1 /*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 /*
9 * References:
10 *
11 * SEC1 https://www.secg.org/sec1-v2.pdf
12 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14 * RFC 4492 for the related TLS structures and constants
15 * - https://www.rfc-editor.org/rfc/rfc4492
16 * RFC 7748 for the Curve448 and Curve25519 curve definitions
17 * - https://www.rfc-editor.org/rfc/rfc7748
18 *
19 * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20 *
21 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
23 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25 *
26 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27 * render ECC resistant against Side Channel Attacks. IACR Cryptology
28 * ePrint Archive, 2004, vol. 2004, p. 342.
29 * <http://eprint.iacr.org/2004/342.pdf>
30 */
31
32 #include "common.h"
33
34 /**
35 * \brief Function level alternative implementation.
36 *
37 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38 * replace certain functions in this module. The alternative implementations are
39 * typically hardware accelerators and need to activate the hardware before the
40 * computation starts and deactivate it after it finishes. The
41 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42 * this purpose.
43 *
44 * To preserve the correct functionality the following conditions must hold:
45 *
46 * - The alternative implementation must be activated by
47 * mbedtls_internal_ecp_init() before any of the replaceable functions is
48 * called.
49 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50 * implementation is activated.
51 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52 * implementation is activated.
53 * - Public functions must not return while the alternative implementation is
54 * activated.
55 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57 * \endcode ensures that the alternative implementation supports the current
58 * group.
59 */
60 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 #endif
62
63 #if defined(MBEDTLS_ECP_LIGHT)
64
65 #include "mbedtls/ecp.h"
66 #include "mbedtls/threading.h"
67 #include "mbedtls/platform_util.h"
68 #include "mbedtls/error.h"
69
70 #include "bn_mul.h"
71 #include "ecp_invasive.h"
72
73 #include <string.h>
74
75 #if !defined(MBEDTLS_ECP_ALT)
76
77 #include "mbedtls/platform.h"
78
79 #include "ecp_internal_alt.h"
80
81 #if defined(MBEDTLS_SELF_TEST)
82 /*
83 * Counts of point addition and doubling, and field multiplications.
84 * Used to test resistance of point multiplication to simple timing attacks.
85 */
86 #if defined(MBEDTLS_ECP_C)
87 static unsigned long add_count, dbl_count;
88 #endif /* MBEDTLS_ECP_C */
89 static unsigned long mul_count;
90 #endif
91
92 #if defined(MBEDTLS_ECP_RESTARTABLE)
93 /*
94 * Maximum number of "basic operations" to be done in a row.
95 *
96 * Default value 0 means that ECC operations will not yield.
97 * Note that regardless of the value of ecp_max_ops, always at
98 * least one step is performed before yielding.
99 *
100 * Setting ecp_max_ops=1 can be suitable for testing purposes
101 * as it will interrupt computation at all possible points.
102 */
103 static unsigned ecp_max_ops = 0;
104
105 /*
106 * Set ecp_max_ops
107 */
mbedtls_ecp_set_max_ops(unsigned max_ops)108 void mbedtls_ecp_set_max_ops(unsigned max_ops)
109 {
110 ecp_max_ops = max_ops;
111 }
112
113 /*
114 * Check if restart is enabled
115 */
mbedtls_ecp_restart_is_enabled(void)116 int mbedtls_ecp_restart_is_enabled(void)
117 {
118 return ecp_max_ops != 0;
119 }
120
121 /*
122 * Restart sub-context for ecp_mul_comb()
123 */
124 struct mbedtls_ecp_restart_mul {
125 mbedtls_ecp_point R; /* current intermediate result */
126 size_t i; /* current index in various loops, 0 outside */
127 mbedtls_ecp_point *T; /* table for precomputed points */
128 unsigned char T_size; /* number of points in table T */
129 enum { /* what were we doing last time we returned? */
130 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
131 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
132 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
133 ecp_rsm_pre_add, /* precompute remaining points by adding */
134 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
135 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
136 ecp_rsm_final_norm, /* do the final normalization */
137 } state;
138 };
139
140 /*
141 * Init restart_mul sub-context
142 */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)143 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144 {
145 mbedtls_ecp_point_init(&ctx->R);
146 ctx->i = 0;
147 ctx->T = NULL;
148 ctx->T_size = 0;
149 ctx->state = ecp_rsm_init;
150 }
151
152 /*
153 * Free the components of a restart_mul sub-context
154 */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)155 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156 {
157 unsigned char i;
158
159 if (ctx == NULL) {
160 return;
161 }
162
163 mbedtls_ecp_point_free(&ctx->R);
164
165 if (ctx->T != NULL) {
166 for (i = 0; i < ctx->T_size; i++) {
167 mbedtls_ecp_point_free(ctx->T + i);
168 }
169 mbedtls_free(ctx->T);
170 }
171
172 ecp_restart_rsm_init(ctx);
173 }
174
175 /*
176 * Restart context for ecp_muladd()
177 */
178 struct mbedtls_ecp_restart_muladd {
179 mbedtls_ecp_point mP; /* mP value */
180 mbedtls_ecp_point R; /* R intermediate result */
181 enum { /* what should we do next? */
182 ecp_rsma_mul1 = 0, /* first multiplication */
183 ecp_rsma_mul2, /* second multiplication */
184 ecp_rsma_add, /* addition */
185 ecp_rsma_norm, /* normalization */
186 } state;
187 };
188
189 /*
190 * Init restart_muladd sub-context
191 */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)192 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193 {
194 mbedtls_ecp_point_init(&ctx->mP);
195 mbedtls_ecp_point_init(&ctx->R);
196 ctx->state = ecp_rsma_mul1;
197 }
198
199 /*
200 * Free the components of a restart_muladd sub-context
201 */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)202 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203 {
204 if (ctx == NULL) {
205 return;
206 }
207
208 mbedtls_ecp_point_free(&ctx->mP);
209 mbedtls_ecp_point_free(&ctx->R);
210
211 ecp_restart_ma_init(ctx);
212 }
213
214 /*
215 * Initialize a restart context
216 */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)217 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218 {
219 ctx->ops_done = 0;
220 ctx->depth = 0;
221 ctx->rsm = NULL;
222 ctx->ma = NULL;
223 }
224
225 /*
226 * Free the components of a restart context
227 */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)228 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229 {
230 if (ctx == NULL) {
231 return;
232 }
233
234 ecp_restart_rsm_free(ctx->rsm);
235 mbedtls_free(ctx->rsm);
236
237 ecp_restart_ma_free(ctx->ma);
238 mbedtls_free(ctx->ma);
239
240 mbedtls_ecp_restart_init(ctx);
241 }
242
243 /*
244 * Check if we can do the next step
245 */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)246 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247 mbedtls_ecp_restart_ctx *rs_ctx,
248 unsigned ops)
249 {
250 if (rs_ctx != NULL && ecp_max_ops != 0) {
251 /* scale depending on curve size: the chosen reference is 256-bit,
252 * and multiplication is quadratic. Round to the closest integer. */
253 if (grp->pbits >= 512) {
254 ops *= 4;
255 } else if (grp->pbits >= 384) {
256 ops *= 2;
257 }
258
259 /* Avoid infinite loops: always allow first step.
260 * Because of that, however, it's not generally true
261 * that ops_done <= ecp_max_ops, so the check
262 * ops_done > ecp_max_ops below is mandatory. */
263 if ((rs_ctx->ops_done != 0) &&
264 (rs_ctx->ops_done > ecp_max_ops ||
265 ops > ecp_max_ops - rs_ctx->ops_done)) {
266 return MBEDTLS_ERR_ECP_IN_PROGRESS;
267 }
268
269 /* update running count */
270 rs_ctx->ops_done += ops;
271 }
272
273 return 0;
274 }
275
276 /* Call this when entering a function that needs its own sub-context */
277 #define ECP_RS_ENTER(SUB) do { \
278 /* reset ops count for this call if top-level */ \
279 if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
280 rs_ctx->ops_done = 0; \
281 \
282 /* set up our own sub-context if needed */ \
283 if (mbedtls_ecp_restart_is_enabled() && \
284 rs_ctx != NULL && rs_ctx->SUB == NULL) \
285 { \
286 rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
287 if (rs_ctx->SUB == NULL) \
288 return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
289 \
290 ecp_restart_## SUB ##_init(rs_ctx->SUB); \
291 } \
292 } while (0)
293
294 /* Call this when leaving a function that needs its own sub-context */
295 #define ECP_RS_LEAVE(SUB) do { \
296 /* clear our sub-context when not in progress (done or error) */ \
297 if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
298 ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
299 { \
300 ecp_restart_## SUB ##_free(rs_ctx->SUB); \
301 mbedtls_free(rs_ctx->SUB); \
302 rs_ctx->SUB = NULL; \
303 } \
304 \
305 if (rs_ctx != NULL) \
306 rs_ctx->depth--; \
307 } while (0)
308
309 #else /* MBEDTLS_ECP_RESTARTABLE */
310
311 #define ECP_RS_ENTER(sub) (void) rs_ctx;
312 #define ECP_RS_LEAVE(sub) (void) rs_ctx;
313
314 #endif /* MBEDTLS_ECP_RESTARTABLE */
315
316 #if defined(MBEDTLS_ECP_C)
mpi_init_many(mbedtls_mpi * arr,size_t size)317 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318 {
319 while (size--) {
320 mbedtls_mpi_init(arr++);
321 }
322 }
323
mpi_free_many(mbedtls_mpi * arr,size_t size)324 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325 {
326 while (size--) {
327 mbedtls_mpi_free(arr++);
328 }
329 }
330 #endif /* MBEDTLS_ECP_C */
331
332 /*
333 * List of supported curves:
334 * - internal ID
335 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336 * - size in bits
337 * - readable name
338 *
339 * Curves are listed in order: largest curves first, and for a given size,
340 * fastest curves first.
