1 /*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 /*
9 * References:
10 *
11 * SEC1 https://www.secg.org/sec1-v2.pdf
12 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14 * RFC 4492 for the related TLS structures and constants
15 * - https://www.rfc-editor.org/rfc/rfc4492
16 * RFC 7748 for the Curve448 and Curve25519 curve definitions
17 * - https://www.rfc-editor.org/rfc/rfc7748
18 *
19 * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20 *
21 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
23 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25 *
26 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27 * render ECC resistant against Side Channel Attacks. IACR Cryptology
28 * ePrint Archive, 2004, vol. 2004, p. 342.
29 * <http://eprint.iacr.org/2004/342.pdf>
30 */
31
32 #include "common.h"
33
34 /**
35 * \brief Function level alternative implementation.
36 *
37 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38 * replace certain functions in this module. The alternative implementations are
39 * typically hardware accelerators and need to activate the hardware before the
40 * computation starts and deactivate it after it finishes. The
41 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42 * this purpose.
43 *
44 * To preserve the correct functionality the following conditions must hold:
45 *
46 * - The alternative implementation must be activated by
47 * mbedtls_internal_ecp_init() before any of the replaceable functions is
48 * called.
49 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50 * implementation is activated.
51 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52 * implementation is activated.
53 * - Public functions must not return while the alternative implementation is
54 * activated.
55 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57 * \endcode ensures that the alternative implementation supports the current
58 * group.
59 */
60 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 #endif
62
63 #if defined(MBEDTLS_ECP_LIGHT)
64
65 #include "mbedtls/ecp.h"
66 #include "mbedtls/threading.h"
67 #include "mbedtls/platform_util.h"
68 #include "mbedtls/error.h"
69
70 #include "bn_mul.h"
71 #include "ecp_invasive.h"
72
73 #include <string.h>
74
75 #if !defined(MBEDTLS_ECP_ALT)
76
77 #include "mbedtls/platform.h"
78
79 #include "ecp_internal_alt.h"
80
81 #if defined(MBEDTLS_SELF_TEST)
82 /*
83 * Counts of point addition and doubling, and field multiplications.
84 * Used to test resistance of point multiplication to simple timing attacks.
85 */
86 #if defined(MBEDTLS_ECP_C)
87 static unsigned long add_count, dbl_count;
88 #endif /* MBEDTLS_ECP_C */
89 static unsigned long mul_count;
90 #endif
91
92 #if defined(MBEDTLS_ECP_RESTARTABLE)
93 /*
94 * Maximum number of "basic operations" to be done in a row.
95 *
96 * Default value 0 means that ECC operations will not yield.
97 * Note that regardless of the value of ecp_max_ops, always at
98 * least one step is performed before yielding.
99 *
100 * Setting ecp_max_ops=1 can be suitable for testing purposes
101 * as it will interrupt computation at all possible points.
102 */
103 static unsigned ecp_max_ops = 0;
104
105 /*
106 * Set ecp_max_ops
107 */
mbedtls_ecp_set_max_ops(unsigned max_ops)108 void mbedtls_ecp_set_max_ops(unsigned max_ops)
109 {
110 ecp_max_ops = max_ops;
111 }
112
113 /*
114 * Check if restart is enabled
115 */
mbedtls_ecp_restart_is_enabled(void)116 int mbedtls_ecp_restart_is_enabled(void)
117 {
118 return ecp_max_ops != 0;
119 }
120
121 /*
122 * Restart sub-context for ecp_mul_comb()
123 */
124 struct mbedtls_ecp_restart_mul {
125 mbedtls_ecp_point R; /* current intermediate result */
126 size_t i; /* current index in various loops, 0 outside */
127 mbedtls_ecp_point *T; /* table for precomputed points */
128 unsigned char T_size; /* number of points in table T */
129 enum { /* what were we doing last time we returned? */
130 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
131 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
132 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
133 ecp_rsm_pre_add, /* precompute remaining points by adding */
134 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
135 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
136 ecp_rsm_final_norm, /* do the final normalization */
137 } state;
138 };
139
140 /*
141 * Init restart_mul sub-context
142 */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)143 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144 {
145 mbedtls_ecp_point_init(&ctx->R);
146 ctx->i = 0;
147 ctx->T = NULL;
148 ctx->T_size = 0;
149 ctx->state = ecp_rsm_init;
150 }
151
152 /*
153 * Free the components of a restart_mul sub-context
154 */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)155 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156 {
157 unsigned char i;
158
159 if (ctx == NULL) {
160 return;
161 }
162
163 mbedtls_ecp_point_free(&ctx->R);
164
165 if (ctx->T != NULL) {
166 for (i = 0; i < ctx->T_size; i++) {
167 mbedtls_ecp_point_free(ctx->T + i);
168 }
169 mbedtls_free(ctx->T);
170 }
171
172 ecp_restart_rsm_init(ctx);
173 }
174
175 /*
176 * Restart context for ecp_muladd()
177 */
178 struct mbedtls_ecp_restart_muladd {
179 mbedtls_ecp_point mP; /* mP value */
180 mbedtls_ecp_point R; /* R intermediate result */
181 enum { /* what should we do next? */
182 ecp_rsma_mul1 = 0, /* first multiplication */
183 ecp_rsma_mul2, /* second multiplication */
184 ecp_rsma_add, /* addition */
185 ecp_rsma_norm, /* normalization */
186 } state;
187 };
188
189 /*
190 * Init restart_muladd sub-context
191 */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)192 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193 {
194 mbedtls_ecp_point_init(&ctx->mP);
195 mbedtls_ecp_point_init(&ctx->R);
196 ctx->state = ecp_rsma_mul1;
197 }
198
199 /*
200 * Free the components of a restart_muladd sub-context
201 */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)202 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203 {
204 if (ctx == NULL) {
205 return;
206 }
207
208 mbedtls_ecp_point_free(&ctx->mP);
209 mbedtls_ecp_point_free(&ctx->R);
210
211 ecp_restart_ma_init(ctx);
212 }
213
214 /*
215 * Initialize a restart context
216 */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)217 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218 {
219 ctx->ops_done = 0;
220 ctx->depth = 0;
221 ctx->rsm = NULL;
222 ctx->ma = NULL;
223 }
224
225 /*
226 * Free the components of a restart context
227 */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)228 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229 {
230 if (ctx == NULL) {
231 return;
232 }
233
234 ecp_restart_rsm_free(ctx->rsm);
235 mbedtls_free(ctx->rsm);
236
237 ecp_restart_ma_free(ctx->ma);
238 mbedtls_free(ctx->ma);
239
240 mbedtls_ecp_restart_init(ctx);
241 }
242
243 /*
244 * Check if we can do the next step
245 */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)246 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247 mbedtls_ecp_restart_ctx *rs_ctx,
248 unsigned ops)
249 {
250 if (rs_ctx != NULL && ecp_max_ops != 0) {
251 /* scale depending on curve size: the chosen reference is 256-bit,
252 * and multiplication is quadratic. Round to the closest integer. */
253 if (grp->pbits >= 512) {
254 ops *= 4;
255 } else if (grp->pbits >= 384) {
256 ops *= 2;
257 }
258
259 /* Avoid infinite loops: always allow first step.
260 * Because of that, however, it's not generally true
261 * that ops_done <= ecp_max_ops, so the check
262 * ops_done > ecp_max_ops below is mandatory. */
263 if ((rs_ctx->ops_done != 0) &&
264 (rs_ctx->ops_done > ecp_max_ops ||
265 ops > ecp_max_ops - rs_ctx->ops_done)) {
266 return MBEDTLS_ERR_ECP_IN_PROGRESS;
267 }
268
269 /* update running count */
270 rs_ctx->ops_done += ops;
271 }
272
273 return 0;
274 }
275
276 /* Call this when entering a function that needs its own sub-context */
277 #define ECP_RS_ENTER(SUB) do { \
278 /* reset ops count for this call if top-level */ \
279 if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
280 rs_ctx->ops_done = 0; \
281 \
282 /* set up our own sub-context if needed */ \
283 if (mbedtls_ecp_restart_is_enabled() && \
284 rs_ctx != NULL && rs_ctx->SUB == NULL) \
285 { \
286 rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
287 if (rs_ctx->SUB == NULL) \
288 return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
289 \
290 ecp_restart_## SUB ##_init(rs_ctx->SUB); \
291 } \
292 } while (0)
293
294 /* Call this when leaving a function that needs its own sub-context */
295 #define ECP_RS_LEAVE(SUB) do { \
296 /* clear our sub-context when not in progress (done or error) */ \
297 if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
298 ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
299 { \
300 ecp_restart_## SUB ##_free(rs_ctx->SUB); \
301 mbedtls_free(rs_ctx->SUB); \
302 rs_ctx->SUB = NULL; \
303 } \
304 \
305 if (rs_ctx != NULL) \
306 rs_ctx->depth--; \
307 } while (0)
308
309 #else /* MBEDTLS_ECP_RESTARTABLE */
310
311 #define ECP_RS_ENTER(sub) (void) rs_ctx;
312 #define ECP_RS_LEAVE(sub) (void) rs_ctx;
313
314 #endif /* MBEDTLS_ECP_RESTARTABLE */
315
316 #if defined(MBEDTLS_ECP_C)
mpi_init_many(mbedtls_mpi * arr,size_t size)317 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318 {
319 while (size--) {
320 mbedtls_mpi_init(arr++);
321 }
322 }
323
mpi_free_many(mbedtls_mpi * arr,size_t size)324 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325 {
326 while (size--) {
327 mbedtls_mpi_free(arr++);
328 }
329 }
330 #endif /* MBEDTLS_ECP_C */
331
332 /*
333 * List of supported curves:
334 * - internal ID
335 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336 * - size in bits
337 * - readable name
338 *
339 * Curves are listed in order: largest curves first, and for a given size,
340 * fastest curves first.
