1 /*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 /*
21 * References:
22 *
23 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
24 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
25 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
26 * RFC 4492 for the related TLS structures and constants
27 * RFC 7748 for the Curve448 and Curve25519 curve definitions
28 *
29 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
30 *
31 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
32 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
33 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
34 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
35 *
36 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
37 * render ECC resistant against Side Channel Attacks. IACR Cryptology
38 * ePrint Archive, 2004, vol. 2004, p. 342.
39 * <http://eprint.iacr.org/2004/342.pdf>
40 */
41
42 #include "common.h"
43
44 /**
45 * \brief Function level alternative implementation.
46 *
47 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
48 * replace certain functions in this module. The alternative implementations are
49 * typically hardware accelerators and need to activate the hardware before the
50 * computation starts and deactivate it after it finishes. The
51 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
52 * this purpose.
53 *
54 * To preserve the correct functionality the following conditions must hold:
55 *
56 * - The alternative implementation must be activated by
57 * mbedtls_internal_ecp_init() before any of the replaceable functions is
58 * called.
59 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
60 * implementation is activated.
61 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
62 * implementation is activated.
63 * - Public functions must not return while the alternative implementation is
64 * activated.
65 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
66 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
67 * \endcode ensures that the alternative implementation supports the current
68 * group.
69 */
70 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
71 #endif
72
73 #if defined(MBEDTLS_ECP_C)
74
75 #include "mbedtls/ecp.h"
76 #include "mbedtls/threading.h"
77 #include "mbedtls/platform_util.h"
78 #include "mbedtls/error.h"
79
80 #include "bn_mul.h"
81 #include "ecp_invasive.h"
82
83 #include <string.h>
84
85 #if !defined(MBEDTLS_ECP_ALT)
86
87 #include "mbedtls/platform.h"
88
89 #include "ecp_internal_alt.h"
90
91 #if defined(MBEDTLS_SELF_TEST)
92 /*
93 * Counts of point addition and doubling, and field multiplications.
94 * Used to test resistance of point multiplication to simple timing attacks.
95 */
96 static unsigned long add_count, dbl_count, mul_count;
97 #endif
98
99 #if defined(MBEDTLS_ECP_RESTARTABLE)
100 /*
101 * Maximum number of "basic operations" to be done in a row.
102 *
103 * Default value 0 means that ECC operations will not yield.
104 * Note that regardless of the value of ecp_max_ops, always at
105 * least one step is performed before yielding.
106 *
107 * Setting ecp_max_ops=1 can be suitable for testing purposes
108 * as it will interrupt computation at all possible points.
109 */
110 static unsigned ecp_max_ops = 0;
111
112 /*
113 * Set ecp_max_ops
114 */
mbedtls_ecp_set_max_ops(unsigned max_ops)115 void mbedtls_ecp_set_max_ops( unsigned max_ops )
116 {
117 ecp_max_ops = max_ops;
118 }
119
120 /*
121 * Check if restart is enabled
122 */
mbedtls_ecp_restart_is_enabled(void)123 int mbedtls_ecp_restart_is_enabled( void )
124 {
125 return( ecp_max_ops != 0 );
126 }
127
128 /*
129 * Restart sub-context for ecp_mul_comb()
130 */
131 struct mbedtls_ecp_restart_mul
132 {
133 mbedtls_ecp_point R; /* current intermediate result */
134 size_t i; /* current index in various loops, 0 outside */
135 mbedtls_ecp_point *T; /* table for precomputed points */
136 unsigned char T_size; /* number of points in table T */
137 enum { /* what were we doing last time we returned? */
138 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
139 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
140 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
141 ecp_rsm_pre_add, /* precompute remaining points by adding */
142 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
143 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
144 ecp_rsm_final_norm, /* do the final normalization */
145 } state;
146 };
147
148 /*
149 * Init restart_mul sub-context
150 */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)151 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
152 {
153 mbedtls_ecp_point_init( &ctx->R );
154 ctx->i = 0;
155 ctx->T = NULL;
156 ctx->T_size = 0;
157 ctx->state = ecp_rsm_init;
158 }
159
160 /*
161 * Free the components of a restart_mul sub-context
162 */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)163 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
164 {
165 unsigned char i;
166
167 if( ctx == NULL )
168 return;
169
170 mbedtls_ecp_point_free( &ctx->R );
171
172 if( ctx->T != NULL )
173 {
174 for( i = 0; i < ctx->T_size; i++ )
175 mbedtls_ecp_point_free( ctx->T + i );
176 mbedtls_free( ctx->T );
177 }
178
179 ecp_restart_rsm_init( ctx );
180 }
181
182 /*
183 * Restart context for ecp_muladd()
184 */
185 struct mbedtls_ecp_restart_muladd
186 {
187 mbedtls_ecp_point mP; /* mP value */
188 mbedtls_ecp_point R; /* R intermediate result */
189 enum { /* what should we do next? */
190 ecp_rsma_mul1 = 0, /* first multiplication */
191 ecp_rsma_mul2, /* second multiplication */
192 ecp_rsma_add, /* addition */
193 ecp_rsma_norm, /* normalization */
194 } state;
195 };
196
197 /*
198 * Init restart_muladd sub-context
199 */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)200 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
201 {
202 mbedtls_ecp_point_init( &ctx->mP );
203 mbedtls_ecp_point_init( &ctx->R );
204 ctx->state = ecp_rsma_mul1;
205 }
206
207 /*
208 * Free the components of a restart_muladd sub-context
209 */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)210 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
211 {
212 if( ctx == NULL )
213 return;
214
215 mbedtls_ecp_point_free( &ctx->mP );
216 mbedtls_ecp_point_free( &ctx->R );
217
218 ecp_restart_ma_init( ctx );
219 }
220
221 /*
222 * Initialize a restart context
223 */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)224 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
225 {
226 ctx->ops_done = 0;
227 ctx->depth = 0;
228 ctx->rsm = NULL;
229 ctx->ma = NULL;
230 }
231
232 /*
233 * Free the components of a restart context
234 */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)235 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
236 {
237 if( ctx == NULL )
238 return;
239
240 ecp_restart_rsm_free( ctx->rsm );
241 mbedtls_free( ctx->rsm );
242
243 ecp_restart_ma_free( ctx->ma );
244 mbedtls_free( ctx->ma );
245
246 mbedtls_ecp_restart_init( ctx );
247 }
248
249 /*
250 * Check if we can do the next step
251 */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)252 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
253 mbedtls_ecp_restart_ctx *rs_ctx,
254 unsigned ops )
255 {
256 if( rs_ctx != NULL && ecp_max_ops != 0 )
257 {
258 /* scale depending on curve size: the chosen reference is 256-bit,
259 * and multiplication is quadratic. Round to the closest integer. */
260 if( grp->pbits >= 512 )
261 ops *= 4;
262 else if( grp->pbits >= 384 )
263 ops *= 2;
264
265 /* Avoid infinite loops: always allow first step.
266 * Because of that, however, it's not generally true
267 * that ops_done <= ecp_max_ops, so the check
268 * ops_done > ecp_max_ops below is mandatory. */
269 if( ( rs_ctx->ops_done != 0 ) &&
270 ( rs_ctx->ops_done > ecp_max_ops ||
271 ops > ecp_max_ops - rs_ctx->ops_done ) )
272 {
273 return( MBEDTLS_ERR_ECP_IN_PROGRESS );
274 }
275
276 /* update running count */
277 rs_ctx->ops_done += ops;
278 }
279
280 return( 0 );
281 }
282
283 /* Call this when entering a function that needs its own sub-context */
284 #define ECP_RS_ENTER( SUB ) do { \
285 /* reset ops count for this call if top-level */ \
286 if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \
287 rs_ctx->ops_done = 0; \
288 \
289 /* set up our own sub-context if needed */ \
290 if( mbedtls_ecp_restart_is_enabled() && \
291 rs_ctx != NULL && rs_ctx->SUB == NULL ) \
292 { \
293 rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
294 if( rs_ctx->SUB == NULL ) \
295 return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
296 \
297 ecp_restart_## SUB ##_init( rs_ctx->SUB ); \
298 } \
299 } while( 0 )
300
301 /* Call this when leaving a function that needs its own sub-context */
302 #define ECP_RS_LEAVE( SUB ) do { \
303 /* clear our sub-context when not in progress (done or error) */ \
304 if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
305 ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
306 { \
307 ecp_restart_## SUB ##_free( rs_ctx->SUB ); \
308 mbedtls_free( rs_ctx->SUB ); \
309 rs_ctx->SUB = NULL; \
310 } \
311 \
312 if( rs_ctx != NULL ) \
313 rs_ctx->depth--; \
314 } while( 0 )
315
316 #else /* MBEDTLS_ECP_RESTARTABLE */
317
318 #define ECP_RS_ENTER( sub ) (void) rs_ctx;
319 #define ECP_RS_LEAVE( sub ) (void) rs_ctx;
320
321 #endif /* MBEDTLS_ECP_RESTARTABLE */
322
mpi_init_many(mbedtls_mpi * arr,size_t size)323 static void mpi_init_many( mbedtls_mpi *arr, size_t size )
324 {
325 while( size-- )
326 mbedtls_mpi_init( arr++ );
327 }
328
mpi_free_many(mbedtls_mpi * arr,size_t size)329 static void mpi_free_many( mbedtls_mpi *arr, size_t size )
330 {
331 while( size-- )
332 mbedtls_mpi_free( arr++ );
333 }
334
335 /*
336 * List of supported curves:
337 * - internal ID
338 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
339 * - size in bits
340 * - readable name
341 *
342 * Curves are listed in order: largest curves first, and for a given size,
343 * fastest curves first.
344 *
345 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
346 */
347 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
348 {
349 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
350 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
351 #endif
352 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
353 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
354 #endif
355 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
356 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
357 #endif
358 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
359 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
360 #endif
361 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
362 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
365 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
368 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
371 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
374 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
377 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
380 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
383 { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
384 #endif
385 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
386 { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
387 #endif
388 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
389 };
390
391 #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
392 sizeof( ecp_supported_curves[0] )
393
394 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
395
396 /*
397 * List of supported curves and associated info
398 */
mbedtls_ecp_curve_list(void)399 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
400 {
401 return( ecp_supported_curves );
402 }
403
404 /*
405 * List of supported curves, group ID only
406 */
mbedtls_ecp_grp_id_list(void)407 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
408 {
409 static int init_done = 0;
410
411 if( ! init_done )
412 {
413 size_t i = 0;
414 const mbedtls_ecp_curve_info *curve_info;
415
416 for( curve_info = mbedtls_ecp_curve_list();
417 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
418 curve_info++ )
419 {
420 ecp_supported_grp_id[i++] = curve_info->grp_id;
421 }
422 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
423
424 init_done = 1;
425 }
426
427 return( ecp_supported_grp_id );
428 }
429
430 /*
431 * Get the curve info for the internal identifier
432 */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)433 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
434 {
435 const mbedtls_ecp_curve_info *curve_info;
436
437 for( curve_info = mbedtls_ecp_curve_list();
438 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
439 curve_info++ )
440 {
441 if( curve_info->grp_id == grp_id )
442 return( curve_info );
443 }
444
445 return( NULL );
446 }
447
448 /*
449 * Get the curve info from the TLS identifier
450 */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)451 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
452 {
453 const mbedtls_ecp_curve_info *curve_info;
454
455 for( curve_info = mbedtls_ecp_curve_list();
456 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
457 curve_info++ )
458 {
459 if( curve_info->tls_id == tls_id )
460 return( curve_info );
461 }
462
463 return( NULL );
464 }
465
466 /*
467 * Get the curve info from the name
468 */
mbedtls_ecp_curve_info_from_name(const char * name)469 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
470 {
471 const mbedtls_ecp_curve_info *curve_info;
472
473 if( name == NULL )
474 return( NULL );
475
476 for( curve_info = mbedtls_ecp_curve_list();
477 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
478 curve_info++ )
479 {
480 if( strcmp( curve_info->name, name ) == 0 )
481 return( curve_info );
482 }
483
484 return( NULL );
485 }
486
487 /*
488 * Get the type of a curve
489 */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)490 mbedtls_ecp_curve_type mbedtls_ecp_get_type( const mbedtls_ecp_group *grp )
491 {
492 if( grp->G.X.p == NULL )
493 return( MBEDTLS_ECP_TYPE_NONE );
494
495 if( grp->G.Y.p == NULL )
496 return( MBEDTLS_ECP_TYPE_MONTGOMERY );
497 else
498 return( MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS );
499 }
500
501 /*
502 * Initialize (the components of) a point
503 */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)504 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
505 {
506 mbedtls_mpi_init( &pt->X );
507 mbedtls_mpi_init( &pt->Y );
508 mbedtls_mpi_init( &pt->Z );
509 }
510
511 /*
512 * Initialize (the components of) a group
513 */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)514 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
515 {
516 grp->id = MBEDTLS_ECP_DP_NONE;
517 mbedtls_mpi_init( &grp->P );
518 mbedtls_mpi_init( &grp->A );
519 mbedtls_mpi_init( &grp->B );
520 mbedtls_ecp_point_init( &grp->G );
521 mbedtls_mpi_init( &grp->N );
522 grp->pbits = 0;
523 grp->nbits = 0;
524 grp->h = 0;
525 grp->modp = NULL;
526 grp->t_pre = NULL;
527 grp->t_post = NULL;
528 grp->t_data = NULL;
529 grp->T = NULL;
530 grp->T_size = 0;
531 }
532
533 /*
534 * Initialize (the components of) a key pair
535 */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)536 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
537 {
538 mbedtls_ecp_group_init( &key->grp );
539 mbedtls_mpi_init( &key->d );
540 mbedtls_ecp_point_init( &key->Q );
541 }
542
543 /*
544 * Unallocate (the components of) a point
545 */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)546 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
547 {
548 if( pt == NULL )
549 return;
550
551 mbedtls_mpi_free( &( pt->X ) );
552 mbedtls_mpi_free( &( pt->Y ) );
553 mbedtls_mpi_free( &( pt->Z ) );
554 }
555
556 /*
557 * Check that the comb table (grp->T) is static initialized.