341 *
342 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343 */
344 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345 {
346 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
348 #endif
349 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
351 #endif
352 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
354 #endif
355 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
357 #endif
358 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
360 #endif
361 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380 { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383 { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
384 #endif
385 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
386 };
387
388 #define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
389 sizeof(ecp_supported_curves[0])
390
391 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392
393 /*
394 * List of supported curves and associated info
395 */
mbedtls_ecp_curve_list(void)396 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397 {
398 return ecp_supported_curves;
399 }
400
401 /*
402 * List of supported curves, group ID only
403 */
mbedtls_ecp_grp_id_list(void)404 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405 {
406 static int init_done = 0;
407
408 if (!init_done) {
409 size_t i = 0;
410 const mbedtls_ecp_curve_info *curve_info;
411
412 for (curve_info = mbedtls_ecp_curve_list();
413 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414 curve_info++) {
415 ecp_supported_grp_id[i++] = curve_info->grp_id;
416 }
417 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418
419 init_done = 1;
420 }
421
422 return ecp_supported_grp_id;
423 }
424
425 /*
426 * Get the curve info for the internal identifier
427 */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)428 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429 {
430 const mbedtls_ecp_curve_info *curve_info;
431
432 for (curve_info = mbedtls_ecp_curve_list();
433 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434 curve_info++) {
435 if (curve_info->grp_id == grp_id) {
436 return curve_info;
437 }
438 }
439
440 return NULL;
441 }
442
443 /*
444 * Get the curve info from the TLS identifier
445 */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)446 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447 {
448 const mbedtls_ecp_curve_info *curve_info;
449
450 for (curve_info = mbedtls_ecp_curve_list();
451 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452 curve_info++) {
453 if (curve_info->tls_id == tls_id) {
454 return curve_info;
455 }
456 }
457
458 return NULL;
459 }
460
461 /*
462 * Get the curve info from the name
463 */
mbedtls_ecp_curve_info_from_name(const char * name)464 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465 {
466 const mbedtls_ecp_curve_info *curve_info;
467
468 if (name == NULL) {
469 return NULL;
470 }
471
472 for (curve_info = mbedtls_ecp_curve_list();
473 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474 curve_info++) {
475 if (strcmp(curve_info->name, name) == 0) {
476 return curve_info;
477 }
478 }
479
480 return NULL;
481 }
482
483 /*
484 * Get the type of a curve
485 */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)486 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487 {
488 if (grp->G.X.p == NULL) {
489 return MBEDTLS_ECP_TYPE_NONE;
490 }
491
492 if (grp->G.Y.p == NULL) {
493 return MBEDTLS_ECP_TYPE_MONTGOMERY;
494 } else {
495 return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496 }
497 }
498
499 /*
500 * Initialize (the components of) a point
501 */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)502 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503 {
504 mbedtls_mpi_init(&pt->X);
505 mbedtls_mpi_init(&pt->Y);
506 mbedtls_mpi_init(&pt->Z);
507 }
508
509 /*
510 * Initialize (the components of) a group
511 */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)512 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513 {
514 grp->id = MBEDTLS_ECP_DP_NONE;
515 mbedtls_mpi_init(&grp->P);
516 mbedtls_mpi_init(&grp->A);
517 mbedtls_mpi_init(&grp->B);
518 mbedtls_ecp_point_init(&grp->G);
519 mbedtls_mpi_init(&grp->N);
520 grp->pbits = 0;
521 grp->nbits = 0;
522 grp->h = 0;
523 grp->modp = NULL;
524 grp->t_pre = NULL;
525 grp->t_post = NULL;
526 grp->t_data = NULL;
527 grp->T = NULL;
528 grp->T_size = 0;
529 }
530
531 /*
532 * Initialize (the components of) a key pair
533 */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)534 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535 {
536 mbedtls_ecp_group_init(&key->grp);
537 mbedtls_mpi_init(&key->d);
538 mbedtls_ecp_point_init(&key->Q);
539 }
540
541 /*
542 * Unallocate (the components of) a point
543 */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)544 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545 {
546 if (pt == NULL) {
547 return;
548 }
549
550 mbedtls_mpi_free(&(pt->X));
551 mbedtls_mpi_free(&(pt->Y));
552 mbedtls_mpi_free(&(pt->Z));
553 }
554
555 /*
556 * Check that the comb table (grp->T) is static initialized.
557 */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)558 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559 {
560 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561 return grp->T != NULL && grp->T_size == 0;
562 #else
563 (void) grp;
564 return 0;
565 #endif
566 }
567
568 /*
569 * Unallocate (the components of) a group
570 */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)571 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572 {
573 size_t i;
574
575 if (grp == NULL) {
576 return;
577 }
578
579 if (grp->h != 1) {
580 mbedtls_mpi_free(&grp->A);
581 mbedtls_mpi_free(&grp->B);
582 mbedtls_ecp_point_free(&grp->G);
583
584 #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585 mbedtls_mpi_free(&grp->N);
586 mbedtls_mpi_free(&grp->P);
587 #endif
588 }
589
590 if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591 for (i = 0; i < grp->T_size; i++) {
592 mbedtls_ecp_point_free(&grp->T[i]);
593 }
594 mbedtls_free(grp->T);
595 }
596
597 mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598 }
599
600 /*
601 * Unallocate (the components of) a key pair
602 */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)603 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604 {
605 if (key == NULL) {
606 return;
607 }
608
609 mbedtls_ecp_group_free(&key->grp);
610 mbedtls_mpi_free(&key->d);
611 mbedtls_ecp_point_free(&key->Q);
612 }
613
614 /*
615 * Copy the contents of a point
616 */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)617 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618 {
619 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623
624 cleanup:
625 return ret;
626 }
627
628 /*
629 * Copy the contents of a group object
630 */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)631 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632 {
633 return mbedtls_ecp_group_load(dst, src->id);
634 }
635
636 /*
637 * Set point to zero
638 */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)639 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640 {
641 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645
646 cleanup:
647 return ret;
648 }
649
650 /*
651 * Tell if a point is zero
652 */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)653 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654 {
655 return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656 }
657
658 /*
659 * Compare two points lazily
660 */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)661 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662 const mbedtls_ecp_point *Q)
663 {
664 if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665 mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666 mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667 return 0;
668 }
669
670 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671 }
672
673 /*
674 * Import a non-zero point from ASCII strings
675 */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)676 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677 const char *x, const char *y)
678 {
679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683
684 cleanup:
685 return ret;
686 }
687
688 /*
689 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690 */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)691 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692 const mbedtls_ecp_point *P,
693 int format, size_t *olen,
694 unsigned char *buf, size_t buflen)
695 {
696 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697 size_t plen;
698 if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699 format != MBEDTLS_ECP_PF_COMPRESSED) {
700 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701 }
702
703 plen = mbedtls_mpi_size(&grp->P);
704
705 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706 (void) format; /* Montgomery curves always use the same point format */
707 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708 *olen = plen;
709 if (buflen < *olen) {
710 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711 }
712
713 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714 }
715 #endif
716 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718 /*
719 * Common case: P == 0
720 */
721 if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722 if (buflen < 1) {
723 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724 }
725
726 buf[0] = 0x00;
727 *olen = 1;
728
729 return 0;
730 }
731
732 if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733 *olen = 2 * plen + 1;
734
735 if (buflen < *olen) {
736 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737 }
738
739 buf[0] = 0x04;
740 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742 } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743 *olen = plen + 1;
744
745 if (buflen < *olen) {
746 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747 }
748
749 buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751 }
752 }
753 #endif
754
755 cleanup:
756 return ret;
757 }
758
759 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761 const mbedtls_mpi *X,
762 mbedtls_mpi *Y,
763 int parity_bit);
764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765
766 /*
767 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768 */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)769 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770 mbedtls_ecp_point *pt,
771 const unsigned char *buf, size_t ilen)
772 {
773 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774 size_t plen;
775 if (ilen < 1) {
776 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777 }
778
779 plen = mbedtls_mpi_size(&grp->P);
780
781 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783 if (plen != ilen) {
784 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785 }
786
787 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788 mbedtls_mpi_free(&pt->Y);
789
790 if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791 /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793 }
794
795 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796 }
797 #endif
798 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800 if (buf[0] == 0x00) {
801 if (ilen == 1) {
802 return mbedtls_ecp_set_zero(pt);
803 } else {
804 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805 }
806 }
807
808 if (ilen < 1 + plen) {
809 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810 }
811
812 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814
815 if (buf[0] == 0x04) {
816 /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817 if (ilen != 1 + plen * 2) {
818 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819 }
820 return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821 } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822 /* format == MBEDTLS_ECP_PF_COMPRESSED */
823 if (ilen != 1 + plen) {
824 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825 }
826 return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827 (buf[0] & 1));
828 } else {
829 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830 }
831 }
832 #endif
833
834 cleanup:
835 return ret;
836 }
837
838 /*
839 * Import a point from a TLS ECPoint record (RFC 4492)
840 * struct {
841 * opaque point <1..2^8-1>;
842 * } ECPoint;
843 */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)844 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845 mbedtls_ecp_point *pt,
846 const unsigned char **buf, size_t buf_len)
847 {
848 unsigned char data_len;
849 const unsigned char *buf_start;
850 /*
851 * We must have at least two bytes (1 for length, at least one for data)
852 */
853 if (buf_len < 2) {
854 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855 }
856
857 data_len = *(*buf)++;
858 if (data_len < 1 || data_len > buf_len - 1) {
859 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860 }
861
862 /*
863 * Save buffer start for read_binary and update buf
864 */
865 buf_start = *buf;
866 *buf += data_len;
867
868 return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869 }
870
871 /*
872 * Export a point as a TLS ECPoint record (RFC 4492)
873 * struct {
874 * opaque point <1..2^8-1>;
875 * } ECPoint;
876 */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)877 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878 int format, size_t *olen,
879 unsigned char *buf, size_t blen)
880 {
881 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882 if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883 format != MBEDTLS_ECP_PF_COMPRESSED) {
884 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885 }
886
887 /*
888 * buffer length must be at least one, for our length byte
889 */
890 if (blen < 1) {
891 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892 }
893
894 if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895 olen, buf + 1, blen - 1)) != 0) {
896 return ret;
897 }
898
899 /*
900 * write length to the first byte and update total length
901 */
902 buf[0] = (unsigned char) *olen;
903 ++*olen;
904
905 return 0;
906 }
907
908 /*
909 * Set a group from an ECParameters record (RFC 4492)
910 */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)911 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912 const unsigned char **buf, size_t len)
913 {
914 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915 mbedtls_ecp_group_id grp_id;
916 if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917 return ret;
918 }
919
920 return mbedtls_ecp_group_load(grp, grp_id);
921 }
922
923 /*
924 * Read a group id from an ECParameters record (RFC 4492) and convert it to
925 * mbedtls_ecp_group_id.
926 */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)927 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928 const unsigned char **buf, size_t len)
929 {
930 uint16_t tls_id;
931 const mbedtls_ecp_curve_info *curve_info;
932 /*
933 * We expect at least three bytes (see below)
934 */
935 if (len < 3) {
936 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937 }
938
939 /*
940 * First byte is curve_type; only named_curve is handled
941 */
942 if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944 }
945
946 /*
947 * Next two bytes are the namedcurve value
948 */
949 tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950 *buf += 2;
951
952 if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954 }
955
956 *grp = curve_info->grp_id;
957
958 return 0;
959 }
960
961 /*
962 * Write the ECParameters record corresponding to a group (RFC 4492)
963 */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)964 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965 unsigned char *buf, size_t blen)
966 {
967 const mbedtls_ecp_curve_info *curve_info;
968 if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970 }
971
972 /*
973 * We are going to write 3 bytes (see below)
974 */
975 *olen = 3;
976 if (blen < *olen) {
977 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978 }
979
980 /*
981 * First byte is curve_type, always named_curve
982 */
983 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984
985 /*
986 * Next two bytes are the namedcurve value
987 */
988 MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989
990 return 0;
991 }
992
993 /*
994 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995 * See the documentation of struct mbedtls_ecp_group.
996 *
997 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998 */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)999 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000 {
1001 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002
1003 if (grp->modp == NULL) {
1004 return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005 }
1006
1007 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1008 if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009 mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011 }
1012
1013 MBEDTLS_MPI_CHK(grp->modp(N));
1014
1015 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1016 while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018 }
1019
1020 while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021 /* we known P, N and the result are positive */
1022 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023 }
1024
1025 cleanup:
1026 return ret;
1027 }
1028
1029 /*
1030 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031 *
1032 * In order to guarantee that, we need to ensure that operands of
1033 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034 * bring the result back to this range.
