1 /*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright (C) 2006-2022, ARM Limited, All Rights Reserved
5 * Copyright (C) 2019, STMicroelectronics, All Rights Reserved
6 * SPDX-License-Identifier: Apache-2.0
7 *
8 * Licensed under the Apache License, Version 2.0 (the "License"); you may
9 * not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
16 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 *
20 * This file implements STMicroelectronics EC scalar mul and point check
21 * with HW services based on mbed TLS API
22 */
23
24 /*
25 * References:
26 *
27 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
28 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
29 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
30 * RFC 4492 for the related TLS structures and constants
31 * RFC 7748 for the Curve448 and Curve25519 curve definitions
32 *
33 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
34 *
35 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
36 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
37 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
38 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
39 *
40 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
41 * render ECC resistant against Side Channel Attacks. IACR Cryptology
42 * ePrint Archive, 2004, vol. 2004, p. 342.
43 * <http://eprint.iacr.org/2004/342.pdf>
44 */
45
46 #include "mbedtls/build_info.h"
47
48 /**
49 * \brief Function level alternative implementation.
50 *
51 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
52 * replace certain functions in this module. The alternative implementations are
53 * typically hardware accelerators and need to activate the hardware before the
54 * computation starts and deactivate it after it finishes. The
55 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
56 * this purpose.
57 *
58 * To preserve the correct functionality the following conditions must hold:
59 *
60 * - The alternative implementation must be activated by
61 * mbedtls_internal_ecp_init() before any of the replaceable functions is
62 * called.
63 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
64 * implementation is activated.
65 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
66 * implementation is activated.
67 * - Public functions must not return while the alternative implementation is
68 * activated.
69 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
70 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
71 * \endcode ensures that the alternative implementation supports the current
72 * group.
73 */
74 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
75 #endif
76
77 #if defined(MBEDTLS_ECP_C)
78
79 #include "mbedtls/ecp.h"
80 #include "mbedtls/threading.h"
81 #include "mbedtls/platform_util.h"
82 #include "mbedtls/error.h"
83
84 #include <string.h>
85
86 #if defined(MBEDTLS_ECP_ALT)
87
88 /* Parameter validation macros - mbedtls/platform_util.h has deprecated them */
89 #define ECP_VALIDATE_RET( cond ) do { } while(0)
90 #define ECP_VALIDATE( cond ) do { } while(0)
91
92 #if defined(MBEDTLS_PLATFORM_C)
93 #include "mbedtls/platform.h"
94 #else
95 #include <stdlib.h>
96 #include <stdio.h>
97 #define mbedtls_printf printf
98 #define mbedtls_calloc calloc
99 #define mbedtls_free free
100 #endif
101
102 #include "ecp_internal_alt.h"
103 #include "stm32hal.h"
104
105 #define ST_ECP_TIMEOUT (5000U)
106
107 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) \
108 && !defined(inline) && !defined(__cplusplus)
109 #define inline __inline
110 #endif
111
112 #if defined(MBEDTLS_SELF_TEST)
113 /*
114 * Counts of point addition and doubling, and field multiplications.
115 * Used to test resistance of point multiplication to simple timing attacks.
116 */
117 static unsigned long add_count, dbl_count, mul_count;
118 #endif
119
120 #if defined(MBEDTLS_ECP_RESTARTABLE)
121 /*
122 * Maximum number of "basic operations" to be done in a row.
123 *
124 * Default value 0 means that ECC operations will not yield.
125 * Note that regardless of the value of ecp_max_ops, always at
126 * least one step is performed before yielding.
127 *
128 * Setting ecp_max_ops=1 can be suitable for testing purposes
129 * as it will interrupt computation at all possible points.
130 */
131 static unsigned ecp_max_ops = 0;
132
133 /*
134 * Set ecp_max_ops
135 */
mbedtls_ecp_set_max_ops(unsigned max_ops)136 void mbedtls_ecp_set_max_ops( unsigned max_ops )
137 {
138 ecp_max_ops = max_ops;
139 }
140
141 /*
142 * Check if restart is enabled
143 */
mbedtls_ecp_restart_is_enabled(void)144 int mbedtls_ecp_restart_is_enabled( void )
145 {
146 return( ecp_max_ops != 0 );
147 }
148
149 /*
150 * Restart sub-context for ecp_mul_comb()
151 */
152 struct mbedtls_ecp_restart_mul
153 {
154 mbedtls_ecp_point R; /* current intermediate result */
155 size_t i; /* current index in various loops, 0 outside */
156 mbedtls_ecp_point *T; /* table for precomputed points */
157 unsigned char T_size; /* number of points in table T */
158 enum { /* what were we doing last time we returned? */
159 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
160 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
161 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
162 ecp_rsm_pre_add, /* precompute remaining points by adding */
163 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
164 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
165 ecp_rsm_final_norm, /* do the final normalization */
166 } state;
167 };
168
169 /*
170 * Init restart_mul sub-context
171 */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)172 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
173 {
174 mbedtls_ecp_point_init( &ctx->R );
175 ctx->i = 0;
176 ctx->T = NULL;
177 ctx->T_size = 0;
178 ctx->state = ecp_rsm_init;
179 }
180
181 /*
182 * Free the components of a restart_mul sub-context
183 */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)184 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
185 {
186 unsigned char i;
187
188 if( ctx == NULL )
189 return;
190
191 mbedtls_ecp_point_free( &ctx->R );
192
193 if( ctx->T != NULL )
194 {
195 for( i = 0; i < ctx->T_size; i++ )
196 mbedtls_ecp_point_free( ctx->T + i );
197 mbedtls_free( ctx->T );
198 }
199
200 ecp_restart_rsm_init( ctx );
201 }
202
203 /*
204 * Restart context for ecp_muladd()
205 */
206 struct mbedtls_ecp_restart_muladd
207 {
208 mbedtls_ecp_point mP; /* mP value */
209 mbedtls_ecp_point R; /* R intermediate result */
210 enum { /* what should we do next? */
211 ecp_rsma_mul1 = 0, /* first multiplication */
212 ecp_rsma_mul2, /* second multiplication */
213 ecp_rsma_add, /* addition */
214 ecp_rsma_norm, /* normalization */
215 } state;
216 };
217
218 /*
219 * Init restart_muladd sub-context
220 */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)221 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
222 {
223 mbedtls_ecp_point_init( &ctx->mP );
224 mbedtls_ecp_point_init( &ctx->R );
225 ctx->state = ecp_rsma_mul1;
226 }
227
228 /*
229 * Free the components of a restart_muladd sub-context
230 */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)231 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
232 {
233 if( ctx == NULL )
234 return;
235
236 mbedtls_ecp_point_free( &ctx->mP );
237 mbedtls_ecp_point_free( &ctx->R );
238
239 ecp_restart_ma_init( ctx );
240 }
241
242 /*
243 * Initialize a restart context
244 */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)245 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
246 {
247 ECP_VALIDATE( ctx != NULL );
248 ctx->ops_done = 0;
249 ctx->depth = 0;
250 ctx->rsm = NULL;
251 ctx->ma = NULL;
252 }
253
254 /*
255 * Free the components of a restart context
256 */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)257 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
258 {
259 if( ctx == NULL )
260 return;
261
262 ecp_restart_rsm_free( ctx->rsm );
263 mbedtls_free( ctx->rsm );
264
265 ecp_restart_ma_free( ctx->ma );
266 mbedtls_free( ctx->ma );
267
268 mbedtls_ecp_restart_init( ctx );
269 }
270
271 /*
272 * Check if we can do the next step
273 */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)274 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
275 mbedtls_ecp_restart_ctx *rs_ctx,
276 unsigned ops )
277 {
278 ECP_VALIDATE_RET( grp != NULL );
279
280 if( rs_ctx != NULL && ecp_max_ops != 0 )
281 {
282 /* scale depending on curve size: the chosen reference is 256-bit,
283 * and multiplication is quadratic. Round to the closest integer. */
284 if( grp->pbits >= 512 )
285 ops *= 4;
286 else if( grp->pbits >= 384 )
287 ops *= 2;
288
289 /* Avoid infinite loops: always allow first step.
290 * Because of that, however, it's not generally true
291 * that ops_done <= ecp_max_ops, so the check
292 * ops_done > ecp_max_ops below is mandatory. */
293 if( ( rs_ctx->ops_done != 0 ) &&
294 ( rs_ctx->ops_done > ecp_max_ops ||
295 ops > ecp_max_ops - rs_ctx->ops_done ) )
296 {
297 return( MBEDTLS_ERR_ECP_IN_PROGRESS );
298 }
299
300 /* update running count */
301 rs_ctx->ops_done += ops;
302 }
303
304 return( 0 );
305 }
306
307 /* Call this when entering a function that needs its own sub-context */
308 #define ECP_RS_ENTER( SUB ) do { \
309 /* reset ops count for this call if top-level */ \
310 if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \
311 rs_ctx->ops_done = 0; \
312 \
313 /* set up our own sub-context if needed */ \
314 if( mbedtls_ecp_restart_is_enabled() && \
315 rs_ctx != NULL && rs_ctx->SUB == NULL ) \
316 { \
317 rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
318 if( rs_ctx->SUB == NULL ) \
319 return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
320 \
321 ecp_restart_## SUB ##_init( rs_ctx->SUB ); \
322 } \
323 } while( 0 )
324
325 /* Call this when leaving a function that needs its own sub-context */
326 #define ECP_RS_LEAVE( SUB ) do { \
327 /* clear our sub-context when not in progress (done or error) */ \
328 if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
329 ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
330 { \
331 ecp_restart_## SUB ##_free( rs_ctx->SUB ); \
332 mbedtls_free( rs_ctx->SUB ); \
333 rs_ctx->SUB = NULL; \
334 } \
335 \
336 if( rs_ctx != NULL ) \
337 rs_ctx->depth--; \
338 } while( 0 )
339
340 #else /* MBEDTLS_ECP_RESTARTABLE */
341
342 #define ECP_RS_ENTER( sub ) (void) rs_ctx;
343 #define ECP_RS_LEAVE( sub ) (void) rs_ctx;
344
345 #endif /* MBEDTLS_ECP_RESTARTABLE */
346
347 /*
348 * List of supported curves:
349 * - internal ID
350 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
351 * - size in bits
352 * - readable name
353 *
354 * Curves are listed in order: largest curves first, and for a given size,
355 * fastest curves first. This provides the default order for the SSL module.
