1 /*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 /*
21 * References:
22 *
23 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
24 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
25 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
26 * RFC 4492 for the related TLS structures and constants
27 * RFC 7748 for the Curve448 and Curve25519 curve definitions
28 *
29 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
30 *
31 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
32 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
33 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
34 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
35 *
36 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
37 * render ECC resistant against Side Channel Attacks. IACR Cryptology
38 * ePrint Archive, 2004, vol. 2004, p. 342.
39 * <http://eprint.iacr.org/2004/342.pdf>
40 */
41
42 #include "common.h"
43
44 /**
45 * \brief Function level alternative implementation.
46 *
47 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
48 * replace certain functions in this module. The alternative implementations are
49 * typically hardware accelerators and need to activate the hardware before the
50 * computation starts and deactivate it after it finishes. The
51 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
52 * this purpose.
53 *
54 * To preserve the correct functionality the following conditions must hold:
55 *
56 * - The alternative implementation must be activated by
57 * mbedtls_internal_ecp_init() before any of the replaceable functions is
58 * called.
59 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
60 * implementation is activated.
61 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
62 * implementation is activated.
63 * - Public functions must not return while the alternative implementation is
64 * activated.
65 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
66 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
67 * \endcode ensures that the alternative implementation supports the current
68 * group.
69 */
70 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
71 #endif
72
73 #if defined(MBEDTLS_ECP_C)
74
75 #include "mbedtls/ecp.h"
76 #include "mbedtls/threading.h"
77 #include "mbedtls/platform_util.h"
78 #include "mbedtls/error.h"
79 #include "mbedtls/bn_mul.h"
80
81 #include "ecp_invasive.h"
82
83 #include <string.h>
84
85 #if !defined(MBEDTLS_ECP_ALT)
86
87 /* Parameter validation macros based on platform_util.h */
88 #define ECP_VALIDATE_RET( cond ) \
89 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
90 #define ECP_VALIDATE( cond ) \
91 MBEDTLS_INTERNAL_VALIDATE( cond )
92
93 #if defined(MBEDTLS_PLATFORM_C)
94 #include "mbedtls/platform.h"
95 #else
96 #include <stdlib.h>
97 #include <stdio.h>
98 #define mbedtls_printf printf
99 #define mbedtls_calloc calloc
100 #define mbedtls_free free
101 #endif
102
103 #include "mbedtls/ecp_internal.h"
104
105 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
106 #if defined(MBEDTLS_HMAC_DRBG_C)
107 #include "mbedtls/hmac_drbg.h"
108 #elif defined(MBEDTLS_CTR_DRBG_C)
109 #include "mbedtls/ctr_drbg.h"
110 #else
111 #error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
112 #endif
113 #endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */
114
115 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
116 !defined(inline) && !defined(__cplusplus)
117 #define inline __inline
118 #endif
119
120 #if defined(MBEDTLS_SELF_TEST)
121 /*
122 * Counts of point addition and doubling, and field multiplications.
123 * Used to test resistance of point multiplication to simple timing attacks.
124 */
125 static unsigned long add_count, dbl_count, mul_count;
126 #endif
127
128 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
129 /*
130 * Currently ecp_mul() takes a RNG function as an argument, used for
131 * side-channel protection, but it can be NULL. The initial reasoning was
132 * that people will pass non-NULL RNG when they care about side-channels, but
133 * unfortunately we have some APIs that call ecp_mul() with a NULL RNG, with
134 * no opportunity for the user to do anything about it.
135 *
136 * The obvious strategies for addressing that include:
137 * - change those APIs so that they take RNG arguments;
138 * - require a global RNG to be available to all crypto modules.
139 *
140 * Unfortunately those would break compatibility. So what we do instead is
141 * have our own internal DRBG instance, seeded from the secret scalar.
142 *
143 * The following is a light-weight abstraction layer for doing that with
144 * HMAC_DRBG (first choice) or CTR_DRBG.
145 */
146
147 #if defined(MBEDTLS_HMAC_DRBG_C)
148
149 /* DRBG context type */
150 typedef mbedtls_hmac_drbg_context ecp_drbg_context;
151
152 /* DRBG context init */
ecp_drbg_init(ecp_drbg_context * ctx)153 static inline void ecp_drbg_init( ecp_drbg_context *ctx )
154 {
155 mbedtls_hmac_drbg_init( ctx );
156 }
157
158 /* DRBG context free */
ecp_drbg_free(ecp_drbg_context * ctx)159 static inline void ecp_drbg_free( ecp_drbg_context *ctx )
160 {
161 mbedtls_hmac_drbg_free( ctx );
162 }
163
164 /* DRBG function */
ecp_drbg_random(void * p_rng,unsigned char * output,size_t output_len)165 static inline int ecp_drbg_random( void *p_rng,
166 unsigned char *output, size_t output_len )
167 {
168 return( mbedtls_hmac_drbg_random( p_rng, output, output_len ) );
169 }
170
171 /* DRBG context seeding */
ecp_drbg_seed(ecp_drbg_context * ctx,const mbedtls_mpi * secret,size_t secret_len)172 static int ecp_drbg_seed( ecp_drbg_context *ctx,
173 const mbedtls_mpi *secret, size_t secret_len )
174 {
175 int ret;
176 unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
177 /* The list starts with strong hashes */
178 const mbedtls_md_type_t md_type = mbedtls_md_list()[0];
179 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_type );
180
181 if( secret_len > MBEDTLS_ECP_MAX_BYTES )
182 {
183 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
184 goto cleanup;
185 }
186
187 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( secret,
188 secret_bytes, secret_len ) );
189
190 ret = mbedtls_hmac_drbg_seed_buf( ctx, md_info, secret_bytes, secret_len );
191
192 cleanup:
193 mbedtls_platform_zeroize( secret_bytes, secret_len );
194
195 return( ret );
196 }
197
198 #elif defined(MBEDTLS_CTR_DRBG_C)
199
200 /* DRBG context type */
201 typedef mbedtls_ctr_drbg_context ecp_drbg_context;
202
203 /* DRBG context init */
ecp_drbg_init(ecp_drbg_context * ctx)204 static inline void ecp_drbg_init( ecp_drbg_context *ctx )
205 {
206 mbedtls_ctr_drbg_init( ctx );
207 }
208
209 /* DRBG context free */
ecp_drbg_free(ecp_drbg_context * ctx)210 static inline void ecp_drbg_free( ecp_drbg_context *ctx )
211 {
212 mbedtls_ctr_drbg_free( ctx );
213 }
214
215 /* DRBG function */
ecp_drbg_random(void * p_rng,unsigned char * output,size_t output_len)216 static inline int ecp_drbg_random( void *p_rng,
217 unsigned char *output, size_t output_len )
218 {
219 return( mbedtls_ctr_drbg_random( p_rng, output, output_len ) );
220 }
221
222 /*
223 * Since CTR_DRBG doesn't have a seed_buf() function the way HMAC_DRBG does,
224 * we need to pass an entropy function when seeding. So we use a dummy
225 * function for that, and pass the actual entropy as customisation string.
226 * (During seeding of CTR_DRBG the entropy input and customisation string are
227 * concatenated before being used to update the secret state.)
228 */
ecp_ctr_drbg_null_entropy(void * ctx,unsigned char * out,size_t len)229 static int ecp_ctr_drbg_null_entropy(void *ctx, unsigned char *out, size_t len)
230 {
231 (void) ctx;
232 memset( out, 0, len );
233 return( 0 );
234 }
235
236 /* DRBG context seeding */
ecp_drbg_seed(ecp_drbg_context * ctx,const mbedtls_mpi * secret,size_t secret_len)237 static int ecp_drbg_seed( ecp_drbg_context *ctx,
238 const mbedtls_mpi *secret, size_t secret_len )
239 {
240 int ret;
241 unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
242
243 if( secret_len > MBEDTLS_ECP_MAX_BYTES )
244 {
245 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
246 goto cleanup;
247 }
248
249 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( secret,
250 secret_bytes, secret_len ) );
251
252 ret = mbedtls_ctr_drbg_seed( ctx, ecp_ctr_drbg_null_entropy, NULL,
253 secret_bytes, secret_len );
254
255 cleanup:
256 mbedtls_platform_zeroize( secret_bytes, secret_len );
257
258 return( ret );
259 }
260
261 #else
262 #error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
263 #endif /* DRBG modules */
264 #endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */
265
266 #if defined(MBEDTLS_ECP_RESTARTABLE)
267 /*
268 * Maximum number of "basic operations" to be done in a row.
269 *
270 * Default value 0 means that ECC operations will not yield.
271 * Note that regardless of the value of ecp_max_ops, always at
272 * least one step is performed before yielding.
273 *
274 * Setting ecp_max_ops=1 can be suitable for testing purposes
275 * as it will interrupt computation at all possible points.
276 */
277 static unsigned ecp_max_ops = 0;
278
279 /*
280 * Set ecp_max_ops
281 */
mbedtls_ecp_set_max_ops(unsigned max_ops)282 void mbedtls_ecp_set_max_ops( unsigned max_ops )
283 {
284 ecp_max_ops = max_ops;
285 }
286
287 /*
288 * Check if restart is enabled
289 */
mbedtls_ecp_restart_is_enabled(void)290 int mbedtls_ecp_restart_is_enabled( void )
291 {
292 return( ecp_max_ops != 0 );
293 }
294
295 /*
296 * Restart sub-context for ecp_mul_comb()
297 */
298 struct mbedtls_ecp_restart_mul
299 {
300 mbedtls_ecp_point R; /* current intermediate result */
301 size_t i; /* current index in various loops, 0 outside */
302 mbedtls_ecp_point *T; /* table for precomputed points */
303 unsigned char T_size; /* number of points in table T */
304 enum { /* what were we doing last time we returned? */
305 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
306 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
307 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
308 ecp_rsm_pre_add, /* precompute remaining points by adding */
309 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
310 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
311 ecp_rsm_final_norm, /* do the final normalization */
312 } state;
313 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
314 ecp_drbg_context drbg_ctx;
315 unsigned char drbg_seeded;
316 #endif
317 };
318
319 /*
320 * Init restart_mul sub-context
321 */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)322 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
323 {
324 mbedtls_ecp_point_init( &ctx->R );
325 ctx->i = 0;
326 ctx->T = NULL;
327 ctx->T_size = 0;
328 ctx->state = ecp_rsm_init;
329 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
330 ecp_drbg_init( &ctx->drbg_ctx );
331 ctx->drbg_seeded = 0;
332 #endif
333 }
334
335 /*
336 * Free the components of a restart_mul sub-context
337 */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)338 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
339 {
340 unsigned char i;
341
342 if( ctx == NULL )
343 return;
344
345 mbedtls_ecp_point_free( &ctx->R );
346
347 if( ctx->T != NULL )
348 {
349 for( i = 0; i < ctx->T_size; i++ )
350 mbedtls_ecp_point_free( ctx->T + i );
351 mbedtls_free( ctx->T );
352 }
353
354 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
355 ecp_drbg_free( &ctx->drbg_ctx );
356 #endif
357
358 ecp_restart_rsm_init( ctx );
359 }
360
361 /*
362 * Restart context for ecp_muladd()
363 */
364 struct mbedtls_ecp_restart_muladd
365 {
366 mbedtls_ecp_point mP; /* mP value */
367 mbedtls_ecp_point R; /* R intermediate result */
368 enum { /* what should we do next? */
369 ecp_rsma_mul1 = 0, /* first multiplication */
370 ecp_rsma_mul2, /* second multiplication */
371 ecp_rsma_add, /* addition */
372 ecp_rsma_norm, /* normalization */
373 } state;
374 };
375
376 /*
377 * Init restart_muladd sub-context
378 */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)379 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
380 {
381 mbedtls_ecp_point_init( &ctx->mP );
382 mbedtls_ecp_point_init( &ctx->R );
383 ctx->state = ecp_rsma_mul1;
384 }
385
386 /*
387 * Free the components of a restart_muladd sub-context
388 */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)389 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
390 {
391 if( ctx == NULL )
392 return;
393
394 mbedtls_ecp_point_free( &ctx->mP );
395 mbedtls_ecp_point_free( &ctx->R );
396
397 ecp_restart_ma_init( ctx );
398 }
399
400 /*
401 * Initialize a restart context
402 */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)403 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
404 {
405 ECP_VALIDATE( ctx != NULL );
406 ctx->ops_done = 0;
407 ctx->depth = 0;
408 ctx->rsm = NULL;
409 ctx->ma = NULL;
410 }
411
412 /*
413 * Free the components of a restart context
414 */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)415 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
416 {
417 if( ctx == NULL )
418 return;
419
420 ecp_restart_rsm_free( ctx->rsm );
421 mbedtls_free( ctx->rsm );
422
423 ecp_restart_ma_free( ctx->ma );
424 mbedtls_free( ctx->ma );
425
426 mbedtls_ecp_restart_init( ctx );
427 }
428
429 /*
430 * Check if we can do the next step
431 */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)432 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
433 mbedtls_ecp_restart_ctx *rs_ctx,
434 unsigned ops )
435 {
436 ECP_VALIDATE_RET( grp != NULL );
437
438 if( rs_ctx != NULL && ecp_max_ops != 0 )
439 {
440 /* scale depending on curve size: the chosen reference is 256-bit,
441 * and multiplication is quadratic. Round to the closest integer. */
442 if( grp->pbits >= 512 )
443 ops *= 4;
444 else if( grp->pbits >= 384 )
445 ops *= 2;
446
447 /* Avoid infinite loops: always allow first step.