558 */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)559 static int ecp_group_is_static_comb_table( const mbedtls_ecp_group *grp ) {
560 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561 return grp->T != NULL && grp->T_size == 0;
562 #else
563 (void) grp;
564 return 0;
565 #endif
566 }
567
568 /*
569 * Unallocate (the components of) a group
570 */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)571 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
572 {
573 size_t i;
574
575 if( grp == NULL )
576 return;
577
578 if( grp->h != 1 )
579 {
580 mbedtls_mpi_free( &grp->P );
581 mbedtls_mpi_free( &grp->A );
582 mbedtls_mpi_free( &grp->B );
583 mbedtls_ecp_point_free( &grp->G );
584 mbedtls_mpi_free( &grp->N );
585 }
586
587 if( !ecp_group_is_static_comb_table(grp) && grp->T != NULL )
588 {
589 for( i = 0; i < grp->T_size; i++ )
590 mbedtls_ecp_point_free( &grp->T[i] );
591 mbedtls_free( grp->T );
592 }
593
594 mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
595 }
596
597 /*
598 * Unallocate (the components of) a key pair
599 */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)600 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
601 {
602 if( key == NULL )
603 return;
604
605 mbedtls_ecp_group_free( &key->grp );
606 mbedtls_mpi_free( &key->d );
607 mbedtls_ecp_point_free( &key->Q );
608 }
609
610 /*
611 * Copy the contents of a point
612 */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)613 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
614 {
615 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
616 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
617 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
618 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
619
620 cleanup:
621 return( ret );
622 }
623
624 /*
625 * Copy the contents of a group object
626 */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)627 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
628 {
629 return( mbedtls_ecp_group_load( dst, src->id ) );
630 }
631
632 /*
633 * Set point to zero
634 */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)635 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
636 {
637 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
638 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
639 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
640 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
641
642 cleanup:
643 return( ret );
644 }
645
646 /*
647 * Tell if a point is zero
648 */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)649 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
650 {
651 return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
652 }
653
654 /*
655 * Compare two points lazily
656 */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)657 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
658 const mbedtls_ecp_point *Q )
659 {
660 if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
661 mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
662 mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
663 {
664 return( 0 );
665 }
666
667 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
668 }
669
670 /*
671 * Import a non-zero point from ASCII strings
672 */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)673 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
674 const char *x, const char *y )
675 {
676 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
677 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
678 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
679 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
680
681 cleanup:
682 return( ret );
683 }
684
685 /*
686 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
687 */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)688 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
689 const mbedtls_ecp_point *P,
690 int format, size_t *olen,
691 unsigned char *buf, size_t buflen )
692 {
693 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
694 size_t plen;
695 if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
696 format != MBEDTLS_ECP_PF_COMPRESSED )
697 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
698
699 plen = mbedtls_mpi_size( &grp->P );
700
701 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
702 (void) format; /* Montgomery curves always use the same point format */
703 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
704 {
705 *olen = plen;
706 if( buflen < *olen )
707 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
708
709 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &P->X, buf, plen ) );
710 }
711 #endif
712 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
713 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
714 {
715 /*
716 * Common case: P == 0
717 */
718 if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
719 {
720 if( buflen < 1 )
721 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
722
723 buf[0] = 0x00;
724 *olen = 1;
725
726 return( 0 );
727 }
728
729 if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
730 {
731 *olen = 2 * plen + 1;
732
733 if( buflen < *olen )
734 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
735
736 buf[0] = 0x04;
737 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
738 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
739 }
740 else if( format == MBEDTLS_ECP_PF_COMPRESSED )
741 {
742 *olen = plen + 1;
743
744 if( buflen < *olen )
745 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
746
747 buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
748 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
749 }
750 }
751 #endif
752
753 cleanup:
754 return( ret );
755 }
756
757 /*
758 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
759 */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)760 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
761 mbedtls_ecp_point *pt,
762 const unsigned char *buf, size_t ilen )
763 {
764 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
765 size_t plen;
766 if( ilen < 1 )
767 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
768
769 plen = mbedtls_mpi_size( &grp->P );
770
771 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
772 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
773 {
774 if( plen != ilen )
775 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
776
777 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &pt->X, buf, plen ) );
778 mbedtls_mpi_free( &pt->Y );
779
780 if( grp->id == MBEDTLS_ECP_DP_CURVE25519 )
781 /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
782 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &pt->X, plen * 8 - 1, 0 ) );
783
784 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
785 }
786 #endif
787 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
788 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
789 {
790 if( buf[0] == 0x00 )
791 {
792 if( ilen == 1 )
793 return( mbedtls_ecp_set_zero( pt ) );
794 else
795 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
796 }
797
798 if( buf[0] != 0x04 )
799 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
800
801 if( ilen != 2 * plen + 1 )
802 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
803
804 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
805 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y,
806 buf + 1 + plen, plen ) );
807 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
808 }
809 #endif
810
811 cleanup:
812 return( ret );
813 }
814
815 /*
816 * Import a point from a TLS ECPoint record (RFC 4492)
817 * struct {
818 * opaque point <1..2^8-1>;
819 * } ECPoint;
820 */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)821 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
822 mbedtls_ecp_point *pt,
823 const unsigned char **buf, size_t buf_len )
824 {
825 unsigned char data_len;
826 const unsigned char *buf_start;
827 /*
828 * We must have at least two bytes (1 for length, at least one for data)
829 */
830 if( buf_len < 2 )
831 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
832
833 data_len = *(*buf)++;
834 if( data_len < 1 || data_len > buf_len - 1 )
835 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
836
837 /*
838 * Save buffer start for read_binary and update buf
839 */
840 buf_start = *buf;
841 *buf += data_len;
842
843 return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
844 }
845
846 /*
847 * Export a point as a TLS ECPoint record (RFC 4492)
848 * struct {
849 * opaque point <1..2^8-1>;
850 * } ECPoint;
851 */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)852 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
853 int format, size_t *olen,
854 unsigned char *buf, size_t blen )
855 {
856 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
857 if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
858 format != MBEDTLS_ECP_PF_COMPRESSED )
859 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
860
861 /*
862 * buffer length must be at least one, for our length byte
863 */
864 if( blen < 1 )
865 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
866
867 if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
868 olen, buf + 1, blen - 1) ) != 0 )
869 return( ret );
870
871 /*
872 * write length to the first byte and update total length
873 */
874 buf[0] = (unsigned char) *olen;
875 ++*olen;
876
877 return( 0 );
878 }
879
880 /*
881 * Set a group from an ECParameters record (RFC 4492)
882 */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)883 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
884 const unsigned char **buf, size_t len )
885 {
886 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
887 mbedtls_ecp_group_id grp_id;
888 if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
889 return( ret );
890
891 return( mbedtls_ecp_group_load( grp, grp_id ) );
892 }
893
894 /*
895 * Read a group id from an ECParameters record (RFC 4492) and convert it to
896 * mbedtls_ecp_group_id.
897 */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)898 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
899 const unsigned char **buf, size_t len )
900 {
901 uint16_t tls_id;
902 const mbedtls_ecp_curve_info *curve_info;
903 /*
904 * We expect at least three bytes (see below)
905 */
906 if( len < 3 )
907 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
908
909 /*
910 * First byte is curve_type; only named_curve is handled
911 */
912 if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
913 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
914
915 /*
916 * Next two bytes are the namedcurve value
917 */
918 tls_id = *(*buf)++;
919 tls_id <<= 8;
920 tls_id |= *(*buf)++;
921
922 if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
923 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
924
925 *grp = curve_info->grp_id;
926
927 return( 0 );
928 }
929
930 /*
931 * Write the ECParameters record corresponding to a group (RFC 4492)
932 */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)933 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
934 unsigned char *buf, size_t blen )
935 {
936 const mbedtls_ecp_curve_info *curve_info;
937 if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
938 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
939
940 /*
941 * We are going to write 3 bytes (see below)
942 */
943 *olen = 3;
944 if( blen < *olen )
945 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
946
947 /*
948 * First byte is curve_type, always named_curve
949 */
950 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
951
952 /*
953 * Next two bytes are the namedcurve value
954 */
955 MBEDTLS_PUT_UINT16_BE( curve_info->tls_id, buf, 0 );
956
957 return( 0 );
958 }
959
960 /*
961 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
962 * See the documentation of struct mbedtls_ecp_group.
963 *
964 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
965 */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)966 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
967 {
968 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
969
970 if( grp->modp == NULL )
971 return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
972
973 /* N->s < 0 is a much faster test, which fails only if N is 0 */
974 if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
975 mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
976 {
977 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
978 }
979
980 MBEDTLS_MPI_CHK( grp->modp( N ) );
981
982 /* N->s < 0 is a much faster test, which fails only if N is 0 */
983 while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
984 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
985
986 while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
987 /* we known P, N and the result are positive */
988 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
989
990 cleanup:
991 return( ret );
992 }
993
994 /*
995 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
996 *
997 * In order to guarantee that, we need to ensure that operands of
998 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
999 * bring the result back to this range.
1000 *
1001 * The following macros are shortcuts for doing that.
1002 */
1003
1004 /*
1005 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1006 */
1007 #if defined(MBEDTLS_SELF_TEST)
1008 #define INC_MUL_COUNT mul_count++;
1009 #else
1010 #define INC_MUL_COUNT
1011 #endif
1012
1013 #define MOD_MUL( N ) \
1014 do \
1015 { \
1016 MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \
1017 INC_MUL_COUNT \
1018 } while( 0 )
1019
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1020 static inline int mbedtls_mpi_mul_mod( const mbedtls_ecp_group *grp,
1021 mbedtls_mpi *X,
1022 const mbedtls_mpi *A,
1023 const mbedtls_mpi *B )
1024 {
1025 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1026 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( X, A, B ) );
1027 MOD_MUL( *X );
1028 cleanup:
1029 return( ret );
1030 }
1031
1032 /*
1033 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1034 * N->s < 0 is a very fast test, which fails only if N is 0
1035 */
1036 #define MOD_SUB( N ) \
1037 do { \
1038 while( (N)->s < 0 && mbedtls_mpi_cmp_int( (N), 0 ) != 0 ) \
1039 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( (N), (N), &grp->P ) ); \
1040 } while( 0 )
1041
1042 #if ( defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1043 !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1044 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1045 defined(MBEDTLS_ECP_ADD_MIXED_ALT) ) ) || \
1046 ( defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1047 !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1048 defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) ) )
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1049 static inline int mbedtls_mpi_sub_mod( const mbedtls_ecp_group *grp,
1050 mbedtls_mpi *X,
1051 const mbedtls_mpi *A,
1052 const mbedtls_mpi *B )
1053 {
1054 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1055 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( X, A, B ) );
1056 MOD_SUB( X );
1057 cleanup:
1058 return( ret );
1059 }
1060 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1061
1062 /*
1063 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1064 * We known P, N and the result are positive, so sub_abs is correct, and
1065 * a bit faster.