356 *
357 * Reminder: update profiles in x509_crt.c when adding a new curve!
358 */
359 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
360 {
361 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
362 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
365 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
368 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
371 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
374 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
377 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
380 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
383 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
384 #endif
385 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
386 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
387 #endif
388 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
389 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
390 #endif
391 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
392 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
393 #endif
394 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
395 { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
396 #endif
397 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
398 { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
399 #endif
400 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
401 };
402
403 #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
404 sizeof( ecp_supported_curves[0] )
405
406 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
407
408 /*
409 * List of supported curves and associated info
410 */
mbedtls_ecp_curve_list(void)411 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
412 {
413 return( ecp_supported_curves );
414 }
415
416 /*
417 * List of supported curves, group ID only
418 */
mbedtls_ecp_grp_id_list(void)419 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
420 {
421 static int init_done = 0;
422
423 if( ! init_done )
424 {
425 size_t i = 0;
426 const mbedtls_ecp_curve_info *curve_info;
427
428 for( curve_info = mbedtls_ecp_curve_list();
429 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
430 curve_info++ )
431 {
432 ecp_supported_grp_id[i++] = curve_info->grp_id;
433 }
434 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
435
436 init_done = 1;
437 }
438
439 return( ecp_supported_grp_id );
440 }
441
442 /*
443 * Get the curve info for the internal identifier
444 */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)445 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
446 {
447 const mbedtls_ecp_curve_info *curve_info;
448
449 for( curve_info = mbedtls_ecp_curve_list();
450 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
451 curve_info++ )
452 {
453 if( curve_info->grp_id == grp_id )
454 return( curve_info );
455 }
456
457 return( NULL );
458 }
459
460 /*
461 * Get the curve info from the TLS identifier
462 */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)463 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
464 {
465 const mbedtls_ecp_curve_info *curve_info;
466
467 for( curve_info = mbedtls_ecp_curve_list();
468 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
469 curve_info++ )
470 {
471 if( curve_info->tls_id == tls_id )
472 return( curve_info );
473 }
474
475 return( NULL );
476 }
477
478 /*
479 * Get the curve info from the name
480 */
mbedtls_ecp_curve_info_from_name(const char * name)481 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
482 {
483 const mbedtls_ecp_curve_info *curve_info;
484
485 if( name == NULL )
486 return( NULL );
487
488 for( curve_info = mbedtls_ecp_curve_list();
489 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
490 curve_info++ )
491 {
492 if( strcmp( curve_info->name, name ) == 0 )
493 return( curve_info );
494 }
495
496 return( NULL );
497 }
498
499 /*
500 * Get the type of a curve
501 */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)502 mbedtls_ecp_curve_type mbedtls_ecp_get_type( const mbedtls_ecp_group *grp )
503 {
504 if( grp->G.MBEDTLS_PRIVATE(X).MBEDTLS_PRIVATE(p) == NULL )
505 return( MBEDTLS_ECP_TYPE_NONE );
506
507 if( grp->G.MBEDTLS_PRIVATE(Y).MBEDTLS_PRIVATE(p) == NULL )
508 return( MBEDTLS_ECP_TYPE_MONTGOMERY );
509 else
510 return( MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS );
511 }
512
513 /*
514 * Initialize (the components of) a point
515 */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)516 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
517 {
518 ECP_VALIDATE( pt != NULL );
519
520 mbedtls_mpi_init( &pt->MBEDTLS_PRIVATE(X) );
521 mbedtls_mpi_init( &pt->MBEDTLS_PRIVATE(Y) );
522 mbedtls_mpi_init( &pt->MBEDTLS_PRIVATE(Z) );
523 }
524
525 /*
526 * Initialize (the components of) a group
527 *
528 * STMicroelectronics edition
529 *
530 */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)531 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
532 {
533 ECP_VALIDATE( grp != NULL );
534
535 grp->id = MBEDTLS_ECP_DP_NONE;
536 mbedtls_mpi_init( &grp->P );
537 mbedtls_mpi_init( &grp->A );
538 mbedtls_mpi_init( &grp->B );
539 mbedtls_ecp_point_init( &grp->G );
540 mbedtls_mpi_init( &grp->N );
541 grp->pbits = 0;
542 grp->nbits = 0;
543 grp->h = 0;
544 grp->modp = NULL;
545 grp->t_pre = NULL;
546 grp->t_post = NULL;
547 grp->t_data = NULL;
548 grp->T = NULL;
549 grp->T_size = 0;
550
551 grp->st_modulus_size = 0;
552 grp->st_order_size = 0;
553 grp->st_p = NULL;
554 grp->st_a_sign = 0;
555 grp->st_a_abs = NULL;
556 grp->st_b = NULL;
557 grp->st_gx = NULL;
558 grp->st_gy = NULL;
559 grp->st_n = NULL;
560 }
561
562 /*
563 * Initialize (the components of) a key pair
564 */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)565 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
566 {
567 ECP_VALIDATE( key != NULL );
568
569 mbedtls_ecp_group_init( &key->MBEDTLS_PRIVATE(grp) );
570 mbedtls_mpi_init( &key->MBEDTLS_PRIVATE(d) );
571 mbedtls_ecp_point_init( &key->MBEDTLS_PRIVATE(Q) );
572 }
573
574 /*
575 * Unallocate (the components of) a point
576 */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)577 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
578 {
579 if( pt == NULL )
580 return;
581
582 mbedtls_mpi_free( &( pt->MBEDTLS_PRIVATE(X) ) );
583 mbedtls_mpi_free( &( pt->MBEDTLS_PRIVATE(Y) ) );
584 mbedtls_mpi_free( &( pt->MBEDTLS_PRIVATE(Z) ) );
585 }
586
587 /*
588 * Unallocate (the components of) a group
589 *
590 * STMicroelectronics edition
591 *
592 */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)593 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
594 {
595 size_t i;
596
597 if( grp == NULL )
598 return;
599
600 if( grp->h != 1 )
601 {
602 mbedtls_mpi_free( &grp->P );
603 mbedtls_mpi_free( &grp->A );
604 mbedtls_mpi_free( &grp->B );
605 mbedtls_ecp_point_free( &grp->G );
606 mbedtls_mpi_free( &grp->N );
607 }
608
609 if( grp->T != NULL )
610 {
611 for( i = 0; i < grp->T_size; i++ )
612 mbedtls_ecp_point_free( &grp->T[i] );
613 mbedtls_free( grp->T );
614 }
615
616 if ( grp->st_p != NULL )
617 {
618 mbedtls_platform_zeroize( grp->st_p, grp->st_modulus_size );
619 mbedtls_free( grp->st_p );
620 }
621 if ( grp->st_a_abs != NULL )
622 {
623 mbedtls_platform_zeroize( grp->st_a_abs, grp->st_modulus_size );
624 mbedtls_free( grp->st_a_abs );
625 }
626 if ( grp->st_b != NULL )
627 {
628 mbedtls_platform_zeroize( grp->st_b, grp->st_modulus_size );
629 mbedtls_free( grp->st_b );
630 }
631 if ( grp->st_gx != NULL )
632 {
633 mbedtls_platform_zeroize( grp->st_gx, grp->st_modulus_size );
634 mbedtls_free( grp->st_gx );
635 }
636 if ( grp->st_gy != NULL )
637 {
638 mbedtls_platform_zeroize( grp->st_gy, grp->st_modulus_size );
639 mbedtls_free( grp->st_gy );
640 }
641 if ( grp->st_n != NULL )
642 {
643 mbedtls_platform_zeroize( grp->st_n, grp->st_order_size );
644 mbedtls_free( grp->st_n );
645 }
646
647 mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
648 }
649
650 /*
651 * Unallocate (the components of) a key pair
652 */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)653 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
654 {
655 if( key == NULL )
656 return;
657
658 mbedtls_ecp_group_free( &key->MBEDTLS_PRIVATE(grp) );
659 mbedtls_mpi_free( &key->MBEDTLS_PRIVATE(d) );
660 mbedtls_ecp_point_free( &key->MBEDTLS_PRIVATE(Q) );
661 }
662
663 /*
664 * Copy the contents of a point
665 */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)666 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
667 {
668 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
669 ECP_VALIDATE_RET( P != NULL );
670 ECP_VALIDATE_RET( Q != NULL );
671
672 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->MBEDTLS_PRIVATE(X), &Q->MBEDTLS_PRIVATE(X) ) );
673 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->MBEDTLS_PRIVATE(Y), &Q->MBEDTLS_PRIVATE(Y) ) );
674 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->MBEDTLS_PRIVATE(Z), &Q->MBEDTLS_PRIVATE(Z) ) );
675
676 cleanup:
677 return( ret );
678 }
679
680 /*
681 * Copy the contents of a group object
682 */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)683 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
684 {
685 ECP_VALIDATE_RET( dst != NULL );
686 ECP_VALIDATE_RET( src != NULL );
687
688 return( mbedtls_ecp_group_load( dst, src->id ) );
689 }
690
691 /*
692 * Set point to zero
693 */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)694 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
695 {
696 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
697 ECP_VALIDATE_RET( pt != NULL );
698
699 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->MBEDTLS_PRIVATE(X) , 1 ) );
700 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->MBEDTLS_PRIVATE(Y) , 1 ) );
701 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->MBEDTLS_PRIVATE(Z) , 0 ) );
702
703 cleanup:
704 return( ret );
705 }
706
707 /*
708 * Tell if a point is zero
709 */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)710 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
711 {
712 ECP_VALIDATE_RET( pt != NULL );
713
714 return( mbedtls_mpi_cmp_int( &pt->MBEDTLS_PRIVATE(Z), 0 ) == 0 );
715 }
716
717 /*
718 * Compare two points lazily
719 */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)720 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
721 const mbedtls_ecp_point *Q )
722 {
723 ECP_VALIDATE_RET( P != NULL );
724 ECP_VALIDATE_RET( Q != NULL );
725
726 if( mbedtls_mpi_cmp_mpi( &P->MBEDTLS_PRIVATE(X), &Q->MBEDTLS_PRIVATE(X) ) == 0 &&
727 mbedtls_mpi_cmp_mpi( &P->MBEDTLS_PRIVATE(Y), &Q->MBEDTLS_PRIVATE(Y) ) == 0 &&
728 mbedtls_mpi_cmp_mpi( &P->MBEDTLS_PRIVATE(Z), &Q->MBEDTLS_PRIVATE(Z) ) == 0 )
729 {
730 return( 0 );
731 }
732
733 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
734 }
735
736 /*
737 * Import a non-zero point from ASCII strings
738 */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)739 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
740 const char *x, const char *y )
741 {
742 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
743 ECP_VALIDATE_RET( P != NULL );
744 ECP_VALIDATE_RET( x != NULL );
745 ECP_VALIDATE_RET( y != NULL );
