1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 
22 /*
23  * References:
24  *
25  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
26  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
27  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
28  * RFC 4492 for the related TLS structures and constants
29  *
30  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
31  *
32  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
33  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
34  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
35  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
36  *
37  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
38  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
39  *     ePrint Archive, 2004, vol. 2004, p. 342.
40  *     <http://eprint.iacr.org/2004/342.pdf>
41  */
42 
43 #if !defined(MBEDTLS_CONFIG_FILE)
44 #include "mbedtls/config.h"
45 #else
46 #include MBEDTLS_CONFIG_FILE
47 #endif
48 
49 #if defined(MBEDTLS_ECP_C)
50 
51 #include "mbedtls/ecp.h"
52 
53 #include <string.h>
54 
55 #if defined(MBEDTLS_PLATFORM_C)
56 #include "mbedtls/platform.h"
57 #else
58 #include <stdlib.h>
59 #include <stdio.h>
60 #define mbedtls_printf     printf
61 #define mbedtls_calloc    calloc
62 #define mbedtls_free       free
63 #endif
64 
65 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
66     !defined(inline) && !defined(__cplusplus)
67 #define inline __inline
68 #endif
69 
70 /* Implementation that should never be optimized out by the compiler */
mbedtls_zeroize(void * v,size_t n)71 static void mbedtls_zeroize( void *v, size_t n ) {
72     volatile unsigned char *p = v; while( n-- ) *p++ = 0;
73 }
74 
75 #if defined(MBEDTLS_SELF_TEST)
76 /*
77  * Counts of point addition and doubling, and field multiplications.
78  * Used to test resistance of point multiplication to simple timing attacks.
79  */
80 static unsigned long add_count, dbl_count, mul_count;
81 #endif
82 
83 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
84     defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
85     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
86     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
87     defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
88     defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
89     defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
90     defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
91     defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
92     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
93     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
94 #define ECP_SHORTWEIERSTRASS
95 #endif
96 
97 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
98 #define ECP_MONTGOMERY
99 #endif
100 
101 /*
102  * Curve types: internal for now, might be exposed later
103  */
104 typedef enum
105 {
106     ECP_TYPE_NONE = 0,
107     ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
108     ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
109 } ecp_curve_type;
110 
111 /*
112  * List of supported curves:
113  *  - internal ID
114  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
115  *  - size in bits
116  *  - readable name
117  *
118  * Curves are listed in order: largest curves first, and for a given size,
119  * fastest curves first. This provides the default order for the SSL module.
120  *
121  * Reminder: update profiles in x509_crt.c when adding a new curves!
122  */
123 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
124 {
125 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
126     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
127 #endif
128 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
129     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
130 #endif
131 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
132     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
133 #endif
134 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
135     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
136 #endif
137 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
138     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
139 #endif
140 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
141     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
142 #endif
143 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
144     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
145 #endif
146 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
147     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
148 #endif
149 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
150     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
151 #endif
152 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
153     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
154 #endif
155 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
156     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
157 #endif
158     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
159 };
160 
161 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
162                         sizeof( ecp_supported_curves[0] )
163 
164 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
165 
166 /*
167  * List of supported curves and associated info
168  */
mbedtls_ecp_curve_list(void)169 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
170 {
171     return( ecp_supported_curves );
172 }
173 
174 /*
175  * List of supported curves, group ID only
176  */
mbedtls_ecp_grp_id_list(void)177 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
178 {
179     static int init_done = 0;
180 
181     if( ! init_done )
182     {
183         size_t i = 0;
184         const mbedtls_ecp_curve_info *curve_info;
185 
186         for( curve_info = mbedtls_ecp_curve_list();
187              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
188              curve_info++ )
189         {
190             ecp_supported_grp_id[i++] = curve_info->grp_id;
191         }
192         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
193 
194         init_done = 1;
195     }
196 
197     return( ecp_supported_grp_id );
198 }
199 
200 /*
201  * Get the curve info for the internal identifier
202  */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)203 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
204 {
205     const mbedtls_ecp_curve_info *curve_info;
206 
207     for( curve_info = mbedtls_ecp_curve_list();
208          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
209          curve_info++ )
210     {
211         if( curve_info->grp_id == grp_id )
212             return( curve_info );