1066 */
1067 #define MOD_ADD( N ) \
1068 while( mbedtls_mpi_cmp_mpi( (N), &grp->P ) >= 0 ) \
1069 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( (N), (N), &grp->P ) )
1070
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1071 static inline int mbedtls_mpi_add_mod( const mbedtls_ecp_group *grp,
1072 mbedtls_mpi *X,
1073 const mbedtls_mpi *A,
1074 const mbedtls_mpi *B )
1075 {
1076 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1077 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, A, B ) );
1078 MOD_ADD( X );
1079 cleanup:
1080 return( ret );
1081 }
1082
mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1083 static inline int mbedtls_mpi_mul_int_mod( const mbedtls_ecp_group *grp,
1084 mbedtls_mpi *X,
1085 const mbedtls_mpi *A,
1086 mbedtls_mpi_uint c )
1087 {
1088 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1089
1090 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( X, A, c ) );
1091 MOD_ADD( X );
1092 cleanup:
1093 return( ret );
1094 }
1095
mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1096 static inline int mbedtls_mpi_sub_int_mod( const mbedtls_ecp_group *grp,
1097 mbedtls_mpi *X,
1098 const mbedtls_mpi *A,
1099 mbedtls_mpi_uint c )
1100 {
1101 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1102
1103 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( X, A, c ) );
1104 MOD_SUB( X );
1105 cleanup:
1106 return( ret );
1107 }
1108
1109 #define MPI_ECP_SUB_INT( X, A, c ) \
1110 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int_mod( grp, X, A, c ) )
1111
1112 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1113 !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1114 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1115 defined(MBEDTLS_ECP_ADD_MIXED_ALT) )
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1116 static inline int mbedtls_mpi_shift_l_mod( const mbedtls_ecp_group *grp,
1117 mbedtls_mpi *X,
1118 size_t count )
1119 {
1120 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1121 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, count ) );
1122 MOD_ADD( X );
1123 cleanup:
1124 return( ret );
1125 }
1126 #endif /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1127
1128 /*
1129 * Macro wrappers around ECP modular arithmetic
1130 *
1131 * Currently, these wrappers are defined via the bignum module.
1132 */
1133
1134 #define MPI_ECP_ADD( X, A, B ) \
1135 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, X, A, B ) )
1136
1137 #define MPI_ECP_SUB( X, A, B ) \
1138 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, X, A, B ) )
1139
1140 #define MPI_ECP_MUL( X, A, B ) \
1141 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, X, A, B ) )
1142
1143 #define MPI_ECP_SQR( X, A ) \
1144 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, X, A, A ) )
1145
1146 #define MPI_ECP_MUL_INT( X, A, c ) \
1147 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int_mod( grp, X, A, c ) )
1148
1149 #define MPI_ECP_INV( dst, src ) \
1150 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( (dst), (src), &grp->P ) )
1151
1152 #define MPI_ECP_MOV( X, A ) \
1153 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) )
1154
1155 #define MPI_ECP_SHIFT_L( X, count ) \
1156 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, X, count ) )
1157
1158 #define MPI_ECP_LSET( X, c ) \
1159 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, c ) )
1160
1161 #define MPI_ECP_CMP_INT( X, c ) \
1162 mbedtls_mpi_cmp_int( X, c )
1163
1164 #define MPI_ECP_CMP( X, Y ) \
1165 mbedtls_mpi_cmp_mpi( X, Y )
1166
1167 /* Needs f_rng, p_rng to be defined. */
1168 #define MPI_ECP_RAND( X ) \
1169 MBEDTLS_MPI_CHK( mbedtls_mpi_random( (X), 2, &grp->P, f_rng, p_rng ) )
1170
1171 /* Conditional negation
1172 * Needs grp and a temporary MPI tmp to be defined. */
1173 #define MPI_ECP_COND_NEG( X, cond ) \
1174 do \
1175 { \
1176 unsigned char nonzero = mbedtls_mpi_cmp_int( (X), 0 ) != 0; \
1177 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &tmp, &grp->P, (X) ) ); \
1178 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( (X), &tmp, \
1179 nonzero & cond ) ); \
1180 } while( 0 )
1181
1182 #define MPI_ECP_NEG( X ) MPI_ECP_COND_NEG( (X), 1 )
1183
1184 #define MPI_ECP_VALID( X ) \
1185 ( (X)->p != NULL )
1186
1187 #define MPI_ECP_COND_ASSIGN( X, Y, cond ) \
1188 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( (X), (Y), (cond) ) )
1189
1190 #define MPI_ECP_COND_SWAP( X, Y, cond ) \
1191 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( (X), (Y), (cond) ) )
1192
1193 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1194 /*
1195 * For curves in short Weierstrass form, we do all the internal operations in
1196 * Jacobian coordinates.
1197 *
1198 * For multiplication, we'll use a comb method with countermeasures against
1199 * SPA, hence timing attacks.
1200 */
1201
1202 /*
1203 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1204 * Cost: 1N := 1I + 3M + 1S
1205 */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1206 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1207 {
1208 if( MPI_ECP_CMP_INT( &pt->Z, 0 ) == 0 )
1209 return( 0 );
1210
1211 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1212 if( mbedtls_internal_ecp_grp_capable( grp ) )
1213 return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1214 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1215
1216 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1217 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1218 #else
1219 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1220 mbedtls_mpi T;
1221 mbedtls_mpi_init( &T );
1222
1223 MPI_ECP_INV( &T, &pt->Z ); /* T <- 1 / Z */
1224 MPI_ECP_MUL( &pt->Y, &pt->Y, &T ); /* Y' <- Y*T = Y / Z */
1225 MPI_ECP_SQR( &T, &T ); /* T <- T^2 = 1 / Z^2 */
1226 MPI_ECP_MUL( &pt->X, &pt->X, &T ); /* X <- X * T = X / Z^2 */
1227 MPI_ECP_MUL( &pt->Y, &pt->Y, &T ); /* Y'' <- Y' * T = Y / Z^3 */
1228
1229 MPI_ECP_LSET( &pt->Z, 1 );
1230
1231 cleanup:
1232
1233 mbedtls_mpi_free( &T );
1234
1235 return( ret );
1236 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1237 }
1238
1239 /*
1240 * Normalize jacobian coordinates of an array of (pointers to) points,
1241 * using Montgomery's trick to perform only one inversion mod P.
1242 * (See for example Cohen's "A Course in Computational Algebraic Number
1243 * Theory", Algorithm 10.3.4.)
1244 *
1245 * Warning: fails (returning an error) if one of the points is zero!
1246 * This should never happen, see choice of w in ecp_mul_comb().
1247 *
1248 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1249 */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1250 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
1251 mbedtls_ecp_point *T[], size_t T_size )
1252 {
1253 if( T_size < 2 )
1254 return( ecp_normalize_jac( grp, *T ) );
1255
1256 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1257 if( mbedtls_internal_ecp_grp_capable( grp ) )
1258 return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
1259 #endif
1260
1261 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1262 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1263 #else
1264 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1265 size_t i;
1266 mbedtls_mpi *c, t;
1267
1268 if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
1269 return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1270
1271 mbedtls_mpi_init( &t );
1272
1273 mpi_init_many( c, T_size );
1274 /*
1275 * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1276 */
1277 MPI_ECP_MOV( &c[0], &T[0]->Z );
1278 for( i = 1; i < T_size; i++ )
1279 {
1280 MPI_ECP_MUL( &c[i], &c[i-1], &T[i]->Z );
1281 }
1282
1283 /*
1284 * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1285 */
1286 MPI_ECP_INV( &c[T_size-1], &c[T_size-1] );
1287
1288 for( i = T_size - 1; ; i-- )
1289 {
1290 /* At the start of iteration i (note that i decrements), we have
1291 * - c[j] = Z_0 * .... * Z_j for j < i,
1292 * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1293 *
1294 * This is maintained via
1295 * - c[i-1] <- c[i] * Z_i
1296 *
1297 * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1298 * to do the actual normalization. For i==0, we already have
1299 * c[0] = 1 / Z_0.
1300 */
1301
1302 if( i > 0 )
1303 {
1304 /* Compute 1/Z_i and establish invariant for the next iteration. */
1305 MPI_ECP_MUL( &t, &c[i], &c[i-1] );
1306 MPI_ECP_MUL( &c[i-1], &c[i], &T[i]->Z );
1307 }
1308 else
1309 {
1310 MPI_ECP_MOV( &t, &c[0] );
1311 }
1312
1313 /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1314 MPI_ECP_MUL( &T[i]->Y, &T[i]->Y, &t );
1315 MPI_ECP_SQR( &t, &t );
1316 MPI_ECP_MUL( &T[i]->X, &T[i]->X, &t );
1317 MPI_ECP_MUL( &T[i]->Y, &T[i]->Y, &t );
1318
1319 /*
1320 * Post-precessing: reclaim some memory by shrinking coordinates
1321 * - not storing Z (always 1)
1322 * - shrinking other coordinates, but still keeping the same number of
1323 * limbs as P, as otherwise it will too likely be regrown too fast.
1324 */
1325 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1326 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1327
1328 MPI_ECP_LSET( &T[i]->Z, 1 );
1329
1330 if( i == 0 )
1331 break;
1332 }
1333
1334 cleanup:
1335
1336 mbedtls_mpi_free( &t );
1337 mpi_free_many( c, T_size );
1338 mbedtls_free( c );
1339
1340 return( ret );
1341 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1342 }
1343
1344 /*
1345 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1346 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1347 */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1348 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1349 mbedtls_ecp_point *Q,
1350 unsigned char inv )
1351 {
1352 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1353 mbedtls_mpi tmp;
1354 mbedtls_mpi_init( &tmp );
1355
1356 MPI_ECP_COND_NEG( &Q->Y, inv );
1357
1358 cleanup:
1359 mbedtls_mpi_free( &tmp );
1360 return( ret );
1361 }
1362
1363 /*
1364 * Point doubling R = 2 P, Jacobian coordinates
1365 *
1366 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1367 *
1368 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1369 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1370 *
1371 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1372 *
1373 * Cost: 1D := 3M + 4S (A == 0)
1374 * 4M + 4S (A == -3)
1375 * 3M + 6S + 1a otherwise
1376 */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,mbedtls_mpi tmp[4])1377 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1378 const mbedtls_ecp_point *P,
1379 mbedtls_mpi tmp[4] )
1380 {
1381 #if defined(MBEDTLS_SELF_TEST)
1382 dbl_count++;
1383 #endif
1384
1385 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1386 if( mbedtls_internal_ecp_grp_capable( grp ) )
1387 return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1388 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1389
1390 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1391 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1392 #else
1393 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1394
1395 /* Special case for A = -3 */
1396 if( grp->A.p == NULL )
1397 {
1398 /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1399 MPI_ECP_SQR( &tmp[1], &P->Z );
1400 MPI_ECP_ADD( &tmp[2], &P->X, &tmp[1] );
1401 MPI_ECP_SUB( &tmp[3], &P->X, &tmp[1] );
1402 MPI_ECP_MUL( &tmp[1], &tmp[2], &tmp[3] );
1403 MPI_ECP_MUL_INT( &tmp[0], &tmp[1], 3 );
1404 }
1405 else
1406 {
1407 /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1408 MPI_ECP_SQR( &tmp[1], &P->X );
1409 MPI_ECP_MUL_INT( &tmp[0], &tmp[1], 3 );
1410
1411 /* Optimize away for "koblitz" curves with A = 0 */
1412 if( MPI_ECP_CMP_INT( &grp->A, 0 ) != 0 )
1413 {
1414 /* M += A.Z^4 */
1415 MPI_ECP_SQR( &tmp[1], &P->Z );
1416 MPI_ECP_SQR( &tmp[2], &tmp[1] );
1417 MPI_ECP_MUL( &tmp[1], &tmp[2], &grp->A );
1418 MPI_ECP_ADD( &tmp[0], &tmp[0], &tmp[1] );
1419 }
1420 }
1421
1422 /* tmp[1] <- S = 4.X.Y^2 */
1423 MPI_ECP_SQR( &tmp[2], &P->Y );
1424 MPI_ECP_SHIFT_L( &tmp[2], 1 );
1425 MPI_ECP_MUL( &tmp[1], &P->X, &tmp[2] );
1426 MPI_ECP_SHIFT_L( &tmp[1], 1 );
1427
1428 /* tmp[3] <- U = 8.Y^4 */
1429 MPI_ECP_SQR( &tmp[3], &tmp[2] );
1430 MPI_ECP_SHIFT_L( &tmp[3], 1 );
1431
1432 /* tmp[2] <- T = M^2 - 2.S */
1433 MPI_ECP_SQR( &tmp[2], &tmp[0] );
1434 MPI_ECP_SUB( &tmp[2], &tmp[2], &tmp[1] );
1435 MPI_ECP_SUB( &tmp[2], &tmp[2], &tmp[1] );
1436
1437 /* tmp[1] <- S = M(S - T) - U */
1438 MPI_ECP_SUB( &tmp[1], &tmp[1], &tmp[2] );
1439 MPI_ECP_MUL( &tmp[1], &tmp[1], &tmp[0] );
1440 MPI_ECP_SUB( &tmp[1], &tmp[1], &tmp[3] );
1441
1442 /* tmp[3] <- U = 2.Y.Z */
1443 MPI_ECP_MUL( &tmp[3], &P->Y, &P->Z );
1444 MPI_ECP_SHIFT_L( &tmp[3], 1 );
1445
1446 /* Store results */
1447 MPI_ECP_MOV( &R->X, &tmp[2] );
1448 MPI_ECP_MOV( &R->Y, &tmp[1] );
1449 MPI_ECP_MOV( &R->Z, &tmp[3] );
1450
1451 cleanup:
1452
1453 return( ret );
1454 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1455 }
1456
1457 /*
1458 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1459 *
1460 * The coordinates of Q must be normalized (= affine),
1461 * but those of P don't need to. R is not normalized.