1035 *
1036 * The following macros are shortcuts for doing that.
1037 */
1038
1039 /*
1040 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041 */
1042 #if defined(MBEDTLS_SELF_TEST)
1043 #define INC_MUL_COUNT mul_count++;
1044 #else
1045 #define INC_MUL_COUNT
1046 #endif
1047
1048 #define MOD_MUL(N) \
1049 do \
1050 { \
1051 MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
1052 INC_MUL_COUNT \
1053 } while (0)
1054
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1055 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056 mbedtls_mpi *X,
1057 const mbedtls_mpi *A,
1058 const mbedtls_mpi *B)
1059 {
1060 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062 MOD_MUL(*X);
1063 cleanup:
1064 return ret;
1065 }
1066
1067 /*
1068 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069 * N->s < 0 is a very fast test, which fails only if N is 0
1070 */
1071 #define MOD_SUB(N) \
1072 do { \
1073 while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
1074 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
1075 } while (0)
1076
1077 #if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1078 !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1079 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1080 defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
1081 (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1082 !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1083 defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1084 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1085 mbedtls_mpi *X,
1086 const mbedtls_mpi *A,
1087 const mbedtls_mpi *B)
1088 {
1089 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1090 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1091 MOD_SUB(X);
1092 cleanup:
1093 return ret;
1094 }
1095 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1096
1097 /*
1098 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1099 * We known P, N and the result are positive, so sub_abs is correct, and
1100 * a bit faster.
1101 */
1102 #define MOD_ADD(N) \
1103 while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
1104 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1105
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1106 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1107 mbedtls_mpi *X,
1108 const mbedtls_mpi *A,
1109 const mbedtls_mpi *B)
1110 {
1111 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1112 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1113 MOD_ADD(X);
1114 cleanup:
1115 return ret;
1116 }
1117
mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1118 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1119 mbedtls_mpi *X,
1120 const mbedtls_mpi *A,
1121 mbedtls_mpi_uint c)
1122 {
1123 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1124
1125 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1126 MOD_ADD(X);
1127 cleanup:
1128 return ret;
1129 }
1130
mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1131 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1132 mbedtls_mpi *X,
1133 const mbedtls_mpi *A,
1134 mbedtls_mpi_uint c)
1135 {
1136 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1137
1138 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1139 MOD_SUB(X);
1140 cleanup:
1141 return ret;
1142 }
1143
1144 #define MPI_ECP_SUB_INT(X, A, c) \
1145 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1146
1147 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1148 !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1149 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1150 defined(MBEDTLS_ECP_ADD_MIXED_ALT))
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1151 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1152 mbedtls_mpi *X,
1153 size_t count)
1154 {
1155 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1156 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1157 MOD_ADD(X);
1158 cleanup:
1159 return ret;
1160 }
1161 #endif \
1162 /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1163
1164 /*
1165 * Macro wrappers around ECP modular arithmetic
1166 *
1167 * Currently, these wrappers are defined via the bignum module.
1168 */
1169
1170 #define MPI_ECP_ADD(X, A, B) \
1171 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1172
1173 #define MPI_ECP_SUB(X, A, B) \
1174 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1175
1176 #define MPI_ECP_MUL(X, A, B) \
1177 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1178
1179 #define MPI_ECP_SQR(X, A) \
1180 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1181
1182 #define MPI_ECP_MUL_INT(X, A, c) \
1183 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1184
1185 #define MPI_ECP_INV(dst, src) \
1186 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1187
1188 #define MPI_ECP_MOV(X, A) \
1189 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1190
1191 #define MPI_ECP_SHIFT_L(X, count) \
1192 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1193
1194 #define MPI_ECP_LSET(X, c) \
1195 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1196
1197 #define MPI_ECP_CMP_INT(X, c) \
1198 mbedtls_mpi_cmp_int(X, c)
1199
1200 #define MPI_ECP_CMP(X, Y) \
1201 mbedtls_mpi_cmp_mpi(X, Y)
1202
1203 /* Needs f_rng, p_rng to be defined. */
1204 #define MPI_ECP_RAND(X) \
1205 MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1206
1207 /* Conditional negation
1208 * Needs grp and a temporary MPI tmp to be defined. */
1209 #define MPI_ECP_COND_NEG(X, cond) \
1210 do \
1211 { \
1212 unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
1213 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
1214 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
1215 nonzero & cond)); \
1216 } while (0)
1217
1218 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1219
1220 #define MPI_ECP_VALID(X) \
1221 ((X)->p != NULL)
1222
1223 #define MPI_ECP_COND_ASSIGN(X, Y, cond) \
1224 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1225
1226 #define MPI_ECP_COND_SWAP(X, Y, cond) \
1227 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1228
1229 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1230
1231 /*
1232 * Computes the right-hand side of the Short Weierstrass equation
1233 * RHS = X^3 + A X + B
1234 */
ecp_sw_rhs(const mbedtls_ecp_group * grp,mbedtls_mpi * rhs,const mbedtls_mpi * X)1235 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1236 mbedtls_mpi *rhs,
1237 const mbedtls_mpi *X)
1238 {
1239 int ret;
1240
1241 /* Compute X^3 + A X + B as X (X^2 + A) + B */
1242 MPI_ECP_SQR(rhs, X);
1243
1244 /* Special case for A = -3 */
1245 if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1246 MPI_ECP_SUB_INT(rhs, rhs, 3);
1247 } else {
1248 MPI_ECP_ADD(rhs, rhs, &grp->A);
1249 }
1250
1251 MPI_ECP_MUL(rhs, rhs, X);
1252 MPI_ECP_ADD(rhs, rhs, &grp->B);
1253
1254 cleanup:
1255 return ret;
1256 }
1257
1258 /*
1259 * Derive Y from X and a parity bit
1260 */
mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group * grp,const mbedtls_mpi * X,mbedtls_mpi * Y,int parity_bit)1261 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1262 const mbedtls_mpi *X,
1263 mbedtls_mpi *Y,
1264 int parity_bit)
1265 {
1266 /* w = y^2 = x^3 + ax + b
1267 * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
1268 *
1269 * Note: this method for extracting square root does not validate that w
1270 * was indeed a square so this function will return garbage in Y if X
1271 * does not correspond to a point on the curve.
1272 */
1273
1274 /* Check prerequisite p = 3 mod 4 */
1275 if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1276 mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1277 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1278 }
1279
1280 int ret;
1281 mbedtls_mpi exp;
1282 mbedtls_mpi_init(&exp);
1283
1284 /* use Y to store intermediate result, actually w above */
1285 MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1286
1287 /* w = y^2 */ /* Y contains y^2 intermediate result */
1288 /* exp = ((p+1)/4) */
1289 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1290 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1291 /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
1292 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1293
1294 /* check parity bit match or else invert Y */
1295 /* This quick inversion implementation is valid because Y != 0 for all
1296 * Short Weierstrass curves supported by mbedtls, as each supported curve
1297 * has an order that is a large prime, so each supported curve does not
1298 * have any point of order 2, and a point with Y == 0 would be of order 2 */
1299 if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1300 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1301 }
1302
1303 cleanup:
1304
1305 mbedtls_mpi_free(&exp);
1306 return ret;
1307 }
1308 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1309
1310 #if defined(MBEDTLS_ECP_C)
1311 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1312 /*
1313 * For curves in short Weierstrass form, we do all the internal operations in
1314 * Jacobian coordinates.
1315 *
1316 * For multiplication, we'll use a comb method with countermeasures against
1317 * SPA, hence timing attacks.
1318 */
1319
1320 /*
1321 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1322 * Cost: 1N := 1I + 3M + 1S
1323 */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1324 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1325 {
1326 if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1327 return 0;
1328 }
1329
1330 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1331 if (mbedtls_internal_ecp_grp_capable(grp)) {
1332 return mbedtls_internal_ecp_normalize_jac(grp, pt);
1333 }
1334 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1335
1336 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1337 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1338 #else
1339 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1340 mbedtls_mpi T;
1341 mbedtls_mpi_init(&T);
1342
1343 MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
1344 MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
1345 MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
1346 MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
1347 MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
1348
1349 MPI_ECP_LSET(&pt->Z, 1);
1350
1351 cleanup:
1352
1353 mbedtls_mpi_free(&T);
1354
1355 return ret;
1356 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1357 }
1358
1359 /*
1360 * Normalize jacobian coordinates of an array of (pointers to) points,
1361 * using Montgomery's trick to perform only one inversion mod P.
1362 * (See for example Cohen's "A Course in Computational Algebraic Number
1363 * Theory", Algorithm 10.3.4.)
1364 *
1365 * Warning: fails (returning an error) if one of the points is zero!
1366 * This should never happen, see choice of w in ecp_mul_comb().
1367 *
1368 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1369 */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1370 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1371 mbedtls_ecp_point *T[], size_t T_size)
1372 {
1373 if (T_size < 2) {
1374 return ecp_normalize_jac(grp, *T);
1375 }
1376
1377 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1378 if (mbedtls_internal_ecp_grp_capable(grp)) {
1379 return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1380 }
1381 #endif
1382
1383 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1384 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1385 #else
1386 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1387 size_t i;
1388 mbedtls_mpi *c, t;
1389
1390 if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1391 return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1392 }
1393
1394 mbedtls_mpi_init(&t);
1395
1396 mpi_init_many(c, T_size);
1397 /*
1398 * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1399 */
1400 MPI_ECP_MOV(&c[0], &T[0]->Z);
1401 for (i = 1; i < T_size; i++) {
1402 MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1403 }
1404
1405 /*
1406 * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1407 */
1408 MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1409
1410 for (i = T_size - 1;; i--) {
1411 /* At the start of iteration i (note that i decrements), we have
1412 * - c[j] = Z_0 * .... * Z_j for j < i,
1413 * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1414 *
1415 * This is maintained via
1416 * - c[i-1] <- c[i] * Z_i
1417 *
1418 * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1419 * to do the actual normalization. For i==0, we already have
1420 * c[0] = 1 / Z_0.
1421 */
1422
1423 if (i > 0) {
1424 /* Compute 1/Z_i and establish invariant for the next iteration. */
1425 MPI_ECP_MUL(&t, &c[i], &c[i-1]);
1426 MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1427 } else {
1428 MPI_ECP_MOV(&t, &c[0]);
1429 }
1430
1431 /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1432 MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1433 MPI_ECP_SQR(&t, &t);
1434 MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1435 MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1436
1437 /*
1438 * Post-precessing: reclaim some memory by shrinking coordinates
1439 * - not storing Z (always 1)
1440 * - shrinking other coordinates, but still keeping the same number of
1441 * limbs as P, as otherwise it will too likely be regrown too fast.