448 * Because of that, however, it's not generally true
449 * that ops_done <= ecp_max_ops, so the check
450 * ops_done > ecp_max_ops below is mandatory. */
451 if( ( rs_ctx->ops_done != 0 ) &&
452 ( rs_ctx->ops_done > ecp_max_ops ||
453 ops > ecp_max_ops - rs_ctx->ops_done ) )
454 {
455 return( MBEDTLS_ERR_ECP_IN_PROGRESS );
456 }
457
458 /* update running count */
459 rs_ctx->ops_done += ops;
460 }
461
462 return( 0 );
463 }
464
465 /* Call this when entering a function that needs its own sub-context */
466 #define ECP_RS_ENTER( SUB ) do { \
467 /* reset ops count for this call if top-level */ \
468 if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \
469 rs_ctx->ops_done = 0; \
470 \
471 /* set up our own sub-context if needed */ \
472 if( mbedtls_ecp_restart_is_enabled() && \
473 rs_ctx != NULL && rs_ctx->SUB == NULL ) \
474 { \
475 rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
476 if( rs_ctx->SUB == NULL ) \
477 return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
478 \
479 ecp_restart_## SUB ##_init( rs_ctx->SUB ); \
480 } \
481 } while( 0 )
482
483 /* Call this when leaving a function that needs its own sub-context */
484 #define ECP_RS_LEAVE( SUB ) do { \
485 /* clear our sub-context when not in progress (done or error) */ \
486 if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
487 ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
488 { \
489 ecp_restart_## SUB ##_free( rs_ctx->SUB ); \
490 mbedtls_free( rs_ctx->SUB ); \
491 rs_ctx->SUB = NULL; \
492 } \
493 \
494 if( rs_ctx != NULL ) \
495 rs_ctx->depth--; \
496 } while( 0 )
497
498 #else /* MBEDTLS_ECP_RESTARTABLE */
499
500 #define ECP_RS_ENTER( sub ) (void) rs_ctx;
501 #define ECP_RS_LEAVE( sub ) (void) rs_ctx;
502
503 #endif /* MBEDTLS_ECP_RESTARTABLE */
504
505 /*
506 * List of supported curves:
507 * - internal ID
508 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
509 * - size in bits
510 * - readable name
511 *
512 * Curves are listed in order: largest curves first, and for a given size,
513 * fastest curves first. This provides the default order for the SSL module.
514 *
515 * Reminder: update profiles in x509_crt.c when adding a new curves!
516 */
517 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
518 {
519 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
520 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
521 #endif
522 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
523 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
524 #endif
525 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
526 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
527 #endif
528 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
529 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
530 #endif
531 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
532 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
533 #endif
534 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
535 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
536 #endif
537 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
538 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
539 #endif
540 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
541 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
542 #endif
543 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
544 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
545 #endif
546 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
547 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
548 #endif
549 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
550 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
551 #endif
552 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
553 { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
554 #endif
555 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
556 { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
557 #endif
558 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
559 };
560
561 #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
562 sizeof( ecp_supported_curves[0] )
563
564 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
565
566 /*
567 * List of supported curves and associated info
568 */
mbedtls_ecp_curve_list(void)569 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
570 {
571 return( ecp_supported_curves );
572 }
573
574 /*
575 * List of supported curves, group ID only
576 */
mbedtls_ecp_grp_id_list(void)577 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
578 {
579 static int init_done = 0;
580
581 if( ! init_done )
582 {
583 size_t i = 0;
584 const mbedtls_ecp_curve_info *curve_info;
585
586 for( curve_info = mbedtls_ecp_curve_list();
587 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
588 curve_info++ )
589 {
590 ecp_supported_grp_id[i++] = curve_info->grp_id;
591 }
592 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
593
594 init_done = 1;
595 }
596
597 return( ecp_supported_grp_id );
598 }
599
600 /*
601 * Get the curve info for the internal identifier
602 */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)603 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
604 {
605 const mbedtls_ecp_curve_info *curve_info;
606
607 for( curve_info = mbedtls_ecp_curve_list();
608 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
609 curve_info++ )
610 {
611 if( curve_info->grp_id == grp_id )
612 return( curve_info );
613 }
614
615 return( NULL );
616 }
617
618 /*
619 * Get the curve info from the TLS identifier
620 */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)621 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
622 {
623 const mbedtls_ecp_curve_info *curve_info;
624
625 for( curve_info = mbedtls_ecp_curve_list();
626 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
627 curve_info++ )
628 {
629 if( curve_info->tls_id == tls_id )
630 return( curve_info );
631 }
632
633 return( NULL );
634 }
635
636 /*
637 * Get the curve info from the name
638 */
mbedtls_ecp_curve_info_from_name(const char * name)639 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
640 {
641 const mbedtls_ecp_curve_info *curve_info;
642
643 if( name == NULL )
644 return( NULL );
645
646 for( curve_info = mbedtls_ecp_curve_list();
647 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
648 curve_info++ )
649 {
650 if( strcmp( curve_info->name, name ) == 0 )
651 return( curve_info );
652 }
653
654 return( NULL );
655 }
656
657 /*
658 * Get the type of a curve
659 */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)660 mbedtls_ecp_curve_type mbedtls_ecp_get_type( const mbedtls_ecp_group *grp )
661 {
662 if( grp->G.X.p == NULL )
663 return( MBEDTLS_ECP_TYPE_NONE );
664
665 if( grp->G.Y.p == NULL )
666 return( MBEDTLS_ECP_TYPE_MONTGOMERY );
667 else
668 return( MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS );
669 }
670
671 /*
672 * Initialize (the components of) a point
673 */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)674 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
675 {
676 ECP_VALIDATE( pt != NULL );
677
678 mbedtls_mpi_init( &pt->X );
679 mbedtls_mpi_init( &pt->Y );
680 mbedtls_mpi_init( &pt->Z );
681 }
682
683 /*
684 * Initialize (the components of) a group
685 */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)686 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
687 {
688 ECP_VALIDATE( grp != NULL );
689
690 grp->id = MBEDTLS_ECP_DP_NONE;
691 mbedtls_mpi_init( &grp->P );
692 mbedtls_mpi_init( &grp->A );
693 mbedtls_mpi_init( &grp->B );
694 mbedtls_ecp_point_init( &grp->G );
695 mbedtls_mpi_init( &grp->N );
696 grp->pbits = 0;
697 grp->nbits = 0;
698 grp->h = 0;
699 grp->modp = NULL;
700 grp->t_pre = NULL;
701 grp->t_post = NULL;
702 grp->t_data = NULL;
703 grp->T = NULL;
704 grp->T_size = 0;
705 }
706
707 /*
708 * Initialize (the components of) a key pair
709 */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)710 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
711 {
712 ECP_VALIDATE( key != NULL );
713
714 mbedtls_ecp_group_init( &key->grp );
715 mbedtls_mpi_init( &key->d );
716 mbedtls_ecp_point_init( &key->Q );
717 }
718
719 /*
720 * Unallocate (the components of) a point
721 */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)722 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
723 {
724 if( pt == NULL )
725 return;
726
727 mbedtls_mpi_free( &( pt->X ) );
728 mbedtls_mpi_free( &( pt->Y ) );
729 mbedtls_mpi_free( &( pt->Z ) );
730 }
731
732 /*
733 * Unallocate (the components of) a group
734 */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)735 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
736 {
737 size_t i;
738
739 if( grp == NULL )
740 return;
741
742 if( grp->h != 1 )
743 {
744 mbedtls_mpi_free( &grp->P );
745 mbedtls_mpi_free( &grp->A );
746 mbedtls_mpi_free( &grp->B );
747 mbedtls_ecp_point_free( &grp->G );
748 mbedtls_mpi_free( &grp->N );
749 }
750
751 if( grp->T != NULL )
752 {
753 for( i = 0; i < grp->T_size; i++ )
754 mbedtls_ecp_point_free( &grp->T[i] );
755 mbedtls_free( grp->T );
756 }
757
758 mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
759 }
760
761 /*
762 * Unallocate (the components of) a key pair
763 */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)764 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
765 {
766 if( key == NULL )
767 return;
768
769 mbedtls_ecp_group_free( &key->grp );
770 mbedtls_mpi_free( &key->d );
771 mbedtls_ecp_point_free( &key->Q );
772 }
773
774 /*
775 * Copy the contents of a point
776 */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)777 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
778 {
779 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
780 ECP_VALIDATE_RET( P != NULL );
781 ECP_VALIDATE_RET( Q != NULL );
782
783 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
784 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
785 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
786
787 cleanup:
788 return( ret );
789 }
790
791 /*
792 * Copy the contents of a group object
793 */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)794 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
795 {
796 ECP_VALIDATE_RET( dst != NULL );
797 ECP_VALIDATE_RET( src != NULL );
798
799 return( mbedtls_ecp_group_load( dst, src->id ) );
800 }
801
802 /*
803 * Set point to zero
804 */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)805 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
806 {
807 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
808 ECP_VALIDATE_RET( pt != NULL );
809
810 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
811 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
812 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
813
814 cleanup:
815 return( ret );
816 }
817
818 /*
819 * Tell if a point is zero
820 */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)821 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
822 {
823 ECP_VALIDATE_RET( pt != NULL );
824
825 return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
826 }
827
828 /*
829 * Compare two points lazily
830 */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)831 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
832 const mbedtls_ecp_point *Q )
833 {
834 ECP_VALIDATE_RET( P != NULL );
835 ECP_VALIDATE_RET( Q != NULL );
836
837 if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
838 mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
839 mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
840 {
841 return( 0 );
842 }
843
844 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
845 }
846
847 /*
848 * Import a non-zero point from ASCII strings
849 */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)850 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
851 const char *x, const char *y )
852 {
853 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
854 ECP_VALIDATE_RET( P != NULL );
855 ECP_VALIDATE_RET( x != NULL );
856 ECP_VALIDATE_RET( y != NULL );
857
858 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
859 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
860 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
861
862 cleanup:
863 return( ret );
864 }
865
866 /*
867 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
868 */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)869 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
870 const mbedtls_ecp_point *P,
871 int format, size_t *olen,
872 unsigned char *buf, size_t buflen )
873 {
874 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
875 size_t plen;
876 ECP_VALIDATE_RET( grp != NULL );
877 ECP_VALIDATE_RET( P != NULL );
878 ECP_VALIDATE_RET( olen != NULL );
879 ECP_VALIDATE_RET( buf != NULL );
880 ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
881 format == MBEDTLS_ECP_PF_COMPRESSED );
882
883 plen = mbedtls_mpi_size( &grp->P );
884
885 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
886 (void) format; /* Montgomery curves always use the same point format */
887 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
888 {
889 *olen = plen;
890 if( buflen < *olen )
891 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
892
893 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &P->X, buf, plen ) );
894 }
895 #endif
896 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
897 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
898 {
899 /*
900 * Common case: P == 0
901 */
902 if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
903 {
904 if( buflen < 1 )
905 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
906
907 buf[0] = 0x00;
908 *olen = 1;
909
910 return( 0 );
911 }
912
913 if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
914 {
915 *olen = 2 * plen + 1;
916
917 if( buflen < *olen )
918 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
919
920 buf[0] = 0x04;
921 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
922 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
923 }
924 else if( format == MBEDTLS_ECP_PF_COMPRESSED )
925 {
926 *olen = plen + 1;
927
928 if( buflen < *olen )
929 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
930