746
747 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->MBEDTLS_PRIVATE(X), radix, x ) );
748 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->MBEDTLS_PRIVATE(Y), radix, y ) );
749 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->MBEDTLS_PRIVATE(Z), 1 ) );
750
751 cleanup:
752 return( ret );
753 }
754
755 /*
756 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
757 */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)758 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
759 const mbedtls_ecp_point *P,
760 int format, size_t *olen,
761 unsigned char *buf, size_t buflen )
762 {
763 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
764 size_t plen;
765 ECP_VALIDATE_RET( grp != NULL );
766 ECP_VALIDATE_RET( P != NULL );
767 ECP_VALIDATE_RET( olen != NULL );
768 ECP_VALIDATE_RET( buf != NULL );
769 ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
770 format == MBEDTLS_ECP_PF_COMPRESSED );
771
772 plen = mbedtls_mpi_size( &grp->P );
773
774 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
775 (void) format; /* Montgomery curves always use the same point format */
776 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
777 {
778 *olen = plen;
779 if( buflen < *olen )
780 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
781
782 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &P->MBEDTLS_PRIVATE(X), buf, plen ) );
783 }
784 #endif
785 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
786 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
787 {
788 /*
789 * Common case: P == 0
790 */
791 if( mbedtls_mpi_cmp_int( &P->MBEDTLS_PRIVATE(Z), 0 ) == 0 )
792 {
793 if( buflen < 1 )
794 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
795
796 buf[0] = 0x00;
797 *olen = 1;
798
799 return( 0 );
800 }
801
802 if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
803 {
804 *olen = 2 * plen + 1;
805
806 if( buflen < *olen )
807 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
808
809 buf[0] = 0x04;
810 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->MBEDTLS_PRIVATE(X), buf + 1, plen ) );
811 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->MBEDTLS_PRIVATE(Y), buf + 1 + plen, plen ) );
812 }
813 else if( format == MBEDTLS_ECP_PF_COMPRESSED )
814 {
815 *olen = plen + 1;
816
817 if( buflen < *olen )
818 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
819
820 buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->MBEDTLS_PRIVATE(Y), 0 );
821 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->MBEDTLS_PRIVATE(X), buf + 1, plen ) );
822 }
823 }
824 #endif
825
826 cleanup:
827 return( ret );
828 }
829
830 /*
831 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
832 */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)833 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
834 mbedtls_ecp_point *pt,
835 const unsigned char *buf, size_t ilen )
836 {
837 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
838 size_t plen;
839 ECP_VALIDATE_RET( grp != NULL );
840 ECP_VALIDATE_RET( pt != NULL );
841 ECP_VALIDATE_RET( buf != NULL );
842
843 if( ilen < 1 )
844 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
845
846 plen = mbedtls_mpi_size( &grp->P );
847
848 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
849 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
850 {
851 if( plen != ilen )
852 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
853
854 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &pt->MBEDTLS_PRIVATE(X), buf, plen ) );
855 mbedtls_mpi_free( &pt->MBEDTLS_PRIVATE(Y) );
856
857 if( grp->id == MBEDTLS_ECP_DP_CURVE25519 )
858 /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
859 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &pt->MBEDTLS_PRIVATE(X), plen * 8 - 1, 0 ) );
860
861 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->MBEDTLS_PRIVATE(Z), 1 ) );
862 }
863 #endif
864 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
865 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
866 {
867 if( buf[0] == 0x00 )
868 {
869 if( ilen == 1 )
870 return( mbedtls_ecp_set_zero( pt ) );
871 else
872 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
873 }
874
875 if( buf[0] != 0x04 )
876 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
877
878 if( ilen != 2 * plen + 1 )
879 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
880
881 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->MBEDTLS_PRIVATE(X), buf + 1, plen ) );
882 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->MBEDTLS_PRIVATE(Y),
883 buf + 1 + plen, plen ) );
884 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->MBEDTLS_PRIVATE(Z), 1 ) );
885 }
886 #endif
887
888 cleanup:
889 return( ret );
890 }
891
892 /*
893 * Import a point from a TLS ECPoint record (RFC 4492)
894 * struct {
895 * opaque point <1..2^8-1>;
896 * } ECPoint;
897 */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)898 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
899 mbedtls_ecp_point *pt,
900 const unsigned char **buf, size_t buf_len )
901 {
902 unsigned char data_len;
903 const unsigned char *buf_start;
904 ECP_VALIDATE_RET( grp != NULL );
905 ECP_VALIDATE_RET( pt != NULL );
906 ECP_VALIDATE_RET( buf != NULL );
907 ECP_VALIDATE_RET( *buf != NULL );
908
909 /*
910 * We must have at least two bytes (1 for length, at least one for data)
911 */
912 if( buf_len < 2 )
913 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
914
915 data_len = *(*buf)++;
916 if( data_len < 1 || data_len > buf_len - 1 )
917 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
918
919 /*
920 * Save buffer start for read_binary and update buf
921 */
922 buf_start = *buf;
923 *buf += data_len;
924
925 return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
926 }
927
928 /*
929 * Export a point as a TLS ECPoint record (RFC 4492)
930 * struct {
931 * opaque point <1..2^8-1>;
932 * } ECPoint;
933 */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)934 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
935 int format, size_t *olen,
936 unsigned char *buf, size_t blen )
937 {
938 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
939 ECP_VALIDATE_RET( grp != NULL );
940 ECP_VALIDATE_RET( pt != NULL );
941 ECP_VALIDATE_RET( olen != NULL );
942 ECP_VALIDATE_RET( buf != NULL );
943 ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
944 format == MBEDTLS_ECP_PF_COMPRESSED );
945
946 /*
947 * buffer length must be at least one, for our length byte
948 */
949 if( blen < 1 )
950 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
951
952 if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
953 olen, buf + 1, blen - 1) ) != 0 )
954 return( ret );
955
956 /*
957 * write length to the first byte and update total length
958 */
959 buf[0] = (unsigned char) *olen;
960 ++*olen;
961
962 return( 0 );
963 }
964
965 /*
966 * Set a group from an ECParameters record (RFC 4492)
967 */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)968 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
969 const unsigned char **buf, size_t len )
970 {
971 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
972 mbedtls_ecp_group_id grp_id;
973 ECP_VALIDATE_RET( grp != NULL );
974 ECP_VALIDATE_RET( buf != NULL );
975 ECP_VALIDATE_RET( *buf != NULL );
976
977 if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
978 return( ret );
979
980 return( mbedtls_ecp_group_load( grp, grp_id ) );
981 }
982
983 /*
984 * Read a group id from an ECParameters record (RFC 4492) and convert it to
985 * mbedtls_ecp_group_id.
986 */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)987 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
988 const unsigned char **buf, size_t len )
989 {
990 uint16_t tls_id;
991 const mbedtls_ecp_curve_info *curve_info;
992 ECP_VALIDATE_RET( grp != NULL );
993 ECP_VALIDATE_RET( buf != NULL );
994 ECP_VALIDATE_RET( *buf != NULL );
995
996 /*
997 * We expect at least three bytes (see below)
998 */
999 if( len < 3 )
1000 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1001
1002 /*
1003 * First byte is curve_type; only named_curve is handled
1004 */
1005 if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
1006 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1007
1008 /*
1009 * Next two bytes are the namedcurve value
1010 */
1011 tls_id = *(*buf)++;
1012 tls_id <<= 8;
1013 tls_id |= *(*buf)++;
1014
1015 if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
1016 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1017
1018 *grp = curve_info->grp_id;
1019
1020 return( 0 );
1021 }
1022
1023 /*
1024 * Write the ECParameters record corresponding to a group (RFC 4492)
1025 */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)1026 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
1027 unsigned char *buf, size_t blen )
1028 {
1029 const mbedtls_ecp_curve_info *curve_info;
1030 ECP_VALIDATE_RET( grp != NULL );
1031 ECP_VALIDATE_RET( buf != NULL );
1032 ECP_VALIDATE_RET( olen != NULL );
1033
1034 if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
1035 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1036
1037 /*
1038 * We are going to write 3 bytes (see below)
1039 */
1040 *olen = 3;
1041 if( blen < *olen )
1042 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
1043
1044 /*
1045 * First byte is curve_type, always named_curve
1046 */
1047 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
1048
1049 /*
1050 * Next two bytes are the namedcurve value
1051 */
1052 buf[0] = curve_info->tls_id >> 8;
1053 buf[1] = curve_info->tls_id & 0xFF;
1054
1055 return( 0 );
1056 }
1057
1058 /*
1059 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
1060 * See the documentation of struct mbedtls_ecp_group.
1061 *
1062 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1063 */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)1064 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1065 {
1066 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1067
1068 if( grp->modp == NULL )
1069 return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1070
1071 /* N->MBEDTLS_PRIVATE(s) < 0 is a much faster test, which fails only if N is 0 */
1072 if( ( N->MBEDTLS_PRIVATE(s) < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1073 mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1074 {
1075 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1076 }
1077
1078 MBEDTLS_MPI_CHK( grp->modp( N ) );
1079
1080 /* N->MBEDTLS_PRIVATE(s) < 0 is a much faster test, which fails only if N is 0 */
1081 while( N->MBEDTLS_PRIVATE(s) < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1082 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1083
1084 while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1085 /* we known P, N and the result are positive */
1086 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1087
1088 cleanup:
1089 return( ret );
1090 }
1091
1092 /*
1093 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1094 *
1095 * In order to guarantee that, we need to ensure that operands of
1096 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1097 * bring the result back to this range.