341 *
342 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343 */
344 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345 {
346 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
348 #endif
349 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
351 #endif
352 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
354 #endif
355 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
357 #endif
358 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
360 #endif
361 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380 { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383 { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
384 #endif
385 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
386 };
387
388 #define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
389 sizeof(ecp_supported_curves[0])
390
391 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392
393 /*
394 * List of supported curves and associated info
395 */
mbedtls_ecp_curve_list(void)396 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397 {
398 return ecp_supported_curves;
399 }
400
401 /*
402 * List of supported curves, group ID only
403 */
mbedtls_ecp_grp_id_list(void)404 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405 {
406 static int init_done = 0;
407
408 if (!init_done) {
409 size_t i = 0;
410 const mbedtls_ecp_curve_info *curve_info;
411
412 for (curve_info = mbedtls_ecp_curve_list();
413 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414 curve_info++) {
415 ecp_supported_grp_id[i++] = curve_info->grp_id;
416 }
417 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418
419 init_done = 1;
420 }
421
422 return ecp_supported_grp_id;
423 }
424
425 /*
426 * Get the curve info for the internal identifier
427 */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)428 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429 {
430 const mbedtls_ecp_curve_info *curve_info;
431
432 for (curve_info = mbedtls_ecp_curve_list();
433 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434 curve_info++) {
435 if (curve_info->grp_id == grp_id) {
436 return curve_info;
437 }
438 }
439
440 return NULL;
441 }
442
443 /*
444 * Get the curve info from the TLS identifier
445 */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)446 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447 {
448 const mbedtls_ecp_curve_info *curve_info;
449
450 for (curve_info = mbedtls_ecp_curve_list();
451 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452 curve_info++) {
453 if (curve_info->tls_id == tls_id) {
454 return curve_info;
455 }
456 }
457
458 return NULL;
459 }
460
461 /*
462 * Get the curve info from the name
463 */
mbedtls_ecp_curve_info_from_name(const char * name)464 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465 {
466 const mbedtls_ecp_curve_info *curve_info;
467
468 if (name == NULL) {
469 return NULL;
470 }
471
472 for (curve_info = mbedtls_ecp_curve_list();
473 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474 curve_info++) {
475 if (strcmp(curve_info->name, name) == 0) {
476 return curve_info;
477 }
478 }
479
480 return NULL;
481 }
482
483 /*
484 * Get the type of a curve
485 */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)486 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487 {
488 if (grp->G.X.p == NULL) {
489 return MBEDTLS_ECP_TYPE_NONE;
490 }
491
492 if (grp->G.Y.p == NULL) {
493 return MBEDTLS_ECP_TYPE_MONTGOMERY;
494 } else {
495 return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496 }
497 }
498
499 /*
500 * Initialize (the components of) a point
501 */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)502 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503 {
504 mbedtls_mpi_init(&pt->X);
505 mbedtls_mpi_init(&pt->Y);
506 mbedtls_mpi_init(&pt->Z);
507 }
508
509 /*
510 * Initialize (the components of) a group
511 */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)512 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513 {
514 grp->id = MBEDTLS_ECP_DP_NONE;
515 mbedtls_mpi_init(&grp->P);
516 mbedtls_mpi_init(&grp->A);
517 mbedtls_mpi_init(&grp->B);
518 mbedtls_ecp_point_init(&grp->G);
519 mbedtls_mpi_init(&grp->N);
520 grp->pbits = 0;
521 grp->nbits = 0;
522 grp->h = 0;
523 grp->modp = NULL;
524 grp->t_pre = NULL;
525 grp->t_post = NULL;
526 grp->t_data = NULL;
527 grp->T = NULL;
528 grp->T_size = 0;
529 }
530
531 /*
532 * Initialize (the components of) a key pair
533 */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)534 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535 {
536 mbedtls_ecp_group_init(&key->grp);
537 mbedtls_mpi_init(&key->d);
538 mbedtls_ecp_point_init(&key->Q);
539 }
540
541 /*
542 * Unallocate (the components of) a point
543 */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)544 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545 {
546 if (pt == NULL) {
547 return;
548 }
549
550 mbedtls_mpi_free(&(pt->X));
551 mbedtls_mpi_free(&(pt->Y));
552 mbedtls_mpi_free(&(pt->Z));
553 }
554
555 /*
556 * Check that the comb table (grp->T) is static initialized.
557 */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)558 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559 {
560 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561 return grp->T != NULL && grp->T_size == 0;
562 #else
563 (void) grp;
564 return 0;
565 #endif
566 }
567
568 /*
569 * Unallocate (the components of) a group
570 */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)571 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572 {
573 size_t i;
574
575 if (grp == NULL) {
576 return;
577 }
578
579 if (grp->h != 1) {
580 mbedtls_mpi_free(&grp->A);
581 mbedtls_mpi_free(&grp->B);
582 mbedtls_ecp_point_free(&grp->G);
583
584 #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585 mbedtls_mpi_free(&grp->N);
586 mbedtls_mpi_free(&grp->P);
587 #endif
588 }
589
590 if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591 for (i = 0; i < grp->T_size; i++) {
592 mbedtls_ecp_point_free(&grp->T[i]);
593 }
594 mbedtls_free(grp->T);
595 }
596
597 mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598 }
599
600 /*
601 * Unallocate (the components of) a key pair
602 */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)603 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604 {
605 if (key == NULL) {
606 return;
607 }
608
609 mbedtls_ecp_group_free(&key->grp);
610 mbedtls_mpi_free(&key->d);
611 mbedtls_ecp_point_free(&key->Q);
612 }
613
614 /*
615 * Copy the contents of a point
616 */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)617 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618 {
619 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623
624 cleanup:
625 return ret;
626 }
627
628 /*
629 * Copy the contents of a group object
630 */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)631 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632 {
633 return mbedtls_ecp_group_load(dst, src->id);
634 }
635
636 /*
637 * Set point to zero
638 */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)639 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640 {
641 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645
646 cleanup:
647 return ret;
648 }
649
650 /*
651 * Tell if a point is zero
652 */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)653 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654 {
655 return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656 }
657
658 /*
659 * Compare two points lazily
660 */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)661 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662 const mbedtls_ecp_point *Q)
663 {
664 if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665 mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666 mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667 return 0;
668 }
669
670 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671 }
672
673 /*
674 * Import a non-zero point from ASCII strings
675 */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)676 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677 const char *x, const char *y)
678 {
679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683
684 cleanup:
685 return ret;
686 }
687
688 /*
689 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690 */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)691 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692 const mbedtls_ecp_point *P,
693 int format, size_t *olen,
694 unsigned char *buf, size_t buflen)
695 {
696 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697 size_t plen;
698 if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699 format != MBEDTLS_ECP_PF_COMPRESSED) {
700 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701 }
702
703 plen = mbedtls_mpi_size(&grp->P);
704
705 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706 (void) format; /* Montgomery curves always use the same point format */
707 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708 *olen = plen;
709 if (buflen < *olen) {
710 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711 }
712
713 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714 }
715 #endif
716 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718 /*
719 * Common case: P == 0
720 */
721 if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722 if (buflen < 1) {
723 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724 }
725
726 buf[0] = 0x00;
727 *olen = 1;
728
729 return 0;
730 }
731
732 if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733 *olen = 2 * plen + 1;
734
735 if (buflen < *olen) {
736 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737 }
738
739 buf[0] = 0x04;
740 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742 } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743 *olen = plen + 1;
744
745 if (buflen < *olen) {
746 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747 }
748
749 buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751 }
752 }
753 #endif
754
755 cleanup:
756 return ret;
757 }
758
759 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761 const mbedtls_mpi *X,
762 mbedtls_mpi *Y,
763 int parity_bit);
764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765
766 /*
767 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768 */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)769 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770 mbedtls_ecp_point *pt,
771 const unsigned char *buf, size_t ilen)
772 {
773 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774 size_t plen;
775 if (ilen < 1) {
776 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777 }
778
779 plen = mbedtls_mpi_size(&grp->P);
780
781 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783 if (plen != ilen) {
784 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785 }
786
787 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788 mbedtls_mpi_free(&pt->Y);
789
790 if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791 /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793 }
794
795 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796 }
797 #endif
798 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800 if (buf[0] == 0x00) {
801 if (ilen == 1) {
802 return mbedtls_ecp_set_zero(pt);
803 } else {
804 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805 }
806 }
807
808 if (ilen < 1 + plen) {
809 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810 }
811
812 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814
815 if (buf[0] == 0x04) {
816 /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817 if (ilen != 1 + plen * 2) {
818 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819 }
820 return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821 } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822 /* format == MBEDTLS_ECP_PF_COMPRESSED */
823 if (ilen != 1 + plen) {
824 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825 }
826 return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827 (buf[0] & 1));
828 } else {
829 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830 }
831 }
832 #endif
833
834 cleanup:
835 return ret;
836 }
837
838 /*
839 * Import a point from a TLS ECPoint record (RFC 4492)
840 * struct {
841 * opaque point <1..2^8-1>;
842 * } ECPoint;
843 */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)844 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845 mbedtls_ecp_point *pt,
846 const unsigned char **buf, size_t buf_len)
847 {
848 unsigned char data_len;
849 const unsigned char *buf_start;
850 /*
851 * We must have at least two bytes (1 for length, at least one for data)
852 */
853 if (buf_len < 2) {
854 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855 }
856
857 data_len = *(*buf)++;
858 if (data_len < 1 || data_len > buf_len - 1) {
859 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860 }
861
862 /*
863 * Save buffer start for read_binary and update buf
864 */
865 buf_start = *buf;
866 *buf += data_len;
867
868 return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869 }
870
871 /*
872 * Export a point as a TLS ECPoint record (RFC 4492)
873 * struct {
874 * opaque point <1..2^8-1>;
875 * } ECPoint;
876 */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)877 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878 int format, size_t *olen,
879 unsigned char *buf, size_t blen)
880 {
881 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882 if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883 format != MBEDTLS_ECP_PF_COMPRESSED) {
884 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885 }
886
887 /*
888 * buffer length must be at least one, for our length byte
889 */
890 if (blen < 1) {
891 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892 }
893
894 if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895 olen, buf + 1, blen - 1)) != 0) {
896 return ret;
897 }
898
899 /*
900 * write length to the first byte and update total length
901 */
902 buf[0] = (unsigned char) *olen;
903 ++*olen;
904
905 return 0;
906 }
907
908 /*
909 * Set a group from an ECParameters record (RFC 4492)
910 */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)911 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912 const unsigned char **buf, size_t len)
913 {
914 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915 mbedtls_ecp_group_id grp_id;
916 if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917 return ret;
918 }
919
920 return mbedtls_ecp_group_load(grp, grp_id);
921 }
922
923 /*
924 * Read a group id from an ECParameters record (RFC 4492) and convert it to
925 * mbedtls_ecp_group_id.
926 */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)927 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928 const unsigned char **buf, size_t len)
929 {
930 uint16_t tls_id;
931 const mbedtls_ecp_curve_info *curve_info;
932 /*
933 * We expect at least three bytes (see below)
934 */
935 if (len < 3) {
936 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937 }
938
939 /*
940 * First byte is curve_type; only named_curve is handled
941 */
942 if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944 }
945
946 /*
947 * Next two bytes are the namedcurve value
948 */
949 tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950 *buf += 2;
951
952 if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954 }
955
956 *grp = curve_info->grp_id;
957
958 return 0;
959 }
960
961 /*
962 * Write the ECParameters record corresponding to a group (RFC 4492)
963 */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)964 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965 unsigned char *buf, size_t blen)
966 {
967 const mbedtls_ecp_curve_info *curve_info;
968 if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970 }
971
972 /*
973 * We are going to write 3 bytes (see below)
974 */
975 *olen = 3;
976 if (blen < *olen) {
977 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978 }
979
980 /*
981 * First byte is curve_type, always named_curve
982 */
983 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984
985 /*
986 * Next two bytes are the namedcurve value
987 */
988 MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989
990 return 0;
991 }
992
993 /*
994 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995 * See the documentation of struct mbedtls_ecp_group.
996 *
997 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998 */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)999 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000 {
1001 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002
1003 if (grp->modp == NULL) {
1004 return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005 }
1006
1007 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1008 if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009 mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011 }
1012
1013 MBEDTLS_MPI_CHK(grp->modp(N));
1014
1015 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1016 while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018 }
1019
1020 while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021 /* we known P, N and the result are positive */
1022 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023 }
1024
1025 cleanup:
1026 return ret;
1027 }
1028
1029 /*
1030 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031 *
1032 * In order to guarantee that, we need to ensure that operands of
1033 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034 * bring the result back to this range.
1035 *
1036 * The following macros are shortcuts for doing that.