1442 */
1443 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1444 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1445
1446 MPI_ECP_LSET(&T[i]->Z, 1);
1447
1448 if (i == 0) {
1449 break;
1450 }
1451 }
1452
1453 cleanup:
1454
1455 mbedtls_mpi_free(&t);
1456 mpi_free_many(c, T_size);
1457 mbedtls_free(c);
1458
1459 return ret;
1460 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1461 }
1462
1463 /*
1464 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1465 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1466 */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1467 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1468 mbedtls_ecp_point *Q,
1469 unsigned char inv)
1470 {
1471 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1472 mbedtls_mpi tmp;
1473 mbedtls_mpi_init(&tmp);
1474
1475 MPI_ECP_COND_NEG(&Q->Y, inv);
1476
1477 cleanup:
1478 mbedtls_mpi_free(&tmp);
1479 return ret;
1480 }
1481
1482 /*
1483 * Point doubling R = 2 P, Jacobian coordinates
1484 *
1485 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1486 *
1487 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1488 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1489 *
1490 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1491 *
1492 * Cost: 1D := 3M + 4S (A == 0)
1493 * 4M + 4S (A == -3)
1494 * 3M + 6S + 1a otherwise
1495 */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,mbedtls_mpi tmp[4])1496 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1497 const mbedtls_ecp_point *P,
1498 mbedtls_mpi tmp[4])
1499 {
1500 #if defined(MBEDTLS_SELF_TEST)
1501 dbl_count++;
1502 #endif
1503
1504 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1505 if (mbedtls_internal_ecp_grp_capable(grp)) {
1506 return mbedtls_internal_ecp_double_jac(grp, R, P);
1507 }
1508 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1509
1510 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1511 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1512 #else
1513 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1514
1515 /* Special case for A = -3 */
1516 if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1517 /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1518 MPI_ECP_SQR(&tmp[1], &P->Z);
1519 MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
1520 MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
1521 MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
1522 MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1523 } else {
1524 /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1525 MPI_ECP_SQR(&tmp[1], &P->X);
1526 MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1527
1528 /* Optimize away for "koblitz" curves with A = 0 */
1529 if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1530 /* M += A.Z^4 */
1531 MPI_ECP_SQR(&tmp[1], &P->Z);
1532 MPI_ECP_SQR(&tmp[2], &tmp[1]);
1533 MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
1534 MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
1535 }
1536 }
1537
1538 /* tmp[1] <- S = 4.X.Y^2 */
1539 MPI_ECP_SQR(&tmp[2], &P->Y);
1540 MPI_ECP_SHIFT_L(&tmp[2], 1);
1541 MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
1542 MPI_ECP_SHIFT_L(&tmp[1], 1);
1543
1544 /* tmp[3] <- U = 8.Y^4 */
1545 MPI_ECP_SQR(&tmp[3], &tmp[2]);
1546 MPI_ECP_SHIFT_L(&tmp[3], 1);
1547
1548 /* tmp[2] <- T = M^2 - 2.S */
1549 MPI_ECP_SQR(&tmp[2], &tmp[0]);
1550 MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1551 MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1552
1553 /* tmp[1] <- S = M(S - T) - U */
1554 MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
1555 MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
1556 MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
1557
1558 /* tmp[3] <- U = 2.Y.Z */
1559 MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
1560 MPI_ECP_SHIFT_L(&tmp[3], 1);
1561
1562 /* Store results */
1563 MPI_ECP_MOV(&R->X, &tmp[2]);
1564 MPI_ECP_MOV(&R->Y, &tmp[1]);
1565 MPI_ECP_MOV(&R->Z, &tmp[3]);
1566
1567 cleanup:
1568
1569 return ret;
1570 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1571 }
1572
1573 /*
1574 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1575 *
1576 * The coordinates of Q must be normalized (= affine),
1577 * but those of P don't need to. R is not normalized.
1578 *
1579 * P,Q,R may alias, but only at the level of EC points: they must be either
1580 * equal as pointers, or disjoint (including the coordinate data buffers).
1581 * Fine-grained aliasing at the level of coordinates is not supported.
1582 *
1583 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1584 * None of these cases can happen as intermediate step in ecp_mul_comb():
1585 * - at each step, P, Q and R are multiples of the base point, the factor
1586 * being less than its order, so none of them is zero;
1587 * - Q is an odd multiple of the base point, P an even multiple,
1588 * due to the choice of precomputed points in the modified comb method.
1589 * So branches for these cases do not leak secret information.
1590 *
1591 * Cost: 1A := 8M + 3S
1592 */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,mbedtls_mpi tmp[4])1593 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1594 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1595 mbedtls_mpi tmp[4])
1596 {
1597 #if defined(MBEDTLS_SELF_TEST)
1598 add_count++;
1599 #endif
1600
1601 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1602 if (mbedtls_internal_ecp_grp_capable(grp)) {
1603 return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1604 }
1605 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1606
1607 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1608 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1609 #else
1610 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1611
1612 /* NOTE: Aliasing between input and output is allowed, so one has to make
1613 * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1614 * longer read from. */
1615 mbedtls_mpi * const X = &R->X;
1616 mbedtls_mpi * const Y = &R->Y;
1617 mbedtls_mpi * const Z = &R->Z;
1618
1619 if (!MPI_ECP_VALID(&Q->Z)) {
1620 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1621 }
1622
1623 /*
1624 * Trivial cases: P == 0 or Q == 0 (case 1)
1625 */
1626 if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1627 return mbedtls_ecp_copy(R, Q);
1628 }
1629
1630 if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1631 return mbedtls_ecp_copy(R, P);
1632 }
1633
1634 /*
1635 * Make sure Q coordinates are normalized
1636 */
1637 if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1638 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1639 }
1640
1641 MPI_ECP_SQR(&tmp[0], &P->Z);
1642 MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1643 MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1644 MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1645 MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1646 MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1647
1648 /* Special cases (2) and (3) */
1649 if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1650 if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1651 ret = ecp_double_jac(grp, R, P, tmp);
1652 goto cleanup;
1653 } else {
1654 ret = mbedtls_ecp_set_zero(R);
1655 goto cleanup;
1656 }
1657 }
1658
1659 /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1660 MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
1661 MPI_ECP_SQR(&tmp[2], &tmp[0]);
1662 MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
1663 MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
1664
1665 MPI_ECP_MOV(&tmp[0], &tmp[2]);
1666 MPI_ECP_SHIFT_L(&tmp[0], 1);
1667
1668 /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1669 MPI_ECP_SQR(X, &tmp[1]);
1670 MPI_ECP_SUB(X, X, &tmp[0]);
1671 MPI_ECP_SUB(X, X, &tmp[3]);
1672 MPI_ECP_SUB(&tmp[2], &tmp[2], X);
1673 MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
1674 MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
1675 /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1676 MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
1677
1678 cleanup:
1679
1680 return ret;
1681 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1682 }
1683
1684 /*
1685 * Randomize jacobian coordinates:
1686 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1687 * This is sort of the reverse operation of ecp_normalize_jac().
1688 *
1689 * This countermeasure was first suggested in [2].
1690 */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1691 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1692 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1693 {
1694 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1695 if (mbedtls_internal_ecp_grp_capable(grp)) {
1696 return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1697 }
1698 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1699
1700 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1701 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1702 #else
1703 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1704 mbedtls_mpi l;
1705
1706 mbedtls_mpi_init(&l);
1707
1708 /* Generate l such that 1 < l < p */
1709 MPI_ECP_RAND(&l);
1710
1711 /* Z' = l * Z */
1712 MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
1713
1714 /* Y' = l * Y */
1715 MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1716
1717 /* X' = l^2 * X */
1718 MPI_ECP_SQR(&l, &l);
1719 MPI_ECP_MUL(&pt->X, &pt->X, &l);
1720
1721 /* Y'' = l^2 * Y' = l^3 * Y */
1722 MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1723
1724 cleanup:
1725 mbedtls_mpi_free(&l);
1726
1727 if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1728 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1729 }
1730 return ret;
1731 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1732 }
1733
1734 /*
1735 * Check and define parameters used by the comb method (see below for details)
1736 */
1737 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1738 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1739 #endif
1740
1741 /* d = ceil( n / w ) */
1742 #define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
1743
1744 /* number of precomputed points */
1745 #define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1746
1747 /*
1748 * Compute the representation of m that will be used with our comb method.
1749 *
1750 * The basic comb method is described in GECC 3.44 for example. We use a
1751 * modified version that provides resistance to SPA by avoiding zero
1752 * digits in the representation as in [3]. We modify the method further by
1753 * requiring that all K_i be odd, which has the small cost that our
1754 * representation uses one more K_i, due to carries, but saves on the size of
1755 * the precomputed table.
1756 *
1757 * Summary of the comb method and its modifications:
1758 *
1759 * - The goal is to compute m*P for some w*d-bit integer m.
1760 *
1761 * - The basic comb method splits m into the w-bit integers
1762 * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1763 * index has residue i modulo d, and computes m * P as
1764 * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1765 * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1766 *
1767 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1768 * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1769 * thereby successively converting it into a form where all summands
1770 * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1771 *
1772 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1773 * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1774 * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1775 * Performing and iterating this procedure for those x[i] that are even
1776 * (keeping track of carry), we can transform the original sum into one of the form
1777 * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1778 * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1779 * which is why we are only computing half of it in the first place in
1780 * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1781 *
1782 * - For the sake of compactness, only the seven low-order bits of x[i]
1783 * are used to represent its absolute value (K_i in the paper), and the msb
1784 * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1785 * if s_i == -1;
1786 *
1787 * Calling conventions:
1788 * - x is an array of size d + 1
1789 * - w is the size, ie number of teeth, of the comb, and must be between
1790 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1791 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1792 * (the result will be incorrect if these assumptions are not satisfied)
1793 */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1794 static void ecp_comb_recode_core(unsigned char x[], size_t d,
1795 unsigned char w, const mbedtls_mpi *m)
1796 {
1797 size_t i, j;
1798 unsigned char c, cc, adjust;
1799
1800 memset(x, 0, d+1);
1801
1802 /* First get the classical comb values (except for x_d = 0) */
1803 for (i = 0; i < d; i++) {
1804 for (j = 0; j < w; j++) {
1805 x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1806 }
1807 }
1808
1809 /* Now make sure x_1 .. x_d are odd */
1810 c = 0;
1811 for (i = 1; i <= d; i++) {
1812 /* Add carry and update it */
1813 cc = x[i] & c;
1814 x[i] = x[i] ^ c;
1815 c = cc;
1816
1817 /* Adjust if needed, avoiding branches */
1818 adjust = 1 - (x[i] & 0x01);
1819 c |= x[i] & (x[i-1] * adjust);
1820 x[i] = x[i] ^ (x[i-1] * adjust);
1821 x[i-1] |= adjust << 7;
1822 }
1823 }
1824
1825 /*
1826 * Precompute points for the adapted comb method
1827 *
1828 * Assumption: T must be able to hold 2^{w - 1} elements.
1829 *
1830 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1831 * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1832 *
1833 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1834 *
1835 * Note: Even comb values (those where P would be omitted from the
1836 * sum defining T[i] above) are not needed in our adaption
1837 * the comb method. See ecp_comb_recode_core().
1838 *
1839 * This function currently works in four steps:
1840 * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1841 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1842 * (3) [add] Computation of all T[i]
1843 * (4) [norm_add] Normalization of all T[i]
1844 *
1845 * Step 1 can be interrupted but not the others; together with the final
1846 * coordinate normalization they are the largest steps done at once, depending
1847 * on the window size. Here are operation counts for P-256:
1848 *
1849 * step (2) (3) (4)
1850 * w = 5 142 165 208
1851 * w = 4 136 77 160
1852 * w = 3 130 33 136
1853 * w = 2 124 11 124
1854 *
1855 * So if ECC operations are blocking for too long even with a low max_ops
1856 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1857 * to minimize maximum blocking time.
