = output_length;
301 p = output;
302 for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
303 if (GET_BYTE(X, i) != 0) {
304 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
305 }
306 }
307 }
308
309 for (size_t i = 0; i < bytes_to_copy; i++) {
310 p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
311 }
312
313 return 0;
314 }
315
mbedtls_mpi_core_shift_r(mbedtls_mpi_uint * X,size_t limbs,size_t count)316 void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
317 size_t count)
318 {
319 size_t i, v0, v1;
320 mbedtls_mpi_uint r0 = 0, r1;
321
322 v0 = count / biL;
323 v1 = count & (biL - 1);
324
325 if (v0 > limbs || (v0 == limbs && v1 > 0)) {
326 memset(X, 0, limbs * ciL);
327 return;
328 }
329
330 /*
331 * shift by count / limb_size
332 */
333 if (v0 > 0) {
334 for (i = 0; i < limbs - v0; i++) {
335 X[i] = X[i + v0];
336 }
337
338 for (; i < limbs; i++) {
339 X[i] = 0;
340 }
341 }
342
343 /*
344 * shift by count % limb_size
345 */
346 if (v1 > 0) {
347 for (i = limbs; i > 0; i--) {
348 r1 = X[i - 1] << (biL - v1);
349 X[i - 1] >>= v1;
350 X[i - 1] |= r0;
351 r0 = r1;
352 }
353 }
354 }
355
mbedtls_mpi_core_add(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * B,size_t limbs)356 mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
357 const mbedtls_mpi_uint *A,
358 const mbedtls_mpi_uint *B,
359 size_t limbs)
360 {
361 mbedtls_mpi_uint c = 0;
362
363 for (size_t i = 0; i < limbs; i++) {
364 mbedtls_mpi_uint t = c + A[i];
365 c = (t < A[i]);
366 t += B[i];
367 c += (t < B[i]);
368 X[i] = t;
369 }
370
371 return c;
372 }
373
mbedtls_mpi_core_add_if(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,size_t limbs,unsigned cond)374 mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
375 const mbedtls_mpi_uint *A,
376 size_t limbs,
377 unsigned cond)
378 {
379 mbedtls_mpi_uint c = 0;
380
381 /* all-bits 0 if cond is 0, all-bits 1 if cond is non-0 */
382 const mbedtls_mpi_uint mask = mbedtls_ct_mpi_uint_mask(cond);
383
384 for (size_t i = 0; i < limbs; i++) {
385 mbedtls_mpi_uint add = mask & A[i];
386 mbedtls_mpi_uint t = c + X[i];
387 c = (t < X[i]);
388 t += add;
389 c += (t < add);
390 X[i] = t;
391 }
392
393 return c;
394 }
395
mbedtls_mpi_core_sub(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * B,size_t limbs)396 mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
397 const mbedtls_mpi_uint *A,
398 const mbedtls_mpi_uint *B,
399 size_t limbs)
400 {
401 mbedtls_mpi_uint c = 0;
402
403 for (size_t i = 0; i < limbs; i++) {
404 mbedtls_mpi_uint z = (A[i] < c);
405 mbedtls_mpi_uint t = A[i] - c;
406 c = (t < B[i]) + z;
407 X[i] = t - B[i];
408 }
409
410 return c;
411 }
412
mbedtls_mpi_core_mla(mbedtls_mpi_uint * d,size_t d_len,const mbedtls_mpi_uint * s,size_t s_len,mbedtls_mpi_uint b)413 mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
414 const mbedtls_mpi_uint *s, size_t s_len,
415 mbedtls_mpi_uint b)
416 {
417 mbedtls_mpi_uint c = 0; /* carry */
418 /*
419 * It is a documented precondition of this function that d_len >= s_len.
420 * If that's not the case, we swap these round: this turns what would be
421 * a buffer overflow into an incorrect result.
422 */
423 if (d_len < s_len) {
424 s_len = d_len;
425 }
426 size_t excess_len = d_len - s_len;
427 size_t steps_x8 = s_len / 8;
428 size_t steps_x1 = s_len & 7;
429
430 while (steps_x8--) {
431 MULADDC_X8_INIT
432 MULADDC_X8_CORE
433 MULADDC_X8_STOP
434 }
435
436 while (steps_x1--) {
437 MULADDC_X1_INIT
438 MULADDC_X1_CORE
439 MULADDC_X1_STOP
440 }
441
442 while (excess_len--) {
443 *d += c;
444 c = (*d < c);
445 d++;
446 }
447
448 return c;
449 }
450
451 /*
452 * Fast Montgomery initialization (thanks to Tom St Denis).