213     }
214 
215     return( NULL );
216 }
217 
218 /*
219  * Get the curve info from the TLS identifier
220  */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)221 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
222 {
223     const mbedtls_ecp_curve_info *curve_info;
224 
225     for( curve_info = mbedtls_ecp_curve_list();
226          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
227          curve_info++ )
228     {
229         if( curve_info->tls_id == tls_id )
230             return( curve_info );
231     }
232 
233     return( NULL );
234 }
235 
236 /*
237  * Get the curve info from the name
238  */
mbedtls_ecp_curve_info_from_name(const char * name)239 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
240 {
241     const mbedtls_ecp_curve_info *curve_info;
242 
243     for( curve_info = mbedtls_ecp_curve_list();
244          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
245          curve_info++ )
246     {
247         if( strcmp( curve_info->name, name ) == 0 )
248             return( curve_info );
249     }
250 
251     return( NULL );
252 }
253 
254 /*
255  * Get the type of a curve
256  */
ecp_get_type(const mbedtls_ecp_group * grp)257 static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
258 {
259     if( grp->G.X.p == NULL )
260         return( ECP_TYPE_NONE );
261 
262     if( grp->G.Y.p == NULL )
263         return( ECP_TYPE_MONTGOMERY );
264     else
265         return( ECP_TYPE_SHORT_WEIERSTRASS );
266 }
267 
268 /*
269  * Initialize (the components of) a point
270  */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)271 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
272 {
273     if( pt == NULL )
274         return;
275 
276     mbedtls_mpi_init( &pt->X );
277     mbedtls_mpi_init( &pt->Y );
278     mbedtls_mpi_init( &pt->Z );
279 }
280 
281 /*
282  * Initialize (the components of) a group
283  */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)284 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
285 {
286     if( grp == NULL )
287         return;
288 
289     memset( grp, 0, sizeof( mbedtls_ecp_group ) );
290 }
291 
292 /*
293  * Initialize (the components of) a key pair
294  */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)295 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
296 {
297     if( key == NULL )
298         return;
299 
300     mbedtls_ecp_group_init( &key->grp );
301     mbedtls_mpi_init( &key->d );
302     mbedtls_ecp_point_init( &key->Q );
303 }
304 
305 /*
306  * Unallocate (the components of) a point
307  */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)308 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
309 {
310     if( pt == NULL )
311         return;
312 
313     mbedtls_mpi_free( &( pt->X ) );
314     mbedtls_mpi_free( &( pt->Y ) );
315     mbedtls_mpi_free( &( pt->Z ) );
316 }
317 
318 /*
319  * Unallocate (the components of) a group
320  */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)321 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
322 {
323     size_t i;
324 
325     if( grp == NULL )
326         return;
327 
328     if( grp->h != 1 )
329     {
330         mbedtls_mpi_free( &grp->P );
331         mbedtls_mpi_free( &grp->A );
332         mbedtls_mpi_free( &grp->B );
333         mbedtls_ecp_point_free( &grp->G );
334         mbedtls_mpi_free( &grp->N );
335     }
336 
337     if( grp->T != NULL )
338     {
339         for( i = 0; i < grp->T_size; i++ )
340             mbedtls_ecp_point_free( &grp->T[i] );
341         mbedtls_free( grp->T );
342     }
343 
344     mbedtls_zeroize( grp, sizeof( mbedtls_ecp_group ) );
345 }
346 
347 /*
348  * Unallocate (the components of) a key pair
349  */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)350 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
351 {
352     if( key == NULL )
353         return;
354 
355     mbedtls_ecp_group_free( &key->grp );
356     mbedtls_mpi_free( &key->d );
357     mbedtls_ecp_point_free( &key->Q );
358 }
359 
360 /*
361  * Copy the contents of a point
362  */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)363 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
364 {
365     int ret;
366 
367     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
368     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
369     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
370 
371 cleanup:
372     return( ret );
373 }
374 
375 /*
376  * Copy the contents of a group object
377  */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)378 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
379 {
380     return mbedtls_ecp_group_load( dst, src->id );
381 }
382 
383 /*
384  * Set point to zero
385  */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)386 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
387 {
388     int ret;
389 
390     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
391     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
392     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
393 
394 cleanup:
395     return( ret );
396 }
397 
398 /*
399  * Tell if a point is zero
400  */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)401 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
402 {
403     return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
404 }
405 
406 /*
407  * Compare two points lazyly
408  */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)409 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
410                            const mbedtls_ecp_point *Q )
411 {
412     if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
413         mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
414         mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
415     {
416         return( 0 );
417     }
418 
419     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
420 }
421 
422 /*
423  * Import a non-zero point from ASCII strings
424  */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)425 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
426                            const char *x, const char *y )
427 {
428     int ret;
429 
430     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
431     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
432     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
433 
434 cleanup:
435     return( ret );
436 }
437 
438 /*
439  * Export a point into unsigned binary data (SEC1 2.3.3)
440  */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)441 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P,
442                             int format, size_t *olen,