1858 */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1859 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1860 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1861 unsigned char w, size_t d,
1862 mbedtls_ecp_restart_ctx *rs_ctx)
1863 {
1864 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1865 unsigned char i;
1866 size_t j = 0;
1867 const unsigned char T_size = 1U << (w - 1);
1868 mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1869
1870 mbedtls_mpi tmp[4];
1871
1872 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1873
1874 #if defined(MBEDTLS_ECP_RESTARTABLE)
1875 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1876 if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1877 goto dbl;
1878 }
1879 if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1880 goto norm_dbl;
1881 }
1882 if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1883 goto add;
1884 }
1885 if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1886 goto norm_add;
1887 }
1888 }
1889 #else
1890 (void) rs_ctx;
1891 #endif
1892
1893 #if defined(MBEDTLS_ECP_RESTARTABLE)
1894 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1895 rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1896
1897 /* initial state for the loop */
1898 rs_ctx->rsm->i = 0;
1899 }
1900
1901 dbl:
1902 #endif
1903 /*
1904 * Set T[0] = P and
1905 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1906 */
1907 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1908
1909 #if defined(MBEDTLS_ECP_RESTARTABLE)
1910 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1911 j = rs_ctx->rsm->i;
1912 } else
1913 #endif
1914 j = 0;
1915
1916 for (; j < d * (w - 1); j++) {
1917 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1918
1919 i = 1U << (j / d);
1920 cur = T + i;
1921
1922 if (j % d == 0) {
1923 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1924 }
1925
1926 MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1927 }
1928
1929 #if defined(MBEDTLS_ECP_RESTARTABLE)
1930 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1931 rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1932 }
1933
1934 norm_dbl:
1935 #endif
1936 /*
1937 * Normalize current elements in T to allow them to be used in
1938 * ecp_add_mixed() below, which requires one normalized input.
1939 *
1940 * As T has holes, use an auxiliary array of pointers to elements in T.
1941 *
1942 */
1943 j = 0;
1944 for (i = 1; i < T_size; i <<= 1) {
1945 TT[j++] = T + i;
1946 }
1947
1948 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1949
1950 MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1951
1952 #if defined(MBEDTLS_ECP_RESTARTABLE)
1953 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1954 rs_ctx->rsm->state = ecp_rsm_pre_add;
1955 }
1956
1957 add:
1958 #endif
1959 /*
1960 * Compute the remaining ones using the minimal number of additions
1961 * Be careful to update T[2^l] only after using it!
1962 */
1963 MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1964
1965 for (i = 1; i < T_size; i <<= 1) {
1966 j = i;
1967 while (j--) {
1968 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1969 }
1970 }
1971
1972 #if defined(MBEDTLS_ECP_RESTARTABLE)
1973 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1974 rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1975 }
1976
1977 norm_add:
1978 #endif
1979 /*
1980 * Normalize final elements in T. Even though there are no holes now, we
1981 * still need the auxiliary array for homogeneity with the previous
1982 * call. Also, skip T[0] which is already normalised, being a copy of P.
1983 */
1984 for (j = 0; j + 1 < T_size; j++) {
1985 TT[j] = T + j + 1;
1986 }
1987
1988 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1989
1990 MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1991
1992 /* Free Z coordinate (=1 after normalization) to save RAM.
1993 * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1994 * since from this point onwards, they are only accessed indirectly
1995 * via the getter function ecp_select_comb() which does set the
1996 * target's Z coordinate to 1. */
1997 for (i = 0; i < T_size; i++) {
1998 mbedtls_mpi_free(&T[i].Z);
1999 }
2000
2001 cleanup:
2002
2003 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2004
2005 #if defined(MBEDTLS_ECP_RESTARTABLE)
2006 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2007 ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2008 if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2009 rs_ctx->rsm->i = j;
2010 }
2011 }
2012 #endif
2013
2014 return ret;
2015 }
2016
2017 /*
2018 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2019 *
2020 * See ecp_comb_recode_core() for background
2021 */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)2022 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2023 const mbedtls_ecp_point T[], unsigned char T_size,
2024 unsigned char i)
2025 {
2026 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2027 unsigned char ii, j;
2028
2029 /* Ignore the "sign" bit and scale down */
2030 ii = (i & 0x7Fu) >> 1;
2031
2032 /* Read the whole table to thwart cache-based timing attacks */
2033 for (j = 0; j < T_size; j++) {
2034 MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2035 MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2036 }
2037
2038 /* Safely invert result if i is "negative" */
2039 MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2040
2041 MPI_ECP_LSET(&R->Z, 1);
2042
2043 cleanup:
2044 return ret;
2045 }
2046
2047 /*
2048 * Core multiplication algorithm for the (modified) comb method.
2049 * This part is actually common with the basic comb method (GECC 3.44)
2050 *
2051 * Cost: d A + d D + 1 R
2052 */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2053 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2054 const mbedtls_ecp_point T[], unsigned char T_size,
2055 const unsigned char x[], size_t d,
2056 int (*f_rng)(void *, unsigned char *, size_t),
2057 void *p_rng,
2058 mbedtls_ecp_restart_ctx *rs_ctx)
2059 {
2060 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2061 mbedtls_ecp_point Txi;
2062 mbedtls_mpi tmp[4];
2063 size_t i;
2064
2065 mbedtls_ecp_point_init(&Txi);
2066 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2067
2068 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2069 (void) rs_ctx;
2070 #endif
2071
2072 #if defined(MBEDTLS_ECP_RESTARTABLE)
2073 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2074 rs_ctx->rsm->state != ecp_rsm_comb_core) {
2075 rs_ctx->rsm->i = 0;
2076 rs_ctx->rsm->state = ecp_rsm_comb_core;
2077 }
2078
2079 /* new 'if' instead of nested for the sake of the 'else' branch */
2080 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2081 /* restore current index (R already pointing to rs_ctx->rsm->R) */
2082 i = rs_ctx->rsm->i;
2083 } else
2084 #endif
2085 {
2086 /* Start with a non-zero point and randomize its coordinates */
2087 i = d;
2088 MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2089 if (f_rng != 0) {
2090 MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2091 }
2092 }
2093
2094 while (i != 0) {
2095 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2096 --i;
2097
2098 MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2099 MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2100 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2101 }
2102
2103 cleanup:
2104
2105 mbedtls_ecp_point_free(&Txi);
2106 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2107
2108 #if defined(MBEDTLS_ECP_RESTARTABLE)
2109 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2110 ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2111 rs_ctx->rsm->i = i;
2112 /* no need to save R, already pointing to rs_ctx->rsm->R */
2113 }
2114 #endif
2115
2116 return ret;
2117 }
2118
2119 /*
2120 * Recode the scalar to get constant-time comb multiplication
2121 *
2122 * As the actual scalar recoding needs an odd scalar as a starting point,
2123 * this wrapper ensures that by replacing m by N - m if necessary, and
2124 * informs the caller that the result of multiplication will be negated.
2125 *
2126 * This works because we only support large prime order for Short Weierstrass
2127 * curves, so N is always odd hence either m or N - m is.
2128 *
2129 * See ecp_comb_recode_core() for background.
2130 */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2131 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2132 const mbedtls_mpi *m,
2133 unsigned char k[COMB_MAX_D + 1],
2134 size_t d,
2135 unsigned char w,
2136 unsigned char *parity_trick)
2137 {
2138 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2139 mbedtls_mpi M, mm;
2140
2141 mbedtls_mpi_init(&M);
2142 mbedtls_mpi_init(&mm);
2143
2144 /* N is always odd (see above), just make extra sure */
2145 if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2146 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2147 }
2148
2149 /* do we need the parity trick? */
2150 *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2151
2152 /* execute parity fix in constant time */
2153 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2154 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2155 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2156
2157 /* actual scalar recoding */
2158 ecp_comb_recode_core(k, d, w, &M);
2159
2160 cleanup:
2161 mbedtls_mpi_free(&mm);
2162 mbedtls_mpi_free(&M);
2163
2164 return ret;
2165 }
2166
2167 /*
2168 * Perform comb multiplication (for short Weierstrass curves)
2169 * once the auxiliary table has been pre-computed.
2170 *
2171 * Scalar recoding may use a parity trick that makes us compute -m * P,
2172 * if that is the case we'll need to recover m * P at the end.
2173 */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2174 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2175 mbedtls_ecp_point *R,
2176 const mbedtls_mpi *m,
2177 const mbedtls_ecp_point *T,
2178 unsigned char T_size,
2179 unsigned char w,
2180 size_t d,
2181 int (*f_rng)(void *, unsigned char *, size_t),
2182 void *p_rng,
2183 mbedtls_ecp_restart_ctx *rs_ctx)
2184 {
2185 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2186 unsigned char parity_trick;
2187 unsigned char k[COMB_MAX_D + 1];
2188 mbedtls_ecp_point *RR = R;
2189
2190 #if defined(MBEDTLS_ECP_RESTARTABLE)
2191 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2192 RR = &rs_ctx->rsm->R;
2193
2194 if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2195 goto final_norm;
2196 }
2197 }
2198 #endif
2199
2200 MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2201 &parity_trick));
2202 MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2203 f_rng, p_rng, rs_ctx));
2204 MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2205
2206 #if defined(MBEDTLS_ECP_RESTARTABLE)
2207 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2208 rs_ctx->rsm->state = ecp_rsm_final_norm;
2209 }
2210
2211 final_norm:
2212 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2213 #endif
2214 /*
2215 * Knowledge of the jacobian coordinates may leak the last few bits of the
2216 * scalar [1], and since our MPI implementation isn't constant-flow,
2217 * inversion (used for coordinate normalization) may leak the full value
2218 * of its input via side-channels [2].
2219 *
2220 * [1] https://eprint.iacr.org/2003/191
2221 * [2] https://eprint.iacr.org/2020/055
2222 *
2223 * Avoid the leak by randomizing coordinates before we normalize them.
2224 */
2225 if (f_rng != 0) {
2226 MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2227 }
2228
2229 MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2230
2231 #if defined(MBEDTLS_ECP_RESTARTABLE)
2232 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2233 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2234 }
2235 #endif
2236
2237 cleanup:
2238 return ret;
2239 }
2240
2241 /*
2242 * Pick window size based on curve size and whether we optimize for base point
2243 */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2244 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2245 unsigned char p_eq_g)
2246 {
2247 unsigned char w;
2248
2249 /*
2250 * Minimize the number of multiplications, that is minimize
2251 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2252 * (see costs of the various parts, with 1S = 1M)
2253 */
2254 w = grp->nbits >= 384 ? 5 : 4;
2255
2256 /*
2257 * If P == G, pre-compute a bit more, since this may be re-used later.
2258 * Just adding one avoids upping the cost of the first mul too much,
2259 * and the memory cost too.
2260 */
2261 if (p_eq_g) {
2262 w++;
2263 }
2264
2265 /*
2266 * If static comb table may not be used (!p_eq_g) or static comb table does
2267 * not exists, make sure w is within bounds.
2268 * (The last test is useful only for very small curves in the test suite.)
2269 *
2270 * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2271 * static comb table, because the size of static comb table is fixed when
2272 * it is generated.