1037 */
1038
1039 /*
1040 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041 */
1042 #if defined(MBEDTLS_SELF_TEST)
1043 #define INC_MUL_COUNT mul_count++;
1044 #else
1045 #define INC_MUL_COUNT
1046 #endif
1047
1048 #define MOD_MUL(N) \
1049 do \
1050 { \
1051 MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
1052 INC_MUL_COUNT \
1053 } while (0)
1054
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1055 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056 mbedtls_mpi *X,
1057 const mbedtls_mpi *A,
1058 const mbedtls_mpi *B)
1059 {
1060 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062 MOD_MUL(*X);
1063 cleanup:
1064 return ret;
1065 }
1066
1067 /*
1068 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069 * N->s < 0 is a very fast test, which fails only if N is 0
1070 */
1071 #define MOD_SUB(N) \
1072 do { \
1073 while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
1074 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
1075 } while (0)
1076
1077 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1078 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1079 mbedtls_mpi *X,
1080 const mbedtls_mpi *A,
1081 const mbedtls_mpi *B)
1082 {
1083 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1084 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1085 MOD_SUB(X);
1086 cleanup:
1087 return ret;
1088 }
1089
1090 /*
1091 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1092 * We known P, N and the result are positive, so sub_abs is correct, and
1093 * a bit faster.
1094 */
1095 #define MOD_ADD(N) \
1096 while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
1097 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1098
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1099 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1100 mbedtls_mpi *X,
1101 const mbedtls_mpi *A,
1102 const mbedtls_mpi *B)
1103 {
1104 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1105 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1106 MOD_ADD(X);
1107 cleanup:
1108 return ret;
1109 }
1110
1111 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1112 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1113 mbedtls_mpi *X,
1114 const mbedtls_mpi *A,
1115 mbedtls_mpi_uint c)
1116 {
1117 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1118
1119 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1120 MOD_ADD(X);
1121 cleanup:
1122 return ret;
1123 }
1124
1125 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1126 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1127 mbedtls_mpi *X,
1128 const mbedtls_mpi *A,
1129 mbedtls_mpi_uint c)
1130 {
1131 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132
1133 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1134 MOD_SUB(X);
1135 cleanup:
1136 return ret;
1137 }
1138
1139 #define MPI_ECP_SUB_INT(X, A, c) \
1140 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1141
1142 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1143 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1144 mbedtls_mpi *X,
1145 size_t count)
1146 {
1147 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1148 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1149 MOD_ADD(X);
1150 cleanup:
1151 return ret;
1152 }
1153
1154 /*
1155 * Macro wrappers around ECP modular arithmetic
1156 *
1157 * Currently, these wrappers are defined via the bignum module.
1158 */
1159
1160 #define MPI_ECP_ADD(X, A, B) \
1161 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1162
1163 #define MPI_ECP_SUB(X, A, B) \
1164 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1165
1166 #define MPI_ECP_MUL(X, A, B) \
1167 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1168
1169 #define MPI_ECP_SQR(X, A) \
1170 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1171
1172 #define MPI_ECP_MUL_INT(X, A, c) \
1173 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1174
1175 #define MPI_ECP_INV(dst, src) \
1176 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1177
1178 #define MPI_ECP_MOV(X, A) \
1179 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1180
1181 #define MPI_ECP_SHIFT_L(X, count) \
1182 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1183
1184 #define MPI_ECP_LSET(X, c) \
1185 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1186
1187 #define MPI_ECP_CMP_INT(X, c) \
1188 mbedtls_mpi_cmp_int(X, c)
1189
1190 #define MPI_ECP_CMP(X, Y) \
1191 mbedtls_mpi_cmp_mpi(X, Y)
1192
1193 /* Needs f_rng, p_rng to be defined. */
1194 #define MPI_ECP_RAND(X) \
1195 MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1196
1197 /* Conditional negation
1198 * Needs grp and a temporary MPI tmp to be defined. */
1199 #define MPI_ECP_COND_NEG(X, cond) \
1200 do \
1201 { \
1202 unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
1203 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
1204 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
1205 nonzero & cond)); \
1206 } while (0)
1207
1208 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1209
1210 #define MPI_ECP_VALID(X) \
1211 ((X)->p != NULL)
1212
1213 #define MPI_ECP_COND_ASSIGN(X, Y, cond) \
1214 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1215
1216 #define MPI_ECP_COND_SWAP(X, Y, cond) \
1217 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1218
1219 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1220
1221 /*
1222 * Computes the right-hand side of the Short Weierstrass equation
1223 * RHS = X^3 + A X + B
1224 */
ecp_sw_rhs(const mbedtls_ecp_group * grp,mbedtls_mpi * rhs,const mbedtls_mpi * X)1225 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1226 mbedtls_mpi *rhs,
1227 const mbedtls_mpi *X)
1228 {
1229 int ret;
1230
1231 /* Compute X^3 + A X + B as X (X^2 + A) + B */
1232 MPI_ECP_SQR(rhs, X);
1233
1234 /* Special case for A = -3 */
1235 if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1236 MPI_ECP_SUB_INT(rhs, rhs, 3);
1237 } else {
1238 MPI_ECP_ADD(rhs, rhs, &grp->A);
1239 }
1240
1241 MPI_ECP_MUL(rhs, rhs, X);
1242 MPI_ECP_ADD(rhs, rhs, &grp->B);
1243
1244 cleanup:
1245 return ret;
1246 }
1247
1248 /*
1249 * Derive Y from X and a parity bit
1250 */
mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group * grp,const mbedtls_mpi * X,mbedtls_mpi * Y,int parity_bit)1251 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1252 const mbedtls_mpi *X,
1253 mbedtls_mpi *Y,
1254 int parity_bit)
1255 {
1256 /* w = y^2 = x^3 + ax + b
1257 * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
1258 *
1259 * Note: this method for extracting square root does not validate that w
1260 * was indeed a square so this function will return garbage in Y if X
1261 * does not correspond to a point on the curve.
1262 */
1263
1264 /* Check prerequisite p = 3 mod 4 */
1265 if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1266 mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1267 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1268 }
1269
1270 int ret;
1271 mbedtls_mpi exp;
1272 mbedtls_mpi_init(&exp);
1273
1274 /* use Y to store intermediate result, actually w above */
1275 MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1276
1277 /* w = y^2 */ /* Y contains y^2 intermediate result */
1278 /* exp = ((p+1)/4) */
1279 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1280 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1281 /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
1282 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1283
1284 /* check parity bit match or else invert Y */
1285 /* This quick inversion implementation is valid because Y != 0 for all
1286 * Short Weierstrass curves supported by mbedtls, as each supported curve
1287 * has an order that is a large prime, so each supported curve does not
1288 * have any point of order 2, and a point with Y == 0 would be of order 2 */
1289 if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1290 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1291 }
1292
1293 cleanup:
1294
1295 mbedtls_mpi_free(&exp);
1296 return ret;
1297 }
1298 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1299
1300 #if defined(MBEDTLS_ECP_C)
1301 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1302 /*
1303 * For curves in short Weierstrass form, we do all the internal operations in
1304 * Jacobian coordinates.
1305 *
1306 * For multiplication, we'll use a comb method with countermeasures against
1307 * SPA, hence timing attacks.
1308 */
1309
1310 /*
1311 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1312 * Cost: 1N := 1I + 3M + 1S
1313 */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1314 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1315 {
1316 if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1317 return 0;
1318 }
1319
1320 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1321 if (mbedtls_internal_ecp_grp_capable(grp)) {
1322 return mbedtls_internal_ecp_normalize_jac(grp, pt);
1323 }
1324 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1325
1326 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1327 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1328 #else
1329 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1330 mbedtls_mpi T;
1331 mbedtls_mpi_init(&T);
1332
1333 MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
1334 MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
1335 MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
1336 MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
1337 MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
1338
1339 MPI_ECP_LSET(&pt->Z, 1);
1340
1341 cleanup:
1342
1343 mbedtls_mpi_free(&T);
1344
1345 return ret;
1346 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1347 }
1348
1349 /*
1350 * Normalize jacobian coordinates of an array of (pointers to) points,
1351 * using Montgomery's trick to perform only one inversion mod P.
1352 * (See for example Cohen's "A Course in Computational Algebraic Number
1353 * Theory", Algorithm 10.3.4.)
1354 *
1355 * Warning: fails (returning an error) if one of the points is zero!
1356 * This should never happen, see choice of w in ecp_mul_comb().
1357 *
1358 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1359 */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1360 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1361 mbedtls_ecp_point *T[], size_t T_size)
1362 {
1363 if (T_size < 2) {
1364 return ecp_normalize_jac(grp, *T);
1365 }
1366
1367 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1368 if (mbedtls_internal_ecp_grp_capable(grp)) {
1369 return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1370 }
1371 #endif
1372
1373 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1374 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1375 #else
1376 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1377 size_t i;
1378 mbedtls_mpi *c, t;
1379
1380 if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1381 return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1382 }
1383
1384 mbedtls_mpi_init(&t);
1385
1386 mpi_init_many(c, T_size);
1387 /*
1388 * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1389 */
1390 MPI_ECP_MOV(&c[0], &T[0]->Z);
1391 for (i = 1; i < T_size; i++) {
1392 MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1393 }
1394
1395 /*
1396 * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1397 */
1398 MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1399
1400 for (i = T_size - 1;; i--) {
1401 /* At the start of iteration i (note that i decrements), we have
1402 * - c[j] = Z_0 * .... * Z_j for j < i,
1403 * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1404 *
1405 * This is maintained via
1406 * - c[i-1] <- c[i] * Z_i
1407 *
1408 * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1409 * to do the actual normalization. For i==0, we already have
1410 * c[0] = 1 / Z_0.
1411 */
1412
1413 if (i > 0) {
1414 /* Compute 1/Z_i and establish invariant for the next iteration. */
1415 MPI_ECP_MUL(&t, &c[i], &c[i-1]);
1416 MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1417 } else {
1418 MPI_ECP_MOV(&t, &c[0]);
1419 }
1420
1421 /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1422 MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1423 MPI_ECP_SQR(&t, &t);
1424 MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1425 MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1426
1427 /*
1428 * Post-precessing: reclaim some memory by shrinking coordinates
1429 * - not storing Z (always 1)
1430 * - shrinking other coordinates, but still keeping the same number of
1431 * limbs as P, as otherwise it will too likely be regrown too fast.