453 */
mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint * N)454 mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
455 {
456 mbedtls_mpi_uint x = N[0];
457
458 x += ((N[0] + 2) & 4) << 1;
459
460 for (unsigned int i = biL; i >= 8; i /= 2) {
461 x *= (2 - (N[0] * x));
462 }
463
464 return ~x + 1;
465 }
466
mbedtls_mpi_core_montmul(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * B,size_t B_limbs,const mbedtls_mpi_uint * N,size_t AN_limbs,mbedtls_mpi_uint mm,mbedtls_mpi_uint * T)467 void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
468 const mbedtls_mpi_uint *A,
469 const mbedtls_mpi_uint *B,
470 size_t B_limbs,
471 const mbedtls_mpi_uint *N,
472 size_t AN_limbs,
473 mbedtls_mpi_uint mm,
474 mbedtls_mpi_uint *T)
475 {
476 memset(T, 0, (2 * AN_limbs + 1) * ciL);
477
478 for (size_t i = 0; i < AN_limbs; i++) {
479 /* T = (T + u0*B + u1*N) / 2^biL */
480 mbedtls_mpi_uint u0 = A[i];
481 mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
482
483 (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
484 (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
485
486 T++;
487 }
488
489 /*
490 * The result we want is (T >= N) ? T - N : T.
491 *
492 * For better constant-time properties in this function, we always do the
493 * subtraction, with the result in X.
494 *
495 * We also look to see if there was any carry in the final additions in the
496 * loop above.
497 */
498
499 mbedtls_mpi_uint carry = T[AN_limbs];
500 mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
501
502 /*
503 * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
504 *
505 * T can be in one of 3 ranges:
506 *
507 * 1) T < N : (carry, borrow) = (0, 1): we want T
508 * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
509 * 3) T >= R : (carry, borrow) = (1, 1): we want X
510 *
511 * and (carry, borrow) = (1, 0) can't happen.
512 *
513 * So the correct return value is already in X if (carry ^ borrow) = 0,
514 * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
515 */
516 mbedtls_ct_mpi_uint_cond_assign(AN_limbs, X, T, (unsigned char) (carry ^ borrow));
517 }
518
mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi * X,const mbedtls_mpi * N)519 int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
520 const mbedtls_mpi *N)
521 {
522 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
523
524 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
525 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
526 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
527 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
528
529 cleanup:
530 return ret;
531 }
532
533 MBEDTLS_STATIC_TESTABLE
mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint * dest,const mbedtls_mpi_uint * table,size_t limbs,size_t count,size_t index)534 void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
535 const mbedtls_mpi_uint *table,
536 size_t limbs,
537 size_t count,
538 size_t index)
539 {
540 for (size_t i = 0; i < count; i++, table += limbs) {
541 unsigned char assign = mbedtls_ct_size_bool_eq(i, index);
542 mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
543 }
544 }
545
546 /* Fill X with n_bytes random bytes.
547 * X must already have room for those bytes.
548 * The ordering of the bytes returned from the RNG is suitable for
549 * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
550 * mbedtls_mpi_core_random()).
551 */
mbedtls_mpi_core_fill_random(mbedtls_mpi_uint * X,size_t X_limbs,size_t n_bytes,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)552 int mbedtls_mpi_core_fill_random(
553 mbedtls_mpi_uint *X, size_t X_limbs,
554 size_t n_bytes,
555 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
556 {
557 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
558 const size_t limbs = CHARS_TO_LIMBS(n_bytes);
559 const size_t overhead = (limbs * ciL) - n_bytes;
560
561 if (X_limbs < limbs) {
562 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
563 }
564
565 memset(X, 0, overhead);
566 memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
567 MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
568 mbedtls_mpi_core_bigendian_to_host(X, limbs);
569
570 cleanup:
571 return ret;
572 }
573
mbedtls_mpi_core_random(mbedtls_mpi_uint * X,mbedtls_mpi_uint min,const mbedtls_mpi_uint * N,size_t limbs,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)574 int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
575 mbedtls_mpi_uint min,
576 const mbedtls_mpi_uint *N,
577 size_t limbs,
578 int (*f_rng)(void *, unsigned char *, size_t),
579 void *p_rng)
580 {
581 unsigned ge_lower = 1, lt_upper = 0;
582 size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
583 size_t n_bytes = (n_bits + 7) / 8;
584 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
585
586 /*
587 * When min == 0, each try has at worst a probability 1/2 of failing
588 * (the msb has a probability 1/2 of being 0, and then the result will
589 * be < N), so after 30 tries failure probability is a most 2**(-30).