443                             unsigned char *buf, size_t buflen )
444 {
445     int ret = 0;
446     size_t plen;
447 
448     if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
449         format != MBEDTLS_ECP_PF_COMPRESSED )
450         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
451 
452     /*
453      * Common case: P == 0
454      */
455     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
456     {
457         if( buflen < 1 )
458             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
459 
460         buf[0] = 0x00;
461         *olen = 1;
462 
463         return( 0 );
464     }
465 
466     plen = mbedtls_mpi_size( &grp->P );
467 
468     if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
469     {
470         *olen = 2 * plen + 1;
471 
472         if( buflen < *olen )
473             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
474 
475         buf[0] = 0x04;
476         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
477         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
478     }
479     else if( format == MBEDTLS_ECP_PF_COMPRESSED )
480     {
481         *olen = plen + 1;
482 
483         if( buflen < *olen )
484             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
485 
486         buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
487         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
488     }
489 
490 cleanup:
491     return( ret );
492 }
493 
494 /*
495  * Import a point from unsigned binary data (SEC1 2.3.4)
496  */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)497 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
498                            const unsigned char *buf, size_t ilen )
499 {
500     int ret;
501     size_t plen;
502 
503     if( ilen < 1 )
504         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
505 
506     if( buf[0] == 0x00 )
507     {
508         if( ilen == 1 )
509             return( mbedtls_ecp_set_zero( pt ) );
510         else
511             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
512     }
513 
514     plen = mbedtls_mpi_size( &grp->P );
515 
516     if( buf[0] != 0x04 )
517         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
518 
519     if( ilen != 2 * plen + 1 )
520         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
521 
522     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
523     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
524     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
525 
526 cleanup:
527     return( ret );
528 }
529 
530 /*
531  * Import a point from a TLS ECPoint record (RFC 4492)
532  *      struct {
533  *          opaque point <1..2^8-1>;
534  *      } ECPoint;
535  */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)536 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
537                         const unsigned char **buf, size_t buf_len )
538 {
539     unsigned char data_len;
540     const unsigned char *buf_start;
541 
542     /*
543      * We must have at least two bytes (1 for length, at least one for data)
544      */
545     if( buf_len < 2 )
546         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
547 
548     data_len = *(*buf)++;
549     if( data_len < 1 || data_len > buf_len - 1 )
550         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
551 
552     /*
553      * Save buffer start for read_binary and update buf
554      */
555     buf_start = *buf;
556     *buf += data_len;
557 
558     return mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len );
559 }
560 
561 /*
562  * Export a point as a TLS ECPoint record (RFC 4492)
563  *      struct {
564  *          opaque point <1..2^8-1>;
565  *      } ECPoint;
566  */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)567 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
568                          int format, size_t *olen,
569                          unsigned char *buf, size_t blen )
570 {
571     int ret;
572 
573     /*
574      * buffer length must be at least one, for our length byte
575      */
576     if( blen < 1 )
577         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
578 
579     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
580                     olen, buf + 1, blen - 1) ) != 0 )
581         return( ret );
582 
583     /*
584      * write length to the first byte and update total length
585      */
586     buf[0] = (unsigned char) *olen;
587     ++*olen;
588 
589     return( 0 );
590 }
591 
592 /*
593  * Set a group from an ECParameters record (RFC 4492)
594  */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)595 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **buf, size_t len )
596 {
597     uint16_t tls_id;
598     const mbedtls_ecp_curve_info *curve_info;
599 
600     /*
601      * We expect at least three bytes (see below)
602      */
603     if( len < 3 )
604         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
605 
606     /*
607      * First byte is curve_type; only named_curve is handled
608      */
609     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
610         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
611 
612     /*
613      * Next two bytes are the namedcurve value
614      */
615     tls_id = *(*buf)++;
616     tls_id <<= 8;
617     tls_id |= *(*buf)++;
618 
619     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
620         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
621 
622     return mbedtls_ecp_group_load( grp, curve_info->grp_id );
623 }
624 
625 /*
626  * Write the ECParameters record corresponding to a group (RFC 4492)
627  */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)628 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
629                          unsigned char *buf, size_t blen )
630 {
631     const mbedtls_ecp_curve_info *curve_info;
632 
633     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
634         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
635 
636     /*
637      * We are going to write 3 bytes (see below)
638      */
639     *olen = 3;
640     if( blen < *olen )
641         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
642 
643     /*
644      * First byte is curve_type, always named_curve
645      */
646     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
647 
648     /*
649      * Next two bytes are the namedcurve value
650      */
651     buf[0] = curve_info->tls_id >> 8;
652     buf[1] = curve_info->tls_id & 0xFF;
653 
654     return( 0 );
655 }
656 
657 /*
658  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
659  * See the documentation of struct mbedtls_ecp_group.