1098 *
1099 * The following macros are shortcuts for doing that.
1100 */
1101
1102 /*
1103 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1104 */
1105 #if defined(MBEDTLS_SELF_TEST)
1106 #define INC_MUL_COUNT mul_count++;
1107 #else
1108 #define INC_MUL_COUNT
1109 #endif
1110
1111 #define MOD_MUL( N ) \
1112 do \
1113 { \
1114 MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \
1115 INC_MUL_COUNT \
1116 } while( 0 )
1117
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1118 static inline int mbedtls_mpi_mul_mod( const mbedtls_ecp_group *grp,
1119 mbedtls_mpi *X,
1120 const mbedtls_mpi *A,
1121 const mbedtls_mpi *B )
1122 {
1123 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1124 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( X, A, B ) );
1125 MOD_MUL( *X );
1126 cleanup:
1127 return( ret );
1128 }
1129
1130 /*
1131 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1132 * N->MBEDTLS_PRIVATE(s) < 0 is a very fast test, which fails only if N is 0
1133 */
1134 #define MOD_SUB( N ) \
1135 while( (N).MBEDTLS_PRIVATE(s) < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \
1136 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
1137
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1138 static inline int mbedtls_mpi_sub_mod( const mbedtls_ecp_group *grp,
1139 mbedtls_mpi *X,
1140 const mbedtls_mpi *A,
1141 const mbedtls_mpi *B )
1142 {
1143 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1144 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( X, A, B ) );
1145 MOD_SUB( *X );
1146 cleanup:
1147 return( ret );
1148 }
1149
1150 /*
1151 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1152 * We known P, N and the result are positive, so sub_abs is correct, and
1153 * a bit faster.
1154 */
1155 #define MOD_ADD( N ) \
1156 while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \
1157 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
1158
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1159 static inline int mbedtls_mpi_add_mod( const mbedtls_ecp_group *grp,
1160 mbedtls_mpi *X,
1161 const mbedtls_mpi *A,
1162 const mbedtls_mpi *B )
1163 {
1164 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1165 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, A, B ) );
1166 MOD_ADD( *X );
1167 cleanup:
1168 return( ret );
1169 }
1170
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1171 static inline int mbedtls_mpi_shift_l_mod( const mbedtls_ecp_group *grp,
1172 mbedtls_mpi *X,
1173 size_t count )
1174 {
1175 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1176 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, count ) );
1177 MOD_ADD( *X );
1178 cleanup:
1179 return( ret );
1180 }
1181
1182 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1183 /*
1184 * For curves in short Weierstrass form, we do all the internal operations in
1185 * Jacobian coordinates.
1186 *
1187 * For multiplication, we'll use a comb method with coutermeasueres against
1188 * SPA, hence timing attacks.
1189 */
1190
1191 /*
1192 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1193 * Cost: 1N := 1I + 3M + 1S
1194 */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1195 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1196 {
1197 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1198 mbedtls_mpi Zi, ZZi;
1199
1200 if( mbedtls_mpi_cmp_int( &pt->MBEDTLS_PRIVATE(Z), 0 ) == 0 )
1201 return( 0 );
1202
1203 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1204 if( mbedtls_internal_ecp_grp_capable( grp ) )
1205 return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1206 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1207
1208 mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1209
1210 /*
1211 * X = X / Z^2 mod p
1212 */
1213 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->MBEDTLS_PRIVATE(Z), &grp->P ) );
1214 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi, &Zi, &Zi ) );
1215 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->MBEDTLS_PRIVATE(X), &pt->MBEDTLS_PRIVATE(X), &ZZi ) );
1216
1217 /*
1218 * Y = Y / Z^3 mod p
1219 */
1220 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->MBEDTLS_PRIVATE(Y), &pt->MBEDTLS_PRIVATE(Y), &ZZi ) );
1221 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->MBEDTLS_PRIVATE(Y), &pt->MBEDTLS_PRIVATE(Y), &Zi ) );
1222
1223 /*
1224 * Z = 1
1225 */
1226 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->MBEDTLS_PRIVATE(Z), 1 ) );
1227
1228 cleanup:
1229
1230 mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1231
1232 return( ret );
1233 }
1234
1235 /*
1236 * Point doubling R = 2 P, Jacobian coordinates
1237 *
1238 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1239 *
1240 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1241 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1242 *
1243 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1244 *
1245 * Cost: 1D := 3M + 4S (A == 0)
1246 * 4M + 4S (A == -3)
1247 * 3M + 6S + 1a otherwise
1248 */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P)1249 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1250 const mbedtls_ecp_point *P )
1251 {
1252 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1253 mbedtls_mpi M, S, T, U;
1254
1255 #if defined(MBEDTLS_SELF_TEST)
1256 dbl_count++;
1257 #endif
1258
1259 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1260 if( mbedtls_internal_ecp_grp_capable( grp ) )
1261 return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1262 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1263
1264 mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1265
1266 /* Special case for A = -3 */
1267 if( grp->A.MBEDTLS_PRIVATE(p) == NULL )
1268 {
1269 /* M = 3(X + Z^2)(X - Z^2) */
1270 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->MBEDTLS_PRIVATE(Z), &P->MBEDTLS_PRIVATE(Z) ) );
1271 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &T, &P->MBEDTLS_PRIVATE(X), &S ) );
1272 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &U, &P->MBEDTLS_PRIVATE(X), &S ) );
1273 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &T, &U ) );
1274 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
1275 }
1276 else
1277 {
1278 /* M = 3.X^2 */
1279 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->MBEDTLS_PRIVATE(X), &P->MBEDTLS_PRIVATE(X) ) );
1280 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
1281
1282 /* Optimize away for "koblitz" curves with A = 0 */
1283 if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1284 {
1285 /* M += A.Z^4 */
1286 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->MBEDTLS_PRIVATE(Z), &P->MBEDTLS_PRIVATE(Z) ) );
1287 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &S, &S ) );
1288 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &T, &grp->A ) );
1289 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &M, &M, &S ) );
1290 }
1291 }
1292
1293 /* S = 4.X.Y^2 */
1294 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &P->MBEDTLS_PRIVATE(Y), &P->MBEDTLS_PRIVATE(Y) ) );
1295 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T, 1 ) );
1296 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->MBEDTLS_PRIVATE(X), &T ) );
1297 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &S, 1 ) );
1298
1299 /* U = 8.Y^4 */
1300 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U, &T, &T ) );
1301 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U, 1 ) );
1302
1303 /* T = M^2 - 2.S */
1304 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &M, &M ) );
1305 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T, &T, &S ) );
1306 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T, &T, &S ) );
1307
1308 /* S = M(S - T) - U */
1309 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S, &S, &T ) );
1310 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &S, &M ) );
1311 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S, &S, &U ) );
1312
1313 /* U = 2.Y.Z */
1314 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U, &P->MBEDTLS_PRIVATE(Y), &P->MBEDTLS_PRIVATE(Z) ) );
1315 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U, 1 ) );
1316
1317 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->MBEDTLS_PRIVATE(X), &T ) );
1318 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->MBEDTLS_PRIVATE(Y), &S ) );
1319 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->MBEDTLS_PRIVATE(Z), &U ) );
1320
1321 cleanup:
1322 mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1323
1324 return( ret );
1325 }
1326
1327 /*
1328 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1329 *
1330 * The coordinates of Q must be normalized (= affine),
1331 * but those of P don't need to. R is not normalized.
1332 *
1333 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1334 * None of these cases can happen as intermediate step in ecp_mul_comb():
1335 * - at each step, P, Q and R are multiples of the base point, the factor
1336 * being less than its order, so none of them is zero;
1337 * - Q is an odd multiple of the base point, P an even multiple,
1338 * due to the choice of precomputed points in the modified comb method.
1339 * So branches for these cases do not leak secret information.
1340 *
1341 * We accept Q->MBEDTLS_PRIVATE(Z) being unset (saving memory in tables) as meaning 1.
1342 *
1343 * Cost: 1A := 8M + 3S
1344 */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)1345 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1346 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1347 {
1348 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1349 mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1350
1351 #if defined(MBEDTLS_SELF_TEST)
1352 add_count++;
1353 #endif
1354
1355 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1356 if( mbedtls_internal_ecp_grp_capable( grp ) )
1357 return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1358 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1359
1360 /*
1361 * Trivial cases: P == 0 or Q == 0 (case 1)
1362 */
1363 if( mbedtls_mpi_cmp_int( &P->MBEDTLS_PRIVATE(Z), 0 ) == 0 )
1364 return( mbedtls_ecp_copy( R, Q ) );
1365
1366 if( Q->MBEDTLS_PRIVATE(Z).MBEDTLS_PRIVATE(p) != NULL && mbedtls_mpi_cmp_int( &Q->MBEDTLS_PRIVATE(Z), 0 ) == 0 )
1367 return( mbedtls_ecp_copy( R, P ) );
1368
1369 /*
1370 * Make sure Q coordinates are normalized
1371 */
1372 if( Q->MBEDTLS_PRIVATE(Z).MBEDTLS_PRIVATE(p) != NULL && mbedtls_mpi_cmp_int( &Q->MBEDTLS_PRIVATE(Z), 1 ) != 0 )
1373 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1374
1375 mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1376 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1377
1378 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1, &P->MBEDTLS_PRIVATE(Z), &P->MBEDTLS_PRIVATE(Z) ) );
1379 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2, &T1, &P->MBEDTLS_PRIVATE(Z) ) );
1380 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1, &T1, &Q->MBEDTLS_PRIVATE(X) ) );
1381 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2, &T2, &Q->MBEDTLS_PRIVATE(Y) ) );
1382 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T1, &T1, &P->MBEDTLS_PRIVATE(X) ) );
1383 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T2, &T2, &P->MBEDTLS_PRIVATE(Y) ) );
1384
1385 /* Special cases (2) and (3) */
1386 if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1387 {
1388 if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1389 {
1390 ret = ecp_double_jac( grp, R, P );
1391 goto cleanup;
1392 }
1393 else
1394 {
1395 ret = mbedtls_ecp_set_zero( R );
1396 goto cleanup;
1397 }
1398 }
1399
1400 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Z, &P->MBEDTLS_PRIVATE(Z), &T1 ) );
1401 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T1, &T1 ) );
1402 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4, &T3, &T1 ) );
1403 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T3, &P->MBEDTLS_PRIVATE(X) ) );
1404 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &T3 ) );
1405 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T1, 1 ) );
1406 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &X, &T2, &T2 ) );
1407 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X, &X, &T1 ) );
1408 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X, &X, &T4 ) );
1409 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T3, &T3, &X ) );
1410 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T3, &T2 ) );
1411 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4, &T4, &P->MBEDTLS_PRIVATE(Y) ) );
1412 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &Y, &T3, &T4 ) );
1413
1414 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->MBEDTLS_PRIVATE(X), &X ) );
1415 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->MBEDTLS_PRIVATE(Y), &Y ) );
1416 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->MBEDTLS_PRIVATE(Z), &Z ) );
1417
1418 cleanup:
1419
1420 mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1421 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1422
1423 return( ret );
1424 }
1425
1426 /*
1427 * Check and define parameters used by the comb method (see below for details)
1428 */
1429 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1430 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1431 #endif
1432
1433 /*
1434 * Multiplication using the comb method - for curves in short Weierstrass form
1435 *
1436 * This function is mainly responsible for administrative work:
1437 * - managing the restart context if enabled
1438 * - managing the table of precomputed points (passed between the below two
1439 * functions): allocation, computation, ownership transfer, freeing.