1432 */
1433 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1434 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1435
1436 MPI_ECP_LSET(&T[i]->Z, 1);
1437
1438 if (i == 0) {
1439 break;
1440 }
1441 }
1442
1443 cleanup:
1444
1445 mbedtls_mpi_free(&t);
1446 mpi_free_many(c, T_size);
1447 mbedtls_free(c);
1448
1449 return ret;
1450 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1451 }
1452
1453 /*
1454 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1455 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1456 */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1457 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1458 mbedtls_ecp_point *Q,
1459 unsigned char inv)
1460 {
1461 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1462 mbedtls_mpi tmp;
1463 mbedtls_mpi_init(&tmp);
1464
1465 MPI_ECP_COND_NEG(&Q->Y, inv);
1466
1467 cleanup:
1468 mbedtls_mpi_free(&tmp);
1469 return ret;
1470 }
1471
1472 /*
1473 * Point doubling R = 2 P, Jacobian coordinates
1474 *
1475 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1476 *
1477 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1478 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1479 *
1480 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1481 *
1482 * Cost: 1D := 3M + 4S (A == 0)
1483 * 4M + 4S (A == -3)
1484 * 3M + 6S + 1a otherwise
1485 */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,mbedtls_mpi tmp[4])1486 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1487 const mbedtls_ecp_point *P,
1488 mbedtls_mpi tmp[4])
1489 {
1490 #if defined(MBEDTLS_SELF_TEST)
1491 dbl_count++;
1492 #endif
1493
1494 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1495 if (mbedtls_internal_ecp_grp_capable(grp)) {
1496 return mbedtls_internal_ecp_double_jac(grp, R, P);
1497 }
1498 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1499
1500 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1501 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1502 #else
1503 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1504
1505 /* Special case for A = -3 */
1506 if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1507 /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1508 MPI_ECP_SQR(&tmp[1], &P->Z);
1509 MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
1510 MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
1511 MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
1512 MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1513 } else {
1514 /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1515 MPI_ECP_SQR(&tmp[1], &P->X);
1516 MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1517
1518 /* Optimize away for "koblitz" curves with A = 0 */
1519 if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1520 /* M += A.Z^4 */
1521 MPI_ECP_SQR(&tmp[1], &P->Z);
1522 MPI_ECP_SQR(&tmp[2], &tmp[1]);
1523 MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
1524 MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
1525 }
1526 }
1527
1528 /* tmp[1] <- S = 4.X.Y^2 */
1529 MPI_ECP_SQR(&tmp[2], &P->Y);
1530 MPI_ECP_SHIFT_L(&tmp[2], 1);
1531 MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
1532 MPI_ECP_SHIFT_L(&tmp[1], 1);
1533
1534 /* tmp[3] <- U = 8.Y^4 */
1535 MPI_ECP_SQR(&tmp[3], &tmp[2]);
1536 MPI_ECP_SHIFT_L(&tmp[3], 1);
1537
1538 /* tmp[2] <- T = M^2 - 2.S */
1539 MPI_ECP_SQR(&tmp[2], &tmp[0]);
1540 MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1541 MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1542
1543 /* tmp[1] <- S = M(S - T) - U */
1544 MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
1545 MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
1546 MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
1547
1548 /* tmp[3] <- U = 2.Y.Z */
1549 MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
1550 MPI_ECP_SHIFT_L(&tmp[3], 1);
1551
1552 /* Store results */
1553 MPI_ECP_MOV(&R->X, &tmp[2]);
1554 MPI_ECP_MOV(&R->Y, &tmp[1]);
1555 MPI_ECP_MOV(&R->Z, &tmp[3]);
1556
1557 cleanup:
1558
1559 return ret;
1560 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1561 }
1562
1563 /*
1564 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1565 *
1566 * The coordinates of Q must be normalized (= affine),
1567 * but those of P don't need to. R is not normalized.
1568 *
1569 * P,Q,R may alias, but only at the level of EC points: they must be either
1570 * equal as pointers, or disjoint (including the coordinate data buffers).
1571 * Fine-grained aliasing at the level of coordinates is not supported.
1572 *
1573 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1574 * None of these cases can happen as intermediate step in ecp_mul_comb():
1575 * - at each step, P, Q and R are multiples of the base point, the factor
1576 * being less than its order, so none of them is zero;
1577 * - Q is an odd multiple of the base point, P an even multiple,
1578 * due to the choice of precomputed points in the modified comb method.
1579 * So branches for these cases do not leak secret information.
1580 *
1581 * Cost: 1A := 8M + 3S
1582 */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,mbedtls_mpi tmp[4])1583 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1584 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1585 mbedtls_mpi tmp[4])
1586 {
1587 #if defined(MBEDTLS_SELF_TEST)
1588 add_count++;
1589 #endif
1590
1591 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1592 if (mbedtls_internal_ecp_grp_capable(grp)) {
1593 return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1594 }
1595 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1596
1597 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1598 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1599 #else
1600 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1601
1602 /* NOTE: Aliasing between input and output is allowed, so one has to make
1603 * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1604 * longer read from. */
1605 mbedtls_mpi * const X = &R->X;
1606 mbedtls_mpi * const Y = &R->Y;
1607 mbedtls_mpi * const Z = &R->Z;
1608
1609 if (!MPI_ECP_VALID(&Q->Z)) {
1610 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1611 }
1612
1613 /*
1614 * Trivial cases: P == 0 or Q == 0 (case 1)
1615 */
1616 if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1617 return mbedtls_ecp_copy(R, Q);
1618 }
1619
1620 if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1621 return mbedtls_ecp_copy(R, P);
1622 }
1623
1624 /*
1625 * Make sure Q coordinates are normalized
1626 */
1627 if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1628 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1629 }
1630
1631 MPI_ECP_SQR(&tmp[0], &P->Z);
1632 MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1633 MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1634 MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1635 MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1636 MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1637
1638 /* Special cases (2) and (3) */
1639 if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1640 if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1641 ret = ecp_double_jac(grp, R, P, tmp);
1642 goto cleanup;
1643 } else {
1644 ret = mbedtls_ecp_set_zero(R);
1645 goto cleanup;
1646 }
1647 }
1648
1649 /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1650 MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
1651 MPI_ECP_SQR(&tmp[2], &tmp[0]);
1652 MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
1653 MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
1654
1655 MPI_ECP_MOV(&tmp[0], &tmp[2]);
1656 MPI_ECP_SHIFT_L(&tmp[0], 1);
1657
1658 /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1659 MPI_ECP_SQR(X, &tmp[1]);
1660 MPI_ECP_SUB(X, X, &tmp[0]);
1661 MPI_ECP_SUB(X, X, &tmp[3]);
1662 MPI_ECP_SUB(&tmp[2], &tmp[2], X);
1663 MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
1664 MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
1665 /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1666 MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
1667
1668 cleanup:
1669
1670 return ret;
1671 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1672 }
1673
1674 /*
1675 * Randomize jacobian coordinates:
1676 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1677 * This is sort of the reverse operation of ecp_normalize_jac().
1678 *
1679 * This countermeasure was first suggested in [2].
1680 */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1681 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1682 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1683 {
1684 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1685 if (mbedtls_internal_ecp_grp_capable(grp)) {
1686 return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1687 }
1688 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1689
1690 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1691 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1692 #else
1693 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1694 mbedtls_mpi l;
1695
1696 mbedtls_mpi_init(&l);
1697
1698 /* Generate l such that 1 < l < p */
1699 MPI_ECP_RAND(&l);
1700
1701 /* Z' = l * Z */
1702 MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
1703
1704 /* Y' = l * Y */
1705 MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1706
1707 /* X' = l^2 * X */
1708 MPI_ECP_SQR(&l, &l);
1709 MPI_ECP_MUL(&pt->X, &pt->X, &l);
1710
1711 /* Y'' = l^2 * Y' = l^3 * Y */
1712 MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1713
1714 cleanup:
1715 mbedtls_mpi_free(&l);
1716
1717 if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1718 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1719 }
1720 return ret;
1721 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1722 }
1723
1724 /*
1725 * Check and define parameters used by the comb method (see below for details)
1726 */
1727 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1728 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1729 #endif
1730
1731 /* d = ceil( n / w ) */
1732 #define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
1733
1734 /* number of precomputed points */
1735 #define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1736
1737 /*
1738 * Compute the representation of m that will be used with our comb method.
1739 *
1740 * The basic comb method is described in GECC 3.44 for example. We use a
1741 * modified version that provides resistance to SPA by avoiding zero
1742 * digits in the representation as in [3]. We modify the method further by
1743 * requiring that all K_i be odd, which has the small cost that our
1744 * representation uses one more K_i, due to carries, but saves on the size of
1745 * the precomputed table.
1746 *
1747 * Summary of the comb method and its modifications:
1748 *
1749 * - The goal is to compute m*P for some w*d-bit integer m.
1750 *
1751 * - The basic comb method splits m into the w-bit integers
1752 * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1753 * index has residue i modulo d, and computes m * P as
1754 * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1755 * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1756 *
1757 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1758 * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1759 * thereby successively converting it into a form where all summands
1760 * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1761 *
1762 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1763 * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1764 * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1765 * Performing and iterating this procedure for those x[i] that are even
1766 * (keeping track of carry), we can transform the original sum into one of the form
1767 * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1768 * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1769 * which is why we are only computing half of it in the first place in
1770 * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1771 *
1772 * - For the sake of compactness, only the seven low-order bits of x[i]
1773 * are used to represent its absolute value (K_i in the paper), and the msb
1774 * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1775 * if s_i == -1;
1776 *
1777 * Calling conventions:
1778 * - x is an array of size d + 1
1779 * - w is the size, ie number of teeth, of the comb, and must be between
1780 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1781 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1782 * (the result will be incorrect if these assumptions are not satisfied)
1783 */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1784 static void ecp_comb_recode_core(unsigned char x[], size_t d,
1785 unsigned char w, const mbedtls_mpi *m)
1786 {
1787 size_t i, j;
1788 unsigned char c, cc, adjust;
1789
1790 memset(x, 0, d+1);
1791
1792 /* First get the classical comb values (except for x_d = 0) */
1793 for (i = 0; i < d; i++) {
1794 for (j = 0; j < w; j++) {
1795 x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1796 }
1797 }
1798
1799 /* Now make sure x_1 .. x_d are odd */
1800 c = 0;
1801 for (i = 1; i <= d; i++) {
1802 /* Add carry and update it */
1803 cc = x[i] & c;
1804 x[i] = x[i] ^ c;
1805 c = cc;
1806
1807 /* Adjust if needed, avoiding branches */
1808 adjust = 1 - (x[i] & 0x01);
1809 c |= x[i] & (x[i-1] * adjust);
1810 x[i] = x[i] ^ (x[i-1] * adjust);
1811 x[i-1] |= adjust << 7;
1812 }
1813 }
1814
1815 /*
1816 * Precompute points for the adapted comb method
1817 *
1818 * Assumption: T must be able to hold 2^{w - 1} elements.
1819 *
1820 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1821 * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1822 *
1823 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1824 *
1825 * Note: Even comb values (those where P would be omitted from the
1826 * sum defining T[i] above) are not needed in our adaption
1827 * the comb method. See ecp_comb_recode_core().
1828 *
1829 * This function currently works in four steps:
1830 * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1831 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1832 * (3) [add] Computation of all T[i]
1833 * (4) [norm_add] Normalization of all T[i]
1834 *
1835 * Step 1 can be interrupted but not the others; together with the final
1836 * coordinate normalization they are the largest steps done at once, depending
1837 * on the window size. Here are operation counts for P-256:
1838 *
1839 * step (2) (3) (4)
1840 * w = 5 142 165 208
1841 * w = 4 136 77 160
1842 * w = 3 130 33 136
1843 * w = 2 124 11 124
1844 *
1845 * So if ECC operations are blocking for too long even with a low max_ops
1846 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1847 * to minimize maximum blocking time.
1848 */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1849 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1850 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1851 unsigned char w, size_t d,
1852 mbedtls_ecp_restart_ctx *rs_ctx)
1853 {
1854 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1855 unsigned char i;
1856 size_t j = 0;
1857 const unsigned char T_size = 1U << (w - 1);
1858 mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1859
1860 mbedtls_mpi tmp[4];
1861
1862 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1863
1864 #if defined(MBEDTLS_ECP_RESTARTABLE)
1865 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1866 if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1867 goto dbl;
1868 }
1869 if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1870 goto norm_dbl;
1871 }
1872 if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1873 goto add;
1874 }
1875 if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1876 goto norm_add;
1877 }
1878 }
1879 #else
1880 (void) rs_ctx;
1881 #endif
1882
1883 #if defined(MBEDTLS_ECP_RESTARTABLE)
1884 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1885 rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1886
1887 /* initial state for the loop */
1888 rs_ctx->rsm->i = 0;
1889 }
1890
1891 dbl:
1892 #endif
1893 /*
1894 * Set T[0] = P and
1895 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1896 */
1897 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1898
1899 #if defined(MBEDTLS_ECP_RESTARTABLE)
1900 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1901 j = rs_ctx->rsm->i;
1902 } else
1903 #endif
1904 j = 0;
1905
1906 for (; j < d * (w - 1); j++) {
1907 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1908
1909 i = 1U << (j / d);
1910 cur = T + i;
1911
1912 if (j % d == 0) {
1913 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1914 }
1915
1916 MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1917 }
1918
1919 #if defined(MBEDTLS_ECP_RESTARTABLE)
1920 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1921 rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1922 }
1923
1924 norm_dbl:
1925 #endif
1926 /*
1927 * Normalize current elements in T to allow them to be used in
1928 * ecp_add_mixed() below, which requires one normalized input.