660  *
661  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
662  */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)663 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
664 {
665     int ret;
666 
667     if( grp->modp == NULL )
668         return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
669 
670     /* N->s < 0 is a much faster test, which fails only if N is 0 */
671     if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
672         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
673     {
674         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
675     }
676 
677     MBEDTLS_MPI_CHK( grp->modp( N ) );
678 
679     /* N->s < 0 is a much faster test, which fails only if N is 0 */
680     while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
681         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
682 
683     while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
684         /* we known P, N and the result are positive */
685         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
686 
687 cleanup:
688     return( ret );
689 }
690 
691 /*
692  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
693  *
694  * In order to guarantee that, we need to ensure that operands of
695  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
696  * bring the result back to this range.
697  *
698  * The following macros are shortcuts for doing that.
699  */
700 
701 /*
702  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
703  */
704 #if defined(MBEDTLS_SELF_TEST)
705 #define INC_MUL_COUNT   mul_count++;
706 #else
707 #define INC_MUL_COUNT
708 #endif
709 
710 #define MOD_MUL( N )    do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
711                         while( 0 )
712 
713 /*
714  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
715  * N->s < 0 is a very fast test, which fails only if N is 0
716  */
717 #define MOD_SUB( N )                                \
718     while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 )   \
719         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
720 
721 /*
722  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
723  * We known P, N and the result are positive, so sub_abs is correct, and
724  * a bit faster.
725  */
726 #define MOD_ADD( N )                                \
727     while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \
728         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
729 
730 #if defined(ECP_SHORTWEIERSTRASS)
731 /*
732  * For curves in short Weierstrass form, we do all the internal operations in
733  * Jacobian coordinates.
734  *
735  * For multiplication, we'll use a comb method with coutermeasueres against
736  * SPA, hence timing attacks.
737  */
738 
739 /*
740  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
741  * Cost: 1N := 1I + 3M + 1S
742  */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)743 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
744 {
745     int ret;
746     mbedtls_mpi Zi, ZZi;
747 
748     if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
749         return( 0 );
750 
751     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
752 
753     /*
754      * X = X / Z^2  mod p
755      */
756     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
757     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
758     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );
759 
760     /*
761      * Y = Y / Z^3  mod p
762      */
763     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
764     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );
765 
766     /*
767      * Z = 1
768      */
769     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
770 
771 cleanup:
772 
773     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
774 
775     return( ret );
776 }
777 
778 /*
779  * Normalize jacobian coordinates of an array of (pointers to) points,
780  * using Montgomery's trick to perform only one inversion mod P.
781  * (See for example Cohen's "A Course in Computational Algebraic Number
782  * Theory", Algorithm 10.3.4.)
783  *
784  * Warning: fails (returning an error) if one of the points is zero!
785  * This should never happen, see choice of w in ecp_mul_comb().