1440 *
1441 * It delegates the actual arithmetic work to:
1442 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
1443 *
1444 * See comments on ecp_comb_recode_core() regarding the computation strategy.
1445 *
1446 * STMicroelectronics edition
1447 *
1448 */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1449 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1450 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1451 int (*f_rng)(void *, unsigned char *, size_t),
1452 void *p_rng,
1453 mbedtls_ecp_restart_ctx *rs_ctx )
1454 {
1455 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1456 size_t olen;
1457 size_t scalarMulSize;
1458 uint8_t *P_binary;
1459 uint8_t *m_binary = NULL;
1460 uint8_t *R_binary = NULL;
1461 PKA_HandleTypeDef hpka = {0};
1462 PKA_ECCMulInTypeDef ECC_MulIn = {0};
1463 PKA_ECCMulOutTypeDef ECC_MulOut;
1464
1465 /* Set HW peripheral input parameter: scalar m size */
1466 scalarMulSize = mbedtls_mpi_size(m);
1467 ECC_MulIn.scalarMulSize = scalarMulSize;
1468
1469 /* Set HW peripheral Input parameter: curve coefs */
1470 ECC_MulIn.modulusSize = grp->st_modulus_size;
1471 ECC_MulIn.coefSign = grp->st_a_sign;
1472 ECC_MulIn.coefA = grp->st_a_abs;
1473 ECC_MulIn.modulus = grp->st_p;
1474 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
1475 ECC_MulIn.coefB = grp->st_b;
1476 ECC_MulIn.primeOrder = grp->st_n;
1477 #endif
1478
1479 /* Set HW peripheral input parameter: coordinates of P point */
1480 P_binary = mbedtls_calloc(2U * grp->st_modulus_size + 1U, sizeof( uint8_t ));
1481 MBEDTLS_MPI_CHK((P_binary == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
1482
1483 MBEDTLS_MPI_CHK( mbedtls_ecp_point_write_binary( grp, P, MBEDTLS_ECP_PF_UNCOMPRESSED, &olen, P_binary, 2U * grp->st_modulus_size + 1U) );
1484
1485 ECC_MulIn.pointX = P_binary + 1U;
1486 ECC_MulIn.pointY = P_binary + grp->st_modulus_size + 1U;
1487
1488 /* Set HW peripheral input parameter: scalar m */
1489 m_binary = mbedtls_calloc(scalarMulSize, sizeof( uint8_t ));
1490 MBEDTLS_MPI_CHK((m_binary == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
1491
1492 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( m, m_binary, scalarMulSize ) );
1493 ECC_MulIn.scalarMul = m_binary;
1494
1495 /* Enable HW peripheral clock */
1496 __HAL_RCC_PKA_CLK_ENABLE();
1497
1498 /* Initialize HW peripheral */
1499 hpka.Instance = PKA;
1500 MBEDTLS_MPI_CHK((HAL_PKA_Init(&hpka) != HAL_OK) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0);
1501
1502 /* Reset PKA RAM */
1503 HAL_PKA_RAMReset(&hpka);
1504
1505 /* Launch the scalar multiplication */
1506 MBEDTLS_MPI_CHK((HAL_PKA_ECCMul(&hpka, &ECC_MulIn, ST_ECP_TIMEOUT) != HAL_OK) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0);
1507
1508 /* Allocate memory space for scalar multiplication result */
1509 R_binary = mbedtls_calloc(2U * grp->st_modulus_size + 1U, sizeof( uint8_t ));
1510 MBEDTLS_MPI_CHK((R_binary == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
1511
1512 ECC_MulOut.ptX = R_binary + 1U;
1513 ECC_MulOut.ptY = R_binary + grp->st_modulus_size + 1U;
1514
1515 /* Get the scalar multiplication result */
1516 HAL_PKA_ECCMul_GetResult(&hpka, &ECC_MulOut);
1517
1518 /* Convert the scalar multiplication result into ecp point format */
1519 R_binary[0] = 0x04U;
1520 MBEDTLS_MPI_CHK( mbedtls_ecp_point_read_binary( grp, R, R_binary, 2U * grp->st_modulus_size + 1U) );
1521
1522 cleanup:
1523 /* De-initialize HW peripheral */
1524 HAL_PKA_DeInit(&hpka);
1525
1526 /* Disable HW peripheral clock */
1527 __HAL_RCC_PKA_CLK_DISABLE();
1528
1529 /* Free memory */
1530 if (P_binary != NULL)
1531 {
1532 mbedtls_platform_zeroize(P_binary, 2U * grp->st_modulus_size + 1U);
1533 mbedtls_free(P_binary);
1534 }
1535
1536 if (m_binary != NULL)
1537 {
1538 mbedtls_platform_zeroize(m_binary, scalarMulSize);
1539 mbedtls_free(m_binary);
1540 }
1541
1542 if (R_binary != NULL)
1543 {
1544 mbedtls_platform_zeroize(R_binary, 2U * grp->st_modulus_size + 1U);
1545 mbedtls_free(R_binary);
1546 }
1547
1548 return ret;
1549 }
1550 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1551
1552 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
1553 /*
1554 * For Montgomery curves, we do all the internal arithmetic in projective
1555 * coordinates. Import/export of points uses only the x coordinates, which is
1556 * internaly represented as X / Z.
1557 *
1558 * For scalar multiplication, we'll use a Montgomery ladder.
1559 */
1560
1561 /*
1562 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
1563 * Cost: 1M + 1I
1564 */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)1565 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
1566 {
1567 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1568
1569 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
1570 if( mbedtls_internal_ecp_grp_capable( grp ) )
1571 return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
1572 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
1573
1574 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->MBEDTLS_PRIVATE(Z), &P->MBEDTLS_PRIVATE(Z), &grp->P ) );
1575 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->MBEDTLS_PRIVATE(X), &P->MBEDTLS_PRIVATE(X), &P->MBEDTLS_PRIVATE(Z) ) );
1576 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->MBEDTLS_PRIVATE(Z), 1 ) );
1577
1578 cleanup:
1579 return( ret );
1580 }
1581
1582 /*
1583 * Randomize projective x/z coordinates:
1584 * (X, Z) -> (l X, l Z) for random l
1585 * This is sort of the reverse operation of ecp_normalize_mxz().
1586 *
1587 * This countermeasure was first suggested in [2].
1588 * Cost: 2M
1589 */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1590 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
1591 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1592 {
1593 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1594 mbedtls_mpi l;
1595 size_t p_size;
1596 int count = 0;
1597
1598 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
1599 if( mbedtls_internal_ecp_grp_capable( grp ) )
1600 return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
1601 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
1602
1603 p_size = ( grp->pbits + 7 ) / 8;
1604 mbedtls_mpi_init( &l );
1605
1606 /* Generate l such that 1 < l < p */
1607 do
1608 {
1609 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1610
1611 while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1612 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1613
1614 if( count++ > 10 )
1615 {
1616 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1617 goto cleanup;
1618 }
1619 }
1620 while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1621
1622 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->MBEDTLS_PRIVATE(X), &P->MBEDTLS_PRIVATE(X), &l ) );
1623 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->MBEDTLS_PRIVATE(Z), &P->MBEDTLS_PRIVATE(Z), &l ) );
1624
1625 cleanup:
1626 mbedtls_mpi_free( &l );
1627
1628 return( ret );
1629 }
1630
1631 /*
1632 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
1633 * for Montgomery curves in x/z coordinates.
1634 *
1635 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
1636 * with
1637 * d = X1
1638 * P = (X2, Z2)
1639 * Q = (X3, Z3)
1640 * R = (X4, Z4)
1641 * S = (X5, Z5)
1642 * and eliminating temporary variables tO, ..., t4.