1462 *
1463 * P,Q,R may alias, but only at the level of EC points: they must be either
1464 * equal as pointers, or disjoint (including the coordinate data buffers).
1465 * Fine-grained aliasing at the level of coordinates is not supported.
1466 *
1467 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1468 * None of these cases can happen as intermediate step in ecp_mul_comb():
1469 * - at each step, P, Q and R are multiples of the base point, the factor
1470 * being less than its order, so none of them is zero;
1471 * - Q is an odd multiple of the base point, P an even multiple,
1472 * due to the choice of precomputed points in the modified comb method.
1473 * So branches for these cases do not leak secret information.
1474 *
1475 * Cost: 1A := 8M + 3S
1476 */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,mbedtls_mpi tmp[4])1477 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1478 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1479 mbedtls_mpi tmp[4] )
1480 {
1481 #if defined(MBEDTLS_SELF_TEST)
1482 add_count++;
1483 #endif
1484
1485 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1486 if( mbedtls_internal_ecp_grp_capable( grp ) )
1487 return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1488 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1489
1490 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1491 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1492 #else
1493 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1494
1495 /* NOTE: Aliasing between input and output is allowed, so one has to make
1496 * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1497 * longer read from. */
1498 mbedtls_mpi * const X = &R->X;
1499 mbedtls_mpi * const Y = &R->Y;
1500 mbedtls_mpi * const Z = &R->Z;
1501
1502 if( !MPI_ECP_VALID( &Q->Z ) )
1503 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1504
1505 /*
1506 * Trivial cases: P == 0 or Q == 0 (case 1)
1507 */
1508 if( MPI_ECP_CMP_INT( &P->Z, 0 ) == 0 )
1509 return( mbedtls_ecp_copy( R, Q ) );
1510
1511 if( MPI_ECP_CMP_INT( &Q->Z, 0 ) == 0 )
1512 return( mbedtls_ecp_copy( R, P ) );
1513
1514 /*
1515 * Make sure Q coordinates are normalized
1516 */
1517 if( MPI_ECP_CMP_INT( &Q->Z, 1 ) != 0 )
1518 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1519
1520 MPI_ECP_SQR( &tmp[0], &P->Z );
1521 MPI_ECP_MUL( &tmp[1], &tmp[0], &P->Z );
1522 MPI_ECP_MUL( &tmp[0], &tmp[0], &Q->X );
1523 MPI_ECP_MUL( &tmp[1], &tmp[1], &Q->Y );
1524 MPI_ECP_SUB( &tmp[0], &tmp[0], &P->X );
1525 MPI_ECP_SUB( &tmp[1], &tmp[1], &P->Y );
1526
1527 /* Special cases (2) and (3) */
1528 if( MPI_ECP_CMP_INT( &tmp[0], 0 ) == 0 )
1529 {
1530 if( MPI_ECP_CMP_INT( &tmp[1], 0 ) == 0 )
1531 {
1532 ret = ecp_double_jac( grp, R, P, tmp );
1533 goto cleanup;
1534 }
1535 else
1536 {
1537 ret = mbedtls_ecp_set_zero( R );
1538 goto cleanup;
1539 }
1540 }
1541
1542 /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1543 MPI_ECP_MUL( Z, &P->Z, &tmp[0] );
1544 MPI_ECP_SQR( &tmp[2], &tmp[0] );
1545 MPI_ECP_MUL( &tmp[3], &tmp[2], &tmp[0] );
1546 MPI_ECP_MUL( &tmp[2], &tmp[2], &P->X );
1547
1548 MPI_ECP_MOV( &tmp[0], &tmp[2] );
1549 MPI_ECP_SHIFT_L( &tmp[0], 1 );
1550
1551 /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1552 MPI_ECP_SQR( X, &tmp[1] );
1553 MPI_ECP_SUB( X, X, &tmp[0] );
1554 MPI_ECP_SUB( X, X, &tmp[3] );
1555 MPI_ECP_SUB( &tmp[2], &tmp[2], X );
1556 MPI_ECP_MUL( &tmp[2], &tmp[2], &tmp[1] );
1557 MPI_ECP_MUL( &tmp[3], &tmp[3], &P->Y );
1558 /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1559 MPI_ECP_SUB( Y, &tmp[2], &tmp[3] );
1560
1561 cleanup:
1562
1563 return( ret );
1564 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1565 }
1566
1567 /*
1568 * Randomize jacobian coordinates:
1569 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1570 * This is sort of the reverse operation of ecp_normalize_jac().
1571 *
1572 * This countermeasure was first suggested in [2].
1573 */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1574 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1575 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1576 {
1577 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1578 if( mbedtls_internal_ecp_grp_capable( grp ) )
1579 return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
1580 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1581
1582 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1583 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1584 #else
1585 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1586 mbedtls_mpi l;
1587
1588 mbedtls_mpi_init( &l );
1589
1590 /* Generate l such that 1 < l < p */
1591 MPI_ECP_RAND( &l );
1592
1593 /* Z' = l * Z */
1594 MPI_ECP_MUL( &pt->Z, &pt->Z, &l );
1595
1596 /* Y' = l * Y */
1597 MPI_ECP_MUL( &pt->Y, &pt->Y, &l );
1598
1599 /* X' = l^2 * X */
1600 MPI_ECP_SQR( &l, &l );
1601 MPI_ECP_MUL( &pt->X, &pt->X, &l );
1602
1603 /* Y'' = l^2 * Y' = l^3 * Y */
1604 MPI_ECP_MUL( &pt->Y, &pt->Y, &l );
1605
1606 cleanup:
1607 mbedtls_mpi_free( &l );
1608
1609 if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
1610 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1611 return( ret );
1612 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1613 }
1614
1615 /*
1616 * Check and define parameters used by the comb method (see below for details)
1617 */
1618 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1619 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1620 #endif
1621
1622 /* d = ceil( n / w ) */
1623 #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1624
1625 /* number of precomputed points */
1626 #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1627
1628 /*
1629 * Compute the representation of m that will be used with our comb method.
1630 *
1631 * The basic comb method is described in GECC 3.44 for example. We use a
1632 * modified version that provides resistance to SPA by avoiding zero
1633 * digits in the representation as in [3]. We modify the method further by
1634 * requiring that all K_i be odd, which has the small cost that our
1635 * representation uses one more K_i, due to carries, but saves on the size of
1636 * the precomputed table.
1637 *
1638 * Summary of the comb method and its modifications:
1639 *
1640 * - The goal is to compute m*P for some w*d-bit integer m.
1641 *
1642 * - The basic comb method splits m into the w-bit integers
1643 * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1644 * index has residue i modulo d, and computes m * P as
1645 * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1646 * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1647 *
1648 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1649 * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1650 * thereby successively converting it into a form where all summands
1651 * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1652 *
1653 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1654 * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1655 * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1656 * Performing and iterating this procedure for those x[i] that are even
1657 * (keeping track of carry), we can transform the original sum into one of the form
1658 * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1659 * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1660 * which is why we are only computing half of it in the first place in
1661 * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1662 *
1663 * - For the sake of compactness, only the seven low-order bits of x[i]
1664 * are used to represent its absolute value (K_i in the paper), and the msb
1665 * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1666 * if s_i == -1;
1667 *
1668 * Calling conventions:
1669 * - x is an array of size d + 1
1670 * - w is the size, ie number of teeth, of the comb, and must be between
1671 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1672 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1673 * (the result will be incorrect if these assumptions are not satisfied)
1674 */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1675 static void ecp_comb_recode_core( unsigned char x[], size_t d,
1676 unsigned char w, const mbedtls_mpi *m )
1677 {
1678 size_t i, j;
1679 unsigned char c, cc, adjust;
1680
1681 memset( x, 0, d+1 );
1682
1683 /* First get the classical comb values (except for x_d = 0) */
1684 for( i = 0; i < d; i++ )
1685 for( j = 0; j < w; j++ )
1686 x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1687
1688 /* Now make sure x_1 .. x_d are odd */
1689 c = 0;
1690 for( i = 1; i <= d; i++ )
1691 {
1692 /* Add carry and update it */
1693 cc = x[i] & c;
1694 x[i] = x[i] ^ c;
1695 c = cc;
1696
1697 /* Adjust if needed, avoiding branches */
1698 adjust = 1 - ( x[i] & 0x01 );
1699 c |= x[i] & ( x[i-1] * adjust );
1700 x[i] = x[i] ^ ( x[i-1] * adjust );
1701 x[i-1] |= adjust << 7;
1702 }
1703 }
1704
1705 /*
1706 * Precompute points for the adapted comb method
1707 *
1708 * Assumption: T must be able to hold 2^{w - 1} elements.
1709 *
1710 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1711 * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1712 *
1713 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1714 *
1715 * Note: Even comb values (those where P would be omitted from the
1716 * sum defining T[i] above) are not needed in our adaption
1717 * the comb method. See ecp_comb_recode_core().
1718 *
1719 * This function currently works in four steps:
1720 * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1721 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1722 * (3) [add] Computation of all T[i]
1723 * (4) [norm_add] Normalization of all T[i]
1724 *
1725 * Step 1 can be interrupted but not the others; together with the final
1726 * coordinate normalization they are the largest steps done at once, depending
1727 * on the window size. Here are operation counts for P-256:
1728 *
1729 * step (2) (3) (4)
1730 * w = 5 142 165 208
1731 * w = 4 136 77 160
1732 * w = 3 130 33 136
1733 * w = 2 124 11 124
1734 *
1735 * So if ECC operations are blocking for too long even with a low max_ops
1736 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1737 * to minimize maximum blocking time.
1738 */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1739 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1740 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1741 unsigned char w, size_t d,
1742 mbedtls_ecp_restart_ctx *rs_ctx )
1743 {
1744 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1745 unsigned char i;
1746 size_t j = 0;
1747 const unsigned char T_size = 1U << ( w - 1 );
1748 mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = {NULL};
1749
1750 mbedtls_mpi tmp[4];
1751
1752 mpi_init_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
1753
1754 #if defined(MBEDTLS_ECP_RESTARTABLE)
1755 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1756 {
1757 if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1758 goto dbl;
1759 if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1760 goto norm_dbl;
1761 if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1762 goto add;
1763 if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1764 goto norm_add;
1765 }
1766 #else
1767 (void) rs_ctx;
1768 #endif
1769
1770 #if defined(MBEDTLS_ECP_RESTARTABLE)
1771 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1772 {
1773 rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1774
1775 /* initial state for the loop */
1776 rs_ctx->rsm->i = 0;
1777 }
1778
1779 dbl:
1780 #endif
1781 /*
1782 * Set T[0] = P and
1783 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1784 */
1785 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1786
1787 #if defined(MBEDTLS_ECP_RESTARTABLE)
1788 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1789 j = rs_ctx->rsm->i;
1790 else
1791 #endif
1792 j = 0;
1793
1794 for( ; j < d * ( w - 1 ); j++ )
1795 {
1796 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1797
1798 i = 1U << ( j / d );
1799 cur = T + i;
1800
1801 if( j % d == 0 )
1802 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1803
1804 MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur, tmp ) );
1805 }
1806
1807 #if defined(MBEDTLS_ECP_RESTARTABLE)
1808 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1809 rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1810
1811 norm_dbl:
1812 #endif
1813 /*
1814 * Normalize current elements in T to allow them to be used in
1815 * ecp_add_mixed() below, which requires one normalized input.