2273 */
2274 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2275 if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2276 w = MBEDTLS_ECP_WINDOW_SIZE;
2277 }
2278 #endif
2279 if (w >= grp->nbits) {
2280 w = 2;
2281 }
2282
2283 return w;
2284 }
2285
2286 /*
2287 * Multiplication using the comb method - for curves in short Weierstrass form
2288 *
2289 * This function is mainly responsible for administrative work:
2290 * - managing the restart context if enabled
2291 * - managing the table of precomputed points (passed between the below two
2292 * functions): allocation, computation, ownership transfer, freeing.
2293 *
2294 * It delegates the actual arithmetic work to:
2295 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2296 *
2297 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2298 */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2299 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2300 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2301 int (*f_rng)(void *, unsigned char *, size_t),
2302 void *p_rng,
2303 mbedtls_ecp_restart_ctx *rs_ctx)
2304 {
2305 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2306 unsigned char w, p_eq_g, i;
2307 size_t d;
2308 unsigned char T_size = 0, T_ok = 0;
2309 mbedtls_ecp_point *T = NULL;
2310
2311 ECP_RS_ENTER(rsm);
2312
2313 /* Is P the base point ? */
2314 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2315 p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2316 MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2317 #else
2318 p_eq_g = 0;
2319 #endif
2320
2321 /* Pick window size and deduce related sizes */
2322 w = ecp_pick_window_size(grp, p_eq_g);
2323 T_size = 1U << (w - 1);
2324 d = (grp->nbits + w - 1) / w;
2325
2326 /* Pre-computed table: do we have it already for the base point? */
2327 if (p_eq_g && grp->T != NULL) {
2328 /* second pointer to the same table, will be deleted on exit */
2329 T = grp->T;
2330 T_ok = 1;
2331 } else
2332 #if defined(MBEDTLS_ECP_RESTARTABLE)
2333 /* Pre-computed table: do we have one in progress? complete? */
2334 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2335 /* transfer ownership of T from rsm to local function */
2336 T = rs_ctx->rsm->T;
2337 rs_ctx->rsm->T = NULL;
2338 rs_ctx->rsm->T_size = 0;
2339
2340 /* This effectively jumps to the call to mul_comb_after_precomp() */
2341 T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2342 } else
2343 #endif
2344 /* Allocate table if we didn't have any */
2345 {
2346 T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2347 if (T == NULL) {
2348 ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2349 goto cleanup;
2350 }
2351
2352 for (i = 0; i < T_size; i++) {
2353 mbedtls_ecp_point_init(&T[i]);
2354 }
2355
2356 T_ok = 0;
2357 }
2358
2359 /* Compute table (or finish computing it) if not done already */
2360 if (!T_ok) {
2361 MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2362
2363 if (p_eq_g) {
2364 /* almost transfer ownership of T to the group, but keep a copy of
2365 * the pointer to use for calling the next function more easily */
2366 grp->T = T;
2367 grp->T_size = T_size;
2368 }
2369 }
2370
2371 /* Actual comb multiplication using precomputed points */
2372 MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2373 T, T_size, w, d,
2374 f_rng, p_rng, rs_ctx));
2375
2376 cleanup:
2377
2378 /* does T belong to the group? */
2379 if (T == grp->T) {
2380 T = NULL;
2381 }
2382
2383 /* does T belong to the restart context? */
2384 #if defined(MBEDTLS_ECP_RESTARTABLE)
2385 if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2386 /* transfer ownership of T from local function to rsm */
2387 rs_ctx->rsm->T_size = T_size;
2388 rs_ctx->rsm->T = T;
2389 T = NULL;
2390 }
2391 #endif
2392
2393 /* did T belong to us? then let's destroy it! */
2394 if (T != NULL) {
2395 for (i = 0; i < T_size; i++) {
2396 mbedtls_ecp_point_free(&T[i]);
2397 }
2398 mbedtls_free(T);
2399 }
2400
2401 /* prevent caller from using invalid value */
2402 int should_free_R = (ret != 0);
2403 #if defined(MBEDTLS_ECP_RESTARTABLE)
2404 /* don't free R while in progress in case R == P */
2405 if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2406 should_free_R = 0;
2407 }
2408 #endif
2409 if (should_free_R) {
2410 mbedtls_ecp_point_free(R);
2411 }
2412
2413 ECP_RS_LEAVE(rsm);
2414
2415 return ret;
2416 }
2417
2418 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2419
2420 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2421 /*
2422 * For Montgomery curves, we do all the internal arithmetic in projective
2423 * coordinates. Import/export of points uses only the x coordinates, which is
2424 * internally represented as X / Z.
2425 *
2426 * For scalar multiplication, we'll use a Montgomery ladder.
2427 */
2428
2429 /*
2430 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2431 * Cost: 1M + 1I
2432 */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2433 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2434 {
2435 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2436 if (mbedtls_internal_ecp_grp_capable(grp)) {
2437 return mbedtls_internal_ecp_normalize_mxz(grp, P);
2438 }
2439 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2440
2441 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2442 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2443 #else
2444 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2445 MPI_ECP_INV(&P->Z, &P->Z);
2446 MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2447 MPI_ECP_LSET(&P->Z, 1);
2448
2449 cleanup:
2450 return ret;
2451 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2452 }
2453
2454 /*
2455 * Randomize projective x/z coordinates:
2456 * (X, Z) -> (l X, l Z) for random l
2457 * This is sort of the reverse operation of ecp_normalize_mxz().
2458 *
2459 * This countermeasure was first suggested in [2].
2460 * Cost: 2M
2461 */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2462 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2463 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2464 {
2465 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2466 if (mbedtls_internal_ecp_grp_capable(grp)) {
2467 return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2468 }
2469 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2470
2471 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2472 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2473 #else
2474 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2475 mbedtls_mpi l;
2476 mbedtls_mpi_init(&l);
2477
2478 /* Generate l such that 1 < l < p */
2479 MPI_ECP_RAND(&l);
2480
2481 MPI_ECP_MUL(&P->X, &P->X, &l);
2482 MPI_ECP_MUL(&P->Z, &P->Z, &l);
2483
2484 cleanup:
2485 mbedtls_mpi_free(&l);
2486
2487 if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2488 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2489 }
2490 return ret;
2491 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2492 }
2493
2494 /*
2495 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2496 * for Montgomery curves in x/z coordinates.
2497 *
2498 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2499 * with
2500 * d = X1
2501 * P = (X2, Z2)
2502 * Q = (X3, Z3)
2503 * R = (X4, Z4)
2504 * S = (X5, Z5)
2505 * and eliminating temporary variables tO, ..., t4.
2506 *
2507 * Cost: 5M + 4S
2508 */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d,mbedtls_mpi T[4])2509 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2510 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2511 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2512 const mbedtls_mpi *d,
2513 mbedtls_mpi T[4])
2514 {
2515 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2516 if (mbedtls_internal_ecp_grp_capable(grp)) {
2517 return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2518 }
2519 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2520
2521 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2522 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2523 #else
2524 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2525
2526 MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
2527 MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
2528 MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
2529 MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
2530 MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
2531 MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
2532 MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
2533 MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
2534 MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
2535 MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
2536 MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
2537 MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2538 MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
2539 MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
2540 MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
2541 MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
2542 MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
2543 MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2544
2545 cleanup:
2546
2547 return ret;
2548 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2549 }
2550
2551 /*
2552 * Multiplication with Montgomery ladder in x/z coordinates,
2553 * for curves in Montgomery form
2554 */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2555 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2556 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2557 int (*f_rng)(void *, unsigned char *, size_t),
2558 void *p_rng)
2559 {
2560 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2561 size_t i;
2562 unsigned char b;
2563 mbedtls_ecp_point RP;
2564 mbedtls_mpi PX;
2565 mbedtls_mpi tmp[4];
2566 mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2567
2568 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2569
2570 if (f_rng == NULL) {
2571 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2572 }
2573
2574 /* Save PX and read from P before writing to R, in case P == R */
2575 MPI_ECP_MOV(&PX, &P->X);
2576 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2577
2578 /* Set R to zero in modified x/z coordinates */
2579 MPI_ECP_LSET(&R->X, 1);
2580 MPI_ECP_LSET(&R->Z, 0);
2581 mbedtls_mpi_free(&R->Y);
2582
2583 /* RP.X might be slightly larger than P, so reduce it */
2584 MOD_ADD(&RP.X);
2585
2586 /* Randomize coordinates of the starting point */
2587 MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2588
2589 /* Loop invariant: R = result so far, RP = R + P */
2590 i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2591 while (i-- > 0) {
2592 b = mbedtls_mpi_get_bit(m, i);
2593 /*
2594 * if (b) R = 2R + P else R = 2R,
2595 * which is:
2596 * if (b) double_add( RP, R, RP, R )
2597 * else double_add( R, RP, R, RP )
2598 * but using safe conditional swaps to avoid leaks
2599 */
2600 MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2601 MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2602 MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2603 MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2604 MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2605 }
2606
2607 /*
2608 * Knowledge of the projective coordinates may leak the last few bits of the
2609 * scalar [1], and since our MPI implementation isn't constant-flow,
2610 * inversion (used for coordinate normalization) may leak the full value
2611 * of its input via side-channels [2].
2612 *
2613 * [1] https://eprint.iacr.org/2003/191
2614 * [2] https://eprint.iacr.org/2020/055
2615 *
2616 * Avoid the leak by randomizing coordinates before we normalize them.
2617 */
2618 MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2619 MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2620
2621 cleanup:
2622 mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2623
2624 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2625 return ret;
2626 }
2627
2628 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2629
2630 /*
2631 * Restartable multiplication R = m * P
2632 *
2633 * This internal function can be called without an RNG in case where we know
2634 * the inputs are not sensitive.
2635 */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2636 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2637 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2638 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2639 mbedtls_ecp_restart_ctx *rs_ctx)
2640 {
2641 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2642 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2643 char is_grp_capable = 0;
2644 #endif
2645
2646 #if defined(MBEDTLS_ECP_RESTARTABLE)
2647 /* reset ops count for this call if top-level */
2648 if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2649 rs_ctx->ops_done = 0;
2650 }
2651 #else
2652 (void) rs_ctx;
2653 #endif
2654
2655 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2656 if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2657 MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2658 }
2659 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2660
2661 int restarting = 0;
2662 #if defined(MBEDTLS_ECP_RESTARTABLE)
2663 restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2664 #endif
2665 /* skip argument check when restarting */
2666 if (!restarting) {
2667 /* check_privkey is free */
2668 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2669
2670 /* Common sanity checks */
2671 MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2672 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2673 }
2674
2675 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2676 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2677 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2678 MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2679 }
2680 #endif
2681 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2682 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2683 MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2684 }
2685 #endif
2686
2687 cleanup:
2688
2689 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2690 if (is_grp_capable) {
2691 mbedtls_internal_ecp_free(grp);
2692 }
2693 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2694
2695 #if defined(MBEDTLS_ECP_RESTARTABLE)
2696 if (rs_ctx != NULL) {
2697 rs_ctx->depth--;
2698 }
2699 #endif
2700
2701 return ret;
2702 }
2703
2704 /*
2705 * Restartable multiplication R = m * P
2706 */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2707 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2708 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2709 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2710 mbedtls_ecp_restart_ctx *rs_ctx)
2711 {
2712 if (f_rng == NULL) {
2713 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2714 }
2715
2716 return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2717 }
2718
2719 /*
2720 * Multiplication R = m * P
2721 */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2722 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2723 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2724 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2725 {
2726 return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2727 }
2728 #endif /* MBEDTLS_ECP_C */
2729
2730 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2731 /*
2732 * Check that an affine point is valid as a public key,
2733 * short weierstrass curves (SEC1 3.2.3.1)
2734 */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2735 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2736 {
2737 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2738 mbedtls_mpi YY, RHS;
2739
2740 /* pt coordinates must be normalized for our checks */
2741 if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2742 mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2743 mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2744 mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2745 return MBEDTLS_ERR_ECP_INVALID_KEY;
2746 }
2747
2748 mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2749
2750 /*
2751 * YY = Y^2
2752 * RHS = X^3 + A X + B
2753 */
2754 MPI_ECP_SQR(&YY, &pt->Y);
2755 MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2756
2757 if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2758 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2759 }
2760
2761 cleanup:
2762
2763 mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2764
2765 return ret;
2766 }
2767 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2768
2769 #if defined(MBEDTLS_ECP_C)
2770 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2771 /*
2772 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2773 * NOT constant-time - ONLY for short Weierstrass!