931 buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
932 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
933 }
934 }
935 #endif
936
937 cleanup:
938 return( ret );
939 }
940
941 /*
942 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
943 */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)944 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
945 mbedtls_ecp_point *pt,
946 const unsigned char *buf, size_t ilen )
947 {
948 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
949 size_t plen;
950 ECP_VALIDATE_RET( grp != NULL );
951 ECP_VALIDATE_RET( pt != NULL );
952 ECP_VALIDATE_RET( buf != NULL );
953
954 if( ilen < 1 )
955 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
956
957 plen = mbedtls_mpi_size( &grp->P );
958
959 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
960 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
961 {
962 if( plen != ilen )
963 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
964
965 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &pt->X, buf, plen ) );
966 mbedtls_mpi_free( &pt->Y );
967
968 if( grp->id == MBEDTLS_ECP_DP_CURVE25519 )
969 /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
970 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &pt->X, plen * 8 - 1, 0 ) );
971
972 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
973 }
974 #endif
975 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
976 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
977 {
978 if( buf[0] == 0x00 )
979 {
980 if( ilen == 1 )
981 return( mbedtls_ecp_set_zero( pt ) );
982 else
983 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
984 }
985
986 if( buf[0] != 0x04 )
987 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
988
989 if( ilen != 2 * plen + 1 )
990 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
991
992 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
993 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y,
994 buf + 1 + plen, plen ) );
995 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
996 }
997 #endif
998
999 cleanup:
1000 return( ret );
1001 }
1002
1003 /*
1004 * Import a point from a TLS ECPoint record (RFC 4492)
1005 * struct {
1006 * opaque point <1..2^8-1>;
1007 * } ECPoint;
1008 */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)1009 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
1010 mbedtls_ecp_point *pt,
1011 const unsigned char **buf, size_t buf_len )
1012 {
1013 unsigned char data_len;
1014 const unsigned char *buf_start;
1015 ECP_VALIDATE_RET( grp != NULL );
1016 ECP_VALIDATE_RET( pt != NULL );
1017 ECP_VALIDATE_RET( buf != NULL );
1018 ECP_VALIDATE_RET( *buf != NULL );
1019
1020 /*
1021 * We must have at least two bytes (1 for length, at least one for data)
1022 */
1023 if( buf_len < 2 )
1024 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1025
1026 data_len = *(*buf)++;
1027 if( data_len < 1 || data_len > buf_len - 1 )
1028 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1029
1030 /*
1031 * Save buffer start for read_binary and update buf
1032 */
1033 buf_start = *buf;
1034 *buf += data_len;
1035
1036 return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
1037 }
1038
1039 /*
1040 * Export a point as a TLS ECPoint record (RFC 4492)
1041 * struct {
1042 * opaque point <1..2^8-1>;
1043 * } ECPoint;
1044 */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)1045 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
1046 int format, size_t *olen,
1047 unsigned char *buf, size_t blen )
1048 {
1049 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1050 ECP_VALIDATE_RET( grp != NULL );
1051 ECP_VALIDATE_RET( pt != NULL );
1052 ECP_VALIDATE_RET( olen != NULL );
1053 ECP_VALIDATE_RET( buf != NULL );
1054 ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
1055 format == MBEDTLS_ECP_PF_COMPRESSED );
1056
1057 /*
1058 * buffer length must be at least one, for our length byte
1059 */
1060 if( blen < 1 )
1061 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1062
1063 if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
1064 olen, buf + 1, blen - 1) ) != 0 )
1065 return( ret );
1066
1067 /*
1068 * write length to the first byte and update total length
1069 */
1070 buf[0] = (unsigned char) *olen;
1071 ++*olen;
1072
1073 return( 0 );
1074 }
1075
1076 /*
1077 * Set a group from an ECParameters record (RFC 4492)
1078 */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)1079 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
1080 const unsigned char **buf, size_t len )
1081 {
1082 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1083 mbedtls_ecp_group_id grp_id;
1084 ECP_VALIDATE_RET( grp != NULL );
1085 ECP_VALIDATE_RET( buf != NULL );
1086 ECP_VALIDATE_RET( *buf != NULL );
1087
1088 if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
1089 return( ret );
1090
1091 return( mbedtls_ecp_group_load( grp, grp_id ) );
1092 }
1093
1094 /*
1095 * Read a group id from an ECParameters record (RFC 4492) and convert it to
1096 * mbedtls_ecp_group_id.
1097 */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)1098 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
1099 const unsigned char **buf, size_t len )
1100 {
1101 uint16_t tls_id;
1102 const mbedtls_ecp_curve_info *curve_info;
1103 ECP_VALIDATE_RET( grp != NULL );
1104 ECP_VALIDATE_RET( buf != NULL );
1105 ECP_VALIDATE_RET( *buf != NULL );
1106
1107 /*
1108 * We expect at least three bytes (see below)
1109 */
1110 if( len < 3 )
1111 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1112
1113 /*
1114 * First byte is curve_type; only named_curve is handled
1115 */
1116 if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
1117 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1118
1119 /*
1120 * Next two bytes are the namedcurve value
1121 */
1122 tls_id = *(*buf)++;
1123 tls_id <<= 8;
1124 tls_id |= *(*buf)++;
1125
1126 if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
1127 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1128
1129 *grp = curve_info->grp_id;
1130
1131 return( 0 );
1132 }
1133
1134 /*
1135 * Write the ECParameters record corresponding to a group (RFC 4492)
1136 */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)1137 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
1138 unsigned char *buf, size_t blen )
1139 {
1140 const mbedtls_ecp_curve_info *curve_info;
1141 ECP_VALIDATE_RET( grp != NULL );
1142 ECP_VALIDATE_RET( buf != NULL );
1143 ECP_VALIDATE_RET( olen != NULL );
1144
1145 if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
1146 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1147
1148 /*
1149 * We are going to write 3 bytes (see below)
1150 */
1151 *olen = 3;
1152 if( blen < *olen )
1153 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
1154
1155 /*
1156 * First byte is curve_type, always named_curve
1157 */
1158 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
1159
1160 /*
1161 * Next two bytes are the namedcurve value
1162 */
1163 MBEDTLS_PUT_UINT16_BE( curve_info->tls_id, buf, 0 );
1164
1165 return( 0 );
1166 }
1167
1168 /*
1169 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
1170 * See the documentation of struct mbedtls_ecp_group.
1171 *
1172 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1173 */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)1174 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1175 {
1176 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1177
1178 if( grp->modp == NULL )
1179 return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1180
1181 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1182 if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1183 mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1184 {
1185 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1186 }
1187
1188 MBEDTLS_MPI_CHK( grp->modp( N ) );
1189
1190 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1191 while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1192 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1193
1194 while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1195 /* we known P, N and the result are positive */
1196 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1197
1198 cleanup:
1199 return( ret );
1200 }
1201
1202 /*
1203 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1204 *
1205 * In order to guarantee that, we need to ensure that operands of
1206 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1207 * bring the result back to this range.
1208 *
1209 * The following macros are shortcuts for doing that.
1210 */
1211
1212 /*
1213 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1214 */
1215 #if defined(MBEDTLS_SELF_TEST)
1216 #define INC_MUL_COUNT mul_count++;
1217 #else
1218 #define INC_MUL_COUNT
1219 #endif
1220
1221 #define MOD_MUL( N ) \
1222 do \
1223 { \
1224 MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \
1225 INC_MUL_COUNT \
1226 } while( 0 )
1227
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1228 static inline int mbedtls_mpi_mul_mod( const mbedtls_ecp_group *grp,
1229 mbedtls_mpi *X,
1230 const mbedtls_mpi *A,
1231 const mbedtls_mpi *B )
1232 {
1233 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1234 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( X, A, B ) );
1235 MOD_MUL( *X );
1236 cleanup:
1237 return( ret );
1238 }
1239
1240 /*
1241 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1242 * N->s < 0 is a very fast test, which fails only if N is 0
1243 */
1244 #define MOD_SUB( N ) \
1245 while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \
1246 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
1247
1248 #if ( defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1249 !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1250 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1251 defined(MBEDTLS_ECP_ADD_MIXED_ALT) ) ) || \
1252 ( defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1253 !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1254 defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) ) )
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1255 static inline int mbedtls_mpi_sub_mod( const mbedtls_ecp_group *grp,
1256 mbedtls_mpi *X,
1257 const mbedtls_mpi *A,
1258 const mbedtls_mpi *B )
1259 {
1260 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1261 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( X, A, B ) );
1262 MOD_SUB( *X );
1263 cleanup:
1264 return( ret );
1265 }
1266 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1267
1268 /*
1269 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1270 * We known P, N and the result are positive, so sub_abs is correct, and
1271 * a bit faster.
1272 */
1273 #define MOD_ADD( N ) \
1274 while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \
1275 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
1276
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1277 static inline int mbedtls_mpi_add_mod( const mbedtls_ecp_group *grp,
1278 mbedtls_mpi *X,
1279 const mbedtls_mpi *A,
1280 const mbedtls_mpi *B )
1281 {
1282 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1283 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, A, B ) );
1284 MOD_ADD( *X );
1285 cleanup:
1286 return( ret );
1287 }
1288
1289 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1290 !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1291 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1292 defined(MBEDTLS_ECP_ADD_MIXED_ALT) )
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1293 static inline int mbedtls_mpi_shift_l_mod( const mbedtls_ecp_group *grp,
1294 mbedtls_mpi *X,
1295 size_t count )
1296 {
1297 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1298 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, count ) );
1299 MOD_ADD( *X );
1300 cleanup:
1301 return( ret );
1302 }
1303 #endif /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1304
1305 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1306 /*
1307 * For curves in short Weierstrass form, we do all the internal operations in
1308 * Jacobian coordinates.
1309 *
1310 * For multiplication, we'll use a comb method with coutermeasueres against
1311 * SPA, hence timing attacks.
1312 */
1313
1314 /*
1315 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1316 * Cost: 1N := 1I + 3M + 1S
1317 */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1318 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1319 {
1320 if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
1321 return( 0 );
1322
1323 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1324 if( mbedtls_internal_ecp_grp_capable( grp ) )
1325 return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1326 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1327
1328 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1329 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1330 #else
1331 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1332 mbedtls_mpi Zi, ZZi;
1333 mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1334
1335 /*
1336 * X = X / Z^2 mod p
1337 */
1338 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
1339 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi, &Zi, &Zi ) );
1340 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X, &pt->X, &ZZi ) );
1341
1342 /*
1343 * Y = Y / Z^3 mod p
1344 */
1345 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y, &pt->Y, &ZZi ) );
1346 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y, &pt->Y, &Zi ) );
1347
1348 /*
1349 * Z = 1
1350 */
1351 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
1352
1353 cleanup:
1354
1355 mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1356
1357 return( ret );
1358 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1359 }
1360
1361 /*
1362 * Normalize jacobian coordinates of an array of (pointers to) points,
1363 * using Montgomery's trick to perform only one inversion mod P.
1364 * (See for example Cohen's "A Course in Computational Algebraic Number
1365 * Theory", Algorithm 10.3.4.)
1366 *
1367 * Warning: fails (returning an error) if one of the points is zero!
1368 * This should never happen, see choice of w in ecp_mul_comb().