1816 *
1817 * As T has holes, use an auxiliary array of pointers to elements in T.
1818 *
1819 */
1820 j = 0;
1821 for( i = 1; i < T_size; i <<= 1 )
1822 TT[j++] = T + i;
1823
1824 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1825
1826 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1827
1828 #if defined(MBEDTLS_ECP_RESTARTABLE)
1829 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1830 rs_ctx->rsm->state = ecp_rsm_pre_add;
1831
1832 add:
1833 #endif
1834 /*
1835 * Compute the remaining ones using the minimal number of additions
1836 * Be careful to update T[2^l] only after using it!
1837 */
1838 MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1839
1840 for( i = 1; i < T_size; i <<= 1 )
1841 {
1842 j = i;
1843 while( j-- )
1844 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i], tmp ) );
1845 }
1846
1847 #if defined(MBEDTLS_ECP_RESTARTABLE)
1848 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1849 rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1850
1851 norm_add:
1852 #endif
1853 /*
1854 * Normalize final elements in T. Even though there are no holes now, we
1855 * still need the auxiliary array for homogeneity with the previous
1856 * call. Also, skip T[0] which is already normalised, being a copy of P.
1857 */
1858 for( j = 0; j + 1 < T_size; j++ )
1859 TT[j] = T + j + 1;
1860
1861 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1862
1863 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1864
1865 /* Free Z coordinate (=1 after normalization) to save RAM.
1866 * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1867 * since from this point onwards, they are only accessed indirectly
1868 * via the getter function ecp_select_comb() which does set the
1869 * target's Z coordinate to 1. */
1870 for( i = 0; i < T_size; i++ )
1871 mbedtls_mpi_free( &T[i].Z );
1872
1873 cleanup:
1874
1875 mpi_free_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
1876
1877 #if defined(MBEDTLS_ECP_RESTARTABLE)
1878 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1879 ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1880 {
1881 if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1882 rs_ctx->rsm->i = j;
1883 }
1884 #endif
1885
1886 return( ret );
1887 }
1888
1889 /*
1890 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1891 *
1892 * See ecp_comb_recode_core() for background
1893 */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)1894 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1895 const mbedtls_ecp_point T[], unsigned char T_size,
1896 unsigned char i )
1897 {
1898 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1899 unsigned char ii, j;
1900
1901 /* Ignore the "sign" bit and scale down */
1902 ii = ( i & 0x7Fu ) >> 1;
1903
1904 /* Read the whole table to thwart cache-based timing attacks */
1905 for( j = 0; j < T_size; j++ )
1906 {
1907 MPI_ECP_COND_ASSIGN( &R->X, &T[j].X, j == ii );
1908 MPI_ECP_COND_ASSIGN( &R->Y, &T[j].Y, j == ii );
1909 }
1910
1911 /* Safely invert result if i is "negative" */
1912 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1913
1914 MPI_ECP_LSET( &R->Z, 1 );
1915
1916 cleanup:
1917 return( ret );
1918 }
1919
1920 /*
1921 * Core multiplication algorithm for the (modified) comb method.
1922 * This part is actually common with the basic comb method (GECC 3.44)
1923 *
1924 * Cost: d A + d D + 1 R
1925 */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1926 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1927 const mbedtls_ecp_point T[], unsigned char T_size,
1928 const unsigned char x[], size_t d,
1929 int (*f_rng)(void *, unsigned char *, size_t),
1930 void *p_rng,
1931 mbedtls_ecp_restart_ctx *rs_ctx )
1932 {
1933 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1934 mbedtls_ecp_point Txi;
1935 mbedtls_mpi tmp[4];
1936 size_t i;
1937
1938 mbedtls_ecp_point_init( &Txi );
1939 mpi_init_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
1940
1941 #if !defined(MBEDTLS_ECP_RESTARTABLE)
1942 (void) rs_ctx;
1943 #endif
1944
1945 #if defined(MBEDTLS_ECP_RESTARTABLE)
1946 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1947 rs_ctx->rsm->state != ecp_rsm_comb_core )
1948 {
1949 rs_ctx->rsm->i = 0;
1950 rs_ctx->rsm->state = ecp_rsm_comb_core;
1951 }
1952
1953 /* new 'if' instead of nested for the sake of the 'else' branch */
1954 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1955 {
1956 /* restore current index (R already pointing to rs_ctx->rsm->R) */
1957 i = rs_ctx->rsm->i;
1958 }
1959 else
1960 #endif
1961 {
1962 /* Start with a non-zero point and randomize its coordinates */
1963 i = d;
1964 MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
1965 if( f_rng != 0 )
1966 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1967 }
1968
1969 while( i != 0 )
1970 {
1971 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
1972 --i;
1973
1974 MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R, tmp ) );
1975 MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
1976 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi, tmp ) );
1977 }
1978
1979 cleanup:
1980
1981 mbedtls_ecp_point_free( &Txi );
1982 mpi_free_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
1983
1984 #if defined(MBEDTLS_ECP_RESTARTABLE)
1985 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1986 ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1987 {
1988 rs_ctx->rsm->i = i;
1989 /* no need to save R, already pointing to rs_ctx->rsm->R */
1990 }
1991 #endif
1992
1993 return( ret );
1994 }
1995
1996 /*
1997 * Recode the scalar to get constant-time comb multiplication
1998 *
1999 * As the actual scalar recoding needs an odd scalar as a starting point,
2000 * this wrapper ensures that by replacing m by N - m if necessary, and
2001 * informs the caller that the result of multiplication will be negated.
2002 *
2003 * This works because we only support large prime order for Short Weierstrass
2004 * curves, so N is always odd hence either m or N - m is.
2005 *
2006 * See ecp_comb_recode_core() for background.
2007 */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2008 static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
2009 const mbedtls_mpi *m,
2010 unsigned char k[COMB_MAX_D + 1],
2011 size_t d,
2012 unsigned char w,
2013 unsigned char *parity_trick )
2014 {
2015 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2016 mbedtls_mpi M, mm;
2017
2018 mbedtls_mpi_init( &M );
2019 mbedtls_mpi_init( &mm );
2020
2021 /* N is always odd (see above), just make extra sure */
2022 if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
2023 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2024
2025 /* do we need the parity trick? */
2026 *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
2027
2028 /* execute parity fix in constant time */
2029 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
2030 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
2031 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
2032
2033 /* actual scalar recoding */
2034 ecp_comb_recode_core( k, d, w, &M );
2035
2036 cleanup:
2037 mbedtls_mpi_free( &mm );
2038 mbedtls_mpi_free( &M );
2039
2040 return( ret );
2041 }
2042
2043 /*
2044 * Perform comb multiplication (for short Weierstrass curves)
2045 * once the auxiliary table has been pre-computed.
2046 *
2047 * Scalar recoding may use a parity trick that makes us compute -m * P,
2048 * if that is the case we'll need to recover m * P at the end.
2049 */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2050 static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
2051 mbedtls_ecp_point *R,
2052 const mbedtls_mpi *m,
2053 const mbedtls_ecp_point *T,
2054 unsigned char T_size,
2055 unsigned char w,
2056 size_t d,
2057 int (*f_rng)(void *, unsigned char *, size_t),
2058 void *p_rng,
2059 mbedtls_ecp_restart_ctx *rs_ctx )
2060 {
2061 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2062 unsigned char parity_trick;
2063 unsigned char k[COMB_MAX_D + 1];
2064 mbedtls_ecp_point *RR = R;
2065
2066 #if defined(MBEDTLS_ECP_RESTARTABLE)
2067 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2068 {
2069 RR = &rs_ctx->rsm->R;
2070
2071 if( rs_ctx->rsm->state == ecp_rsm_final_norm )
2072 goto final_norm;
2073 }
2074 #endif
2075
2076 MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
2077 &parity_trick ) );
2078 MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
2079 f_rng, p_rng, rs_ctx ) );
2080 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
2081
2082 #if defined(MBEDTLS_ECP_RESTARTABLE)
2083 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2084 rs_ctx->rsm->state = ecp_rsm_final_norm;
2085
2086 final_norm:
2087 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2088 #endif
2089 /*
2090 * Knowledge of the jacobian coordinates may leak the last few bits of the
2091 * scalar [1], and since our MPI implementation isn't constant-flow,
2092 * inversion (used for coordinate normalization) may leak the full value
2093 * of its input via side-channels [2].
2094 *
2095 * [1] https://eprint.iacr.org/2003/191
2096 * [2] https://eprint.iacr.org/2020/055
2097 *
2098 * Avoid the leak by randomizing coordinates before we normalize them.
2099 */
2100 if( f_rng != 0 )
2101 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, RR, f_rng, p_rng ) );
2102
2103 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
2104
2105 #if defined(MBEDTLS_ECP_RESTARTABLE)
2106 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2107 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
2108 #endif
2109
2110 cleanup:
2111 return( ret );
2112 }
2113
2114 /*
2115 * Pick window size based on curve size and whether we optimize for base point
2116 */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2117 static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
2118 unsigned char p_eq_g )
2119 {
2120 unsigned char w;
2121
2122 /*
2123 * Minimize the number of multiplications, that is minimize
2124 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2125 * (see costs of the various parts, with 1S = 1M)
2126 */
2127 w = grp->nbits >= 384 ? 5 : 4;
2128
2129 /*
2130 * If P == G, pre-compute a bit more, since this may be re-used later.
2131 * Just adding one avoids upping the cost of the first mul too much,
2132 * and the memory cost too.
2133 */
2134 if( p_eq_g )
2135 w++;
2136
2137 /*
2138 * If static comb table may not be used (!p_eq_g) or static comb table does
2139 * not exists, make sure w is within bounds.
2140 * (The last test is useful only for very small curves in the test suite.)
2141 *
2142 * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2143 * static comb table, because the size of static comb table is fixed when
2144 * it is generated.
2145 */
2146 #if( MBEDTLS_ECP_WINDOW_SIZE < 6 )
2147 if( (!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE )
2148 w = MBEDTLS_ECP_WINDOW_SIZE;
2149 #endif
2150 if( w >= grp->nbits )
2151 w = 2;
2152
2153 return( w );
2154 }
2155
2156 /*
2157 * Multiplication using the comb method - for curves in short Weierstrass form
2158 *
2159 * This function is mainly responsible for administrative work:
2160 * - managing the restart context if enabled
2161 * - managing the table of precomputed points (passed between the below two
2162 * functions): allocation, computation, ownership transfer, freeing.