2774 */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2775 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2776 mbedtls_ecp_point *R,
2777 const mbedtls_mpi *m,
2778 const mbedtls_ecp_point *P,
2779 mbedtls_ecp_restart_ctx *rs_ctx)
2780 {
2781 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2782 mbedtls_mpi tmp;
2783 mbedtls_mpi_init(&tmp);
2784
2785 if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2786 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2787 MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2788 } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2789 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2790 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2791 } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2792 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2793 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2794 MPI_ECP_NEG(&R->Y);
2795 } else {
2796 MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2797 NULL, NULL, rs_ctx));
2798 }
2799
2800 cleanup:
2801 mbedtls_mpi_free(&tmp);
2802
2803 return ret;
2804 }
2805
2806 /*
2807 * Restartable linear combination
2808 * NOT constant-time
2809 */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2810 int mbedtls_ecp_muladd_restartable(
2811 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2812 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2813 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2814 mbedtls_ecp_restart_ctx *rs_ctx)
2815 {
2816 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2817 mbedtls_ecp_point mP;
2818 mbedtls_ecp_point *pmP = &mP;
2819 mbedtls_ecp_point *pR = R;
2820 mbedtls_mpi tmp[4];
2821 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2822 char is_grp_capable = 0;
2823 #endif
2824 if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2825 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2826 }
2827
2828 mbedtls_ecp_point_init(&mP);
2829 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2830
2831 ECP_RS_ENTER(ma);
2832
2833 #if defined(MBEDTLS_ECP_RESTARTABLE)
2834 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2835 /* redirect intermediate results to restart context */
2836 pmP = &rs_ctx->ma->mP;
2837 pR = &rs_ctx->ma->R;
2838
2839 /* jump to next operation */
2840 if (rs_ctx->ma->state == ecp_rsma_mul2) {
2841 goto mul2;
2842 }
2843 if (rs_ctx->ma->state == ecp_rsma_add) {
2844 goto add;
2845 }
2846 if (rs_ctx->ma->state == ecp_rsma_norm) {
2847 goto norm;
2848 }
2849 }
2850 #endif /* MBEDTLS_ECP_RESTARTABLE */
2851
2852 MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2853 #if defined(MBEDTLS_ECP_RESTARTABLE)
2854 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2855 rs_ctx->ma->state = ecp_rsma_mul2;
2856 }
2857
2858 mul2:
2859 #endif
2860 MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
2861
2862 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2863 if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2864 MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2865 }
2866 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2867
2868 #if defined(MBEDTLS_ECP_RESTARTABLE)
2869 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2870 rs_ctx->ma->state = ecp_rsma_add;
2871 }
2872
2873 add:
2874 #endif
2875 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2876 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2877 #if defined(MBEDTLS_ECP_RESTARTABLE)
2878 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879 rs_ctx->ma->state = ecp_rsma_norm;
2880 }
2881
2882 norm:
2883 #endif
2884 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2885 MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2886
2887 #if defined(MBEDTLS_ECP_RESTARTABLE)
2888 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2889 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2890 }
2891 #endif
2892
2893 cleanup:
2894
2895 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2896
2897 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2898 if (is_grp_capable) {
2899 mbedtls_internal_ecp_free(grp);
2900 }
2901 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2902
2903 mbedtls_ecp_point_free(&mP);
2904
2905 ECP_RS_LEAVE(ma);
2906
2907 return ret;
2908 }
2909
2910 /*
2911 * Linear combination
2912 * NOT constant-time
2913 */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2914 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2915 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2916 const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2917 {
2918 return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2919 }
2920 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2921 #endif /* MBEDTLS_ECP_C */
2922
2923 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2924 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2925 #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2926 #define ECP_MPI_INIT_ARRAY(x) \
2927 ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2928 /*
2929 * Constants for the two points other than 0, 1, -1 (mod p) in
2930 * https://cr.yp.to/ecdh.html#validate
2931 * See ecp_check_pubkey_x25519().
2932 */
2933 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2934 MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2935 MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2936 MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2937 MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2938 };
2939 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2940 MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2941 MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2942 MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2943 MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2944 };
2945 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2946 x25519_bad_point_1);
2947 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2948 x25519_bad_point_2);
2949 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2950
2951 /*
2952 * Check that the input point is not one of the low-order points.
2953 * This is recommended by the "May the Fourth" paper:
2954 * https://eprint.iacr.org/2017/806.pdf
2955 * Those points are never sent by an honest peer.
2956 */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2957 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2958 const mbedtls_ecp_group_id grp_id)
2959 {
2960 int ret;
2961 mbedtls_mpi XmP;
2962
2963 mbedtls_mpi_init(&XmP);
2964
2965 /* Reduce X mod P so that we only need to check values less than P.
2966 * We know X < 2^256 so we can proceed by subtraction. */
2967 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2968 while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2969 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2970 }
2971
2972 /* Check against the known bad values that are less than P. For Curve448
2973 * these are 0, 1 and -1. For Curve25519 we check the values less than P
2974 * from the following list: https://cr.yp.to/ecdh.html#validate */
2975 if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
2976 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2977 goto cleanup;
2978 }
2979
2980 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2981 if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2982 if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2983 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2984 goto cleanup;
2985 }
2986
2987 if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2988 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2989 goto cleanup;
2990 }
2991 }
2992 #else
2993 (void) grp_id;
2994 #endif
2995
2996 /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2997 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2998 if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2999 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
3000 goto cleanup;
3001 }
3002
3003 ret = 0;
3004
3005 cleanup:
3006 mbedtls_mpi_free(&XmP);
3007
3008 return ret;
3009 }
3010
3011 /*
3012 * Check validity of a public key for Montgomery curves with x-only schemes
3013 */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3014 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3015 {
3016 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3017 /* Allow any public value, if it's too big then we'll just reduce it mod p
3018 * (RFC 7748 sec. 5 para. 3). */
3019 if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3020 return MBEDTLS_ERR_ECP_INVALID_KEY;
3021 }
3022
3023 /* Implicit in all standards (as they don't consider negative numbers):
3024 * X must be non-negative. This is normally ensured by the way it's
3025 * encoded for transmission, but let's be extra sure. */
3026 if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3027 return MBEDTLS_ERR_ECP_INVALID_KEY;
3028 }
3029
3030 return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3031 }
3032 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3033
3034 /*
3035 * Check that a point is valid as a public key
3036 */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3037 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3038 const mbedtls_ecp_point *pt)
3039 {
3040 /* Must use affine coordinates */
3041 if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3042 return MBEDTLS_ERR_ECP_INVALID_KEY;
3043 }
3044
3045 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3046 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3047 return ecp_check_pubkey_mx(grp, pt);
3048 }
3049 #endif
3050 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3051 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3052 return ecp_check_pubkey_sw(grp, pt);
3053 }
3054 #endif
3055 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3056 }
3057
3058 /*
3059 * Check that an mbedtls_mpi is valid as a private key
3060 */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)3061 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3062 const mbedtls_mpi *d)
3063 {
3064 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3065 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3066 /* see RFC 7748 sec. 5 para. 5 */
3067 if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3068 mbedtls_mpi_get_bit(d, 1) != 0 ||
3069 mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */
3070 return MBEDTLS_ERR_ECP_INVALID_KEY;
3071 }
3072
3073 /* see [Curve25519] page 5 */
3074 if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3075 return MBEDTLS_ERR_ECP_INVALID_KEY;
3076 }
3077
3078 return 0;
3079 }
3080 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3081 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3082 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3083 /* see SEC1 3.2 */
3084 if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3085 mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3086 return MBEDTLS_ERR_ECP_INVALID_KEY;
3087 } else {
3088 return 0;
3089 }
3090 }
3091 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3092
3093 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094 }
3095
3096 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3097 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3098 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3099 mbedtls_mpi *d,
3100 int (*f_rng)(void *, unsigned char *, size_t),
3101 void *p_rng)
3102 {
3103 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3104 size_t n_random_bytes = high_bit / 8 + 1;
3105
3106 /* [Curve25519] page 5 */
3107 /* Generate a (high_bit+1)-bit random number by generating just enough
3108 * random bytes, then shifting out extra bits from the top (necessary
3109 * when (high_bit+1) is not a multiple of 8). */
3110 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3111 f_rng, p_rng));
3112 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3113
3114 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3115
3116 /* Make sure the last two bits are unset for Curve448, three bits for
3117 Curve25519 */
3118 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3119 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3120 if (high_bit == 254) {
3121 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3122 }
3123
3124 cleanup:
3125 return ret;
3126 }
3127 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3128
3129 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3130 static int mbedtls_ecp_gen_privkey_sw(
3131 const mbedtls_mpi *N, mbedtls_mpi *d,
3132 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3133 {
3134 int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3135 switch (ret) {
3136 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3137 return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3138 default:
3139 return ret;
3140 }
3141 }
3142 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3143
3144 /*
3145 * Generate a private key
3146 */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3147 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3148 mbedtls_mpi *d,
3149 int (*f_rng)(void *, unsigned char *, size_t),
3150 void *p_rng)
3151 {
3152 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3153 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3154 return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3155 }
3156 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3157
3158 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3159 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3160 return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3161 }
3162 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3163
3164 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3165 }
3166
3167 #if defined(MBEDTLS_ECP_C)
3168 /*
3169 * Generate a keypair with configurable base point
3170 */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3171 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3172 const mbedtls_ecp_point *G,
3173 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3174 int (*f_rng)(void *, unsigned char *, size_t),
3175 void *p_rng)
3176 {
3177 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3178 MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3179 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3180
3181 cleanup:
3182 return ret;
3183 }
3184
3185 /*
3186 * Generate key pair, wrapper for conventional base point
3187 */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3188 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3189 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3190 int (*f_rng)(void *, unsigned char *, size_t),
3191 void *p_rng)
3192 {
3193 return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3194 }
3195
3196 /*
3197 * Generate a keypair, prettier wrapper
3198 */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3199 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3200 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3201 {
3202 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3203 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3204 return ret;
3205 }
3206
3207 return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3208 }
3209 #endif /* MBEDTLS_ECP_C */
3210
3211 #define ECP_CURVE25519_KEY_SIZE 32
3212 #define ECP_CURVE448_KEY_SIZE 56
3213 /*
3214 * Read a private key.