786  *
787  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
788  */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t t_len)789 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
790                                    mbedtls_ecp_point *T[], size_t t_len )
791 {
792     int ret;
793     size_t i;
794     mbedtls_mpi *c, u, Zi, ZZi;
795 
796     if( t_len < 2 )
797         return( ecp_normalize_jac( grp, *T ) );
798 
799     if( ( c = mbedtls_calloc( t_len, sizeof( mbedtls_mpi ) ) ) == NULL )
800         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
801 
802     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
803 
804     /*
805      * c[i] = Z_0 * ... * Z_i
806      */
807     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
808     for( i = 1; i < t_len; i++ )
809     {
810         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
811         MOD_MUL( c[i] );
812     }
813 
814     /*
815      * u = 1 / (Z_0 * ... * Z_n) mod P
816      */
817     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
818 
819     for( i = t_len - 1; ; i-- )
820     {
821         /*
822          * Zi = 1 / Z_i mod p
823          * u = 1 / (Z_0 * ... * Z_i) mod P
824          */
825         if( i == 0 ) {
826             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
827         }
828         else
829         {
830             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
831             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
832         }
833 
834         /*
835          * proceed as in normalize()
836          */
837         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
838         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
839         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
840         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );
841 
842         /*
843          * Post-precessing: reclaim some memory by shrinking coordinates
844          * - not storing Z (always 1)
845          * - shrinking other coordinates, but still keeping the same number of
846          *   limbs as P, as otherwise it will too likely be regrown too fast.
847          */
848         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
849         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
850         mbedtls_mpi_free( &T[i]->Z );
851 
852         if( i == 0 )
853             break;
854     }
855 
856 cleanup:
857 
858     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
859     for( i = 0; i < t_len; i++ )
860         mbedtls_mpi_free( &c[i] );
861     mbedtls_free( c );
862 
863     return( ret );
864 }
865 
866 /*
867  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
868  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
869  */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)870 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
871                             mbedtls_ecp_point *Q,
872                             unsigned char inv )
873 {
874     int ret;
875     unsigned char nonzero;
876     mbedtls_mpi mQY;
877 
878     mbedtls_mpi_init( &mQY );
879 
880     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
881     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
882     nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
883     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
884 
885 cleanup:
886     mbedtls_mpi_free( &mQY );
887 
888     return( ret );
889 }
890 
891 /*
892  * Point doubling R = 2 P, Jacobian coordinates
893  *
894  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
895  *
896  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
897  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
898  *
899  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
900  *
901  * Cost: 1D := 3M + 4S          (A ==  0)
902  *             4M + 4S          (A == -3)
903  *             3M + 6S + 1a     otherwise
904  */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P)905 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
906                            const mbedtls_ecp_point *P )
907 {
908     int ret;
909     mbedtls_mpi M, S, T, U;
910 
911 #if defined(MBEDTLS_SELF_TEST)
912     dbl_count++;
913 #endif
914 
915     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
916 
917     /* Special case for A = -3 */
918     if( grp->A.p == NULL )
919     {
920         /* M = 3(X + Z^2)(X - Z^2) */
921         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
922         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T );
923         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U );
924         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );
925         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
926     }
927     else
928     {
929         /* M = 3.X^2 */
930         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S );
931         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
932 
933         /* Optimize away for "koblitz" curves with A = 0 */
934         if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
935         {
936             /* M += A.Z^4 */
937             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
938             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );
939             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S );
940             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );
941         }
942     }
943 
944     /* S = 4.X.Y^2 */
945     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T );
946     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );
947     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S );
948     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );
949 
950     /* U = 8.Y^4 */
951     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );
952     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
953 
954     /* T = M^2 - 2.S */
955     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );
956     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
957     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
958 
959     /* S = M(S - T) - U */
960     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );
961     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );
962     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );
963 
964     /* U = 2.Y.Z */
965     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U );
966     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
967 
968     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
969     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
970     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
971 
972 cleanup:
973     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
974 
975     return( ret );
976 }
977 
978 /*
979  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
980  *
981  * The coordinates of Q must be normalized (= affine),
982  * but those of P don't need to. R is not normalized.
983  *
984  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
985  * None of these cases can happen as intermediate step in ecp_mul_comb():
986  * - at each step, P, Q and R are multiples of the base point, the factor
987  *   being less than its order, so none of them is zero;
988  * - Q is an odd multiple of the base point, P an even multiple,
989  *   due to the choice of precomputed points in the modified comb method.
990  * So branches for these cases do not leak secret information.