2163 *
2164 * It delegates the actual arithmetic work to:
2165 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2166 *
2167 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2168 */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2169 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2170 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2171 int (*f_rng)(void *, unsigned char *, size_t),
2172 void *p_rng,
2173 mbedtls_ecp_restart_ctx *rs_ctx )
2174 {
2175 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2176 unsigned char w, p_eq_g, i;
2177 size_t d;
2178 unsigned char T_size = 0, T_ok = 0;
2179 mbedtls_ecp_point *T = NULL;
2180
2181 ECP_RS_ENTER( rsm );
2182
2183 /* Is P the base point ? */
2184 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2185 p_eq_g = ( MPI_ECP_CMP( &P->Y, &grp->G.Y ) == 0 &&
2186 MPI_ECP_CMP( &P->X, &grp->G.X ) == 0 );
2187 #else
2188 p_eq_g = 0;
2189 #endif
2190
2191 /* Pick window size and deduce related sizes */
2192 w = ecp_pick_window_size( grp, p_eq_g );
2193 T_size = 1U << ( w - 1 );
2194 d = ( grp->nbits + w - 1 ) / w;
2195
2196 /* Pre-computed table: do we have it already for the base point? */
2197 if( p_eq_g && grp->T != NULL )
2198 {
2199 /* second pointer to the same table, will be deleted on exit */
2200 T = grp->T;
2201 T_ok = 1;
2202 }
2203 else
2204 #if defined(MBEDTLS_ECP_RESTARTABLE)
2205 /* Pre-computed table: do we have one in progress? complete? */
2206 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2207 {
2208 /* transfer ownership of T from rsm to local function */
2209 T = rs_ctx->rsm->T;
2210 rs_ctx->rsm->T = NULL;
2211 rs_ctx->rsm->T_size = 0;
2212
2213 /* This effectively jumps to the call to mul_comb_after_precomp() */
2214 T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2215 }
2216 else
2217 #endif
2218 /* Allocate table if we didn't have any */
2219 {
2220 T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
2221 if( T == NULL )
2222 {
2223 ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2224 goto cleanup;
2225 }
2226
2227 for( i = 0; i < T_size; i++ )
2228 mbedtls_ecp_point_init( &T[i] );
2229
2230 T_ok = 0;
2231 }
2232
2233 /* Compute table (or finish computing it) if not done already */
2234 if( !T_ok )
2235 {
2236 MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
2237
2238 if( p_eq_g )
2239 {
2240 /* almost transfer ownership of T to the group, but keep a copy of
2241 * the pointer to use for calling the next function more easily */
2242 grp->T = T;
2243 grp->T_size = T_size;
2244 }
2245 }
2246
2247 /* Actual comb multiplication using precomputed points */
2248 MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2249 T, T_size, w, d,
2250 f_rng, p_rng, rs_ctx ) );
2251
2252 cleanup:
2253
2254 /* does T belong to the group? */
2255 if( T == grp->T )
2256 T = NULL;
2257
2258 /* does T belong to the restart context? */
2259 #if defined(MBEDTLS_ECP_RESTARTABLE)
2260 if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
2261 {
2262 /* transfer ownership of T from local function to rsm */
2263 rs_ctx->rsm->T_size = T_size;
2264 rs_ctx->rsm->T = T;
2265 T = NULL;
2266 }
2267 #endif
2268
2269 /* did T belong to us? then let's destroy it! */
2270 if( T != NULL )
2271 {
2272 for( i = 0; i < T_size; i++ )
2273 mbedtls_ecp_point_free( &T[i] );
2274 mbedtls_free( T );
2275 }
2276
2277 /* prevent caller from using invalid value */
2278 int should_free_R = ( ret != 0 );
2279 #if defined(MBEDTLS_ECP_RESTARTABLE)
2280 /* don't free R while in progress in case R == P */
2281 if( ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
2282 should_free_R = 0;
2283 #endif
2284 if( should_free_R )
2285 mbedtls_ecp_point_free( R );
2286
2287 ECP_RS_LEAVE( rsm );
2288
2289 return( ret );
2290 }
2291
2292 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2293
2294 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2295 /*
2296 * For Montgomery curves, we do all the internal arithmetic in projective
2297 * coordinates. Import/export of points uses only the x coordinates, which is
2298 * internally represented as X / Z.
2299 *
2300 * For scalar multiplication, we'll use a Montgomery ladder.
2301 */
2302
2303 /*
2304 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2305 * Cost: 1M + 1I
2306 */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2307 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2308 {
2309 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2310 if( mbedtls_internal_ecp_grp_capable( grp ) )
2311 return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
2312 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2313
2314 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2315 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2316 #else
2317 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2318 MPI_ECP_INV( &P->Z, &P->Z );
2319 MPI_ECP_MUL( &P->X, &P->X, &P->Z );
2320 MPI_ECP_LSET( &P->Z, 1 );
2321
2322 cleanup:
2323 return( ret );
2324 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2325 }
2326
2327 /*
2328 * Randomize projective x/z coordinates:
2329 * (X, Z) -> (l X, l Z) for random l
2330 * This is sort of the reverse operation of ecp_normalize_mxz().
2331 *
2332 * This countermeasure was first suggested in [2].
2333 * Cost: 2M
2334 */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2335 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2336 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2337 {
2338 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2339 if( mbedtls_internal_ecp_grp_capable( grp ) )
2340 return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng ) );
2341 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2342
2343 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2344 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2345 #else
2346 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2347 mbedtls_mpi l;
2348 mbedtls_mpi_init( &l );
2349
2350 /* Generate l such that 1 < l < p */
2351 MPI_ECP_RAND( &l );
2352
2353 MPI_ECP_MUL( &P->X, &P->X, &l );
2354 MPI_ECP_MUL( &P->Z, &P->Z, &l );
2355
2356 cleanup:
2357 mbedtls_mpi_free( &l );
2358
2359 if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2360 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2361 return( ret );
2362 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2363 }
2364
2365 /*
2366 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2367 * for Montgomery curves in x/z coordinates.
2368 *
2369 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2370 * with
2371 * d = X1
2372 * P = (X2, Z2)
2373 * Q = (X3, Z3)
2374 * R = (X4, Z4)
2375 * S = (X5, Z5)
2376 * and eliminating temporary variables tO, ..., t4.
2377 *
2378 * Cost: 5M + 4S
2379 */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d,mbedtls_mpi T[4])2380 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2381 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2382 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2383 const mbedtls_mpi *d,
2384 mbedtls_mpi T[4] )
2385 {
2386 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2387 if( mbedtls_internal_ecp_grp_capable( grp ) )
2388 return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
2389 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2390
2391 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2392 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2393 #else
2394 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2395
2396 MPI_ECP_ADD( &T[0], &P->X, &P->Z ); /* Pp := PX + PZ */
2397 MPI_ECP_SUB( &T[1], &P->X, &P->Z ); /* Pm := PX - PZ */
2398 MPI_ECP_ADD( &T[2], &Q->X, &Q->Z ); /* Qp := QX + XZ */
2399 MPI_ECP_SUB( &T[3], &Q->X, &Q->Z ); /* Qm := QX - QZ */
2400 MPI_ECP_MUL( &T[3], &T[3], &T[0] ); /* Qm * Pp */
2401 MPI_ECP_MUL( &T[2], &T[2], &T[1] ); /* Qp * Pm */
2402 MPI_ECP_SQR( &T[0], &T[0] ); /* Pp^2 */
2403 MPI_ECP_SQR( &T[1], &T[1] ); /* Pm^2 */
2404 MPI_ECP_MUL( &R->X, &T[0], &T[1] ); /* Pp^2 * Pm^2 */
2405 MPI_ECP_SUB( &T[0], &T[0], &T[1] ); /* Pp^2 - Pm^2 */
2406 MPI_ECP_MUL( &R->Z, &grp->A, &T[0] ); /* A * (Pp^2 - Pm^2) */
2407 MPI_ECP_ADD( &R->Z, &T[1], &R->Z ); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2408 MPI_ECP_ADD( &S->X, &T[3], &T[2] ); /* Qm*Pp + Qp*Pm */
2409 MPI_ECP_SQR( &S->X, &S->X ); /* (Qm*Pp + Qp*Pm)^2 */
2410 MPI_ECP_SUB( &S->Z, &T[3], &T[2] ); /* Qm*Pp - Qp*Pm */
2411 MPI_ECP_SQR( &S->Z, &S->Z ); /* (Qm*Pp - Qp*Pm)^2 */
2412 MPI_ECP_MUL( &S->Z, d, &S->Z ); /* d * ( Qm*Pp - Qp*Pm )^2 */
2413 MPI_ECP_MUL( &R->Z, &T[0], &R->Z ); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2414
2415 cleanup:
2416
2417 return( ret );
2418 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2419 }
2420
2421 /*
2422 * Multiplication with Montgomery ladder in x/z coordinates,
2423 * for curves in Montgomery form
2424 */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2425 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2426 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2427 int (*f_rng)(void *, unsigned char *, size_t),
2428 void *p_rng )
2429 {
2430 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2431 size_t i;
2432 unsigned char b;
2433 mbedtls_ecp_point RP;
2434 mbedtls_mpi PX;
2435 mbedtls_mpi tmp[4];
2436 mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2437
2438 mpi_init_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
2439
2440 if( f_rng == NULL )
2441 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2442
2443 /* Save PX and read from P before writing to R, in case P == R */
2444 MPI_ECP_MOV( &PX, &P->X );
2445 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2446
2447 /* Set R to zero in modified x/z coordinates */
2448 MPI_ECP_LSET( &R->X, 1 );
2449 MPI_ECP_LSET( &R->Z, 0 );
2450 mbedtls_mpi_free( &R->Y );
2451
2452 /* RP.X might be slightly larger than P, so reduce it */
2453 MOD_ADD( &RP.X );
2454
2455 /* Randomize coordinates of the starting point */
2456 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2457
2458 /* Loop invariant: R = result so far, RP = R + P */
2459 i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2460 while( i-- > 0 )
2461 {
2462 b = mbedtls_mpi_get_bit( m, i );
2463 /*
2464 * if (b) R = 2R + P else R = 2R,
2465 * which is:
2466 * if (b) double_add( RP, R, RP, R )
2467 * else double_add( R, RP, R, RP )
2468 * but using safe conditional swaps to avoid leaks
2469 */
2470 MPI_ECP_COND_SWAP( &R->X, &RP.X, b );
2471 MPI_ECP_COND_SWAP( &R->Z, &RP.Z, b );
2472 MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX, tmp ) );
2473 MPI_ECP_COND_SWAP( &R->X, &RP.X, b );
2474 MPI_ECP_COND_SWAP( &R->Z, &RP.Z, b );
2475 }
2476
2477 /*
2478 * Knowledge of the projective coordinates may leak the last few bits of the
2479 * scalar [1], and since our MPI implementation isn't constant-flow,
2480 * inversion (used for coordinate normalization) may leak the full value
2481 * of its input via side-channels [2].
2482 *
2483 * [1] https://eprint.iacr.org/2003/191
2484 * [2] https://eprint.iacr.org/2020/055
2485 *
2486 * Avoid the leak by randomizing coordinates before we normalize them.
2487 */
2488 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) );
2489 MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2490
2491 cleanup:
2492 mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2493
2494 mpi_free_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
2495 return( ret );
2496 }
2497
2498 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2499
2500 /*
2501 * Restartable multiplication R = m * P
2502 *
2503 * This internal function can be called without an RNG in case where we know
2504 * the inputs are not sensitive.
2505 */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2506 static int ecp_mul_restartable_internal( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2507 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2508 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2509 mbedtls_ecp_restart_ctx *rs_ctx )
2510 {
2511 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2512 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2513 char is_grp_capable = 0;
2514 #endif
2515
2516 #if defined(MBEDTLS_ECP_RESTARTABLE)
2517 /* reset ops count for this call if top-level */
2518 if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2519 rs_ctx->ops_done = 0;
2520 #else
2521 (void) rs_ctx;
2522 #endif
2523
2524 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2525 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2526 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2527 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2528
2529 int restarting = 0;
2530 #if defined(MBEDTLS_ECP_RESTARTABLE)
2531 restarting = ( rs_ctx != NULL && rs_ctx->rsm != NULL );
2532 #endif
2533 /* skip argument check when restarting */
2534 if( !restarting )
2535 {
2536 /* check_privkey is free */
2537 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2538
2539 /* Common sanity checks */
2540 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2541 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2542 }
2543
2544 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2545 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2546 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2547 MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2548 #endif
2549 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2550 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2551 MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2552 #endif
2553
2554 cleanup:
2555
2556 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2557 if( is_grp_capable )
2558 mbedtls_internal_ecp_free( grp );
2559 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2560
2561 #if defined(MBEDTLS_ECP_RESTARTABLE)
2562 if( rs_ctx != NULL )
2563 rs_ctx->depth--;
2564 #endif
2565
2566 return( ret );
2567 }
2568
2569 /*
2570 * Restartable multiplication R = m * P
2571 */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2572 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2573 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2574 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2575 mbedtls_ecp_restart_ctx *rs_ctx )
2576 {
2577 if( f_rng == NULL )
2578 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2579
2580 return( ecp_mul_restartable_internal( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2581 }
2582
2583 /*
2584 * Multiplication R = m * P
2585 */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2586 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2587 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2588 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2589 {
2590 return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
2591 }
2592
2593 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2594 /*
2595 * Check that an affine point is valid as a public key,
2596 * short weierstrass curves (SEC1 3.2.3.1)
2597 */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2598 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2599 {
2600 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2601 mbedtls_mpi YY, RHS;
2602
2603 /* pt coordinates must be normalized for our checks */
2604 if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2605 mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2606 mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2607 mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2608 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2609
2610 mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2611
2612 /*
2613 * YY = Y^2
2614 * RHS = X (X^2 + A) + B = X^3 + A X + B
2615 */
2616 MPI_ECP_SQR( &YY, &pt->Y );
2617 MPI_ECP_SQR( &RHS, &pt->X );
2618
2619 /* Special case for A = -3 */
2620 if( grp->A.p == NULL )
2621 {
2622 MPI_ECP_SUB_INT( &RHS, &RHS, 3 );
2623 }
2624 else
2625 {
2626 MPI_ECP_ADD( &RHS, &RHS, &grp->A );
2627 }
2628
2629 MPI_ECP_MUL( &RHS, &RHS, &pt->X );
2630 MPI_ECP_ADD( &RHS, &RHS, &grp->B );
2631
2632 if( MPI_ECP_CMP( &YY, &RHS ) != 0 )
2633 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2634
2635 cleanup:
2636
2637 mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2638
2639 return( ret );
2640 }
2641 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2642
2643 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2644 /*
2645 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2646 * NOT constant-time - ONLY for short Weierstrass!