1369 *
1370 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1371 */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1372 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
1373 mbedtls_ecp_point *T[], size_t T_size )
1374 {
1375 if( T_size < 2 )
1376 return( ecp_normalize_jac( grp, *T ) );
1377
1378 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1379 if( mbedtls_internal_ecp_grp_capable( grp ) )
1380 return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
1381 #endif
1382
1383 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1384 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1385 #else
1386 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1387 size_t i;
1388 mbedtls_mpi *c, u, Zi, ZZi;
1389
1390 if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
1391 return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1392
1393 for( i = 0; i < T_size; i++ )
1394 mbedtls_mpi_init( &c[i] );
1395
1396 mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1397
1398 /*
1399 * c[i] = Z_0 * ... * Z_i
1400 */
1401 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
1402 for( i = 1; i < T_size; i++ )
1403 {
1404 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &c[i], &c[i-1], &T[i]->Z ) );
1405 }
1406
1407 /*
1408 * u = 1 / (Z_0 * ... * Z_n) mod P
1409 */
1410 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
1411
1412 for( i = T_size - 1; ; i-- )
1413 {
1414 /*
1415 * Zi = 1 / Z_i mod p
1416 * u = 1 / (Z_0 * ... * Z_i) mod P
1417 */
1418 if( i == 0 ) {
1419 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
1420 }
1421 else
1422 {
1423 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Zi, &u, &c[i-1] ) );
1424 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &u, &u, &T[i]->Z ) );
1425 }
1426
1427 /*
1428 * proceed as in normalize()
1429 */
1430 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi, &Zi, &Zi ) );
1431 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->X, &T[i]->X, &ZZi ) );
1432 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &ZZi ) );
1433 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &Zi ) );
1434
1435 /*
1436 * Post-precessing: reclaim some memory by shrinking coordinates
1437 * - not storing Z (always 1)
1438 * - shrinking other coordinates, but still keeping the same number of
1439 * limbs as P, as otherwise it will too likely be regrown too fast.
1440 */
1441 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1442 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1443 mbedtls_mpi_free( &T[i]->Z );
1444
1445 if( i == 0 )
1446 break;
1447 }
1448
1449 cleanup:
1450
1451 mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1452 for( i = 0; i < T_size; i++ )
1453 mbedtls_mpi_free( &c[i] );
1454 mbedtls_free( c );
1455
1456 return( ret );
1457 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1458 }
1459
1460 /*
1461 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1462 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1463 */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1464 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1465 mbedtls_ecp_point *Q,
1466 unsigned char inv )
1467 {
1468 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1469 unsigned char nonzero;
1470 mbedtls_mpi mQY;
1471
1472 mbedtls_mpi_init( &mQY );
1473
1474 /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
1475 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
1476 nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
1477 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
1478
1479 cleanup:
1480 mbedtls_mpi_free( &mQY );
1481
1482 return( ret );
1483 }
1484
1485 /*
1486 * Point doubling R = 2 P, Jacobian coordinates
1487 *
1488 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1489 *
1490 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1491 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1492 *
1493 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1494 *
1495 * Cost: 1D := 3M + 4S (A == 0)
1496 * 4M + 4S (A == -3)
1497 * 3M + 6S + 1a otherwise
1498 */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P)1499 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1500 const mbedtls_ecp_point *P )
1501 {
1502 #if defined(MBEDTLS_SELF_TEST)
1503 dbl_count++;
1504 #endif
1505
1506 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1507 if( mbedtls_internal_ecp_grp_capable( grp ) )
1508 return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1509 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1510
1511 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1512 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1513 #else
1514 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1515 mbedtls_mpi M, S, T, U;
1516
1517 mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1518
1519 /* Special case for A = -3 */
1520 if( grp->A.p == NULL )
1521 {
1522 /* M = 3(X + Z^2)(X - Z^2) */
1523 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->Z, &P->Z ) );
1524 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &T, &P->X, &S ) );
1525 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &U, &P->X, &S ) );
1526 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &T, &U ) );
1527 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
1528 }
1529 else
1530 {
1531 /* M = 3.X^2 */
1532 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->X, &P->X ) );
1533 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
1534
1535 /* Optimize away for "koblitz" curves with A = 0 */
1536 if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1537 {
1538 /* M += A.Z^4 */
1539 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->Z, &P->Z ) );
1540 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &S, &S ) );
1541 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &T, &grp->A ) );
1542 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &M, &M, &S ) );
1543 }
1544 }
1545
1546 /* S = 4.X.Y^2 */
1547 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &P->Y, &P->Y ) );
1548 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T, 1 ) );
1549 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->X, &T ) );
1550 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &S, 1 ) );
1551
1552 /* U = 8.Y^4 */
1553 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U, &T, &T ) );
1554 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U, 1 ) );
1555
1556 /* T = M^2 - 2.S */
1557 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &M, &M ) );
1558 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T, &T, &S ) );
1559 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T, &T, &S ) );
1560
1561 /* S = M(S - T) - U */
1562 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S, &S, &T ) );
1563 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &S, &M ) );
1564 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S, &S, &U ) );
1565
1566 /* U = 2.Y.Z */
1567 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U, &P->Y, &P->Z ) );
1568 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U, 1 ) );
1569
1570 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
1571 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
1572 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
1573
1574 cleanup:
1575 mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1576
1577 return( ret );
1578 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1579 }
1580
1581 /*
1582 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1583 *
1584 * The coordinates of Q must be normalized (= affine),
1585 * but those of P don't need to. R is not normalized.
1586 *
1587 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1588 * None of these cases can happen as intermediate step in ecp_mul_comb():
1589 * - at each step, P, Q and R are multiples of the base point, the factor
1590 * being less than its order, so none of them is zero;
1591 * - Q is an odd multiple of the base point, P an even multiple,
1592 * due to the choice of precomputed points in the modified comb method.
1593 * So branches for these cases do not leak secret information.
1594 *
1595 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1596 *
1597 * Cost: 1A := 8M + 3S
1598 */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)1599 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1600 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1601 {
1602 #if defined(MBEDTLS_SELF_TEST)
1603 add_count++;
1604 #endif
1605
1606 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1607 if( mbedtls_internal_ecp_grp_capable( grp ) )
1608 return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1609 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1610
1611 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1612 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1613 #else
1614 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1615 mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1616
1617 /*
1618 * Trivial cases: P == 0 or Q == 0 (case 1)
1619 */
1620 if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1621 return( mbedtls_ecp_copy( R, Q ) );
1622
1623 if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1624 return( mbedtls_ecp_copy( R, P ) );
1625
1626 /*
1627 * Make sure Q coordinates are normalized
1628 */
1629 if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1630 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1631
1632 mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1633 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1634
1635 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1, &P->Z, &P->Z ) );
1636 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2, &T1, &P->Z ) );
1637 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1, &T1, &Q->X ) );
1638 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2, &T2, &Q->Y ) );
1639 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T1, &T1, &P->X ) );
1640 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T2, &T2, &P->Y ) );
1641
1642 /* Special cases (2) and (3) */
1643 if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1644 {
1645 if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1646 {
1647 ret = ecp_double_jac( grp, R, P );
1648 goto cleanup;
1649 }
1650 else
1651 {
1652 ret = mbedtls_ecp_set_zero( R );
1653 goto cleanup;
1654 }
1655 }
1656
1657 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Z, &P->Z, &T1 ) );
1658 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T1, &T1 ) );
1659 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4, &T3, &T1 ) );
1660 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T3, &P->X ) );
1661 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &T3 ) );
1662 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T1, 1 ) );
1663 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &X, &T2, &T2 ) );
1664 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X, &X, &T1 ) );
1665 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X, &X, &T4 ) );
1666 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T3, &T3, &X ) );
1667 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T3, &T2 ) );
1668 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4, &T4, &P->Y ) );
1669 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &Y, &T3, &T4 ) );
1670
1671 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1672 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1673 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1674
1675 cleanup:
1676
1677 mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1678 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1679
1680 return( ret );
1681 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1682 }
1683
1684 /*
1685 * Randomize jacobian coordinates:
1686 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1687 * This is sort of the reverse operation of ecp_normalize_jac().
1688 *
1689 * This countermeasure was first suggested in [2].
1690 */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1691 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1692 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1693 {
1694 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1695 if( mbedtls_internal_ecp_grp_capable( grp ) )
1696 return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
1697 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1698
1699 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1700 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1701 #else
1702 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1703 mbedtls_mpi l, ll;
1704
1705 mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1706
1707 /* Generate l such that 1 < l < p */
1708 MBEDTLS_MPI_CHK( mbedtls_mpi_random( &l, 2, &grp->P, f_rng, p_rng ) );
1709
1710 /* Z = l * Z */
1711 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Z, &pt->Z, &l ) );
1712
1713 /* X = l^2 * X */
1714 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll, &l, &l ) );
1715 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X, &pt->X, &ll ) );
1716
1717 /* Y = l^3 * Y */
1718 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll, &ll, &l ) );
1719 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y, &pt->Y, &ll ) );
1720
1721 cleanup:
1722 mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1723
1724 if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
1725 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1726 return( ret );
1727 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1728 }
1729
1730 /*
1731 * Check and define parameters used by the comb method (see below for details)
1732 */
1733 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1734 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1735 #endif
1736
1737 /* d = ceil( n / w ) */
1738 #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1739
1740 /* number of precomputed points */
1741 #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1742
1743 /*
1744 * Compute the representation of m that will be used with our comb method.
1745 *
1746 * The basic comb method is described in GECC 3.44 for example. We use a
1747 * modified version that provides resistance to SPA by avoiding zero
1748 * digits in the representation as in [3]. We modify the method further by
1749 * requiring that all K_i be odd, which has the small cost that our
1750 * representation uses one more K_i, due to carries, but saves on the size of
1751 * the precomputed table.
1752 *
1753 * Summary of the comb method and its modifications:
1754 *
1755 * - The goal is to compute m*P for some w*d-bit integer m.
1756 *
1757 * - The basic comb method splits m into the w-bit integers
1758 * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1759 * index has residue i modulo d, and computes m * P as
1760 * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1761 * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1762 *
1763 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1764 * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1765 * thereby successively converting it into a form where all summands
1766 * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1767 *
1768 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1769 * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1770 * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1771 * Performing and iterating this procedure for those x[i] that are even
1772 * (keeping track of carry), we can transform the original sum into one of the form
1773 * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1774 * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1775 * which is why we are only computing half of it in the first place in
1776 * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1777 *
1778 * - For the sake of compactness, only the seven low-order bits of x[i]
1779 * are used to represent its absolute value (K_i in the paper), and the msb
1780 * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1781 * if s_i == -1;
1782 *
1783 * Calling conventions:
1784 * - x is an array of size d + 1
1785 * - w is the size, ie number of teeth, of the comb, and must be between
1786 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1787 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1788 * (the result will be incorrect if these assumptions are not satisfied)
1789 */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1790 static void ecp_comb_recode_core( unsigned char x[], size_t d,
1791 unsigned char w, const mbedtls_mpi *m )
1792 {
1793 size_t i, j;
1794 unsigned char c, cc, adjust;
1795
1796 memset( x, 0, d+1 );
1797
1798 /* First get the classical comb values (except for x_d = 0) */
1799 for( i = 0; i < d; i++ )
1800 for( j = 0; j < w; j++ )
1801 x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1802
1803 /* Now make sure x_1 .. x_d are odd */
1804 c = 0;
1805 for( i = 1; i <= d; i++ )
1806 {
1807 /* Add carry and update it */
1808 cc = x[i] & c;
1809 x[i] = x[i] ^ c;
1810 c = cc;
1811
1812 /* Adjust if needed, avoiding branches */
1813 adjust = 1 - ( x[i] & 0x01 );
1814 c |= x[i] & ( x[i-1] * adjust );
1815 x[i] = x[i] ^ ( x[i-1] * adjust );
1816 x[i-1] |= adjust << 7;
1817 }
1818 }
1819
1820 /*
1821 * Precompute points for the adapted comb method
1822 *
1823 * Assumption: T must be able to hold 2^{w - 1} elements.
1824 *
1825 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1826 * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1827 *
1828 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1829 *
1830 * Note: Even comb values (those where P would be omitted from the
1831 * sum defining T[i] above) are not needed in our adaption
1832 * the comb method. See ecp_comb_recode_core().
1833 *
1834 * This function currently works in four steps:
1835 * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1836 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1837 * (3) [add] Computation of all T[i]
1838 * (4) [norm_add] Normalization of all T[i]
1839 *
1840 * Step 1 can be interrupted but not the others; together with the final
1841 * coordinate normalization they are the largest steps done at once, depending
1842 * on the window size. Here are operation counts for P-256:
1843 *
1844 * step (2) (3) (4)
1845 * w = 5 142 165 208
1846 * w = 4 136 77 160
1847 * w = 3 130 33 136
1848 * w = 2 124 11 124
1849 *
1850 * So if ECC operations are blocking for too long even with a low max_ops
1851 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1852 * to minimize maximum blocking time.