991  *
992  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
993  *
994  * Cost: 1A := 8M + 3S
995  */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)996 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
997                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
998 {
999     int ret;
1000     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1001 
1002 #if defined(MBEDTLS_SELF_TEST)
1003     add_count++;
1004 #endif
1005 
1006     /*
1007      * Trivial cases: P == 0 or Q == 0 (case 1)
1008      */
1009     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1010         return( mbedtls_ecp_copy( R, Q ) );
1011 
1012     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1013         return( mbedtls_ecp_copy( R, P ) );
1014 
1015     /*
1016      * Make sure Q coordinates are normalized
1017      */
1018     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1019         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1020 
1021     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1022     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1023 
1024     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
1025     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
1026     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
1027     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
1028     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
1029     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );
1030 
1031     /* Special cases (2) and (3) */
1032     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1033     {
1034         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1035         {
1036             ret = ecp_double_jac( grp, R, P );
1037             goto cleanup;
1038         }
1039         else
1040         {
1041             ret = mbedtls_ecp_set_zero( R );
1042             goto cleanup;
1043         }
1044     }
1045 
1046     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
1047     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
1048     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
1049     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
1050     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
1051     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
1052     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
1053     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
1054     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
1055     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
1056     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
1057     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
1058 
1059     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1060     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1061     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1062 
1063 cleanup:
1064 
1065     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1066     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1067 
1068     return( ret );
1069 }
1070 
1071 /*
1072  * Randomize jacobian coordinates:
1073  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1074  * This is sort of the reverse operation of ecp_normalize_jac().
1075  *
1076  * This countermeasure was first suggested in [2].
1077  */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1078 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1079                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1080 {
1081     int ret;
1082     mbedtls_mpi l, ll;
1083     size_t p_size = ( grp->pbits + 7 ) / 8;
1084     int count = 0;
1085 
1086     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1087 
1088     /* Generate l such that 1 < l < p */
1089     do
1090     {
1091         mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng );
1092 
1093         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1094             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1095 
1096         if( count++ > 10 )
1097             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1098     }
1099     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1100 
1101     /* Z = l * Z */
1102     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );
1103 
1104     /* X = l^2 * X */
1105     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
1106     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );
1107 
1108     /* Y = l^3 * Y */
1109     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
1110     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );
1111 
1112 cleanup:
1113     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1114 
1115     return( ret );
1116 }
1117 
1118 /*
1119  * Check and define parameters used by the comb method (see below for details)
1120  */
1121 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1122 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1123 #endif
1124 
1125 /* d = ceil( n / w ) */
1126 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1127 
1128 /* number of precomputed points */
1129 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1130 
1131 /*
1132  * Compute the representation of m that will be used with our comb method.
1133  *
1134  * The basic comb method is described in GECC 3.44 for example. We use a
1135  * modified version that provides resistance to SPA by avoiding zero
1136  * digits in the representation as in [3]. We modify the method further by
1137  * requiring that all K_i be odd, which has the small cost that our
1138  * representation uses one more K_i, due to carries.
1139  *
1140  * Also, for the sake of compactness, only the seven low-order bits of x[i]
1141  * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1142  * the paper): it is set if and only if if s_i == -1;
1143  *
1144  * Calling conventions:
1145  * - x is an array of size d + 1
1146  * - w is the size, ie number of teeth, of the comb, and must be between
1147  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1148  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1149  *   (the result will be incorrect if these assumptions are not satisfied)
1150  */
ecp_comb_fixed(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1151 static void ecp_comb_fixed( unsigned char x[], size_t d,
1152                             unsigned char w, const mbedtls_mpi *m )
1153 {
1154     size_t i, j;
1155     unsigned char c, cc, adjust;
1156 
1157     memset( x, 0, d+1 );
1158 
1159     /* First get the classical comb values (except for x_d = 0) */
1160     for( i = 0; i < d; i++ )
1161         for( j = 0; j < w; j++ )
1162             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1163 
1164     /* Now make sure x_1 .. x_d are odd */
1165     c = 0;
1166     for( i = 1; i <= d; i++ )
1167     {
1168         /* Add carry and update it */
1169         cc   = x[i] & c;
1170         x[i] = x[i] ^ c;
1171         c = cc;
1172 
1173         /* Adjust if needed, avoiding branches */
1174         adjust = 1 - ( x[i] & 0x01 );
1175         c   |= x[i] & ( x[i-1] * adjust );
1176         x[i] = x[i] ^ ( x[i-1] * adjust );
1177         x[i-1] |= adjust << 7;
1178     }
1179 }
1180 
1181 /*
1182  * Precompute points for the comb method
1183  *
1184  * If i = i_{w-1} ... i_1 is the binary representation of i, then
1185  * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
1186  *
1187  * T must be able to hold 2^{w - 1} elements
1188  *
1189  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1190  */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d)1191 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1192                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1193                                 unsigned char w, size_t d )
1194 {
1195     int ret;
1196     unsigned char i, k;
1197     size_t j;
1198     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1199 
1200     /*
1201      * Set T[0] = P and
1202      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1203      */
1204     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1205 
1206     k = 0;
1207     for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
1208     {
1209         cur = T + i;
1210         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1211         for( j = 0; j < d; j++ )
1212             MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1213 
1214         TT[k++] = cur;
1215     }
1216 
1217     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
1218 
1219     /*
1220      * Compute the remaining ones using the minimal number of additions
1221      * Be careful to update T[2^l] only after using it!