2647 */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2648 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2649 mbedtls_ecp_point *R,
2650 const mbedtls_mpi *m,
2651 const mbedtls_ecp_point *P,
2652 mbedtls_ecp_restart_ctx *rs_ctx )
2653 {
2654 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2655 mbedtls_mpi tmp;
2656 mbedtls_mpi_init( &tmp );
2657
2658 if( mbedtls_mpi_cmp_int( m, 0 ) == 0 )
2659 {
2660 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2661 MBEDTLS_MPI_CHK( mbedtls_ecp_set_zero( R ) );
2662 }
2663 else if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2664 {
2665 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2666 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2667 }
2668 else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2669 {
2670 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2671 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2672 MPI_ECP_NEG( &R->Y );
2673 }
2674 else
2675 {
2676 MBEDTLS_MPI_CHK( ecp_mul_restartable_internal( grp, R, m, P,
2677 NULL, NULL, rs_ctx ) );
2678 }
2679
2680 cleanup:
2681 mbedtls_mpi_free( &tmp );
2682
2683 return( ret );
2684 }
2685
2686 /*
2687 * Restartable linear combination
2688 * NOT constant-time
2689 */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2690 int mbedtls_ecp_muladd_restartable(
2691 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2692 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2693 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2694 mbedtls_ecp_restart_ctx *rs_ctx )
2695 {
2696 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2697 mbedtls_ecp_point mP;
2698 mbedtls_ecp_point *pmP = &mP;
2699 mbedtls_ecp_point *pR = R;
2700 mbedtls_mpi tmp[4];
2701 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2702 char is_grp_capable = 0;
2703 #endif
2704 if( mbedtls_ecp_get_type( grp ) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2705 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2706
2707 mbedtls_ecp_point_init( &mP );
2708 mpi_init_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
2709
2710 ECP_RS_ENTER( ma );
2711
2712 #if defined(MBEDTLS_ECP_RESTARTABLE)
2713 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2714 {
2715 /* redirect intermediate results to restart context */
2716 pmP = &rs_ctx->ma->mP;
2717 pR = &rs_ctx->ma->R;
2718
2719 /* jump to next operation */
2720 if( rs_ctx->ma->state == ecp_rsma_mul2 )
2721 goto mul2;
2722 if( rs_ctx->ma->state == ecp_rsma_add )
2723 goto add;
2724 if( rs_ctx->ma->state == ecp_rsma_norm )
2725 goto norm;
2726 }
2727 #endif /* MBEDTLS_ECP_RESTARTABLE */
2728
2729 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2730 #if defined(MBEDTLS_ECP_RESTARTABLE)
2731 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2732 rs_ctx->ma->state = ecp_rsma_mul2;
2733
2734 mul2:
2735 #endif
2736 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) );
2737
2738 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2739 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2740 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2741 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2742
2743 #if defined(MBEDTLS_ECP_RESTARTABLE)
2744 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2745 rs_ctx->ma->state = ecp_rsma_add;
2746
2747 add:
2748 #endif
2749 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2750 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR, tmp ) );
2751 #if defined(MBEDTLS_ECP_RESTARTABLE)
2752 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2753 rs_ctx->ma->state = ecp_rsma_norm;
2754
2755 norm:
2756 #endif
2757 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2758 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2759
2760 #if defined(MBEDTLS_ECP_RESTARTABLE)
2761 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2762 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2763 #endif
2764
2765 cleanup:
2766
2767 mpi_free_many( tmp, sizeof( tmp ) / sizeof( mbedtls_mpi ) );
2768
2769 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2770 if( is_grp_capable )
2771 mbedtls_internal_ecp_free( grp );
2772 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2773
2774 mbedtls_ecp_point_free( &mP );
2775
2776 ECP_RS_LEAVE( ma );
2777
2778 return( ret );
2779 }
2780
2781 /*
2782 * Linear combination
2783 * NOT constant-time
2784 */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2785 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2786 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2787 const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2788 {
2789 return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2790 }
2791 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2792
2793 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2794 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2795 #define ECP_MPI_INIT(s, n, p) {s, (n), (mbedtls_mpi_uint *)(p)}
2796 #define ECP_MPI_INIT_ARRAY(x) \
2797 ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
2798 /*
2799 * Constants for the two points other than 0, 1, -1 (mod p) in
2800 * https://cr.yp.to/ecdh.html#validate
2801 * See ecp_check_pubkey_x25519().
2802 */
2803 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2804 MBEDTLS_BYTES_TO_T_UINT_8( 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae ),
2805 MBEDTLS_BYTES_TO_T_UINT_8( 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a ),
2806 MBEDTLS_BYTES_TO_T_UINT_8( 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd ),
2807 MBEDTLS_BYTES_TO_T_UINT_8( 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 ),
2808 };
2809 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2810 MBEDTLS_BYTES_TO_T_UINT_8( 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24 ),
2811 MBEDTLS_BYTES_TO_T_UINT_8( 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b ),
2812 MBEDTLS_BYTES_TO_T_UINT_8( 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86 ),
2813 MBEDTLS_BYTES_TO_T_UINT_8( 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 ),
2814 };
2815 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2816 x25519_bad_point_1 );
2817 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2818 x25519_bad_point_2 );
2819 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2820
2821 /*
2822 * Check that the input point is not one of the low-order points.
2823 * This is recommended by the "May the Fourth" paper:
2824 * https://eprint.iacr.org/2017/806.pdf
2825 * Those points are never sent by an honest peer.
2826 */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2827 static int ecp_check_bad_points_mx( const mbedtls_mpi *X, const mbedtls_mpi *P,
2828 const mbedtls_ecp_group_id grp_id )
2829 {
2830 int ret;
2831 mbedtls_mpi XmP;
2832
2833 mbedtls_mpi_init( &XmP );
2834
2835 /* Reduce X mod P so that we only need to check values less than P.
2836 * We know X < 2^256 so we can proceed by subtraction. */
2837 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &XmP, X ) );
2838 while( mbedtls_mpi_cmp_mpi( &XmP, P ) >= 0 )
2839 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &XmP, &XmP, P ) );
2840
2841 /* Check against the known bad values that are less than P. For Curve448
2842 * these are 0, 1 and -1. For Curve25519 we check the values less than P
2843 * from the following list: https://cr.yp.to/ecdh.html#validate */
2844 if( mbedtls_mpi_cmp_int( &XmP, 1 ) <= 0 ) /* takes care of 0 and 1 */
2845 {
2846 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2847 goto cleanup;
2848 }
2849
2850 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2851 if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
2852 {
2853 if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_1 ) == 0 )
2854 {
2855 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2856 goto cleanup;
2857 }
2858
2859 if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_2 ) == 0 )
2860 {
2861 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2862 goto cleanup;
2863 }
2864 }
2865 #else
2866 (void) grp_id;
2867 #endif
2868
2869 /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2870 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &XmP, &XmP, 1 ) );
2871 if( mbedtls_mpi_cmp_mpi( &XmP, P ) == 0 )
2872 {
2873 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2874 goto cleanup;
2875 }
2876
2877 ret = 0;
2878
2879 cleanup:
2880 mbedtls_mpi_free( &XmP );
2881
2882 return( ret );
2883 }
2884
2885 /*
2886 * Check validity of a public key for Montgomery curves with x-only schemes
2887 */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2888 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2889 {
2890 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2891 /* Allow any public value, if it's too big then we'll just reduce it mod p
2892 * (RFC 7748 sec. 5 para. 3). */
2893 if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
2894 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2895
2896 /* Implicit in all standards (as they don't consider negative numbers):
2897 * X must be non-negative. This is normally ensured by the way it's
2898 * encoded for transmission, but let's be extra sure. */
2899 if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 )
2900 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2901
2902 return( ecp_check_bad_points_mx( &pt->X, &grp->P, grp->id ) );
2903 }
2904 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2905
2906 /*
2907 * Check that a point is valid as a public key
2908 */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2909 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2910 const mbedtls_ecp_point *pt )
2911 {
2912 /* Must use affine coordinates */
2913 if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
2914 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2915
2916 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2917 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2918 return( ecp_check_pubkey_mx( grp, pt ) );
2919 #endif
2920 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2921 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2922 return( ecp_check_pubkey_sw( grp, pt ) );
2923 #endif
2924 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2925 }
2926
2927 /*
2928 * Check that an mbedtls_mpi is valid as a private key
2929 */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)2930 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2931 const mbedtls_mpi *d )
2932 {
2933 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2934 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2935 {
2936 /* see RFC 7748 sec. 5 para. 5 */
2937 if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2938 mbedtls_mpi_get_bit( d, 1 ) != 0 ||
2939 mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2940 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2941
2942 /* see [Curve25519] page 5 */
2943 if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2944 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2945
2946 return( 0 );
2947 }
2948 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2949 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2950 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2951 {
2952 /* see SEC1 3.2 */
2953 if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2954 mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2955 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2956 else
2957 return( 0 );
2958 }
2959 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2960
2961 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2962 }
2963
2964 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2965 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2966 int mbedtls_ecp_gen_privkey_mx( size_t high_bit,
2967 mbedtls_mpi *d,
2968 int (*f_rng)(void *, unsigned char *, size_t),
2969 void *p_rng )
2970 {
2971 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2972 size_t n_random_bytes = high_bit / 8 + 1;
2973
2974 /* [Curve25519] page 5 */
2975 /* Generate a (high_bit+1)-bit random number by generating just enough
2976 * random bytes, then shifting out extra bits from the top (necessary
2977 * when (high_bit+1) is not a multiple of 8). */
2978 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_random_bytes,
2979 f_rng, p_rng ) );
2980 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_random_bytes - high_bit - 1 ) );
2981
2982 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, high_bit, 1 ) );
2983
2984 /* Make sure the last two bits are unset for Curve448, three bits for
2985 Curve25519 */
2986 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2987 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
2988 if( high_bit == 254 )
2989 {
2990 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2991 }
2992
2993 cleanup:
2994 return( ret );
2995 }
2996 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2997
2998 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2999 static int mbedtls_ecp_gen_privkey_sw(
3000 const mbedtls_mpi *N, mbedtls_mpi *d,
3001 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3002 {
3003 int ret = mbedtls_mpi_random( d, 1, N, f_rng, p_rng );
3004 switch( ret )
3005 {
3006 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3007 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
3008 default:
3009 return( ret );
3010 }
3011 }
3012 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3013
3014 /*
3015 * Generate a private key
3016 */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3017 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
3018 mbedtls_mpi *d,
3019 int (*f_rng)(void *, unsigned char *, size_t),
3020 void *p_rng )
3021 {
3022 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3023 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3024 return( mbedtls_ecp_gen_privkey_mx( grp->nbits, d, f_rng, p_rng ) );
3025 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3026
3027 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3028 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3029 return( mbedtls_ecp_gen_privkey_sw( &grp->N, d, f_rng, p_rng ) );
3030 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3031
3032 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3033 }
3034
3035 /*
3036 * Generate a keypair with configurable base point
3037 */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3038 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
3039 const mbedtls_ecp_point *G,
3040 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3041 int (*f_rng)(void *, unsigned char *, size_t),
3042 void *p_rng )
3043 {
3044 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3045 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
3046 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
3047
3048 cleanup:
3049 return( ret );
3050 }
3051
3052 /*
3053 * Generate key pair, wrapper for conventional base point
3054 */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3055 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
3056 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3057 int (*f_rng)(void *, unsigned char *, size_t),
3058 void *p_rng )
3059 {
3060 return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
3061 }
3062
3063 /*
3064 * Generate a keypair, prettier wrapper
3065 */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3066 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3067 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3068 {
3069 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3070 if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3071 return( ret );
3072
3073 return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
3074 }
3075
3076 #define ECP_CURVE25519_KEY_SIZE 32
3077 #define ECP_CURVE448_KEY_SIZE 56
3078 /*
3079 * Read a private key.