1929 *
1930 * As T has holes, use an auxiliary array of pointers to elements in T.
1931 *
1932 */
1933 j = 0;
1934 for (i = 1; i < T_size; i <<= 1) {
1935 TT[j++] = T + i;
1936 }
1937
1938 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1939
1940 MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1941
1942 #if defined(MBEDTLS_ECP_RESTARTABLE)
1943 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1944 rs_ctx->rsm->state = ecp_rsm_pre_add;
1945 }
1946
1947 add:
1948 #endif
1949 /*
1950 * Compute the remaining ones using the minimal number of additions
1951 * Be careful to update T[2^l] only after using it!
1952 */
1953 MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1954
1955 for (i = 1; i < T_size; i <<= 1) {
1956 j = i;
1957 while (j--) {
1958 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1959 }
1960 }
1961
1962 #if defined(MBEDTLS_ECP_RESTARTABLE)
1963 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1964 rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1965 }
1966
1967 norm_add:
1968 #endif
1969 /*
1970 * Normalize final elements in T. Even though there are no holes now, we
1971 * still need the auxiliary array for homogeneity with the previous
1972 * call. Also, skip T[0] which is already normalised, being a copy of P.
1973 */
1974 for (j = 0; j + 1 < T_size; j++) {
1975 TT[j] = T + j + 1;
1976 }
1977
1978 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1979
1980 MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1981
1982 /* Free Z coordinate (=1 after normalization) to save RAM.
1983 * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1984 * since from this point onwards, they are only accessed indirectly
1985 * via the getter function ecp_select_comb() which does set the
1986 * target's Z coordinate to 1. */
1987 for (i = 0; i < T_size; i++) {
1988 mbedtls_mpi_free(&T[i].Z);
1989 }
1990
1991 cleanup:
1992
1993 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1994
1995 #if defined(MBEDTLS_ECP_RESTARTABLE)
1996 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1997 ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1998 if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1999 rs_ctx->rsm->i = j;
2000 }
2001 }
2002 #endif
2003
2004 return ret;
2005 }
2006
2007 /*
2008 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2009 *
2010 * See ecp_comb_recode_core() for background
2011 */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)2012 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2013 const mbedtls_ecp_point T[], unsigned char T_size,
2014 unsigned char i)
2015 {
2016 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2017 unsigned char ii, j;
2018
2019 /* Ignore the "sign" bit and scale down */
2020 ii = (i & 0x7Fu) >> 1;
2021
2022 /* Read the whole table to thwart cache-based timing attacks */
2023 for (j = 0; j < T_size; j++) {
2024 MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2025 MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2026 }
2027
2028 /* Safely invert result if i is "negative" */
2029 MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2030
2031 MPI_ECP_LSET(&R->Z, 1);
2032
2033 cleanup:
2034 return ret;
2035 }
2036
2037 /*
2038 * Core multiplication algorithm for the (modified) comb method.
2039 * This part is actually common with the basic comb method (GECC 3.44)
2040 *
2041 * Cost: d A + d D + 1 R
2042 */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2043 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2044 const mbedtls_ecp_point T[], unsigned char T_size,
2045 const unsigned char x[], size_t d,
2046 int (*f_rng)(void *, unsigned char *, size_t),
2047 void *p_rng,
2048 mbedtls_ecp_restart_ctx *rs_ctx)
2049 {
2050 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2051 mbedtls_ecp_point Txi;
2052 mbedtls_mpi tmp[4];
2053 size_t i;
2054
2055 mbedtls_ecp_point_init(&Txi);
2056 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2057
2058 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2059 (void) rs_ctx;
2060 #endif
2061
2062 #if defined(MBEDTLS_ECP_RESTARTABLE)
2063 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2064 rs_ctx->rsm->state != ecp_rsm_comb_core) {
2065 rs_ctx->rsm->i = 0;
2066 rs_ctx->rsm->state = ecp_rsm_comb_core;
2067 }
2068
2069 /* new 'if' instead of nested for the sake of the 'else' branch */
2070 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2071 /* restore current index (R already pointing to rs_ctx->rsm->R) */
2072 i = rs_ctx->rsm->i;
2073 } else
2074 #endif
2075 {
2076 /* Start with a non-zero point and randomize its coordinates */
2077 i = d;
2078 MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2079 if (f_rng != 0) {
2080 MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2081 }
2082 }
2083
2084 while (i != 0) {
2085 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2086 --i;
2087
2088 MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2089 MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2090 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2091 }
2092
2093 cleanup:
2094
2095 mbedtls_ecp_point_free(&Txi);
2096 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2097
2098 #if defined(MBEDTLS_ECP_RESTARTABLE)
2099 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2100 ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2101 rs_ctx->rsm->i = i;
2102 /* no need to save R, already pointing to rs_ctx->rsm->R */
2103 }
2104 #endif
2105
2106 return ret;
2107 }
2108
2109 /*
2110 * Recode the scalar to get constant-time comb multiplication
2111 *
2112 * As the actual scalar recoding needs an odd scalar as a starting point,
2113 * this wrapper ensures that by replacing m by N - m if necessary, and
2114 * informs the caller that the result of multiplication will be negated.
2115 *
2116 * This works because we only support large prime order for Short Weierstrass
2117 * curves, so N is always odd hence either m or N - m is.
2118 *
2119 * See ecp_comb_recode_core() for background.
2120 */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2121 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2122 const mbedtls_mpi *m,
2123 unsigned char k[COMB_MAX_D + 1],
2124 size_t d,
2125 unsigned char w,
2126 unsigned char *parity_trick)
2127 {
2128 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2129 mbedtls_mpi M, mm;
2130
2131 mbedtls_mpi_init(&M);
2132 mbedtls_mpi_init(&mm);
2133
2134 /* N is always odd (see above), just make extra sure */
2135 if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2136 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2137 }
2138
2139 /* do we need the parity trick? */
2140 *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2141
2142 /* execute parity fix in constant time */
2143 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2144 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2145 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2146
2147 /* actual scalar recoding */
2148 ecp_comb_recode_core(k, d, w, &M);
2149
2150 cleanup:
2151 mbedtls_mpi_free(&mm);
2152 mbedtls_mpi_free(&M);
2153
2154 return ret;
2155 }
2156
2157 /*
2158 * Perform comb multiplication (for short Weierstrass curves)
2159 * once the auxiliary table has been pre-computed.
2160 *
2161 * Scalar recoding may use a parity trick that makes us compute -m * P,
2162 * if that is the case we'll need to recover m * P at the end.
2163 */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2164 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2165 mbedtls_ecp_point *R,
2166 const mbedtls_mpi *m,
2167 const mbedtls_ecp_point *T,
2168 unsigned char T_size,
2169 unsigned char w,
2170 size_t d,
2171 int (*f_rng)(void *, unsigned char *, size_t),
2172 void *p_rng,
2173 mbedtls_ecp_restart_ctx *rs_ctx)
2174 {
2175 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2176 unsigned char parity_trick;
2177 unsigned char k[COMB_MAX_D + 1];
2178 mbedtls_ecp_point *RR = R;
2179
2180 #if defined(MBEDTLS_ECP_RESTARTABLE)
2181 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2182 RR = &rs_ctx->rsm->R;
2183
2184 if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2185 goto final_norm;
2186 }
2187 }
2188 #endif
2189
2190 MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2191 &parity_trick));
2192 MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2193 f_rng, p_rng, rs_ctx));
2194 MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2195
2196 #if defined(MBEDTLS_ECP_RESTARTABLE)
2197 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2198 rs_ctx->rsm->state = ecp_rsm_final_norm;
2199 }
2200
2201 final_norm:
2202 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2203 #endif
2204 /*
2205 * Knowledge of the jacobian coordinates may leak the last few bits of the
2206 * scalar [1], and since our MPI implementation isn't constant-flow,
2207 * inversion (used for coordinate normalization) may leak the full value
2208 * of its input via side-channels [2].
2209 *
2210 * [1] https://eprint.iacr.org/2003/191
2211 * [2] https://eprint.iacr.org/2020/055
2212 *
2213 * Avoid the leak by randomizing coordinates before we normalize them.
2214 */
2215 if (f_rng != 0) {
2216 MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2217 }
2218
2219 MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2220
2221 #if defined(MBEDTLS_ECP_RESTARTABLE)
2222 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2223 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2224 }
2225 #endif
2226
2227 cleanup:
2228 return ret;
2229 }
2230
2231 /*
2232 * Pick window size based on curve size and whether we optimize for base point
2233 */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2234 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2235 unsigned char p_eq_g)
2236 {
2237 unsigned char w;
2238
2239 /*
2240 * Minimize the number of multiplications, that is minimize
2241 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2242 * (see costs of the various parts, with 1S = 1M)
2243 */
2244 w = grp->nbits >= 384 ? 5 : 4;
2245
2246 /*
2247 * If P == G, pre-compute a bit more, since this may be re-used later.
2248 * Just adding one avoids upping the cost of the first mul too much,
2249 * and the memory cost too.
2250 */
2251 if (p_eq_g) {
2252 w++;
2253 }
2254
2255 /*
2256 * If static comb table may not be used (!p_eq_g) or static comb table does
2257 * not exists, make sure w is within bounds.
2258 * (The last test is useful only for very small curves in the test suite.)
2259 *
2260 * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2261 * static comb table, because the size of static comb table is fixed when
2262 * it is generated.
2263 */
2264 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2265 if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2266 w = MBEDTLS_ECP_WINDOW_SIZE;
2267 }
2268 #endif
2269 if (w >= grp->nbits) {
2270 w = 2;
2271 }
2272
2273 return w;
2274 }
2275
2276 /*
2277 * Multiplication using the comb method - for curves in short Weierstrass form
2278 *
2279 * This function is mainly responsible for administrative work:
2280 * - managing the restart context if enabled
2281 * - managing the table of precomputed points (passed between the below two
2282 * functions): allocation, computation, ownership transfer, freeing.