3215 */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3216 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3217 const unsigned char *buf, size_t buflen)
3218 {
3219 int ret = 0;
3220
3221 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3222 return ret;
3223 }
3224
3225 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3226
3227 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3228 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3229 /*
3230 * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3231 */
3232 if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3233 if (buflen != ECP_CURVE25519_KEY_SIZE) {
3234 return MBEDTLS_ERR_ECP_INVALID_KEY;
3235 }
3236
3237 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3238
3239 /* Set the three least significant bits to 0 */
3240 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3241 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3242 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3243
3244 /* Set the most significant bit to 0 */
3245 MBEDTLS_MPI_CHK(
3246 mbedtls_mpi_set_bit(&key->d,
3247 ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3248 );
3249
3250 /* Set the second most significant bit to 1 */
3251 MBEDTLS_MPI_CHK(
3252 mbedtls_mpi_set_bit(&key->d,
3253 ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3254 );
3255 } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3256 if (buflen != ECP_CURVE448_KEY_SIZE) {
3257 return MBEDTLS_ERR_ECP_INVALID_KEY;
3258 }
3259
3260 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3261
3262 /* Set the two least significant bits to 0 */
3263 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3264 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3265
3266 /* Set the most significant bit to 1 */
3267 MBEDTLS_MPI_CHK(
3268 mbedtls_mpi_set_bit(&key->d,
3269 ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3270 );
3271 }
3272 }
3273 #endif
3274 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3275 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3276 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3277 }
3278 #endif
3279 MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3280
3281 cleanup:
3282
3283 if (ret != 0) {
3284 mbedtls_mpi_free(&key->d);
3285 }
3286
3287 return ret;
3288 }
3289
3290 /*
3291 * Write a private key.
3292 */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3293 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3294 unsigned char *buf, size_t buflen)
3295 {
3296 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3297
3298 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3299 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3300 if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3301 if (buflen < ECP_CURVE25519_KEY_SIZE) {
3302 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3303 }
3304
3305 } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3306 if (buflen < ECP_CURVE448_KEY_SIZE) {
3307 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3308 }
3309 }
3310 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3311 }
3312 #endif
3313 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3314 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3315 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3316 }
3317
3318 #endif
3319 cleanup:
3320
3321 return ret;
3322 }
3323
3324 #if defined(MBEDTLS_ECP_C)
3325 /*
3326 * Check a public-private key pair
3327 */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3328 int mbedtls_ecp_check_pub_priv(
3329 const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3330 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3331 {
3332 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3333 mbedtls_ecp_point Q;
3334 mbedtls_ecp_group grp;
3335 if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3336 pub->grp.id != prv->grp.id ||
3337 mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3338 mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3339 mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3340 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3341 }
3342
3343 mbedtls_ecp_point_init(&Q);
3344 mbedtls_ecp_group_init(&grp);
3345
3346 /* mbedtls_ecp_mul() needs a non-const group... */
3347 mbedtls_ecp_group_copy(&grp, &prv->grp);
3348
3349 /* Also checks d is valid */
3350 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3351
3352 if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3353 mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3354 mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3355 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3356 goto cleanup;
3357 }
3358
3359 cleanup:
3360 mbedtls_ecp_point_free(&Q);
3361 mbedtls_ecp_group_free(&grp);
3362
3363 return ret;
3364 }
3365 #endif /* MBEDTLS_ECP_C */
3366
3367 /*
3368 * Export generic key-pair parameters.
3369 */
mbedtls_ecp_export(const mbedtls_ecp_keypair * key,mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q)3370 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3371 mbedtls_mpi *d, mbedtls_ecp_point *Q)
3372 {
3373 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3374
3375 if ((ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3376 return ret;
3377 }
3378
3379 if ((ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3380 return ret;
3381 }
3382
3383 if ((ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3384 return ret;
3385 }
3386
3387 return 0;
3388 }
3389
3390 #if defined(MBEDTLS_SELF_TEST)
3391
3392 #if defined(MBEDTLS_ECP_C)
3393 /*
3394 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3395 *
3396 * This is the linear congruential generator from numerical recipes,
3397 * except we only use the low byte as the output. See
3398 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3399 */
self_test_rng(void * ctx,unsigned char * out,size_t len)3400 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3401 {
3402 static uint32_t state = 42;
3403
3404 (void) ctx;
3405
3406 for (size_t i = 0; i < len; i++) {
3407 state = state * 1664525u + 1013904223u;
3408 out[i] = (unsigned char) state;
3409 }
3410
3411 return 0;
3412 }
3413
3414 /* Adjust the exponent to be a valid private point for the specified curve.
3415 * This is sometimes necessary because we use a single set of exponents
3416 * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3417 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3418 mbedtls_mpi *m)
3419 {
3420 int ret = 0;
3421 switch (grp->id) {
3422 /* If Curve25519 is available, then that's what we use for the
3423 * Montgomery test, so we don't need the adjustment code. */
3424 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3425 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3426 case MBEDTLS_ECP_DP_CURVE448:
3427 /* Move highest bit from 254 to N-1. Setting bit N-1 is
3428 * necessary to enforce the highest-bit-set constraint. */
3429 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3430 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3431 /* Copy second-highest bit from 253 to N-2. This is not
3432 * necessary but improves the test variety a bit. */
3433 MBEDTLS_MPI_CHK(
3434 mbedtls_mpi_set_bit(m, grp->nbits - 1,
3435 mbedtls_mpi_get_bit(m, 253)));
3436 break;
3437 #endif
3438 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3439 default:
3440 /* Non-Montgomery curves and Curve25519 need no adjustment. */
3441 (void) grp;
3442 (void) m;
3443 goto cleanup;
3444 }
3445 cleanup:
3446 return ret;
3447 }
3448
3449 /* Calculate R = m.P for each m in exponents. Check that the number of
3450 * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3451 static int self_test_point(int verbose,
3452 mbedtls_ecp_group *grp,
3453 mbedtls_ecp_point *R,
3454 mbedtls_mpi *m,
3455 const mbedtls_ecp_point *P,
3456 const char *const *exponents,
3457 size_t n_exponents)
3458 {
3459 int ret = 0;
3460 size_t i = 0;
3461 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3462 add_count = 0;
3463 dbl_count = 0;
3464 mul_count = 0;
3465
3466 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3467 MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3468 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3469
3470 for (i = 1; i < n_exponents; i++) {
3471 add_c_prev = add_count;
3472 dbl_c_prev = dbl_count;
3473 mul_c_prev = mul_count;
3474 add_count = 0;
3475 dbl_count = 0;
3476 mul_count = 0;
3477
3478 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3479 MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3480 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3481
3482 if (add_count != add_c_prev ||
3483 dbl_count != dbl_c_prev ||
3484 mul_count != mul_c_prev) {
3485 ret = 1;
3486 break;
3487 }
3488 }
3489
3490 cleanup:
3491 if (verbose != 0) {
3492 if (ret != 0) {
3493 mbedtls_printf("failed (%u)\n", (unsigned int) i);
3494 } else {
3495 mbedtls_printf("passed\n");
3496 }
3497 }
3498 return ret;
3499 }
3500 #endif /* MBEDTLS_ECP_C */
3501
3502 /*
3503 * Checkup routine
3504 */
mbedtls_ecp_self_test(int verbose)3505 int mbedtls_ecp_self_test(int verbose)
3506 {
3507 #if defined(MBEDTLS_ECP_C)
3508 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3509 mbedtls_ecp_group grp;
3510 mbedtls_ecp_point R, P;
3511 mbedtls_mpi m;
3512
3513 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3514 /* Exponents especially adapted for secp192k1, which has the lowest
3515 * order n of all supported curves (secp192r1 is in a slightly larger
3516 * field but the order of its base point is slightly smaller). */
3517 const char *sw_exponents[] =
3518 {
3519 "000000000000000000000000000000000000000000000001", /* one */
3520 "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3521 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3522 "400000000000000000000000000000000000000000000000", /* one and zeros */
3523 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3524 "555555555555555555555555555555555555555555555555", /* 101010... */
3525 };
3526 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3527 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3528 const char *m_exponents[] =
3529 {
3530 /* Valid private values for Curve25519. In a build with Curve448
3531 * but not Curve25519, they will be adjusted in
3532 * self_test_adjust_exponent(). */
3533 "4000000000000000000000000000000000000000000000000000000000000000",
3534 "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3535 "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3536 "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3537 "5555555555555555555555555555555555555555555555555555555555555550",
3538 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3539 };
3540 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3541
3542 mbedtls_ecp_group_init(&grp);
3543 mbedtls_ecp_point_init(&R);
3544 mbedtls_ecp_point_init(&P);
3545 mbedtls_mpi_init(&m);
3546
3547 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3548 /* Use secp192r1 if available, or any available curve */
3549 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3550 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3551 #else
3552 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3553 #endif
3554
3555 if (verbose != 0) {
3556 mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
3557 }
3558 /* Do a dummy multiplication first to trigger precomputation */
3559 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3560 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3561 ret = self_test_point(verbose,
3562 &grp, &R, &m, &grp.G,
3563 sw_exponents,
3564 sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3565 if (ret != 0) {
3566 goto cleanup;
3567 }
3568
3569 if (verbose != 0) {
3570 mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
3571 }
3572 /* We computed P = 2G last time, use it */
3573 ret = self_test_point(verbose,
3574 &grp, &R, &m, &P,
3575 sw_exponents,
3576 sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3577 if (ret != 0) {
3578 goto cleanup;
3579 }
3580
3581 mbedtls_ecp_group_free(&grp);
3582 mbedtls_ecp_point_free(&R);
3583 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3584
3585 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3586 if (verbose != 0) {
3587 mbedtls_printf(" ECP Montgomery test (constant op_count): ");
3588 }
3589 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3590 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3591 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3592 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3593 #else
3594 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3595 #endif
3596 ret = self_test_point(verbose,
3597 &grp, &R, &m, &grp.G,
3598 m_exponents,
3599 sizeof(m_exponents) / sizeof(m_exponents[0]));
3600 if (ret != 0) {
3601 goto cleanup;
3602 }
3603 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3604
3605 cleanup:
3606
3607 if (ret < 0 && verbose != 0) {
3608 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3609 }
3610
3611 mbedtls_ecp_group_free(&grp);
3612 mbedtls_ecp_point_free(&R);
3613 mbedtls_ecp_point_free(&P);
3614 mbedtls_mpi_free(&m);
3615
3616 if (verbose != 0) {
3617 mbedtls_printf("\n");
3618 }
3619
3620 return ret;
3621 #else /* MBEDTLS_ECP_C */
3622 (void) verbose;
3623 return 0;
3624 #endif /* MBEDTLS_ECP_C */
3625 }
3626
3627 #endif /* MBEDTLS_SELF_TEST */
3628
3629 #endif /* !MBEDTLS_ECP_ALT */
3630
3631 #endif /* MBEDTLS_ECP_LIGHT */
3632