3080 */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3081 int mbedtls_ecp_read_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3082 const unsigned char *buf, size_t buflen )
3083 {
3084 int ret = 0;
3085
3086 if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3087 return( ret );
3088
3089 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3090
3091 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3092 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3093 {
3094 /*
3095 * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3096 */
3097 if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
3098 {
3099 if( buflen != ECP_CURVE25519_KEY_SIZE )
3100 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3101
3102 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3103
3104 /* Set the three least significant bits to 0 */
3105 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3106 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3107 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 2, 0 ) );
3108
3109 /* Set the most significant bit to 0 */
3110 MBEDTLS_MPI_CHK(
3111 mbedtls_mpi_set_bit( &key->d,
3112 ECP_CURVE25519_KEY_SIZE * 8 - 1, 0 )
3113 );
3114
3115 /* Set the second most significant bit to 1 */
3116 MBEDTLS_MPI_CHK(
3117 mbedtls_mpi_set_bit( &key->d,
3118 ECP_CURVE25519_KEY_SIZE * 8 - 2, 1 )
3119 );
3120 }
3121 else if( grp_id == MBEDTLS_ECP_DP_CURVE448 )
3122 {
3123 if( buflen != ECP_CURVE448_KEY_SIZE )
3124 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3125
3126 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3127
3128 /* Set the two least significant bits to 0 */
3129 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3130 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3131
3132 /* Set the most significant bit to 1 */
3133 MBEDTLS_MPI_CHK(
3134 mbedtls_mpi_set_bit( &key->d,
3135 ECP_CURVE448_KEY_SIZE * 8 - 1, 1 )
3136 );
3137 }
3138 }
3139
3140 #endif
3141 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3142 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3143 {
3144 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &key->d, buf, buflen ) );
3145
3146 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( &key->grp, &key->d ) );
3147 }
3148
3149 #endif
3150 cleanup:
3151
3152 if( ret != 0 )
3153 mbedtls_mpi_free( &key->d );
3154
3155 return( ret );
3156 }
3157
3158 /*
3159 * Write a private key.
3160 */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3161 int mbedtls_ecp_write_key( mbedtls_ecp_keypair *key,
3162 unsigned char *buf, size_t buflen )
3163 {
3164 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3165
3166 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3167 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3168 {
3169 if( key->grp.id == MBEDTLS_ECP_DP_CURVE25519 )
3170 {
3171 if( buflen < ECP_CURVE25519_KEY_SIZE )
3172 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
3173
3174 }
3175 else if( key->grp.id == MBEDTLS_ECP_DP_CURVE448 )
3176 {
3177 if( buflen < ECP_CURVE448_KEY_SIZE )
3178 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
3179 }
3180 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &key->d, buf, buflen ) );
3181 }
3182 #endif
3183 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3184 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3185 {
3186 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &key->d, buf, buflen ) );
3187 }
3188
3189 #endif
3190 cleanup:
3191
3192 return( ret );
3193 }
3194
3195
3196 /*
3197 * Check a public-private key pair
3198 */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3199 int mbedtls_ecp_check_pub_priv(
3200 const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3201 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3202 {
3203 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3204 mbedtls_ecp_point Q;
3205 mbedtls_ecp_group grp;
3206 if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3207 pub->grp.id != prv->grp.id ||
3208 mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
3209 mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
3210 mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
3211 {
3212 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3213 }
3214
3215 mbedtls_ecp_point_init( &Q );
3216 mbedtls_ecp_group_init( &grp );
3217
3218 /* mbedtls_ecp_mul() needs a non-const group... */
3219 mbedtls_ecp_group_copy( &grp, &prv->grp );
3220
3221 /* Also checks d is valid */
3222 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng ) );
3223
3224 if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
3225 mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
3226 mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
3227 {
3228 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3229 goto cleanup;
3230 }
3231
3232 cleanup:
3233 mbedtls_ecp_point_free( &Q );
3234 mbedtls_ecp_group_free( &grp );
3235
3236 return( ret );
3237 }
3238
3239 /*
3240 * Export generic key-pair parameters.
3241 */
mbedtls_ecp_export(const mbedtls_ecp_keypair * key,mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q)3242 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3243 mbedtls_mpi *d, mbedtls_ecp_point *Q)
3244 {
3245 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3246
3247 if( ( ret = mbedtls_ecp_group_copy( grp, &key->grp ) ) != 0 )
3248 return ret;
3249
3250 if( ( ret = mbedtls_mpi_copy( d, &key->d ) ) != 0 )
3251 return ret;
3252
3253 if( ( ret = mbedtls_ecp_copy( Q, &key->Q ) ) != 0 )
3254 return ret;
3255
3256 return 0;
3257 }
3258
3259 #if defined(MBEDTLS_SELF_TEST)
3260
3261 /*
3262 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3263 *
3264 * This is the linear congruential generator from numerical recipes,
3265 * except we only use the low byte as the output. See
3266 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3267 */
self_test_rng(void * ctx,unsigned char * out,size_t len)3268 static int self_test_rng( void *ctx, unsigned char *out, size_t len )
3269 {
3270 static uint32_t state = 42;
3271
3272 (void) ctx;
3273
3274 for( size_t i = 0; i < len; i++ )
3275 {
3276 state = state * 1664525u + 1013904223u;
3277 out[i] = (unsigned char) state;
3278 }
3279
3280 return( 0 );
3281 }
3282
3283 /* Adjust the exponent to be a valid private point for the specified curve.
3284 * This is sometimes necessary because we use a single set of exponents
3285 * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3286 static int self_test_adjust_exponent( const mbedtls_ecp_group *grp,
3287 mbedtls_mpi *m )
3288 {
3289 int ret = 0;
3290 switch( grp->id )
3291 {
3292 /* If Curve25519 is available, then that's what we use for the
3293 * Montgomery test, so we don't need the adjustment code. */
3294 #if ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3295 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3296 case MBEDTLS_ECP_DP_CURVE448:
3297 /* Move highest bit from 254 to N-1. Setting bit N-1 is
3298 * necessary to enforce the highest-bit-set constraint. */
3299 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, 254, 0 ) );
3300 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, grp->nbits, 1 ) );
3301 /* Copy second-highest bit from 253 to N-2. This is not
3302 * necessary but improves the test variety a bit. */
3303 MBEDTLS_MPI_CHK(
3304 mbedtls_mpi_set_bit( m, grp->nbits - 1,
3305 mbedtls_mpi_get_bit( m, 253 ) ) );
3306 break;
3307 #endif
3308 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3309 default:
3310 /* Non-Montgomery curves and Curve25519 need no adjustment. */
3311 (void) grp;
3312 (void) m;
3313 goto cleanup;
3314 }
3315 cleanup:
3316 return( ret );
3317 }
3318
3319 /* Calculate R = m.P for each m in exponents. Check that the number of
3320 * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3321 static int self_test_point( int verbose,
3322 mbedtls_ecp_group *grp,
3323 mbedtls_ecp_point *R,
3324 mbedtls_mpi *m,
3325 const mbedtls_ecp_point *P,
3326 const char *const *exponents,
3327 size_t n_exponents )
3328 {
3329 int ret = 0;
3330 size_t i = 0;
3331 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3332 add_count = 0;
3333 dbl_count = 0;
3334 mul_count = 0;
3335
3336 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[0] ) );
3337 MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3338 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, self_test_rng, NULL ) );
3339
3340 for( i = 1; i < n_exponents; i++ )
3341 {
3342 add_c_prev = add_count;
3343 dbl_c_prev = dbl_count;
3344 mul_c_prev = mul_count;
3345 add_count = 0;
3346 dbl_count = 0;
3347 mul_count = 0;
3348
3349 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[i] ) );
3350 MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3351 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, self_test_rng, NULL ) );
3352
3353 if( add_count != add_c_prev ||
3354 dbl_count != dbl_c_prev ||
3355 mul_count != mul_c_prev )
3356 {
3357 ret = 1;
3358 break;
3359 }
3360 }
3361
3362 cleanup:
3363 if( verbose != 0 )
3364 {
3365 if( ret != 0 )
3366 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
3367 else
3368 mbedtls_printf( "passed\n" );
3369 }
3370 return( ret );
3371 }
3372
3373 /*
3374 * Checkup routine
3375 */
mbedtls_ecp_self_test(int verbose)3376 int mbedtls_ecp_self_test( int verbose )
3377 {
3378 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3379 mbedtls_ecp_group grp;
3380 mbedtls_ecp_point R, P;
3381 mbedtls_mpi m;
3382
3383 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3384 /* Exponents especially adapted for secp192k1, which has the lowest
3385 * order n of all supported curves (secp192r1 is in a slightly larger
3386 * field but the order of its base point is slightly smaller). */
3387 const char *sw_exponents[] =
3388 {
3389 "000000000000000000000000000000000000000000000001", /* one */
3390 "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3391 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3392 "400000000000000000000000000000000000000000000000", /* one and zeros */
3393 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3394 "555555555555555555555555555555555555555555555555", /* 101010... */
3395 };
3396 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3397 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3398 const char *m_exponents[] =
3399 {
3400 /* Valid private values for Curve25519. In a build with Curve448
3401 * but not Curve25519, they will be adjusted in
3402 * self_test_adjust_exponent(). */
3403 "4000000000000000000000000000000000000000000000000000000000000000",
3404 "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3405 "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3406 "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3407 "5555555555555555555555555555555555555555555555555555555555555550",
3408 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3409 };
3410 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3411
3412 mbedtls_ecp_group_init( &grp );
3413 mbedtls_ecp_point_init( &R );
3414 mbedtls_ecp_point_init( &P );
3415 mbedtls_mpi_init( &m );
3416
3417 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3418 /* Use secp192r1 if available, or any available curve */
3419 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3420 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
3421 #else
3422 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
3423 #endif
3424
3425 if( verbose != 0 )
3426 mbedtls_printf( " ECP SW test #1 (constant op_count, base point G): " );
3427 /* Do a dummy multiplication first to trigger precomputation */
3428 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
3429 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, self_test_rng, NULL ) );
3430 ret = self_test_point( verbose,
3431 &grp, &R, &m, &grp.G,
3432 sw_exponents,
3433 sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3434 if( ret != 0 )
3435 goto cleanup;
3436
3437 if( verbose != 0 )
3438 mbedtls_printf( " ECP SW test #2 (constant op_count, other point): " );
3439 /* We computed P = 2G last time, use it */
3440 ret = self_test_point( verbose,
3441 &grp, &R, &m, &P,
3442 sw_exponents,
3443 sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3444 if( ret != 0 )
3445 goto cleanup;
3446
3447 mbedtls_ecp_group_free( &grp );
3448 mbedtls_ecp_point_free( &R );
3449 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3450
3451 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3452 if( verbose != 0 )
3453 mbedtls_printf( " ECP Montgomery test (constant op_count): " );
3454 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3455 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE25519 ) );
3456 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3457 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE448 ) );
3458 #else
3459 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3460 #endif
3461 ret = self_test_point( verbose,
3462 &grp, &R, &m, &grp.G,
3463 m_exponents,
3464 sizeof( m_exponents ) / sizeof( m_exponents[0] ));
3465 if( ret != 0 )
3466 goto cleanup;
3467 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3468
3469 cleanup:
3470
3471 if( ret < 0 && verbose != 0 )
3472 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
3473
3474 mbedtls_ecp_group_free( &grp );
3475 mbedtls_ecp_point_free( &R );
3476 mbedtls_ecp_point_free( &P );
3477 mbedtls_mpi_free( &m );
3478
3479 if( verbose != 0 )
3480 mbedtls_printf( "\n" );
3481
3482 return( ret );
3483 }
3484
3485 #endif /* MBEDTLS_SELF_TEST */
3486
3487 #endif /* !MBEDTLS_ECP_ALT */
3488
3489 #endif /* MBEDTLS_ECP_C */
3490