2283 *
2284 * It delegates the actual arithmetic work to:
2285 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2286 *
2287 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2288 */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2289 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2290 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2291 int (*f_rng)(void *, unsigned char *, size_t),
2292 void *p_rng,
2293 mbedtls_ecp_restart_ctx *rs_ctx)
2294 {
2295 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2296 unsigned char w, p_eq_g, i;
2297 size_t d;
2298 unsigned char T_size = 0, T_ok = 0;
2299 mbedtls_ecp_point *T = NULL;
2300
2301 ECP_RS_ENTER(rsm);
2302
2303 /* Is P the base point ? */
2304 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2305 p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2306 MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2307 #else
2308 p_eq_g = 0;
2309 #endif
2310
2311 /* Pick window size and deduce related sizes */
2312 w = ecp_pick_window_size(grp, p_eq_g);
2313 T_size = 1U << (w - 1);
2314 d = (grp->nbits + w - 1) / w;
2315
2316 /* Pre-computed table: do we have it already for the base point? */
2317 if (p_eq_g && grp->T != NULL) {
2318 /* second pointer to the same table, will be deleted on exit */
2319 T = grp->T;
2320 T_ok = 1;
2321 } else
2322 #if defined(MBEDTLS_ECP_RESTARTABLE)
2323 /* Pre-computed table: do we have one in progress? complete? */
2324 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2325 /* transfer ownership of T from rsm to local function */
2326 T = rs_ctx->rsm->T;
2327 rs_ctx->rsm->T = NULL;
2328 rs_ctx->rsm->T_size = 0;
2329
2330 /* This effectively jumps to the call to mul_comb_after_precomp() */
2331 T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2332 } else
2333 #endif
2334 /* Allocate table if we didn't have any */
2335 {
2336 T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2337 if (T == NULL) {
2338 ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2339 goto cleanup;
2340 }
2341
2342 for (i = 0; i < T_size; i++) {
2343 mbedtls_ecp_point_init(&T[i]);
2344 }
2345
2346 T_ok = 0;
2347 }
2348
2349 /* Compute table (or finish computing it) if not done already */
2350 if (!T_ok) {
2351 MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2352
2353 if (p_eq_g) {
2354 /* almost transfer ownership of T to the group, but keep a copy of
2355 * the pointer to use for calling the next function more easily */
2356 grp->T = T;
2357 grp->T_size = T_size;
2358 }
2359 }
2360
2361 /* Actual comb multiplication using precomputed points */
2362 MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2363 T, T_size, w, d,
2364 f_rng, p_rng, rs_ctx));
2365
2366 cleanup:
2367
2368 /* does T belong to the group? */
2369 if (T == grp->T) {
2370 T = NULL;
2371 }
2372
2373 /* does T belong to the restart context? */
2374 #if defined(MBEDTLS_ECP_RESTARTABLE)
2375 if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2376 /* transfer ownership of T from local function to rsm */
2377 rs_ctx->rsm->T_size = T_size;
2378 rs_ctx->rsm->T = T;
2379 T = NULL;
2380 }
2381 #endif
2382
2383 /* did T belong to us? then let's destroy it! */
2384 if (T != NULL) {
2385 for (i = 0; i < T_size; i++) {
2386 mbedtls_ecp_point_free(&T[i]);
2387 }
2388 mbedtls_free(T);
2389 }
2390
2391 /* prevent caller from using invalid value */
2392 int should_free_R = (ret != 0);
2393 #if defined(MBEDTLS_ECP_RESTARTABLE)
2394 /* don't free R while in progress in case R == P */
2395 if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2396 should_free_R = 0;
2397 }
2398 #endif
2399 if (should_free_R) {
2400 mbedtls_ecp_point_free(R);
2401 }
2402
2403 ECP_RS_LEAVE(rsm);
2404
2405 return ret;
2406 }
2407
2408 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2409
2410 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2411 /*
2412 * For Montgomery curves, we do all the internal arithmetic in projective
2413 * coordinates. Import/export of points uses only the x coordinates, which is
2414 * internally represented as X / Z.
2415 *
2416 * For scalar multiplication, we'll use a Montgomery ladder.
2417 */
2418
2419 /*
2420 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2421 * Cost: 1M + 1I
2422 */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2423 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2424 {
2425 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2426 if (mbedtls_internal_ecp_grp_capable(grp)) {
2427 return mbedtls_internal_ecp_normalize_mxz(grp, P);
2428 }
2429 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2430
2431 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2432 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2433 #else
2434 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2435 MPI_ECP_INV(&P->Z, &P->Z);
2436 MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2437 MPI_ECP_LSET(&P->Z, 1);
2438
2439 cleanup:
2440 return ret;
2441 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2442 }
2443
2444 /*
2445 * Randomize projective x/z coordinates:
2446 * (X, Z) -> (l X, l Z) for random l
2447 * This is sort of the reverse operation of ecp_normalize_mxz().
2448 *
2449 * This countermeasure was first suggested in [2].
2450 * Cost: 2M
2451 */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2452 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2453 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2454 {
2455 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2456 if (mbedtls_internal_ecp_grp_capable(grp)) {
2457 return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2458 }
2459 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2460
2461 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2462 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2463 #else
2464 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2465 mbedtls_mpi l;
2466 mbedtls_mpi_init(&l);
2467
2468 /* Generate l such that 1 < l < p */
2469 MPI_ECP_RAND(&l);
2470
2471 MPI_ECP_MUL(&P->X, &P->X, &l);
2472 MPI_ECP_MUL(&P->Z, &P->Z, &l);
2473
2474 cleanup:
2475 mbedtls_mpi_free(&l);
2476
2477 if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2478 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2479 }
2480 return ret;
2481 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2482 }
2483
2484 /*
2485 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2486 * for Montgomery curves in x/z coordinates.
2487 *
2488 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2489 * with
2490 * d = X1
2491 * P = (X2, Z2)
2492 * Q = (X3, Z3)
2493 * R = (X4, Z4)
2494 * S = (X5, Z5)
2495 * and eliminating temporary variables tO, ..., t4.
2496 *
2497 * Cost: 5M + 4S
2498 */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d,mbedtls_mpi T[4])2499 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2500 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2501 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2502 const mbedtls_mpi *d,
2503 mbedtls_mpi T[4])
2504 {
2505 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2506 if (mbedtls_internal_ecp_grp_capable(grp)) {
2507 return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2508 }
2509 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2510
2511 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2512 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2513 #else
2514 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2515
2516 MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
2517 MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
2518 MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
2519 MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
2520 MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
2521 MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
2522 MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
2523 MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
2524 MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
2525 MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
2526 MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
2527 MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2528 MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
2529 MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
2530 MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
2531 MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
2532 MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
2533 MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2534
2535 cleanup:
2536
2537 return ret;
2538 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2539 }
2540
2541 /*
2542 * Multiplication with Montgomery ladder in x/z coordinates,
2543 * for curves in Montgomery form
2544 */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2545 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2546 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2547 int (*f_rng)(void *, unsigned char *, size_t),
2548 void *p_rng)
2549 {
2550 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2551 size_t i;
2552 unsigned char b;
2553 mbedtls_ecp_point RP;
2554 mbedtls_mpi PX;
2555 mbedtls_mpi tmp[4];
2556 mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2557
2558 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2559
2560 if (f_rng == NULL) {
2561 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2562 }
2563
2564 /* Save PX and read from P before writing to R, in case P == R */
2565 MPI_ECP_MOV(&PX, &P->X);
2566 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2567
2568 /* Set R to zero in modified x/z coordinates */
2569 MPI_ECP_LSET(&R->X, 1);
2570 MPI_ECP_LSET(&R->Z, 0);
2571 mbedtls_mpi_free(&R->Y);
2572
2573 /* RP.X might be slightly larger than P, so reduce it */
2574 MOD_ADD(&RP.X);
2575
2576 /* Randomize coordinates of the starting point */
2577 MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2578
2579 /* Loop invariant: R = result so far, RP = R + P */
2580 i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2581 while (i-- > 0) {
2582 b = mbedtls_mpi_get_bit(m, i);
2583 /*
2584 * if (b) R = 2R + P else R = 2R,
2585 * which is:
2586 * if (b) double_add( RP, R, RP, R )
2587 * else double_add( R, RP, R, RP )
2588 * but using safe conditional swaps to avoid leaks
2589 */
2590 MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2591 MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2592 MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2593 MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2594 MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2595 }
2596
2597 /*
2598 * Knowledge of the projective coordinates may leak the last few bits of the
2599 * scalar [1], and since our MPI implementation isn't constant-flow,
2600 * inversion (used for coordinate normalization) may leak the full value
2601 * of its input via side-channels [2].
2602 *
2603 * [1] https://eprint.iacr.org/2003/191
2604 * [2] https://eprint.iacr.org/2020/055
2605 *
2606 * Avoid the leak by randomizing coordinates before we normalize them.
2607 */
2608 MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2609 MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2610
2611 cleanup:
2612 mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2613
2614 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2615 return ret;
2616 }
2617
2618 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2619
2620 /*
2621 * Restartable multiplication R = m * P
2622 *
2623 * This internal function can be called without an RNG in case where we know
2624 * the inputs are not sensitive.
2625 */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2626 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2627 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2628 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2629 mbedtls_ecp_restart_ctx *rs_ctx)
2630 {
2631 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2632 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2633 char is_grp_capable = 0;
2634 #endif
2635
2636 #if defined(MBEDTLS_ECP_RESTARTABLE)
2637 /* reset ops count for this call if top-level */
2638 if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2639 rs_ctx->ops_done = 0;
2640 }
2641 #else
2642 (void) rs_ctx;
2643 #endif
2644
2645 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2646 if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2647 MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2648 }
2649 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2650
2651 int restarting = 0;
2652 #if defined(MBEDTLS_ECP_RESTARTABLE)
2653 restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2654 #endif
2655 /* skip argument check when restarting */
2656 if (!restarting) {
2657 /* check_privkey is free */
2658 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2659
2660 /* Common sanity checks */
2661 MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2662 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2663 }
2664
2665 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2666 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2667 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2668 MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2669 }
2670 #endif
2671 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2672 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2673 MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2674 }
2675 #endif
2676
2677 cleanup:
2678
2679 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2680 if (is_grp_capable) {
2681 mbedtls_internal_ecp_free(grp);
2682 }
2683 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2684
2685 #if defined(MBEDTLS_ECP_RESTARTABLE)
2686 if (rs_ctx != NULL) {
2687 rs_ctx->depth--;
2688 }
2689 #endif
2690
2691 return ret;
2692 }
2693
2694 /*
2695 * Restartable multiplication R = m * P
2696 */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2697 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2698 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2699 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2700 mbedtls_ecp_restart_ctx *rs_ctx)
2701 {
2702 if (f_rng == NULL) {
2703 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2704 }
2705
2706 return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2707 }
2708
2709 /*
2710 * Multiplication R = m * P
2711 */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2712 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2713 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2714 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2715 {
2716 return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2717 }
2718 #endif /* MBEDTLS_ECP_C */
2719
2720 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2721 /*
2722 * Check that an affine point is valid as a public key,
2723 * short weierstrass curves (SEC1 3.2.3.1)
2724 */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2725 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2726 {
2727 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2728 mbedtls_mpi YY, RHS;
2729
2730 /* pt coordinates must be normalized for our checks */
2731 if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2732 mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2733 mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2734 mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2735 return MBEDTLS_ERR_ECP_INVALID_KEY;
2736 }
2737
2738 mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2739
2740 /*
2741 * YY = Y^2
2742 * RHS = X^3 + A X + B
2743 */
2744 MPI_ECP_SQR(&YY, &pt->Y);
2745 MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2746
2747 if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2748 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2749 }
2750
2751 cleanup:
2752
2753 mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2754
2755 return ret;
2756 }
2757 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2758
2759 #if defined(MBEDTLS_ECP_C)
2760 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2761 /*
2762 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2763 * NOT constant-time - ONLY for short Weierstrass!