1643 *
1644 * Cost: 5M + 4S
1645 */
1646 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
1647 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
1648 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1649 const mbedtls_mpi *d )
1650 {
1651 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1652 mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
1653
1654 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
1655 if( mbedtls_internal_ecp_grp_capable( grp ) )
1656 return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
1657 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
1658
1659 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
1660 mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
1661 mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
1662
1663 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &A, &P->MBEDTLS_PRIVATE(X), &P->MBEDTLS_PRIVATE(Z) ) );
1664 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &AA, &A, &A ) );
1665 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &B, &P->MBEDTLS_PRIVATE(X), &P->MBEDTLS_PRIVATE(Z) ) );
1666 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &BB, &B, &B ) );
1667 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &E, &AA, &BB ) );
1668 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &C, &Q->MBEDTLS_PRIVATE(X), &Q->MBEDTLS_PRIVATE(Z) ) );
1669 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &D, &Q->MBEDTLS_PRIVATE(X), &Q->MBEDTLS_PRIVATE(Z) ) );
1670 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &DA, &D, &A ) );
1671 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &CB, &C, &B ) );
1672 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &S->MBEDTLS_PRIVATE(X), &DA, &CB ) );
1673 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->MBEDTLS_PRIVATE(X), &S->MBEDTLS_PRIVATE(X), &S->MBEDTLS_PRIVATE(X) ) );
1674 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S->MBEDTLS_PRIVATE(Z), &DA, &CB ) );
1675 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->MBEDTLS_PRIVATE(Z), &S->MBEDTLS_PRIVATE(Z), &S->MBEDTLS_PRIVATE(Z) ) );
1676 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->MBEDTLS_PRIVATE(Z), d, &S->MBEDTLS_PRIVATE(Z) ) );
1677 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->MBEDTLS_PRIVATE(X), &AA, &BB ) );
1678 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->MBEDTLS_PRIVATE(Z), &grp->A, &E ) );
1679 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &R->MBEDTLS_PRIVATE(Z), &BB, &R->MBEDTLS_PRIVATE(Z) ) );
1680 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->MBEDTLS_PRIVATE(Z), &E, &R->MBEDTLS_PRIVATE(Z) ) );
1681
1682 cleanup:
1683 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
1684 mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
1685 mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
1686
1687 return( ret );
1688 }
1689
1690 /*
1691 * Multiplication with Montgomery ladder in x/z coordinates,
1692 * for curves in Montgomery form
1693 */
1694 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1695 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1696 int (*f_rng)(void *, unsigned char *, size_t),
1697 void *p_rng )
1698 {
1699 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1700 size_t i;
1701 unsigned char b;
1702 mbedtls_ecp_point RP;
1703 mbedtls_mpi PX;
1704
1705 mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
1706
1707 /* Save PX and read from P before writing to R, in case P == R */
1708 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->MBEDTLS_PRIVATE(X) ) );
1709 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
1710
1711 /* Set R to zero in modified x/z coordinates */
1712 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->MBEDTLS_PRIVATE(X), 1 ) );
1713 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->MBEDTLS_PRIVATE(Z), 0 ) );
1714 mbedtls_mpi_free( &R->MBEDTLS_PRIVATE(Y) );
1715
1716 /* RP.X might be sligtly larger than P, so reduce it */
1717 MOD_ADD( RP.MBEDTLS_PRIVATE(X) );
1718
1719 /* Randomize coordinates of the starting point */
1720 if( f_rng != NULL )
1721 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
1722
1723 /* Loop invariant: R = result so far, RP = R + P */
1724 i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
1725 while( i-- > 0 )
1726 {
1727 b = mbedtls_mpi_get_bit( m, i );
1728 /*
1729 * if (b) R = 2R + P else R = 2R,
1730 * which is:
1731 * if (b) double_add( RP, R, RP, R )
1732 * else double_add( R, RP, R, RP )
1733 * but using safe conditional swaps to avoid leaks
1734 */
1735 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->MBEDTLS_PRIVATE(X), &RP.MBEDTLS_PRIVATE(X), b ) );
1736 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->MBEDTLS_PRIVATE(Z), &RP.MBEDTLS_PRIVATE(Z), b ) );
1737 MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
1738 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->MBEDTLS_PRIVATE(X), &RP.MBEDTLS_PRIVATE(X), b ) );
1739 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->MBEDTLS_PRIVATE(Z), &RP.MBEDTLS_PRIVATE(Z), b ) );
1740 }
1741
1742 MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
1743
1744 cleanup:
1745 mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
1746
1747 return( ret );
1748 }
1749
1750 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
1751
1752 /*
1753 * Restartable multiplication R = m * P
1754 */
1755 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1756 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1757 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
1758 mbedtls_ecp_restart_ctx *rs_ctx )
1759 {
1760 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1761 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1762 char is_grp_capable = 0;
1763 #endif
1764 ECP_VALIDATE_RET( grp != NULL );
1765 ECP_VALIDATE_RET( R != NULL );
1766 ECP_VALIDATE_RET( m != NULL );
1767 ECP_VALIDATE_RET( P != NULL );
1768
1769 #if defined(MBEDTLS_ECP_RESTARTABLE)
1770 /* reset ops count for this call if top-level */
1771 if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
1772 rs_ctx->ops_done = 0;
1773 #else
1774 (void) rs_ctx;
1775 #endif
1776
1777 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1778 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
1779 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
1780 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1781
1782 #if defined(MBEDTLS_ECP_RESTARTABLE)
1783 /* skip argument check when restarting */
1784 if( rs_ctx == NULL || rs_ctx->rsm == NULL )
1785 #endif
1786 {
1787 /* check_privkey is free */
1788 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
1789
1790 /* Common sanity checks */
1791 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
1792 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
1793 }
1794
1795 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1796 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
1797 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
1798 MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
1799 #endif
1800 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1801 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
1802 MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
1803 #endif
1804
1805 cleanup:
1806
1807 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1808 if( is_grp_capable )
1809 mbedtls_internal_ecp_free( grp );
1810 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1811
1812 #if defined(MBEDTLS_ECP_RESTARTABLE)
1813 if( rs_ctx != NULL )
1814 rs_ctx->depth--;
1815 #endif
1816
1817 return( ret );
1818 }
1819
1820 /*
1821 * Multiplication R = m * P
1822 */
1823 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1824 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1825 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1826 {
1827 ECP_VALIDATE_RET( grp != NULL );
1828 ECP_VALIDATE_RET( R != NULL );
1829 ECP_VALIDATE_RET( m != NULL );
1830 ECP_VALIDATE_RET( P != NULL );
1831 return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
1832 }
1833
1834 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1835 /*
1836 * Check that an affine point is valid as a public key,
1837 * short weierstrass curves (SEC1 3.2.3.1)
1838 *
1839 * STMicroelectronics edition
1840 *
1841 */
1842 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1843 {
1844 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1845 size_t olen;
1846 uint8_t *pt_binary;
1847 PKA_HandleTypeDef hpka = {0};
1848 PKA_PointCheckInTypeDef ECC_PointCheck = {0};
1849
1850 /* pt coordinates must be normalized for our checks */
1851 if( mbedtls_mpi_cmp_int( &pt->MBEDTLS_PRIVATE(X), 0 ) < 0 ||
1852 mbedtls_mpi_cmp_int( &pt->MBEDTLS_PRIVATE(Y), 0 ) < 0 ||
1853 mbedtls_mpi_cmp_mpi( &pt->MBEDTLS_PRIVATE(X), &grp->P ) >= 0 ||
1854 mbedtls_mpi_cmp_mpi( &pt->MBEDTLS_PRIVATE(Y), &grp->P ) >= 0 )
1855 return( MBEDTLS_ERR_ECP_INVALID_KEY );
1856
1857 /* Set HW peripheral Input parameter: curve coefs */
1858 ECC_PointCheck.modulusSize = grp->st_modulus_size;
1859 ECC_PointCheck.modulus = grp->st_p;
1860 ECC_PointCheck.coefSign = grp->st_a_sign;
1861 ECC_PointCheck.coefA = grp->st_a_abs;
1862 ECC_PointCheck.coefB = grp->st_b;
1863
1864 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
1865 ECC_PointCheck.pMontgomeryParam = NULL;
1866 #endif
1867
1868 /* Set HW peripheral input parameter: coordinates of point to check */
1869 pt_binary = mbedtls_calloc(( 2U * grp->st_modulus_size ) + 1U, sizeof( uint8_t ));
1870 MBEDTLS_MPI_CHK((pt_binary == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
1871
1872 MBEDTLS_MPI_CHK( mbedtls_ecp_point_write_binary( grp, pt, MBEDTLS_ECP_PF_UNCOMPRESSED, &olen, pt_binary, ( 2U * grp->st_modulus_size ) + 1U ) );
1873
1874 ECC_PointCheck.pointX = pt_binary + 1U;
1875 ECC_PointCheck.pointY = pt_binary + grp->st_modulus_size + 1U;
1876
1877 /* Enable HW peripheral clock */
1878 __HAL_RCC_PKA_CLK_ENABLE();
1879
1880 /* Initialize HW peripheral */
1881 hpka.Instance = PKA;
1882 MBEDTLS_MPI_CHK((HAL_PKA_Init(&hpka) != HAL_OK) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0);
1883
1884 /* Reset PKA RAM */
1885 HAL_PKA_RAMReset(&hpka);
1886
1887 /* Launch the point check */
1888 MBEDTLS_MPI_CHK((HAL_PKA_PointCheck(&hpka, &ECC_PointCheck, ST_ECP_TIMEOUT) != HAL_OK) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0);
1889
1890 /* Get the result of the point check */
1891 if( HAL_PKA_PointCheck_IsOnCurve(&hpka) != 1U)
1892 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
1893
1894 cleanup:
1895 /* De-initialize HW peripheral */
1896 HAL_PKA_DeInit(&hpka);
1897
1898 /* Disable HW peripheral clock */
1899 __HAL_RCC_PKA_CLK_DISABLE();
1900
1901 /* Free memory */
1902 if (pt_binary != NULL)
1903 {
1904 mbedtls_platform_zeroize(pt_binary, ( 2U * grp->st_modulus_size ) + 1U );
1905 mbedtls_free(pt_binary);
1906 }
1907
1908 return ret;
1909 }
1910 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1911
1912 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1913 /*
1914 * R = m * P with shortcuts for m == 1 and m == -1
1915 * NOT constant-time - ONLY for short Weierstrass!