1853 */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1854 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1855 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1856 unsigned char w, size_t d,
1857 mbedtls_ecp_restart_ctx *rs_ctx )
1858 {
1859 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1860 unsigned char i;
1861 size_t j = 0;
1862 const unsigned char T_size = 1U << ( w - 1 );
1863 mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1864
1865 #if defined(MBEDTLS_ECP_RESTARTABLE)
1866 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1867 {
1868 if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1869 goto dbl;
1870 if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1871 goto norm_dbl;
1872 if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1873 goto add;
1874 if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1875 goto norm_add;
1876 }
1877 #else
1878 (void) rs_ctx;
1879 #endif
1880
1881 #if defined(MBEDTLS_ECP_RESTARTABLE)
1882 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1883 {
1884 rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1885
1886 /* initial state for the loop */
1887 rs_ctx->rsm->i = 0;
1888 }
1889
1890 dbl:
1891 #endif
1892 /*
1893 * Set T[0] = P and
1894 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1895 */
1896 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1897
1898 #if defined(MBEDTLS_ECP_RESTARTABLE)
1899 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1900 j = rs_ctx->rsm->i;
1901 else
1902 #endif
1903 j = 0;
1904
1905 for( ; j < d * ( w - 1 ); j++ )
1906 {
1907 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1908
1909 i = 1U << ( j / d );
1910 cur = T + i;
1911
1912 if( j % d == 0 )
1913 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1914
1915 MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1916 }
1917
1918 #if defined(MBEDTLS_ECP_RESTARTABLE)
1919 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1920 rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1921
1922 norm_dbl:
1923 #endif
1924 /*
1925 * Normalize current elements in T. As T has holes,
1926 * use an auxiliary array of pointers to elements in T.
1927 */
1928 j = 0;
1929 for( i = 1; i < T_size; i <<= 1 )
1930 TT[j++] = T + i;
1931
1932 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1933
1934 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1935
1936 #if defined(MBEDTLS_ECP_RESTARTABLE)
1937 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1938 rs_ctx->rsm->state = ecp_rsm_pre_add;
1939
1940 add:
1941 #endif
1942 /*
1943 * Compute the remaining ones using the minimal number of additions
1944 * Be careful to update T[2^l] only after using it!
1945 */
1946 MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1947
1948 for( i = 1; i < T_size; i <<= 1 )
1949 {
1950 j = i;
1951 while( j-- )
1952 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1953 }
1954
1955 #if defined(MBEDTLS_ECP_RESTARTABLE)
1956 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1957 rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1958
1959 norm_add:
1960 #endif
1961 /*
1962 * Normalize final elements in T. Even though there are no holes now, we
1963 * still need the auxiliary array for homogeneity with the previous
1964 * call. Also, skip T[0] which is already normalised, being a copy of P.
1965 */
1966 for( j = 0; j + 1 < T_size; j++ )
1967 TT[j] = T + j + 1;
1968
1969 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1970
1971 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1972
1973 cleanup:
1974 #if defined(MBEDTLS_ECP_RESTARTABLE)
1975 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1976 ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1977 {
1978 if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1979 rs_ctx->rsm->i = j;
1980 }
1981 #endif
1982
1983 return( ret );
1984 }
1985
1986 /*
1987 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1988 *
1989 * See ecp_comb_recode_core() for background
1990 */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)1991 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1992 const mbedtls_ecp_point T[], unsigned char T_size,
1993 unsigned char i )
1994 {
1995 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1996 unsigned char ii, j;
1997
1998 /* Ignore the "sign" bit and scale down */
1999 ii = ( i & 0x7Fu ) >> 1;
2000
2001 /* Read the whole table to thwart cache-based timing attacks */
2002 for( j = 0; j < T_size; j++ )
2003 {
2004 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
2005 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
2006 }
2007
2008 /* Safely invert result if i is "negative" */
2009 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
2010
2011 cleanup:
2012 return( ret );
2013 }
2014
2015 /*
2016 * Core multiplication algorithm for the (modified) comb method.
2017 * This part is actually common with the basic comb method (GECC 3.44)
2018 *
2019 * Cost: d A + d D + 1 R
2020 */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2021 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2022 const mbedtls_ecp_point T[], unsigned char T_size,
2023 const unsigned char x[], size_t d,
2024 int (*f_rng)(void *, unsigned char *, size_t),
2025 void *p_rng,
2026 mbedtls_ecp_restart_ctx *rs_ctx )
2027 {
2028 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2029 mbedtls_ecp_point Txi;
2030 size_t i;
2031
2032 mbedtls_ecp_point_init( &Txi );
2033
2034 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2035 (void) rs_ctx;
2036 #endif
2037
2038 #if defined(MBEDTLS_ECP_RESTARTABLE)
2039 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
2040 rs_ctx->rsm->state != ecp_rsm_comb_core )
2041 {
2042 rs_ctx->rsm->i = 0;
2043 rs_ctx->rsm->state = ecp_rsm_comb_core;
2044 }
2045
2046 /* new 'if' instead of nested for the sake of the 'else' branch */
2047 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
2048 {
2049 /* restore current index (R already pointing to rs_ctx->rsm->R) */
2050 i = rs_ctx->rsm->i;
2051 }
2052 else
2053 #endif
2054 {
2055 /* Start with a non-zero point and randomize its coordinates */
2056 i = d;
2057 MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
2058 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
2059 #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2060 if( f_rng != 0 )
2061 #endif
2062 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
2063 }
2064
2065 while( i != 0 )
2066 {
2067 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
2068 --i;
2069
2070 MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
2071 MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
2072 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
2073 }
2074
2075 cleanup:
2076
2077 mbedtls_ecp_point_free( &Txi );
2078
2079 #if defined(MBEDTLS_ECP_RESTARTABLE)
2080 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
2081 ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
2082 {
2083 rs_ctx->rsm->i = i;
2084 /* no need to save R, already pointing to rs_ctx->rsm->R */
2085 }
2086 #endif
2087
2088 return( ret );
2089 }
2090
2091 /*
2092 * Recode the scalar to get constant-time comb multiplication
2093 *
2094 * As the actual scalar recoding needs an odd scalar as a starting point,
2095 * this wrapper ensures that by replacing m by N - m if necessary, and
2096 * informs the caller that the result of multiplication will be negated.
2097 *
2098 * This works because we only support large prime order for Short Weierstrass
2099 * curves, so N is always odd hence either m or N - m is.
2100 *
2101 * See ecp_comb_recode_core() for background.
2102 */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2103 static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
2104 const mbedtls_mpi *m,
2105 unsigned char k[COMB_MAX_D + 1],
2106 size_t d,
2107 unsigned char w,
2108 unsigned char *parity_trick )
2109 {
2110 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2111 mbedtls_mpi M, mm;
2112
2113 mbedtls_mpi_init( &M );
2114 mbedtls_mpi_init( &mm );
2115
2116 /* N is always odd (see above), just make extra sure */
2117 if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
2118 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2119
2120 /* do we need the parity trick? */
2121 *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
2122
2123 /* execute parity fix in constant time */
2124 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
2125 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
2126 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
2127
2128 /* actual scalar recoding */
2129 ecp_comb_recode_core( k, d, w, &M );
2130
2131 cleanup:
2132 mbedtls_mpi_free( &mm );
2133 mbedtls_mpi_free( &M );
2134
2135 return( ret );
2136 }
2137
2138 /*
2139 * Perform comb multiplication (for short Weierstrass curves)
2140 * once the auxiliary table has been pre-computed.
2141 *
2142 * Scalar recoding may use a parity trick that makes us compute -m * P,
2143 * if that is the case we'll need to recover m * P at the end.
2144 */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2145 static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
2146 mbedtls_ecp_point *R,
2147 const mbedtls_mpi *m,
2148 const mbedtls_ecp_point *T,
2149 unsigned char T_size,
2150 unsigned char w,
2151 size_t d,
2152 int (*f_rng)(void *, unsigned char *, size_t),
2153 void *p_rng,
2154 mbedtls_ecp_restart_ctx *rs_ctx )
2155 {
2156 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2157 unsigned char parity_trick;
2158 unsigned char k[COMB_MAX_D + 1];
2159 mbedtls_ecp_point *RR = R;
2160
2161 #if defined(MBEDTLS_ECP_RESTARTABLE)
2162 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2163 {
2164 RR = &rs_ctx->rsm->R;
2165
2166 if( rs_ctx->rsm->state == ecp_rsm_final_norm )
2167 goto final_norm;
2168 }
2169 #endif
2170
2171 MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
2172 &parity_trick ) );
2173 MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
2174 f_rng, p_rng, rs_ctx ) );
2175 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
2176
2177 #if defined(MBEDTLS_ECP_RESTARTABLE)
2178 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2179 rs_ctx->rsm->state = ecp_rsm_final_norm;
2180
2181 final_norm:
2182 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2183 #endif
2184 /*
2185 * Knowledge of the jacobian coordinates may leak the last few bits of the
2186 * scalar [1], and since our MPI implementation isn't constant-flow,
2187 * inversion (used for coordinate normalization) may leak the full value
2188 * of its input via side-channels [2].
2189 *
2190 * [1] https://eprint.iacr.org/2003/191
2191 * [2] https://eprint.iacr.org/2020/055
2192 *
2193 * Avoid the leak by randomizing coordinates before we normalize them.
2194 */
2195 #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2196 if( f_rng != 0 )
2197 #endif
2198 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, RR, f_rng, p_rng ) );
2199
2200 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
2201
2202 #if defined(MBEDTLS_ECP_RESTARTABLE)
2203 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2204 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
2205 #endif
2206
2207 cleanup:
2208 return( ret );
2209 }
2210
2211 /*
2212 * Pick window size based on curve size and whether we optimize for base point
2213 */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2214 static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
2215 unsigned char p_eq_g )
2216 {
2217 unsigned char w;
2218
2219 /*
2220 * Minimize the number of multiplications, that is minimize
2221 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2222 * (see costs of the various parts, with 1S = 1M)
2223 */
2224 w = grp->nbits >= 384 ? 5 : 4;
2225
2226 /*
2227 * If P == G, pre-compute a bit more, since this may be re-used later.
2228 * Just adding one avoids upping the cost of the first mul too much,
2229 * and the memory cost too.
2230 */
2231 if( p_eq_g )
2232 w++;
2233
2234 /*
2235 * Make sure w is within bounds.
2236 * (The last test is useful only for very small curves in the test suite.)
2237 */
2238 #if( MBEDTLS_ECP_WINDOW_SIZE < 6 )
2239 if( w > MBEDTLS_ECP_WINDOW_SIZE )
2240 w = MBEDTLS_ECP_WINDOW_SIZE;
2241 #endif
2242 if( w >= grp->nbits )
2243 w = 2;
2244
2245 return( w );
2246 }
2247
2248 /*
2249 * Multiplication using the comb method - for curves in short Weierstrass form
2250 *
2251 * This function is mainly responsible for administrative work:
2252 * - managing the restart context if enabled
2253 * - managing the table of precomputed points (passed between the below two
2254 * functions): allocation, computation, ownership tranfer, freeing.