1222      */
1223     k = 0;
1224     for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
1225     {
1226         j = i;
1227         while( j-- )
1228         {
1229             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1230             TT[k++] = &T[i + j];
1231         }
1232     }
1233 
1234     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
1235 
1236 cleanup:
1237     return( ret );
1238 }
1239 
1240 /*
1241  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1242  */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char t_len,unsigned char i)1243 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1244                             const mbedtls_ecp_point T[], unsigned char t_len,
1245                             unsigned char i )
1246 {
1247     int ret;
1248     unsigned char ii, j;
1249 
1250     /* Ignore the "sign" bit and scale down */
1251     ii =  ( i & 0x7Fu ) >> 1;
1252 
1253     /* Read the whole table to thwart cache-based timing attacks */
1254     for( j = 0; j < t_len; j++ )
1255     {
1256         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1257         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1258     }
1259 
1260     /* Safely invert result if i is "negative" */
1261     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1262 
1263 cleanup:
1264     return( ret );
1265 }
1266 
1267 /*
1268  * Core multiplication algorithm for the (modified) comb method.
1269  * This part is actually common with the basic comb method (GECC 3.44)
1270  *
1271  * Cost: d A + d D + 1 R
1272  */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char t_len,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1273 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1274                               const mbedtls_ecp_point T[], unsigned char t_len,
1275                               const unsigned char x[], size_t d,
1276                               int (*f_rng)(void *, unsigned char *, size_t),
1277                               void *p_rng )
1278 {
1279     int ret;
1280     mbedtls_ecp_point Txi;
1281     size_t i;
1282 
1283     mbedtls_ecp_point_init( &Txi );
1284 
1285     /* Start with a non-zero point and randomize its coordinates */
1286     i = d;
1287     MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
1288     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1289     if( f_rng != 0 )
1290         MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1291 
1292     while( i-- != 0 )
1293     {
1294         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
1295         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
1296         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1297     }
1298 
1299 cleanup:
1300     mbedtls_ecp_point_free( &Txi );
1301 
1302     return( ret );
1303 }
1304 
1305 /*
1306  * Multiplication using the comb method,
1307  * for curves in short Weierstrass form
1308  */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1309 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1310                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1311                          int (*f_rng)(void *, unsigned char *, size_t),
1312                          void *p_rng )
1313 {
1314     int ret;
1315     unsigned char w, m_is_odd, p_eq_g, pre_len, i;
1316     size_t d;
1317     unsigned char k[COMB_MAX_D + 1];
1318     mbedtls_ecp_point *T;
1319     mbedtls_mpi M, mm;
1320 
1321     mbedtls_mpi_init( &M );
1322     mbedtls_mpi_init( &mm );
1323 
1324     /* we need N to be odd to trnaform m in an odd number, check now */
1325     if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1326         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1327 
1328     /*
1329      * Minimize the number of multiplications, that is minimize
1330      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1331      * (see costs of the various parts, with 1S = 1M)
1332      */
1333     w = grp->nbits >= 384 ? 5 : 4;
1334 
1335     /*
1336      * If P == G, pre-compute a bit more, since this may be re-used later.
1337      * Just adding one avoids upping the cost of the first mul too much,
1338      * and the memory cost too.