1916 */
1917 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
1918 mbedtls_ecp_point *R,
1919 const mbedtls_mpi *m,
1920 const mbedtls_ecp_point *P,
1921 mbedtls_ecp_restart_ctx *rs_ctx )
1922 {
1923 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1924
1925 if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
1926 {
1927 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
1928 }
1929 else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
1930 {
1931 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
1932 if( mbedtls_mpi_cmp_int( &R->MBEDTLS_PRIVATE(Y), 0 ) != 0 )
1933 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->MBEDTLS_PRIVATE(Y), &grp->P, &R->MBEDTLS_PRIVATE(Y) ) );
1934 }
1935 else
1936 {
1937 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
1938 NULL, NULL, rs_ctx ) );
1939 }
1940
1941 cleanup:
1942 return( ret );
1943 }
1944
1945 /*
1946 * Restartable linear combination
1947 * NOT constant-time
1948 */
1949 int mbedtls_ecp_muladd_restartable(
1950 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1951 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1952 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
1953 mbedtls_ecp_restart_ctx *rs_ctx )
1954 {
1955 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1956 mbedtls_ecp_point mP;
1957 mbedtls_ecp_point *pmP = &mP;
1958 mbedtls_ecp_point *pR = R;
1959 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1960 char is_grp_capable = 0;
1961 #endif
1962 ECP_VALIDATE_RET( grp != NULL );
1963 ECP_VALIDATE_RET( R != NULL );
1964 ECP_VALIDATE_RET( m != NULL );
1965 ECP_VALIDATE_RET( P != NULL );
1966 ECP_VALIDATE_RET( n != NULL );
1967 ECP_VALIDATE_RET( Q != NULL );
1968
1969 if( mbedtls_ecp_get_type( grp ) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
1970 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1971
1972 mbedtls_ecp_point_init( &mP );
1973
1974 ECP_RS_ENTER( ma );
1975
1976 #if defined(MBEDTLS_ECP_RESTARTABLE)
1977 if( rs_ctx != NULL && rs_ctx->ma != NULL )
1978 {
1979 /* redirect intermediate results to restart context */
1980 pmP = &rs_ctx->ma->mP;
1981 pR = &rs_ctx->ma->R;
1982
1983 /* jump to next operation */
1984 if( rs_ctx->ma->state == ecp_rsma_mul2 )
1985 goto mul2;
1986 if( rs_ctx->ma->state == ecp_rsma_add )
1987 goto add;
1988 if( rs_ctx->ma->state == ecp_rsma_norm )
1989 goto norm;
1990 }
1991 #endif /* MBEDTLS_ECP_RESTARTABLE */
1992
1993 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
1994 #if defined(MBEDTLS_ECP_RESTARTABLE)
1995 if( rs_ctx != NULL && rs_ctx->ma != NULL )
1996 rs_ctx->ma->state = ecp_rsma_mul2;
1997
1998 mul2:
1999 #endif
2000 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) );
2001
2002 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2003 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2004 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2005 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2006
2007 #if defined(MBEDTLS_ECP_RESTARTABLE)
2008 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2009 rs_ctx->ma->state = ecp_rsma_add;
2010
2011 add:
2012 #endif
2013 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2014 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2015 #if defined(MBEDTLS_ECP_RESTARTABLE)
2016 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2017 rs_ctx->ma->state = ecp_rsma_norm;
2018
2019 norm:
2020 #endif
2021 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2022 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2023
2024 #if defined(MBEDTLS_ECP_RESTARTABLE)
2025 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2026 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2027 #endif
2028
2029 cleanup:
2030 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2031 if( is_grp_capable )
2032 mbedtls_internal_ecp_free( grp );
2033 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2034
2035 mbedtls_ecp_point_free( &mP );
2036
2037 ECP_RS_LEAVE( ma );
2038
2039 return( ret );
2040 }
2041
2042 /*
2043 * Linear combination
2044 * NOT constant-time
2045 */
2046 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2047 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2048 const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2049 {
2050 ECP_VALIDATE_RET( grp != NULL );
2051 ECP_VALIDATE_RET( R != NULL );
2052 ECP_VALIDATE_RET( m != NULL );
2053 ECP_VALIDATE_RET( P != NULL );
2054 ECP_VALIDATE_RET( n != NULL );
2055 ECP_VALIDATE_RET( Q != NULL );
2056 return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2057 }
2058 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2059
2060 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2061 /*
2062 * Check validity of a public key for Montgomery curves with x-only schemes
2063 */
2064 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2065 {
2066 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2067 /* Allow any public value, if it's too big then we'll just reduce it mod p
2068 * (RFC 7748 sec. 5 para. 3). */
2069 if( mbedtls_mpi_size( &pt->MBEDTLS_PRIVATE(X) ) > ( grp->nbits + 7 ) / 8 )
2070 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2071
2072 return( 0 );
2073 }
2074 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2075
2076 /*
2077 * Check that a point is valid as a public key
2078 */
2079 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2080 const mbedtls_ecp_point *pt )
2081 {
2082 ECP_VALIDATE_RET( grp != NULL );
2083 ECP_VALIDATE_RET( pt != NULL );
2084
2085 /* Must use affine coordinates */
2086 if( mbedtls_mpi_cmp_int( &pt->MBEDTLS_PRIVATE(Z), 1 ) != 0 )
2087 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2088
2089 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2090 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2091 return( ecp_check_pubkey_mx( grp, pt ) );
2092 #endif
2093 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2094 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2095 return( ecp_check_pubkey_sw( grp, pt ) );
2096 #endif
2097 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2098 }
2099
2100 /*
2101 * Check that an mbedtls_mpi is valid as a private key
2102 */
2103 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2104 const mbedtls_mpi *d )
2105 {
2106 ECP_VALIDATE_RET( grp != NULL );
2107 ECP_VALIDATE_RET( d != NULL );
2108
2109 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2110 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2111 {
2112 /* see RFC 7748 sec. 5 para. 5 */
2113 if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2114 mbedtls_mpi_get_bit( d, 1 ) != 0 ||
2115 mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2116 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2117
2118 /* see [Curve25519] page 5 */
2119 if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2120 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2121
2122 return( 0 );
2123 }
2124 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2125 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2126 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2127 {
2128 /* see SEC1 3.2 */
2129 if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2130 mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2131 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2132 else
2133 return( 0 );
2134 }
2135 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2136
2137 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2138 }
2139
2140 /*
2141 * Generate a private key
2142 */
2143 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
2144 mbedtls_mpi *d,
2145 int (*f_rng)(void *, unsigned char *, size_t),
2146 void *p_rng )
2147 {
2148 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2149 size_t n_size;
2150
2151 ECP_VALIDATE_RET( grp != NULL );
2152 ECP_VALIDATE_RET( d != NULL );
2153 ECP_VALIDATE_RET( f_rng != NULL );
2154
2155 n_size = ( grp->nbits + 7 ) / 8;
2156
2157 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2158 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2159 {
2160 /* [M225] page 5 */
2161 size_t b;
2162
2163 do {
2164 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2165 } while( mbedtls_mpi_bitlen( d ) == 0);
2166
2167 /* Make sure the most significant bit is nbits */
2168 b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
2169 if( b > grp->nbits )
2170 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
2171 else
2172 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
2173
2174 /* Make sure the last two bits are unset for Curve448, three bits for
2175 Curve25519 */
2176 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2177 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
2178 if( grp->nbits == 254 )
2179 {
2180 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2181 }
2182 }
2183 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2184
2185 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2186 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2187 {
2188 /* SEC1 3.2.1: Generate d such that 1 <= n < N */
2189 int count = 0;
2190 unsigned cmp = 0;
2191
2192 /*
2193 * Match the procedure given in RFC 6979 (deterministic ECDSA):
2194 * - use the same byte ordering;
2195 * - keep the leftmost nbits bits of the generated octet string;
2196 * - try until result is in the desired range.
2197 * This also avoids any biais, which is especially important for ECDSA.
2198 */
2199 do
2200 {
2201 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2202 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
2203
2204 /*
2205 * Each try has at worst a probability 1/2 of failing (the msb has
2206 * a probability 1/2 of being 0, and then the result will be < N),
2207 * so after 30 tries failure probability is a most 2**(-30).
2208 *
2209 * For most curves, 1 try is enough with overwhelming probability,
2210 * since N starts with a lot of 1s in binary, but some curves
2211 * such as secp224k1 are actually very close to the worst case.
2212 */
2213 if( ++count > 30 )
2214 {
2215 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2216 goto cleanup;
2217 }
2218
2219 ret = mbedtls_mpi_lt_mpi_ct( d, &grp->N, &cmp );
2220 if( ret != 0 )
2221 {
2222 goto cleanup;
2223 }
2224 }
2225 while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 );
2226 }
2227 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2228
2229 cleanup:
2230 return( ret );
2231 }
2232
2233 /*
2234 * Generate a keypair with configurable base point
2235 */
2236 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
2237 const mbedtls_ecp_point *G,
2238 mbedtls_mpi *d, mbedtls_ecp_point *Q,
2239 int (*f_rng)(void *, unsigned char *, size_t),
2240 void *p_rng )
2241 {
2242 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2243 ECP_VALIDATE_RET( grp != NULL );
2244 ECP_VALIDATE_RET( d != NULL );
2245 ECP_VALIDATE_RET( G != NULL );
2246 ECP_VALIDATE_RET( Q != NULL );
2247 ECP_VALIDATE_RET( f_rng != NULL );
2248
2249 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
2250 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
2251
2252 cleanup:
2253 return( ret );
2254 }
2255
2256 /*
2257 * Generate key pair, wrapper for conventional base point
2258 */
2259 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
2260 mbedtls_mpi *d, mbedtls_ecp_point *Q,
2261 int (*f_rng)(void *, unsigned char *, size_t),
2262 void *p_rng )
2263 {
2264 ECP_VALIDATE_RET( grp != NULL );
2265 ECP_VALIDATE_RET( d != NULL );
2266 ECP_VALIDATE_RET( Q != NULL );
2267 ECP_VALIDATE_RET( f_rng != NULL );
2268
2269 return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
2270 }
2271
2272 /*
2273 * Generate a keypair, prettier wrapper
2274 */
2275 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
2276 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2277 {
2278 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2279 ECP_VALIDATE_RET( key != NULL );
2280 ECP_VALIDATE_RET( f_rng != NULL );
2281
2282 if( ( ret = mbedtls_ecp_group_load( &key->MBEDTLS_PRIVATE(grp), grp_id ) ) != 0 )
2283 return( ret );
2284
2285 return( mbedtls_ecp_gen_keypair( &key->MBEDTLS_PRIVATE(grp), &key->MBEDTLS_PRIVATE(d), &key->MBEDTLS_PRIVATE(Q), f_rng, p_rng ) );
2286 }
2287
2288 #define ECP_CURVE25519_KEY_SIZE 32
2289 /*
2290 * Read a private key.