2255 *
2256 * It delegates the actual arithmetic work to:
2257 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2258 *
2259 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2260 */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2261 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2262 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2263 int (*f_rng)(void *, unsigned char *, size_t),
2264 void *p_rng,
2265 mbedtls_ecp_restart_ctx *rs_ctx )
2266 {
2267 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2268 unsigned char w, p_eq_g, i;
2269 size_t d;
2270 unsigned char T_size = 0, T_ok = 0;
2271 mbedtls_ecp_point *T = NULL;
2272 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2273 ecp_drbg_context drbg_ctx;
2274
2275 ecp_drbg_init( &drbg_ctx );
2276 #endif
2277
2278 ECP_RS_ENTER( rsm );
2279
2280 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2281 if( f_rng == NULL )
2282 {
2283 /* Adjust pointers */
2284 f_rng = &ecp_drbg_random;
2285 #if defined(MBEDTLS_ECP_RESTARTABLE)
2286 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2287 p_rng = &rs_ctx->rsm->drbg_ctx;
2288 else
2289 #endif
2290 p_rng = &drbg_ctx;
2291
2292 /* Initialize internal DRBG if necessary */
2293 #if defined(MBEDTLS_ECP_RESTARTABLE)
2294 if( rs_ctx == NULL || rs_ctx->rsm == NULL ||
2295 rs_ctx->rsm->drbg_seeded == 0 )
2296 #endif
2297 {
2298 const size_t m_len = ( grp->nbits + 7 ) / 8;
2299 MBEDTLS_MPI_CHK( ecp_drbg_seed( p_rng, m, m_len ) );
2300 }
2301 #if defined(MBEDTLS_ECP_RESTARTABLE)
2302 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2303 rs_ctx->rsm->drbg_seeded = 1;
2304 #endif
2305 }
2306 #endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */
2307
2308 /* Is P the base point ? */
2309 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2310 p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
2311 mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
2312 #else
2313 p_eq_g = 0;
2314 #endif
2315
2316 /* Pick window size and deduce related sizes */
2317 w = ecp_pick_window_size( grp, p_eq_g );
2318 T_size = 1U << ( w - 1 );
2319 d = ( grp->nbits + w - 1 ) / w;
2320
2321 /* Pre-computed table: do we have it already for the base point? */
2322 if( p_eq_g && grp->T != NULL )
2323 {
2324 /* second pointer to the same table, will be deleted on exit */
2325 T = grp->T;
2326 T_ok = 1;
2327 }
2328 else
2329 #if defined(MBEDTLS_ECP_RESTARTABLE)
2330 /* Pre-computed table: do we have one in progress? complete? */
2331 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2332 {
2333 /* transfer ownership of T from rsm to local function */
2334 T = rs_ctx->rsm->T;
2335 rs_ctx->rsm->T = NULL;
2336 rs_ctx->rsm->T_size = 0;
2337
2338 /* This effectively jumps to the call to mul_comb_after_precomp() */
2339 T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2340 }
2341 else
2342 #endif
2343 /* Allocate table if we didn't have any */
2344 {
2345 T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
2346 if( T == NULL )
2347 {
2348 ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2349 goto cleanup;
2350 }
2351
2352 for( i = 0; i < T_size; i++ )
2353 mbedtls_ecp_point_init( &T[i] );
2354
2355 T_ok = 0;
2356 }
2357
2358 /* Compute table (or finish computing it) if not done already */
2359 if( !T_ok )
2360 {
2361 MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
2362
2363 if( p_eq_g )
2364 {
2365 /* almost transfer ownership of T to the group, but keep a copy of
2366 * the pointer to use for calling the next function more easily */
2367 grp->T = T;
2368 grp->T_size = T_size;
2369 }
2370 }
2371
2372 /* Actual comb multiplication using precomputed points */
2373 MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2374 T, T_size, w, d,
2375 f_rng, p_rng, rs_ctx ) );
2376
2377 cleanup:
2378
2379 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2380 ecp_drbg_free( &drbg_ctx );
2381 #endif
2382
2383 /* does T belong to the group? */
2384 if( T == grp->T )
2385 T = NULL;
2386
2387 /* does T belong to the restart context? */
2388 #if defined(MBEDTLS_ECP_RESTARTABLE)
2389 if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
2390 {
2391 /* transfer ownership of T from local function to rsm */
2392 rs_ctx->rsm->T_size = T_size;
2393 rs_ctx->rsm->T = T;
2394 T = NULL;
2395 }
2396 #endif
2397
2398 /* did T belong to us? then let's destroy it! */
2399 if( T != NULL )
2400 {
2401 for( i = 0; i < T_size; i++ )
2402 mbedtls_ecp_point_free( &T[i] );
2403 mbedtls_free( T );
2404 }
2405
2406 /* don't free R while in progress in case R == P */
2407 #if defined(MBEDTLS_ECP_RESTARTABLE)
2408 if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
2409 #endif
2410 /* prevent caller from using invalid value */
2411 if( ret != 0 )
2412 mbedtls_ecp_point_free( R );
2413
2414 ECP_RS_LEAVE( rsm );
2415
2416 return( ret );
2417 }
2418
2419 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2420
2421 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2422 /*
2423 * For Montgomery curves, we do all the internal arithmetic in projective
2424 * coordinates. Import/export of points uses only the x coordinates, which is
2425 * internaly represented as X / Z.
2426 *
2427 * For scalar multiplication, we'll use a Montgomery ladder.
2428 */
2429
2430 /*
2431 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2432 * Cost: 1M + 1I
2433 */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2434 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2435 {
2436 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2437 if( mbedtls_internal_ecp_grp_capable( grp ) )
2438 return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
2439 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2440
2441 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2442 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2443 #else
2444 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2445 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
2446 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &P->Z ) );
2447 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
2448
2449 cleanup:
2450 return( ret );
2451 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2452 }
2453
2454 /*
2455 * Randomize projective x/z coordinates:
2456 * (X, Z) -> (l X, l Z) for random l
2457 * This is sort of the reverse operation of ecp_normalize_mxz().
2458 *
2459 * This countermeasure was first suggested in [2].
2460 * Cost: 2M
2461 */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2462 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2463 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2464 {
2465 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2466 if( mbedtls_internal_ecp_grp_capable( grp ) )
2467 return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng ) );
2468 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2469
2470 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2471 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2472 #else
2473 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2474 mbedtls_mpi l;
2475 mbedtls_mpi_init( &l );
2476
2477 /* Generate l such that 1 < l < p */
2478 MBEDTLS_MPI_CHK( mbedtls_mpi_random( &l, 2, &grp->P, f_rng, p_rng ) );
2479
2480 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &l ) );
2481 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->Z, &P->Z, &l ) );
2482
2483 cleanup:
2484 mbedtls_mpi_free( &l );
2485
2486 if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2487 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2488 return( ret );
2489 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2490 }
2491
2492 /*
2493 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2494 * for Montgomery curves in x/z coordinates.
2495 *
2496 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2497 * with
2498 * d = X1
2499 * P = (X2, Z2)
2500 * Q = (X3, Z3)
2501 * R = (X4, Z4)
2502 * S = (X5, Z5)
2503 * and eliminating temporary variables tO, ..., t4.
2504 *
2505 * Cost: 5M + 4S
2506 */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d)2507 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2508 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2509 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2510 const mbedtls_mpi *d )
2511 {
2512 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2513 if( mbedtls_internal_ecp_grp_capable( grp ) )
2514 return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
2515 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2516
2517 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2518 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2519 #else
2520 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2521 mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
2522
2523 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
2524 mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
2525 mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
2526
2527 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &A, &P->X, &P->Z ) );
2528 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &AA, &A, &A ) );
2529 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &B, &P->X, &P->Z ) );
2530 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &BB, &B, &B ) );
2531 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &E, &AA, &BB ) );
2532 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &C, &Q->X, &Q->Z ) );
2533 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &D, &Q->X, &Q->Z ) );
2534 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &DA, &D, &A ) );
2535 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &CB, &C, &B ) );
2536 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &S->X, &DA, &CB ) );
2537 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->X, &S->X, &S->X ) );
2538 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S->Z, &DA, &CB ) );
2539 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, &S->Z, &S->Z ) );
2540 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, d, &S->Z ) );
2541 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->X, &AA, &BB ) );
2542 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &grp->A, &E ) );
2543 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &R->Z, &BB, &R->Z ) );
2544 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &E, &R->Z ) );
2545
2546 cleanup:
2547 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
2548 mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
2549 mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
2550
2551 return( ret );
2552 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2553 }
2554
2555 /*
2556 * Multiplication with Montgomery ladder in x/z coordinates,
2557 * for curves in Montgomery form
2558 */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2559 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2560 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2561 int (*f_rng)(void *, unsigned char *, size_t),
2562 void *p_rng )
2563 {
2564 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2565 size_t i;
2566 unsigned char b;
2567 mbedtls_ecp_point RP;
2568 mbedtls_mpi PX;
2569 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2570 ecp_drbg_context drbg_ctx;
2571
2572 ecp_drbg_init( &drbg_ctx );
2573 #endif
2574 mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2575
2576 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2577 if( f_rng == NULL )
2578 {
2579 const size_t m_len = ( grp->nbits + 7 ) / 8;
2580 MBEDTLS_MPI_CHK( ecp_drbg_seed( &drbg_ctx, m, m_len ) );
2581 f_rng = &ecp_drbg_random;
2582 p_rng = &drbg_ctx;
2583 }
2584 #endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */
2585
2586 /* Save PX and read from P before writing to R, in case P == R */
2587 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
2588 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2589
2590 /* Set R to zero in modified x/z coordinates */
2591 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
2592 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
2593 mbedtls_mpi_free( &R->Y );
2594
2595 /* RP.X might be sligtly larger than P, so reduce it */
2596 MOD_ADD( RP.X );
2597
2598 /* Randomize coordinates of the starting point */
2599 #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2600 if( f_rng != NULL )
2601 #endif
2602 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2603
2604 /* Loop invariant: R = result so far, RP = R + P */
2605 i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
2606 while( i-- > 0 )
2607 {
2608 b = mbedtls_mpi_get_bit( m, i );
2609 /*
2610 * if (b) R = 2R + P else R = 2R,
2611 * which is:
2612 * if (b) double_add( RP, R, RP, R )
2613 * else double_add( R, RP, R, RP )
2614 * but using safe conditional swaps to avoid leaks
2615 */
2616 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2617 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2618 MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
2619 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2620 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2621 }
2622
2623 /*
2624 * Knowledge of the projective coordinates may leak the last few bits of the
2625 * scalar [1], and since our MPI implementation isn't constant-flow,
2626 * inversion (used for coordinate normalization) may leak the full value
2627 * of its input via side-channels [2].
2628 *
2629 * [1] https://eprint.iacr.org/2003/191
2630 * [2] https://eprint.iacr.org/2020/055
2631 *
2632 * Avoid the leak by randomizing coordinates before we normalize them.
2633 */
2634 #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2635 if( f_rng != NULL )
2636 #endif
2637 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) );
2638
2639 MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2640
2641 cleanup:
2642 #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
2643 ecp_drbg_free( &drbg_ctx );
2644 #endif
2645
2646 mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2647
2648 return( ret );
2649 }
2650
2651 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2652
2653 /*
2654 * Restartable multiplication R = m * P
2655 */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2656 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2657 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2658 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2659 mbedtls_ecp_restart_ctx *rs_ctx )
2660 {
2661 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2662 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2663 char is_grp_capable = 0;
2664 #endif
2665 ECP_VALIDATE_RET( grp != NULL );
2666 ECP_VALIDATE_RET( R != NULL );
2667 ECP_VALIDATE_RET( m != NULL );
2668 ECP_VALIDATE_RET( P != NULL );
2669
2670 #if defined(MBEDTLS_ECP_RESTARTABLE)
2671 /* reset ops count for this call if top-level */
2672 if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2673 rs_ctx->ops_done = 0;
2674 #else
2675 (void) rs_ctx;
2676 #endif
2677
2678 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2679 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2680 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2681 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2682
2683 #if defined(MBEDTLS_ECP_RESTARTABLE)
2684 /* skip argument check when restarting */
2685 if( rs_ctx == NULL || rs_ctx->rsm == NULL )
2686 #endif
2687 {
2688 /* check_privkey is free */
2689 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2690
2691 /* Common sanity checks */
2692 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2693 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2694 }
2695
2696 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2697 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2698 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2699 MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2700 #endif
2701 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2702 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2703 MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2704 #endif
2705
2706 cleanup:
2707
2708 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2709 if( is_grp_capable )
2710 mbedtls_internal_ecp_free( grp );
2711 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2712
2713 #if defined(MBEDTLS_ECP_RESTARTABLE)
2714 if( rs_ctx != NULL )
2715 rs_ctx->depth--;
2716 #endif
2717
2718 return( ret );
2719 }
2720
2721 /*
2722 * Multiplication R = m * P
2723 */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2724 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2725 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2726 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2727 {
2728 ECP_VALIDATE_RET( grp != NULL );
2729 ECP_VALIDATE_RET( R != NULL );
2730 ECP_VALIDATE_RET( m != NULL );
2731 ECP_VALIDATE_RET( P != NULL );
2732 return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
2733 }
2734
2735 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2736 /*
2737 * Check that an affine point is valid as a public key,
2738 * short weierstrass curves (SEC1 3.2.3.1)
2739 */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2740 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2741 {
2742 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2743 mbedtls_mpi YY, RHS;
2744
2745 /* pt coordinates must be normalized for our checks */
2746 if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2747 mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2748 mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2749 mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2750 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2751
2752 mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2753
2754 /*
2755 * YY = Y^2
2756 * RHS = X (X^2 + A) + B = X^3 + A X + B
2757 */
2758 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &YY, &pt->Y, &pt->Y ) );
2759 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &pt->X, &pt->X ) );
2760
2761 /* Special case for A = -3 */
2762 if( grp->A.p == NULL )
2763 {
2764 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
2765 }
2766 else
2767 {
2768 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS, &grp->A ) );
2769 }
2770
2771 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &RHS, &pt->X ) );
2772 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS, &grp->B ) );
2773
2774 if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
2775 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2776
2777 cleanup:
2778
2779 mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2780
2781 return( ret );
2782 }
2783 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2784
2785 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2786 /*
2787 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2788 * NOT constant-time - ONLY for short Weierstrass!