590 *
591 * When N is just below a power of 2, as is the case when generating
592 * a random scalar on most elliptic curves, 1 try is enough with
593 * overwhelming probability. When N is just above a power of 2,
594 * as when generating a random scalar on secp224k1, each try has
595 * a probability of failing that is almost 1/2.
596 *
597 * The probabilities are almost the same if min is nonzero but negligible
598 * compared to N. This is always the case when N is crypto-sized, but
599 * it's convenient to support small N for testing purposes. When N
600 * is small, use a higher repeat count, otherwise the probability of
601 * failure is macroscopic.
602 */
603 int count = (n_bytes > 4 ? 30 : 250);
604
605 /*
606 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
607 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
608 * - use the same byte ordering;
609 * - keep the leftmost n_bits bits of the generated octet string;
610 * - try until result is in the desired range.
611 * This also avoids any bias, which is especially important for ECDSA.
612 */
613 do {
614 MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
615 n_bytes,
616 f_rng, p_rng));
617 mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
618
619 if (--count == 0) {
620 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
621 goto cleanup;
622 }
623
624 ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
625 lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
626 } while (ge_lower == 0 || lt_upper == 0);
627
628 cleanup:
629 return ret;
630 }
631
632 /* BEGIN MERGE SLOT 1 */
633
exp_mod_get_window_size(size_t Ebits)634 static size_t exp_mod_get_window_size(size_t Ebits)
635 {
636 size_t wsize = (Ebits > 671) ? 6 : (Ebits > 239) ? 5 :
637 (Ebits > 79) ? 4 : 1;
638
639 #if (MBEDTLS_MPI_WINDOW_SIZE < 6)
640 if (wsize > MBEDTLS_MPI_WINDOW_SIZE) {
641 wsize = MBEDTLS_MPI_WINDOW_SIZE;
642 }
643 #endif
644
645 return wsize;
646 }
647
mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs,size_t E_limbs)648 size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
649 {
650 const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
651 const size_t welem = ((size_t) 1) << wsize;
652
653 /* How big does each part of the working memory pool need to be? */
654 const size_t table_limbs = welem * AN_limbs;
655 const size_t select_limbs = AN_limbs;
656 const size_t temp_limbs = 2 * AN_limbs + 1;
657
658 return table_limbs + select_limbs + temp_limbs;
659 }
660
exp_mod_precompute_window(const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * N,size_t AN_limbs,mbedtls_mpi_uint mm,const mbedtls_mpi_uint * RR,size_t welem,mbedtls_mpi_uint * Wtable,mbedtls_mpi_uint * temp)661 static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
662 const mbedtls_mpi_uint *N,
663 size_t AN_limbs,
664 mbedtls_mpi_uint mm,
665 const mbedtls_mpi_uint *RR,
666 size_t welem,
667 mbedtls_mpi_uint *Wtable,
668 mbedtls_mpi_uint *temp)
669 {
670 /* W[0] = 1 (in Montgomery presentation) */
671 memset(Wtable, 0, AN_limbs * ciL);
672 Wtable[0] = 1;
673 mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
674
675 /* W[1] = A (already in Montgomery presentation) */
676 mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
677 memcpy(W1, A, AN_limbs * ciL);
678
679 /* W[i+1] = W[i] * W[1], i >= 2 */
680 mbedtls_mpi_uint *Wprev = W1;
681 for (size_t i = 2; i < welem; i++) {
682 mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
683 mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
684 Wprev = Wcur;
685 }
686 }
687
688 /* Exponentiation: X := A^E mod N.
689 *
690 * A must already be in Montgomery form.
691 *
692 * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
693 *
694 * RR must contain 2^{2*biL} mod N.
695 *
696 * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
697 * (The difference is that the body in our loop processes a single bit instead
698 * of a full window.)
699 */
mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * N,size_t AN_limbs,const mbedtls_mpi_uint * E,size_t E_limbs,const mbedtls_mpi_uint * RR,mbedtls_mpi_uint * T)700 void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
701 const mbedtls_mpi_uint *A,
702 const mbedtls_mpi_uint *N,
703 size_t AN_limbs,
704 const mbedtls_mpi_uint *E,
705 size_t E_limbs,
706 const mbedtls_mpi_uint *RR,
707 mbedtls_mpi_uint *T)
708 {
709 const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
710 const size_t welem = ((size_t) 1) << wsize;
711
712 /* This is how we will use the temporary storage T, which must have space
713 * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
714 const size_t table_limbs = welem * AN_limbs;
715 const size_t select_limbs = AN_limbs;
716
717 /* Pointers to specific parts of the temporary working memory pool */
718 mbedtls_mpi_uint *const Wtable = T;
719 mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
720 mbedtls_mpi_uint *const temp = Wselect + select_limbs;
721
722 /*
723 * Window precomputation
724 */
725
726 const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
727
728 /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
729 exp_mod_precompute_window(A, N, AN_limbs,
730 mm, RR,
731 welem, Wtable, temp);
732
733 /*
734 * Fixed window exponentiation
735 */
736
737 /* X = 1 (in Montgomery presentation) initially */
738 memcpy(X, Wtable, AN_limbs * ciL);
739
740 /* We'll process the bits of E from most significant
741 * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
742 * (limb_index=0, E_bit_index=0). */
743 size_t E_limb_index = E_limbs;
744 size_t E_bit_index = 0;
745 /* At any given time, window contains window_bits bits from E.