2291 */
2292 int mbedtls_ecp_read_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
2293 const unsigned char *buf, size_t buflen )
2294 {
2295 int ret = 0;
2296
2297 ECP_VALIDATE_RET( key != NULL );
2298 ECP_VALIDATE_RET( buf != NULL );
2299
2300 if( ( ret = mbedtls_ecp_group_load( &key->MBEDTLS_PRIVATE(grp), grp_id ) ) != 0 )
2301 return( ret );
2302
2303 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2304
2305 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2306 if( mbedtls_ecp_get_type( &key->MBEDTLS_PRIVATE(grp) ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2307 {
2308 /*
2309 * If it is Curve25519 curve then mask the key as mandated by RFC7748
2310 */
2311 if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
2312 {
2313 if( buflen != ECP_CURVE25519_KEY_SIZE )
2314 return MBEDTLS_ERR_ECP_INVALID_KEY;
2315
2316 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->MBEDTLS_PRIVATE(d), buf, buflen ) );
2317
2318 /* Set the three least significant bits to 0 */
2319 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->MBEDTLS_PRIVATE(d), 0, 0 ) );
2320 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->MBEDTLS_PRIVATE(d), 1, 0 ) );
2321 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->MBEDTLS_PRIVATE(d), 2, 0 ) );
2322
2323 /* Set the most significant bit to 0 */
2324 MBEDTLS_MPI_CHK(
2325 mbedtls_mpi_set_bit( &key->MBEDTLS_PRIVATE(d),
2326 ECP_CURVE25519_KEY_SIZE * 8 - 1, 0 )
2327 );
2328
2329 /* Set the second most significant bit to 1 */
2330 MBEDTLS_MPI_CHK(
2331 mbedtls_mpi_set_bit( &key->MBEDTLS_PRIVATE(d),
2332 ECP_CURVE25519_KEY_SIZE * 8 - 2, 1 )
2333 );
2334 }
2335 else
2336 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2337 }
2338
2339 #endif
2340 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2341 if( mbedtls_ecp_get_type( &key->MBEDTLS_PRIVATE(grp) ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2342 {
2343 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &key->MBEDTLS_PRIVATE(d), buf, buflen ) );
2344
2345 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( &key->MBEDTLS_PRIVATE(grp), &key->MBEDTLS_PRIVATE(d) ) );
2346 }
2347
2348 #endif
2349 cleanup:
2350
2351 if( ret != 0 )
2352 mbedtls_mpi_free( &key->MBEDTLS_PRIVATE(d) );
2353
2354 return( ret );
2355 }
2356
2357 /*
2358 * Write a private key - This is deprecated now as of Mbed TLS 3.6.0
2359 */
2360 int mbedtls_ecp_write_key( mbedtls_ecp_keypair *key,
2361 unsigned char *buf, size_t buflen )
2362 {
2363 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2364
2365 ECP_VALIDATE_RET( key != NULL );
2366 ECP_VALIDATE_RET( buf != NULL );
2367
2368 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2369 if( mbedtls_ecp_get_type( &key->MBEDTLS_PRIVATE(grp) ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2370 {
2371 if( key->MBEDTLS_PRIVATE(grp).id == MBEDTLS_ECP_DP_CURVE25519 )
2372 {
2373 if( buflen < ECP_CURVE25519_KEY_SIZE )
2374 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
2375
2376 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &key->MBEDTLS_PRIVATE(d), buf, buflen ) );
2377 }
2378 else
2379 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2380 }
2381
2382 #endif
2383 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2384 if( mbedtls_ecp_get_type( &key->MBEDTLS_PRIVATE(grp) ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2385 {
2386 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &key->MBEDTLS_PRIVATE(d), buf, buflen ) );
2387 }
2388
2389 #endif
2390 cleanup:
2391
2392 return( ret );
2393 }
2394
2395 int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
2396 size_t *olen, unsigned char *buf, size_t buflen)
2397 {
2398 size_t len = (key->MBEDTLS_PRIVATE(grp).nbits + 7) / 8;
2399 if (len > buflen) {
2400 /* For robustness, ensure *olen <= buflen even on error. */
2401 *olen = 0;
2402 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
2403 }
2404 *olen = len;
2405
2406 /* Private key not set */
2407 if (key->MBEDTLS_PRIVATE(d).MBEDTLS_PRIVATE(n) == 0) {
2408 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2409 }
2410
2411 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2412 if (mbedtls_ecp_get_type(&key->MBEDTLS_PRIVATE(grp)) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2413 return mbedtls_mpi_write_binary_le(&key->MBEDTLS_PRIVATE(d), buf, len);
2414 }
2415 #endif
2416
2417 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2418 if (mbedtls_ecp_get_type(&key->MBEDTLS_PRIVATE(grp)) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2419 return mbedtls_mpi_write_binary(&key->MBEDTLS_PRIVATE(d), buf, len);
2420 }
2421 #endif
2422
2423 /* Private key set but no recognized curve type? This shouldn't happen. */
2424 return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2425 }
2426
2427 /*
2428 * Check a public-private key pair
2429 */
2430 int mbedtls_ecp_check_pub_priv(
2431 const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
2432 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2433 {
2434 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2435 mbedtls_ecp_point Q;
2436 mbedtls_ecp_group grp;
2437 ECP_VALIDATE_RET( pub != NULL );
2438 ECP_VALIDATE_RET( prv != NULL );
2439
2440 if( pub->MBEDTLS_PRIVATE(grp).id == MBEDTLS_ECP_DP_NONE ||
2441 pub->MBEDTLS_PRIVATE(grp).id != prv->MBEDTLS_PRIVATE(grp).id ||
2442 mbedtls_mpi_cmp_mpi( &pub->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(X), &prv->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(X) ) ||
2443 mbedtls_mpi_cmp_mpi( &pub->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(Y), &prv->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(Y) ) ||
2444 mbedtls_mpi_cmp_mpi( &pub->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(Z), &prv->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(Z) ) )
2445 {
2446 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2447 }
2448
2449 mbedtls_ecp_point_init( &Q );
2450 mbedtls_ecp_group_init( &grp );
2451
2452 /* mbedtls_ecp_mul() needs a non-const group... */
2453 mbedtls_ecp_group_copy( &grp, &prv->MBEDTLS_PRIVATE(grp) );
2454
2455 /* Also checks d is valid */
2456 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->MBEDTLS_PRIVATE(d), &prv->MBEDTLS_PRIVATE(grp).G, NULL, NULL ) );
2457
2458 if( mbedtls_mpi_cmp_mpi( &Q.MBEDTLS_PRIVATE(X), &prv->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(X) ) ||
2459 mbedtls_mpi_cmp_mpi( &Q.MBEDTLS_PRIVATE(Y), &prv->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(Y) ) ||
2460 mbedtls_mpi_cmp_mpi( &Q.MBEDTLS_PRIVATE(Z), &prv->MBEDTLS_PRIVATE(Q).MBEDTLS_PRIVATE(Z) ) )
2461 {
2462 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2463 goto cleanup;
2464 }
2465
2466 cleanup:
2467 mbedtls_ecp_point_free( &Q );
2468 mbedtls_ecp_group_free( &grp );
2469
2470 return( ret );
2471 }
2472
2473 #if defined(MBEDTLS_SELF_TEST)
2474
2475 /*
2476 * Checkup routine
2477 */
2478 int mbedtls_ecp_self_test( int verbose )
2479 {
2480 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2481 size_t i;
2482 mbedtls_ecp_group grp;
2483 mbedtls_ecp_point R, P;
2484 mbedtls_mpi m;
2485 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
2486 /* exponents especially adapted for secp192r1 */
2487 const char *exponents[] =
2488 {
2489 "000000000000000000000000000000000000000000000001", /* one */
2490 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2491 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2492 "400000000000000000000000000000000000000000000000", /* one and zeros */
2493 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2494 "555555555555555555555555555555555555555555555555", /* 101010... */
2495 };
2496
2497 mbedtls_ecp_group_init( &grp );
2498 mbedtls_ecp_point_init( &R );
2499 mbedtls_ecp_point_init( &P );
2500 mbedtls_mpi_init( &m );
2501
2502 /* Use secp192r1 if available, or any available curve */
2503 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2504 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
2505 #else
2506 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
2507 #endif
2508
2509 if( verbose != 0 )
2510 mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
2511
2512 /* Do a dummy multiplication first to trigger precomputation */
2513 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
2514 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2515
2516 add_count = 0;
2517 dbl_count = 0;
2518 mul_count = 0;
2519 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2520 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2521
2522 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2523 {
2524 add_c_prev = add_count;
2525 dbl_c_prev = dbl_count;
2526 mul_c_prev = mul_count;
2527 add_count = 0;
2528 dbl_count = 0;
2529 mul_count = 0;
2530
2531 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2532 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2533
2534 if( add_count != add_c_prev ||
2535 dbl_count != dbl_c_prev ||
2536 mul_count != mul_c_prev )
2537 {
2538 if( verbose != 0 )
2539 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2540
2541 ret = 1;
2542 goto cleanup;
2543 }
2544 }
2545
2546 if( verbose != 0 )
2547 mbedtls_printf( "passed\n" );
2548
2549 if( verbose != 0 )
2550 mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
2551 /* We computed P = 2G last time, use it */
2552
2553 add_count = 0;
2554 dbl_count = 0;
2555 mul_count = 0;
2556 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2557 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2558
2559 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2560 {
2561 add_c_prev = add_count;
2562 dbl_c_prev = dbl_count;
2563 mul_c_prev = mul_count;
2564 add_count = 0;
2565 dbl_count = 0;
2566 mul_count = 0;
2567
2568 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2569 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2570
2571 if( add_count != add_c_prev ||
2572 dbl_count != dbl_c_prev ||
2573 mul_count != mul_c_prev )
2574 {
2575 if( verbose != 0 )
2576 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2577
2578 ret = 1;
2579 goto cleanup;
2580 }
2581 }
2582
2583 if( verbose != 0 )
2584 mbedtls_printf( "passed\n" );
2585
2586 cleanup:
2587
2588 if( ret < 0 && verbose != 0 )
2589 mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
2590
2591 mbedtls_ecp_group_free( &grp );
2592 mbedtls_ecp_point_free( &R );
2593 mbedtls_ecp_point_free( &P );
2594 mbedtls_mpi_free( &m );
2595
2596 if( verbose != 0 )
2597 mbedtls_printf( "\n" );
2598
2599 return( ret );
2600 }
2601
2602 #endif /* MBEDTLS_SELF_TEST */
2603
2604 #endif /* MBEDTLS_ECP_ALT */
2605
2606 #endif /* MBEDTLS_ECP_C */
2607