2789 */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2790 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2791 mbedtls_ecp_point *R,
2792 const mbedtls_mpi *m,
2793 const mbedtls_ecp_point *P,
2794 mbedtls_ecp_restart_ctx *rs_ctx )
2795 {
2796 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2797
2798 if( mbedtls_mpi_cmp_int( m, 0 ) == 0 )
2799 {
2800 MBEDTLS_MPI_CHK( mbedtls_ecp_set_zero( R ) );
2801 }
2802 else if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2803 {
2804 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2805 }
2806 else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2807 {
2808 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2809 if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
2810 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
2811 }
2812 else
2813 {
2814 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
2815 NULL, NULL, rs_ctx ) );
2816 }
2817
2818 cleanup:
2819 return( ret );
2820 }
2821
2822 /*
2823 * Restartable linear combination
2824 * NOT constant-time
2825 */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2826 int mbedtls_ecp_muladd_restartable(
2827 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2828 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2829 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2830 mbedtls_ecp_restart_ctx *rs_ctx )
2831 {
2832 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2833 mbedtls_ecp_point mP;
2834 mbedtls_ecp_point *pmP = &mP;
2835 mbedtls_ecp_point *pR = R;
2836 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2837 char is_grp_capable = 0;
2838 #endif
2839 ECP_VALIDATE_RET( grp != NULL );
2840 ECP_VALIDATE_RET( R != NULL );
2841 ECP_VALIDATE_RET( m != NULL );
2842 ECP_VALIDATE_RET( P != NULL );
2843 ECP_VALIDATE_RET( n != NULL );
2844 ECP_VALIDATE_RET( Q != NULL );
2845
2846 if( mbedtls_ecp_get_type( grp ) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2847 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2848
2849 mbedtls_ecp_point_init( &mP );
2850
2851 ECP_RS_ENTER( ma );
2852
2853 #if defined(MBEDTLS_ECP_RESTARTABLE)
2854 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2855 {
2856 /* redirect intermediate results to restart context */
2857 pmP = &rs_ctx->ma->mP;
2858 pR = &rs_ctx->ma->R;
2859
2860 /* jump to next operation */
2861 if( rs_ctx->ma->state == ecp_rsma_mul2 )
2862 goto mul2;
2863 if( rs_ctx->ma->state == ecp_rsma_add )
2864 goto add;
2865 if( rs_ctx->ma->state == ecp_rsma_norm )
2866 goto norm;
2867 }
2868 #endif /* MBEDTLS_ECP_RESTARTABLE */
2869
2870 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2871 #if defined(MBEDTLS_ECP_RESTARTABLE)
2872 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2873 rs_ctx->ma->state = ecp_rsma_mul2;
2874
2875 mul2:
2876 #endif
2877 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) );
2878
2879 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2880 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2881 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2882 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2883
2884 #if defined(MBEDTLS_ECP_RESTARTABLE)
2885 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2886 rs_ctx->ma->state = ecp_rsma_add;
2887
2888 add:
2889 #endif
2890 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2891 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2892 #if defined(MBEDTLS_ECP_RESTARTABLE)
2893 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2894 rs_ctx->ma->state = ecp_rsma_norm;
2895
2896 norm:
2897 #endif
2898 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2899 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2900
2901 #if defined(MBEDTLS_ECP_RESTARTABLE)
2902 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2903 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2904 #endif
2905
2906 cleanup:
2907 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2908 if( is_grp_capable )
2909 mbedtls_internal_ecp_free( grp );
2910 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2911
2912 mbedtls_ecp_point_free( &mP );
2913
2914 ECP_RS_LEAVE( ma );
2915
2916 return( ret );
2917 }
2918
2919 /*
2920 * Linear combination
2921 * NOT constant-time
2922 */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2923 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2924 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2925 const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2926 {
2927 ECP_VALIDATE_RET( grp != NULL );
2928 ECP_VALIDATE_RET( R != NULL );
2929 ECP_VALIDATE_RET( m != NULL );
2930 ECP_VALIDATE_RET( P != NULL );
2931 ECP_VALIDATE_RET( n != NULL );
2932 ECP_VALIDATE_RET( Q != NULL );
2933 return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2934 }
2935 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2936
2937 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2938 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2939 #define ECP_MPI_INIT(s, n, p) {s, (n), (mbedtls_mpi_uint *)(p)}
2940 #define ECP_MPI_INIT_ARRAY(x) \
2941 ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
2942 /*
2943 * Constants for the two points other than 0, 1, -1 (mod p) in
2944 * https://cr.yp.to/ecdh.html#validate
2945 * See ecp_check_pubkey_x25519().
2946 */
2947 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2948 MBEDTLS_BYTES_TO_T_UINT_8( 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae ),
2949 MBEDTLS_BYTES_TO_T_UINT_8( 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a ),
2950 MBEDTLS_BYTES_TO_T_UINT_8( 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd ),
2951 MBEDTLS_BYTES_TO_T_UINT_8( 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 ),
2952 };
2953 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2954 MBEDTLS_BYTES_TO_T_UINT_8( 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24 ),
2955 MBEDTLS_BYTES_TO_T_UINT_8( 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b ),
2956 MBEDTLS_BYTES_TO_T_UINT_8( 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86 ),
2957 MBEDTLS_BYTES_TO_T_UINT_8( 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 ),
2958 };
2959 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2960 x25519_bad_point_1 );
2961 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2962 x25519_bad_point_2 );
2963 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2964
2965 /*
2966 * Check that the input point is not one of the low-order points.
2967 * This is recommended by the "May the Fourth" paper:
2968 * https://eprint.iacr.org/2017/806.pdf
2969 * Those points are never sent by an honest peer.
2970 */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2971 static int ecp_check_bad_points_mx( const mbedtls_mpi *X, const mbedtls_mpi *P,
2972 const mbedtls_ecp_group_id grp_id )
2973 {
2974 int ret;
2975 mbedtls_mpi XmP;
2976
2977 mbedtls_mpi_init( &XmP );
2978
2979 /* Reduce X mod P so that we only need to check values less than P.
2980 * We know X < 2^256 so we can proceed by subtraction. */
2981 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &XmP, X ) );
2982 while( mbedtls_mpi_cmp_mpi( &XmP, P ) >= 0 )
2983 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &XmP, &XmP, P ) );
2984
2985 /* Check against the known bad values that are less than P. For Curve448
2986 * these are 0, 1 and -1. For Curve25519 we check the values less than P
2987 * from the following list: https://cr.yp.to/ecdh.html#validate */
2988 if( mbedtls_mpi_cmp_int( &XmP, 1 ) <= 0 ) /* takes care of 0 and 1 */
2989 {
2990 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2991 goto cleanup;
2992 }
2993
2994 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2995 if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
2996 {
2997 if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_1 ) == 0 )
2998 {
2999 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
3000 goto cleanup;
3001 }
3002
3003 if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_2 ) == 0 )
3004 {
3005 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
3006 goto cleanup;
3007 }
3008 }
3009 #else
3010 (void) grp_id;
3011 #endif
3012
3013 /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
3014 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &XmP, &XmP, 1 ) );
3015 if( mbedtls_mpi_cmp_mpi( &XmP, P ) == 0 )
3016 {
3017 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
3018 goto cleanup;
3019 }
3020
3021 ret = 0;
3022
3023 cleanup:
3024 mbedtls_mpi_free( &XmP );
3025
3026 return( ret );
3027 }
3028
3029 /*
3030 * Check validity of a public key for Montgomery curves with x-only schemes
3031 */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3032 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
3033 {
3034 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3035 /* Allow any public value, if it's too big then we'll just reduce it mod p
3036 * (RFC 7748 sec. 5 para. 3). */
3037 if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
3038 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3039
3040 /* Implicit in all standards (as they don't consider negative numbers):
3041 * X must be non-negative. This is normally ensured by the way it's
3042 * encoded for transmission, but let's be extra sure. */
3043 if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 )
3044 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3045
3046 return( ecp_check_bad_points_mx( &pt->X, &grp->P, grp->id ) );
3047 }
3048 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3049
3050 /*
3051 * Check that a point is valid as a public key
3052 */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3053 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
3054 const mbedtls_ecp_point *pt )
3055 {
3056 ECP_VALIDATE_RET( grp != NULL );
3057 ECP_VALIDATE_RET( pt != NULL );
3058
3059 /* Must use affine coordinates */
3060 if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
3061 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3062
3063 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3064 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3065 return( ecp_check_pubkey_mx( grp, pt ) );
3066 #endif
3067 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3068 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3069 return( ecp_check_pubkey_sw( grp, pt ) );
3070 #endif
3071 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3072 }
3073
3074 /*
3075 * Check that an mbedtls_mpi is valid as a private key
3076 */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)3077 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
3078 const mbedtls_mpi *d )
3079 {
3080 ECP_VALIDATE_RET( grp != NULL );
3081 ECP_VALIDATE_RET( d != NULL );
3082
3083 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3084 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3085 {
3086 /* see RFC 7748 sec. 5 para. 5 */
3087 if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
3088 mbedtls_mpi_get_bit( d, 1 ) != 0 ||
3089 mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
3090 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3091
3092 /* see [Curve25519] page 5 */
3093 if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
3094 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3095
3096 return( 0 );
3097 }
3098 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3099 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3100 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3101 {
3102 /* see SEC1 3.2 */
3103 if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
3104 mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
3105 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3106 else
3107 return( 0 );
3108 }
3109 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3110
3111 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3112 }
3113
3114 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3115 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3116 int mbedtls_ecp_gen_privkey_mx( size_t high_bit,
3117 mbedtls_mpi *d,
3118 int (*f_rng)(void *, unsigned char *, size_t),
3119 void *p_rng )
3120 {
3121 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3122 size_t n_random_bytes = high_bit / 8 + 1;
3123
3124 /* [Curve25519] page 5 */
3125 /* Generate a (high_bit+1)-bit random number by generating just enough
3126 * random bytes, then shifting out extra bits from the top (necessary
3127 * when (high_bit+1) is not a multiple of 8). */
3128 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_random_bytes,
3129 f_rng, p_rng ) );
3130 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_random_bytes - high_bit - 1 ) );
3131
3132 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, high_bit, 1 ) );
3133
3134 /* Make sure the last two bits are unset for Curve448, three bits for
3135 Curve25519 */
3136 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
3137 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
3138 if( high_bit == 254 )
3139 {
3140 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
3141 }
3142
3143 cleanup:
3144 return( ret );
3145 }
3146 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3147
3148 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3149 static int mbedtls_ecp_gen_privkey_sw(
3150 const mbedtls_mpi *N, mbedtls_mpi *d,
3151 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3152 {
3153 int ret = mbedtls_mpi_random( d, 1, N, f_rng, p_rng );
3154 switch( ret )
3155 {
3156 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3157 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
3158 default:
3159 return( ret );
3160 }
3161 }
3162 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3163
3164 /*
3165 * Generate a private key
3166 */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3167 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
3168 mbedtls_mpi *d,
3169 int (*f_rng)(void *, unsigned char *, size_t),
3170 void *p_rng )
3171 {
3172 ECP_VALIDATE_RET( grp != NULL );
3173 ECP_VALIDATE_RET( d != NULL );
3174 ECP_VALIDATE_RET( f_rng != NULL );
3175
3176 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3177 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3178 return( mbedtls_ecp_gen_privkey_mx( grp->nbits, d, f_rng, p_rng ) );
3179 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3180
3181 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3182 if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3183 return( mbedtls_ecp_gen_privkey_sw( &grp->N, d, f_rng, p_rng ) );
3184 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3185
3186 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3187 }
3188
3189 /*
3190 * Generate a keypair with configurable base point
3191 */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3192 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
3193 const mbedtls_ecp_point *G,
3194 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3195 int (*f_rng)(void *, unsigned char *, size_t),
3196 void *p_rng )
3197 {
3198 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3199 ECP_VALIDATE_RET( grp != NULL );
3200 ECP_VALIDATE_RET( d != NULL );
3201 ECP_VALIDATE_RET( G != NULL );
3202 ECP_VALIDATE_RET( Q != NULL );
3203 ECP_VALIDATE_RET( f_rng != NULL );
3204
3205 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
3206 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
3207
3208 cleanup:
3209 return( ret );
3210 }
3211
3212 /*
3213 * Generate key pair, wrapper for conventional base point
3214 */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3215 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
3216 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3217 int (*f_rng)(void *, unsigned char *, size_t),
3218 void *p_rng )
3219 {
3220 ECP_VALIDATE_RET( grp != NULL );
3221 ECP_VALIDATE_RET( d != NULL );
3222 ECP_VALIDATE_RET( Q != NULL );
3223 ECP_VALIDATE_RET( f_rng != NULL );
3224
3225 return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
3226 }
3227
3228 /*
3229 * Generate a keypair, prettier wrapper
3230 */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3231 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3232 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3233 {
3234 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3235 ECP_VALIDATE_RET( key != NULL );
3236 ECP_VALIDATE_RET( f_rng != NULL );
3237
3238 if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3239 return( ret );
3240
3241 return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
3242 }
3243
3244 #define ECP_CURVE25519_KEY_SIZE 32
3245 /*
3246 * Read a private key.