2764 */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2765 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2766 mbedtls_ecp_point *R,
2767 const mbedtls_mpi *m,
2768 const mbedtls_ecp_point *P,
2769 mbedtls_ecp_restart_ctx *rs_ctx)
2770 {
2771 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2772 mbedtls_mpi tmp;
2773 mbedtls_mpi_init(&tmp);
2774
2775 if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2776 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2777 MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2778 } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2779 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2780 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2781 } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2782 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2784 MPI_ECP_NEG(&R->Y);
2785 } else {
2786 MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2787 NULL, NULL, rs_ctx));
2788 }
2789
2790 cleanup:
2791 mbedtls_mpi_free(&tmp);
2792
2793 return ret;
2794 }
2795
2796 /*
2797 * Restartable linear combination
2798 * NOT constant-time
2799 */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2800 int mbedtls_ecp_muladd_restartable(
2801 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2802 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2803 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2804 mbedtls_ecp_restart_ctx *rs_ctx)
2805 {
2806 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2807 mbedtls_ecp_point mP;
2808 mbedtls_ecp_point *pmP = &mP;
2809 mbedtls_ecp_point *pR = R;
2810 mbedtls_mpi tmp[4];
2811 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2812 char is_grp_capable = 0;
2813 #endif
2814 if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2815 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2816 }
2817
2818 mbedtls_ecp_point_init(&mP);
2819 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2820
2821 ECP_RS_ENTER(ma);
2822
2823 #if defined(MBEDTLS_ECP_RESTARTABLE)
2824 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2825 /* redirect intermediate results to restart context */
2826 pmP = &rs_ctx->ma->mP;
2827 pR = &rs_ctx->ma->R;
2828
2829 /* jump to next operation */
2830 if (rs_ctx->ma->state == ecp_rsma_mul2) {
2831 goto mul2;
2832 }
2833 if (rs_ctx->ma->state == ecp_rsma_add) {
2834 goto add;
2835 }
2836 if (rs_ctx->ma->state == ecp_rsma_norm) {
2837 goto norm;
2838 }
2839 }
2840 #endif /* MBEDTLS_ECP_RESTARTABLE */
2841
2842 MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2843 #if defined(MBEDTLS_ECP_RESTARTABLE)
2844 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2845 rs_ctx->ma->state = ecp_rsma_mul2;
2846 }
2847
2848 mul2:
2849 #endif
2850 MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
2851
2852 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2853 if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2854 MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2855 }
2856 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2857
2858 #if defined(MBEDTLS_ECP_RESTARTABLE)
2859 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2860 rs_ctx->ma->state = ecp_rsma_add;
2861 }
2862
2863 add:
2864 #endif
2865 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2866 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2867 #if defined(MBEDTLS_ECP_RESTARTABLE)
2868 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2869 rs_ctx->ma->state = ecp_rsma_norm;
2870 }
2871
2872 norm:
2873 #endif
2874 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2875 MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2876
2877 #if defined(MBEDTLS_ECP_RESTARTABLE)
2878 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2880 }
2881 #endif
2882
2883 cleanup:
2884
2885 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2886
2887 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2888 if (is_grp_capable) {
2889 mbedtls_internal_ecp_free(grp);
2890 }
2891 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2892
2893 mbedtls_ecp_point_free(&mP);
2894
2895 ECP_RS_LEAVE(ma);
2896
2897 return ret;
2898 }
2899
2900 /*
2901 * Linear combination
2902 * NOT constant-time
2903 */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2904 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2905 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2906 const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2907 {
2908 return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2909 }
2910 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2911 #endif /* MBEDTLS_ECP_C */
2912
2913 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2914 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2915 #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2916 #define ECP_MPI_INIT_ARRAY(x) \
2917 ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2918 /*
2919 * Constants for the two points other than 0, 1, -1 (mod p) in
2920 * https://cr.yp.to/ecdh.html#validate
2921 * See ecp_check_pubkey_x25519().
2922 */
2923 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2924 MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2925 MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2926 MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2927 MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2928 };
2929 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2930 MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2931 MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2932 MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2933 MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2934 };
2935 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2936 x25519_bad_point_1);
2937 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2938 x25519_bad_point_2);
2939 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2940
2941 /*
2942 * Check that the input point is not one of the low-order points.
2943 * This is recommended by the "May the Fourth" paper:
2944 * https://eprint.iacr.org/2017/806.pdf
2945 * Those points are never sent by an honest peer.
2946 */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2947 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2948 const mbedtls_ecp_group_id grp_id)
2949 {
2950 int ret;
2951 mbedtls_mpi XmP;
2952
2953 mbedtls_mpi_init(&XmP);
2954
2955 /* Reduce X mod P so that we only need to check values less than P.
2956 * We know X < 2^256 so we can proceed by subtraction. */
2957 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2958 while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2959 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2960 }
2961
2962 /* Check against the known bad values that are less than P. For Curve448
2963 * these are 0, 1 and -1. For Curve25519 we check the values less than P
2964 * from the following list: https://cr.yp.to/ecdh.html#validate */
2965 if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
2966 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2967 goto cleanup;
2968 }
2969
2970 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2971 if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2972 if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2973 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2974 goto cleanup;
2975 }
2976
2977 if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2978 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979 goto cleanup;
2980 }
2981 }
2982 #else
2983 (void) grp_id;
2984 #endif
2985
2986 /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2987 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2988 if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2989 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2990 goto cleanup;
2991 }
2992
2993 ret = 0;
2994
2995 cleanup:
2996 mbedtls_mpi_free(&XmP);
2997
2998 return ret;
2999 }
3000
3001 /*
3002 * Check validity of a public key for Montgomery curves with x-only schemes
3003 */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3004 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3005 {
3006 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3007 /* Allow any public value, if it's too big then we'll just reduce it mod p
3008 * (RFC 7748 sec. 5 para. 3). */
3009 if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3010 return MBEDTLS_ERR_ECP_INVALID_KEY;
3011 }
3012
3013 /* Implicit in all standards (as they don't consider negative numbers):
3014 * X must be non-negative. This is normally ensured by the way it's
3015 * encoded for transmission, but let's be extra sure. */
3016 if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3017 return MBEDTLS_ERR_ECP_INVALID_KEY;
3018 }
3019
3020 return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3021 }
3022 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3023
3024 /*
3025 * Check that a point is valid as a public key
3026 */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3027 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3028 const mbedtls_ecp_point *pt)
3029 {
3030 /* Must use affine coordinates */
3031 if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3032 return MBEDTLS_ERR_ECP_INVALID_KEY;
3033 }
3034
3035 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3036 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3037 return ecp_check_pubkey_mx(grp, pt);
3038 }
3039 #endif
3040 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3041 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3042 return ecp_check_pubkey_sw(grp, pt);
3043 }
3044 #endif
3045 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3046 }
3047
3048 /*
3049 * Check that an mbedtls_mpi is valid as a private key
3050 */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)3051 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3052 const mbedtls_mpi *d)
3053 {
3054 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3055 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3056 /* see RFC 7748 sec. 5 para. 5 */
3057 if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3058 mbedtls_mpi_get_bit(d, 1) != 0 ||
3059 mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */
3060 return MBEDTLS_ERR_ECP_INVALID_KEY;
3061 }
3062
3063 /* see [Curve25519] page 5 */
3064 if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3065 return MBEDTLS_ERR_ECP_INVALID_KEY;
3066 }
3067
3068 return 0;
3069 }
3070 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3071 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3072 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3073 /* see SEC1 3.2 */
3074 if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3075 mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3076 return MBEDTLS_ERR_ECP_INVALID_KEY;
3077 } else {
3078 return 0;
3079 }
3080 }
3081 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3082
3083 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3084 }
3085
3086 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3087 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3088 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3089 mbedtls_mpi *d,
3090 int (*f_rng)(void *, unsigned char *, size_t),
3091 void *p_rng)
3092 {
3093 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094 size_t n_random_bytes = high_bit / 8 + 1;
3095
3096 /* [Curve25519] page 5 */
3097 /* Generate a (high_bit+1)-bit random number by generating just enough
3098 * random bytes, then shifting out extra bits from the top (necessary
3099 * when (high_bit+1) is not a multiple of 8). */
3100 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3101 f_rng, p_rng));
3102 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3103
3104 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3105
3106 /* Make sure the last two bits are unset for Curve448, three bits for
3107 Curve25519 */
3108 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3109 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3110 if (high_bit == 254) {
3111 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3112 }
3113
3114 cleanup:
3115 return ret;
3116 }
3117 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3118
3119 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3120 static int mbedtls_ecp_gen_privkey_sw(
3121 const mbedtls_mpi *N, mbedtls_mpi *d,
3122 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3123 {
3124 int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3125 switch (ret) {
3126 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3127 return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3128 default:
3129 return ret;
3130 }
3131 }
3132 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3133
3134 /*
3135 * Generate a private key
3136 */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3137 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3138 mbedtls_mpi *d,
3139 int (*f_rng)(void *, unsigned char *, size_t),
3140 void *p_rng)
3141 {
3142 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3143 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3144 return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3145 }
3146 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3147
3148 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3149 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3150 return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3151 }
3152 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3153
3154 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3155 }
3156
3157 #if defined(MBEDTLS_ECP_C)
3158 /*
3159 * Generate a keypair with configurable base point
3160 */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3161 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3162 const mbedtls_ecp_point *G,
3163 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3164 int (*f_rng)(void *, unsigned char *, size_t),
3165 void *p_rng)
3166 {
3167 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3168 MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3169 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3170
3171 cleanup:
3172 return ret;
3173 }
3174
3175 /*
3176 * Generate key pair, wrapper for conventional base point
3177 */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3178 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3179 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3180 int (*f_rng)(void *, unsigned char *, size_t),
3181 void *p_rng)
3182 {
3183 return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3184 }
3185
3186 /*
3187 * Generate a keypair, prettier wrapper
3188 */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3189 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3190 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3191 {
3192 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3193 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3194 return ret;
3195 }
3196
3197 return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3198 }
3199 #endif /* MBEDTLS_ECP_C */
3200
mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const mbedtls_ecp_point * Q)3201 int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3202 mbedtls_ecp_keypair *key,
3203 const mbedtls_ecp_point *Q)
3204 {
3205 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3206
3207 if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3208 /* Group not set yet */
3209 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3210 return ret;
3211 }
3212 } else if (key->grp.id != grp_id) {
3213 /* Group mismatch */
3214 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3215 }
3216 return mbedtls_ecp_copy(&key->Q, Q);
3217 }
3218
3219
3220 #define ECP_CURVE25519_KEY_SIZE 32
3221 #define ECP_CURVE448_KEY_SIZE 56
3222 /*
3223 * Read a private key.
3224 */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3225 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3226 const unsigned char *buf, size_t buflen)
3227 {
3228 int ret = 0;
3229
3230 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3231 return ret;
3232 }
3233
3234 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3235
3236 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3237 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3238 /*
3239 * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3240 */
3241 if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3242 if (buflen != ECP_CURVE25519_KEY_SIZE) {
3243 return MBEDTLS_ERR_ECP_INVALID_KEY;
3244 }
3245
3246 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3247
3248 /* Set the three least significant bits to 0 */
3249 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3250 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3251 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3252
3253 /* Set the most significant bit to 0 */
3254 MBEDTLS_MPI_CHK(
3255 mbedtls_mpi_set_bit(&key->d,
3256 ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3257 );
3258
3259 /* Set the second most significant bit to 1 */
3260 MBEDTLS_MPI_CHK(
3261 mbedtls_mpi_set_bit(&key->d,
3262 ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3263 );
3264 } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3265 if (buflen != ECP_CURVE448_KEY_SIZE) {
3266 return MBEDTLS_ERR_ECP_INVALID_KEY;
3267 }
3268
3269 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3270
3271 /* Set the two least significant bits to 0 */
3272 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3273 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3274
3275 /* Set the most significant bit to 1 */
3276 MBEDTLS_MPI_CHK(
3277 mbedtls_mpi_set_bit(&key->d,
3278 ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3279 );
3280 }
3281 }
3282 #endif
3283 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3284 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3285 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3286 }
3287 #endif
3288
3289 if (ret == 0) {
3290 MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3291 }
3292
3293 cleanup:
3294
3295 if (ret != 0) {
3296 mbedtls_mpi_free(&key->d);
3297 }
3298
3299 return ret;
3300 }
3301
3302 /*
3303 * Write a private key.