746 * window_bits can go up to wsize. */
747 size_t window_bits = 0;
748 mbedtls_mpi_uint window = 0;
749
750 do {
751 /* Square */
752 mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
753
754 /* Move to the next bit of the exponent */
755 if (E_bit_index == 0) {
756 --E_limb_index;
757 E_bit_index = biL - 1;
758 } else {
759 --E_bit_index;
760 }
761 /* Insert next exponent bit into window */
762 ++window_bits;
763 window <<= 1;
764 window |= (E[E_limb_index] >> E_bit_index) & 1;
765
766 /* Clear window if it's full. Also clear the window at the end,
767 * when we've finished processing the exponent. */
768 if (window_bits == wsize ||
769 (E_bit_index == 0 && E_limb_index == 0)) {
770 /* Select Wtable[window] without leaking window through
771 * memory access patterns. */
772 mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
773 AN_limbs, welem, window);
774 /* Multiply X by the selected element. */
775 mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
776 temp);
777 window = 0;
778 window_bits = 0;
779 }
780 } while (!(E_bit_index == 0 && E_limb_index == 0));
781 }
782
783 /* END MERGE SLOT 1 */
784
785 /* BEGIN MERGE SLOT 2 */
786
787 /* END MERGE SLOT 2 */
788
789 /* BEGIN MERGE SLOT 3 */
790
mbedtls_mpi_core_sub_int(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,mbedtls_mpi_uint c,size_t limbs)791 mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
792 const mbedtls_mpi_uint *A,
793 mbedtls_mpi_uint c, /* doubles as carry */
794 size_t limbs)
795 {
796 for (size_t i = 0; i < limbs; i++) {
797 mbedtls_mpi_uint s = A[i];
798 mbedtls_mpi_uint t = s - c;
799 c = (t > s);
800 X[i] = t;
801 }
802
803 return c;
804 }
805
mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint * A,size_t limbs)806 mbedtls_mpi_uint mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
807 size_t limbs)
808 {
809 mbedtls_mpi_uint bits = 0;
810
811 for (size_t i = 0; i < limbs; i++) {
812 bits |= A[i];
813 }
814
815 return bits;
816 }
817
mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * N,size_t AN_limbs,mbedtls_mpi_uint mm,const mbedtls_mpi_uint * rr,mbedtls_mpi_uint * T)818 void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
819 const mbedtls_mpi_uint *A,
820 const mbedtls_mpi_uint *N,
821 size_t AN_limbs,
822 mbedtls_mpi_uint mm,
823 const mbedtls_mpi_uint *rr,
824 mbedtls_mpi_uint *T)
825 {
826 mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
827 }
828
mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint * X,const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * N,size_t AN_limbs,mbedtls_mpi_uint mm,mbedtls_mpi_uint * T)829 void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
830 const mbedtls_mpi_uint *A,
831 const mbedtls_mpi_uint *N,
832 size_t AN_limbs,
833 mbedtls_mpi_uint mm,
834 mbedtls_mpi_uint *T)
835 {
836 const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
837
838 mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
839 }
840
841 /* END MERGE SLOT 3 */
842
843 /* BEGIN MERGE SLOT 4 */
844
845 /* END MERGE SLOT 4 */
846
847 /* BEGIN MERGE SLOT 5 */
848
849 /* END MERGE SLOT 5 */
850
851 /* BEGIN MERGE SLOT 6 */
852
853 /* END MERGE SLOT 6 */
854
855 /* BEGIN MERGE SLOT 7 */
856
857 /* END MERGE SLOT 7 */
858
859 /* BEGIN MERGE SLOT 8 */
860
861 /* END MERGE SLOT 8 */
862
863 /* BEGIN MERGE SLOT 9 */
864
865 /* END MERGE SLOT 9 */
866
867 /* BEGIN MERGE SLOT 10 */
868
869 /* END MERGE SLOT 10 */
870
871 #endif /* MBEDTLS_BIGNUM_C */
872