3247 */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3248 int mbedtls_ecp_read_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3249 const unsigned char *buf, size_t buflen )
3250 {
3251 int ret = 0;
3252
3253 ECP_VALIDATE_RET( key != NULL );
3254 ECP_VALIDATE_RET( buf != NULL );
3255
3256 if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3257 return( ret );
3258
3259 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3260
3261 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3262 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3263 {
3264 /*
3265 * If it is Curve25519 curve then mask the key as mandated by RFC7748
3266 */
3267 if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
3268 {
3269 if( buflen != ECP_CURVE25519_KEY_SIZE )
3270 return MBEDTLS_ERR_ECP_INVALID_KEY;
3271
3272 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3273
3274 /* Set the three least significant bits to 0 */
3275 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3276 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3277 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 2, 0 ) );
3278
3279 /* Set the most significant bit to 0 */
3280 MBEDTLS_MPI_CHK(
3281 mbedtls_mpi_set_bit( &key->d,
3282 ECP_CURVE25519_KEY_SIZE * 8 - 1, 0 )
3283 );
3284
3285 /* Set the second most significant bit to 1 */
3286 MBEDTLS_MPI_CHK(
3287 mbedtls_mpi_set_bit( &key->d,
3288 ECP_CURVE25519_KEY_SIZE * 8 - 2, 1 )
3289 );
3290 }
3291 else
3292 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3293 }
3294
3295 #endif
3296 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3297 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3298 {
3299 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &key->d, buf, buflen ) );
3300
3301 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( &key->grp, &key->d ) );
3302 }
3303
3304 #endif
3305 cleanup:
3306
3307 if( ret != 0 )
3308 mbedtls_mpi_free( &key->d );
3309
3310 return( ret );
3311 }
3312
3313 /*
3314 * Write a private key.
3315 */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3316 int mbedtls_ecp_write_key( mbedtls_ecp_keypair *key,
3317 unsigned char *buf, size_t buflen )
3318 {
3319 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3320
3321 ECP_VALIDATE_RET( key != NULL );
3322 ECP_VALIDATE_RET( buf != NULL );
3323
3324 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3325 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3326 {
3327 if( key->grp.id == MBEDTLS_ECP_DP_CURVE25519 )
3328 {
3329 if( buflen < ECP_CURVE25519_KEY_SIZE )
3330 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3331
3332 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &key->d, buf, buflen ) );
3333 }
3334 else
3335 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3336 }
3337
3338 #endif
3339 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3340 if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3341 {
3342 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &key->d, buf, buflen ) );
3343 }
3344
3345 #endif
3346 cleanup:
3347
3348 return( ret );
3349 }
3350
3351
3352 /*
3353 * Check a public-private key pair
3354 */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv)3355 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
3356 {
3357 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3358 mbedtls_ecp_point Q;
3359 mbedtls_ecp_group grp;
3360 ECP_VALIDATE_RET( pub != NULL );
3361 ECP_VALIDATE_RET( prv != NULL );
3362
3363 if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3364 pub->grp.id != prv->grp.id ||
3365 mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
3366 mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
3367 mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
3368 {
3369 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3370 }
3371
3372 mbedtls_ecp_point_init( &Q );
3373 mbedtls_ecp_group_init( &grp );
3374
3375 /* mbedtls_ecp_mul() needs a non-const group... */
3376 mbedtls_ecp_group_copy( &grp, &prv->grp );
3377
3378 /* Also checks d is valid */
3379 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
3380
3381 if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
3382 mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
3383 mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
3384 {
3385 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3386 goto cleanup;
3387 }
3388
3389 cleanup:
3390 mbedtls_ecp_point_free( &Q );
3391 mbedtls_ecp_group_free( &grp );
3392
3393 return( ret );
3394 }
3395
3396 #if defined(MBEDTLS_SELF_TEST)
3397
3398 /* Adjust the exponent to be a valid private point for the specified curve.
3399 * This is sometimes necessary because we use a single set of exponents
3400 * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3401 static int self_test_adjust_exponent( const mbedtls_ecp_group *grp,
3402 mbedtls_mpi *m )
3403 {
3404 int ret = 0;
3405 switch( grp->id )
3406 {
3407 /* If Curve25519 is available, then that's what we use for the
3408 * Montgomery test, so we don't need the adjustment code. */
3409 #if ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3410 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3411 case MBEDTLS_ECP_DP_CURVE448:
3412 /* Move highest bit from 254 to N-1. Setting bit N-1 is
3413 * necessary to enforce the highest-bit-set constraint. */
3414 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, 254, 0 ) );
3415 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, grp->nbits, 1 ) );
3416 /* Copy second-highest bit from 253 to N-2. This is not
3417 * necessary but improves the test variety a bit. */
3418 MBEDTLS_MPI_CHK(
3419 mbedtls_mpi_set_bit( m, grp->nbits - 1,
3420 mbedtls_mpi_get_bit( m, 253 ) ) );
3421 break;
3422 #endif
3423 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3424 default:
3425 /* Non-Montgomery curves and Curve25519 need no adjustment. */
3426 (void) grp;
3427 (void) m;
3428 goto cleanup;
3429 }
3430 cleanup:
3431 return( ret );
3432 }
3433
3434 /* Calculate R = m.P for each m in exponents. Check that the number of
3435 * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3436 static int self_test_point( int verbose,
3437 mbedtls_ecp_group *grp,
3438 mbedtls_ecp_point *R,
3439 mbedtls_mpi *m,
3440 const mbedtls_ecp_point *P,
3441 const char *const *exponents,
3442 size_t n_exponents )
3443 {
3444 int ret = 0;
3445 size_t i = 0;
3446 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3447 add_count = 0;
3448 dbl_count = 0;
3449 mul_count = 0;
3450
3451 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[0] ) );
3452 MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3453 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );
3454
3455 for( i = 1; i < n_exponents; i++ )
3456 {
3457 add_c_prev = add_count;
3458 dbl_c_prev = dbl_count;
3459 mul_c_prev = mul_count;
3460 add_count = 0;
3461 dbl_count = 0;
3462 mul_count = 0;
3463
3464 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[i] ) );
3465 MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3466 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );
3467
3468 if( add_count != add_c_prev ||
3469 dbl_count != dbl_c_prev ||
3470 mul_count != mul_c_prev )
3471 {
3472 ret = 1;
3473 break;
3474 }
3475 }
3476
3477 cleanup:
3478 if( verbose != 0 )
3479 {
3480 if( ret != 0 )
3481 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
3482 else
3483 mbedtls_printf( "passed\n" );
3484 }
3485 return( ret );
3486 }
3487
3488 /*
3489 * Checkup routine
3490 */
mbedtls_ecp_self_test(int verbose)3491 int mbedtls_ecp_self_test( int verbose )
3492 {
3493 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3494 mbedtls_ecp_group grp;
3495 mbedtls_ecp_point R, P;
3496 mbedtls_mpi m;
3497
3498 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3499 /* Exponents especially adapted for secp192k1, which has the lowest
3500 * order n of all supported curves (secp192r1 is in a slightly larger
3501 * field but the order of its base point is slightly smaller). */
3502 const char *sw_exponents[] =
3503 {
3504 "000000000000000000000000000000000000000000000001", /* one */
3505 "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3506 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3507 "400000000000000000000000000000000000000000000000", /* one and zeros */
3508 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3509 "555555555555555555555555555555555555555555555555", /* 101010... */
3510 };
3511 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3512 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3513 const char *m_exponents[] =
3514 {
3515 /* Valid private values for Curve25519. In a build with Curve448
3516 * but not Curve25519, they will be adjusted in
3517 * self_test_adjust_exponent(). */
3518 "4000000000000000000000000000000000000000000000000000000000000000",
3519 "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3520 "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3521 "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3522 "5555555555555555555555555555555555555555555555555555555555555550",
3523 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3524 };
3525 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3526
3527 mbedtls_ecp_group_init( &grp );
3528 mbedtls_ecp_point_init( &R );
3529 mbedtls_ecp_point_init( &P );
3530 mbedtls_mpi_init( &m );
3531
3532 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3533 /* Use secp192r1 if available, or any available curve */
3534 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3535 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
3536 #else
3537 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
3538 #endif
3539
3540 if( verbose != 0 )
3541 mbedtls_printf( " ECP SW test #1 (constant op_count, base point G): " );
3542 /* Do a dummy multiplication first to trigger precomputation */
3543 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
3544 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
3545 ret = self_test_point( verbose,
3546 &grp, &R, &m, &grp.G,
3547 sw_exponents,
3548 sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3549 if( ret != 0 )
3550 goto cleanup;
3551
3552 if( verbose != 0 )
3553 mbedtls_printf( " ECP SW test #2 (constant op_count, other point): " );
3554 /* We computed P = 2G last time, use it */
3555 ret = self_test_point( verbose,
3556 &grp, &R, &m, &P,
3557 sw_exponents,
3558 sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3559 if( ret != 0 )
3560 goto cleanup;
3561
3562 mbedtls_ecp_group_free( &grp );
3563 mbedtls_ecp_point_free( &R );
3564 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3565
3566 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3567 if( verbose != 0 )
3568 mbedtls_printf( " ECP Montgomery test (constant op_count): " );
3569 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3570 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE25519 ) );
3571 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3572 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE448 ) );
3573 #else
3574 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3575 #endif
3576 ret = self_test_point( verbose,
3577 &grp, &R, &m, &grp.G,
3578 m_exponents,
3579 sizeof( m_exponents ) / sizeof( m_exponents[0] ));
3580 if( ret != 0 )
3581 goto cleanup;
3582 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3583
3584 cleanup:
3585
3586 if( ret < 0 && verbose != 0 )
3587 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
3588
3589 mbedtls_ecp_group_free( &grp );
3590 mbedtls_ecp_point_free( &R );
3591 mbedtls_ecp_point_free( &P );
3592 mbedtls_mpi_free( &m );
3593
3594 if( verbose != 0 )
3595 mbedtls_printf( "\n" );
3596
3597 return( ret );
3598 }
3599
3600 #endif /* MBEDTLS_SELF_TEST */
3601
3602 #endif /* !MBEDTLS_ECP_ALT */
3603
3604 #endif /* MBEDTLS_ECP_C */
3605