3304 */
3305 #if !defined MBEDTLS_DEPRECATED_REMOVED
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3306 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3307 unsigned char *buf, size_t buflen)
3308 {
3309 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3310
3311 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3312 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3313 if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3314 if (buflen < ECP_CURVE25519_KEY_SIZE) {
3315 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3316 }
3317
3318 } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3319 if (buflen < ECP_CURVE448_KEY_SIZE) {
3320 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3321 }
3322 }
3323 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3324 }
3325 #endif
3326 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3327 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3328 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3329 }
3330
3331 #endif
3332 cleanup:
3333
3334 return ret;
3335 }
3336 #endif /* MBEDTLS_DEPRECATED_REMOVED */
3337
mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair * key,size_t * olen,unsigned char * buf,size_t buflen)3338 int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3339 size_t *olen, unsigned char *buf, size_t buflen)
3340 {
3341 size_t len = (key->grp.nbits + 7) / 8;
3342 if (len > buflen) {
3343 /* For robustness, ensure *olen <= buflen even on error. */
3344 *olen = 0;
3345 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3346 }
3347 *olen = len;
3348
3349 /* Private key not set */
3350 if (key->d.n == 0) {
3351 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3352 }
3353
3354 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3355 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3356 return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3357 }
3358 #endif
3359
3360 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3361 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3362 return mbedtls_mpi_write_binary(&key->d, buf, len);
3363 }
3364 #endif
3365
3366 /* Private key set but no recognized curve type? This shouldn't happen. */
3367 return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368 }
3369
3370 /*
3371 * Write a public key.
3372 */
mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair * key,int format,size_t * olen,unsigned char * buf,size_t buflen)3373 int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3374 int format, size_t *olen,
3375 unsigned char *buf, size_t buflen)
3376 {
3377 return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3378 format, olen, buf, buflen);
3379 }
3380
3381
3382 #if defined(MBEDTLS_ECP_C)
3383 /*
3384 * Check a public-private key pair
3385 */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3386 int mbedtls_ecp_check_pub_priv(
3387 const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3388 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3389 {
3390 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3391 mbedtls_ecp_point Q;
3392 mbedtls_ecp_group grp;
3393 if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3394 pub->grp.id != prv->grp.id ||
3395 mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3396 mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3397 mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3398 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3399 }
3400
3401 mbedtls_ecp_point_init(&Q);
3402 mbedtls_ecp_group_init(&grp);
3403
3404 /* mbedtls_ecp_mul() needs a non-const group... */
3405 mbedtls_ecp_group_copy(&grp, &prv->grp);
3406
3407 /* Also checks d is valid */
3408 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3409
3410 if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3411 mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3412 mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3413 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3414 goto cleanup;
3415 }
3416
3417 cleanup:
3418 mbedtls_ecp_point_free(&Q);
3419 mbedtls_ecp_group_free(&grp);
3420
3421 return ret;
3422 }
3423
mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3424 int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3425 int (*f_rng)(void *, unsigned char *, size_t),
3426 void *p_rng)
3427 {
3428 return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3429 f_rng, p_rng);
3430 }
3431 #endif /* MBEDTLS_ECP_C */
3432
mbedtls_ecp_keypair_get_group_id(const mbedtls_ecp_keypair * key)3433 mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3434 const mbedtls_ecp_keypair *key)
3435 {
3436 return key->grp.id;
3437 }
3438
3439 /*
3440 * Export generic key-pair parameters.
3441 */
mbedtls_ecp_export(const mbedtls_ecp_keypair * key,mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q)3442 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3443 mbedtls_mpi *d, mbedtls_ecp_point *Q)
3444 {
3445 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3446
3447 if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3448 return ret;
3449 }
3450
3451 if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3452 return ret;
3453 }
3454
3455 if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3456 return ret;
3457 }
3458
3459 return 0;
3460 }
3461
3462 #if defined(MBEDTLS_SELF_TEST)
3463
3464 #if defined(MBEDTLS_ECP_C)
3465 /*
3466 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3467 *
3468 * This is the linear congruential generator from numerical recipes,
3469 * except we only use the low byte as the output. See
3470 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3471 */
self_test_rng(void * ctx,unsigned char * out,size_t len)3472 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3473 {
3474 static uint32_t state = 42;
3475
3476 (void) ctx;
3477
3478 for (size_t i = 0; i < len; i++) {
3479 state = state * 1664525u + 1013904223u;
3480 out[i] = (unsigned char) state;
3481 }
3482
3483 return 0;
3484 }
3485
3486 /* Adjust the exponent to be a valid private point for the specified curve.
3487 * This is sometimes necessary because we use a single set of exponents
3488 * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3489 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3490 mbedtls_mpi *m)
3491 {
3492 int ret = 0;
3493 switch (grp->id) {
3494 /* If Curve25519 is available, then that's what we use for the
3495 * Montgomery test, so we don't need the adjustment code. */
3496 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3497 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3498 case MBEDTLS_ECP_DP_CURVE448:
3499 /* Move highest bit from 254 to N-1. Setting bit N-1 is
3500 * necessary to enforce the highest-bit-set constraint. */
3501 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3502 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3503 /* Copy second-highest bit from 253 to N-2. This is not
3504 * necessary but improves the test variety a bit. */
3505 MBEDTLS_MPI_CHK(
3506 mbedtls_mpi_set_bit(m, grp->nbits - 1,
3507 mbedtls_mpi_get_bit(m, 253)));
3508 break;
3509 #endif
3510 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3511 default:
3512 /* Non-Montgomery curves and Curve25519 need no adjustment. */
3513 (void) grp;
3514 (void) m;
3515 goto cleanup;
3516 }
3517 cleanup:
3518 return ret;
3519 }
3520
3521 /* Calculate R = m.P for each m in exponents. Check that the number of
3522 * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3523 static int self_test_point(int verbose,
3524 mbedtls_ecp_group *grp,
3525 mbedtls_ecp_point *R,
3526 mbedtls_mpi *m,
3527 const mbedtls_ecp_point *P,
3528 const char *const *exponents,
3529 size_t n_exponents)
3530 {
3531 int ret = 0;
3532 size_t i = 0;
3533 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3534 add_count = 0;
3535 dbl_count = 0;
3536 mul_count = 0;
3537
3538 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3539 MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3540 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3541
3542 for (i = 1; i < n_exponents; i++) {
3543 add_c_prev = add_count;
3544 dbl_c_prev = dbl_count;
3545 mul_c_prev = mul_count;
3546 add_count = 0;
3547 dbl_count = 0;
3548 mul_count = 0;
3549
3550 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3551 MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3552 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3553
3554 if (add_count != add_c_prev ||
3555 dbl_count != dbl_c_prev ||
3556 mul_count != mul_c_prev) {
3557 ret = 1;
3558 break;
3559 }
3560 }
3561
3562 cleanup:
3563 if (verbose != 0) {
3564 if (ret != 0) {
3565 mbedtls_printf("failed (%u)\n", (unsigned int) i);
3566 } else {
3567 mbedtls_printf("passed\n");
3568 }
3569 }
3570 return ret;
3571 }
3572 #endif /* MBEDTLS_ECP_C */
3573
3574 /*
3575 * Checkup routine
3576 */
mbedtls_ecp_self_test(int verbose)3577 int mbedtls_ecp_self_test(int verbose)
3578 {
3579 #if defined(MBEDTLS_ECP_C)
3580 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3581 mbedtls_ecp_group grp;
3582 mbedtls_ecp_point R, P;
3583 mbedtls_mpi m;
3584
3585 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3586 /* Exponents especially adapted for secp192k1, which has the lowest
3587 * order n of all supported curves (secp192r1 is in a slightly larger
3588 * field but the order of its base point is slightly smaller). */
3589 const char *sw_exponents[] =
3590 {
3591 "000000000000000000000000000000000000000000000001", /* one */
3592 "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3593 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3594 "400000000000000000000000000000000000000000000000", /* one and zeros */
3595 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3596 "555555555555555555555555555555555555555555555555", /* 101010... */
3597 };
3598 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3599 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3600 const char *m_exponents[] =
3601 {
3602 /* Valid private values for Curve25519. In a build with Curve448
3603 * but not Curve25519, they will be adjusted in
3604 * self_test_adjust_exponent(). */
3605 "4000000000000000000000000000000000000000000000000000000000000000",
3606 "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3607 "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3608 "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3609 "5555555555555555555555555555555555555555555555555555555555555550",
3610 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3611 };
3612 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3613
3614 mbedtls_ecp_group_init(&grp);
3615 mbedtls_ecp_point_init(&R);
3616 mbedtls_ecp_point_init(&P);
3617 mbedtls_mpi_init(&m);
3618
3619 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3620 /* Use secp192r1 if available, or any available curve */
3621 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3622 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3623 #else
3624 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3625 #endif
3626
3627 if (verbose != 0) {
3628 mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
3629 }
3630 /* Do a dummy multiplication first to trigger precomputation */
3631 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3632 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3633 ret = self_test_point(verbose,
3634 &grp, &R, &m, &grp.G,
3635 sw_exponents,
3636 sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3637 if (ret != 0) {
3638 goto cleanup;
3639 }
3640
3641 if (verbose != 0) {
3642 mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
3643 }
3644 /* We computed P = 2G last time, use it */
3645 ret = self_test_point(verbose,
3646 &grp, &R, &m, &P,
3647 sw_exponents,
3648 sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3649 if (ret != 0) {
3650 goto cleanup;
3651 }
3652
3653 mbedtls_ecp_group_free(&grp);
3654 mbedtls_ecp_point_free(&R);
3655 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3656
3657 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3658 if (verbose != 0) {
3659 mbedtls_printf(" ECP Montgomery test (constant op_count): ");
3660 }
3661 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3662 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3663 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3664 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3665 #else
3666 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3667 #endif
3668 ret = self_test_point(verbose,
3669 &grp, &R, &m, &grp.G,
3670 m_exponents,
3671 sizeof(m_exponents) / sizeof(m_exponents[0]));
3672 if (ret != 0) {
3673 goto cleanup;
3674 }
3675 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3676
3677 cleanup:
3678
3679 if (ret < 0 && verbose != 0) {
3680 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3681 }
3682
3683 mbedtls_ecp_group_free(&grp);
3684 mbedtls_ecp_point_free(&R);
3685 mbedtls_ecp_point_free(&P);
3686 mbedtls_mpi_free(&m);
3687
3688 if (verbose != 0) {
3689 mbedtls_printf("\n");
3690 }
3691
3692 return ret;
3693 #else /* MBEDTLS_ECP_C */
3694 (void) verbose;
3695 return 0;
3696 #endif /* MBEDTLS_ECP_C */
3697 }
3698
3699 #endif /* MBEDTLS_SELF_TEST */
3700
3701 #endif /* !MBEDTLS_ECP_ALT */
3702
3703 #endif /* MBEDTLS_ECP_LIGHT */
3704