1339      */
1340 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
1341     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1342                mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1343     if( p_eq_g )
1344         w++;
1345 #else
1346     p_eq_g = 0;
1347 #endif
1348 
1349     /*
1350      * Make sure w is within bounds.
1351      * (The last test is useful only for very small curves in the test suite.)
1352      */
1353     if( w > MBEDTLS_ECP_WINDOW_SIZE )
1354         w = MBEDTLS_ECP_WINDOW_SIZE;
1355     if( w >= grp->nbits )
1356         w = 2;
1357 
1358     /* Other sizes that depend on w */
1359     pre_len = 1U << ( w - 1 );
1360     d = ( grp->nbits + w - 1 ) / w;
1361 
1362     /*
1363      * Prepare precomputed points: if P == G we want to
1364      * use grp->T if already initialized, or initialize it.
1365      */
1366     T = p_eq_g ? grp->T : NULL;
1367 
1368     if( T == NULL )
1369     {
1370         T = mbedtls_calloc( pre_len, sizeof( mbedtls_ecp_point ) );
1371         if( T == NULL )
1372         {
1373             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
1374             goto cleanup;
1375         }
1376 
1377         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
1378 
1379         if( p_eq_g )
1380         {
1381             grp->T = T;
1382             grp->T_size = pre_len;
1383         }
1384     }
1385 
1386     /*
1387      * Make sure M is odd (M = m or M = N - m, since N is odd)
1388      * using the fact that m * P = - (N - m) * P
1389      */
1390     m_is_odd = ( mbedtls_mpi_get_bit( m, 0 ) == 1 );
1391     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1392     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1393     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
1394 
1395     /*
1396      * Go for comb multiplication, R = M * P
1397      */
1398     ecp_comb_fixed( k, d, w, &M );
1399     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
1400 
1401     /*
1402      * Now get m * P from M * P and normalize it
1403      */
1404     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
1405     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
1406 
1407 cleanup:
1408 
1409     if( T != NULL && ! p_eq_g )
1410     {
1411         for( i = 0; i < pre_len; i++ )
1412             mbedtls_ecp_point_free( &T[i] );
1413         mbedtls_free( T );
1414     }
1415 
1416     mbedtls_mpi_free( &M );
1417     mbedtls_mpi_free( &mm );
1418 
1419     if( ret != 0 )
1420         mbedtls_ecp_point_free( R );
1421 
1422     return( ret );
1423 }
1424 
1425 #endif /* ECP_SHORTWEIERSTRASS */
1426 
1427 #if defined(ECP_MONTGOMERY)
1428 /*
1429  * For Montgomery curves, we do all the internal arithmetic in projective
1430  * coordinates. Import/export of points uses only the x coordinates, which is
1431  * internaly represented as X / Z.
1432  *
1433  * For scalar multiplication, we'll use a Montgomery ladder.
1434  */
1435 
1436 /*
1437  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
1438  * Cost: 1M + 1I
1439  */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)1440 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
1441 {
1442     int ret;
1443 
1444     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
1445     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
1446     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
1447 
1448 cleanup:
1449     return( ret );
1450 }
1451 
1452 /*
1453  * Randomize projective x/z coordinates:
1454  * (X, Z) -> (l X, l Z) for random l
1455  * This is sort of the reverse operation of ecp_normalize_mxz().
1456  *
1457  * This countermeasure was first suggested in [2].
1458  * Cost: 2M
1459  */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1460 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
1461                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1462 {
1463     int ret;
1464     mbedtls_mpi l;
1465     size_t p_size = ( grp->pbits + 7 ) / 8;
1466     int count = 0;
1467 
1468     mbedtls_mpi_init( &l );
1469 
1470     /* Generate l such that 1 < l < p */
1471     do
1472     {
1473         mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng );
1474 
1475         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1476             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1477 
1478         if( count++ > 10 )
1479             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1480     }
1481     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1482 
1483     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
1484     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
1485 
1486 cleanup:
1487     mbedtls_mpi_free( &l );
1488 
1489     return( ret );
1490 }
1491 
1492 /*
1493  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
1494  * for Montgomery curves in x/z coordinates.
1495  *
1496  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
1497  * with
1498  * d =  X1
1499  * P = (X2, Z2)
1500  * Q = (X3, Z3)
1501  * R = (X4, Z4)
1502  * S = (X5, Z5)
1503  * and eliminating temporary variables tO, ..., t4.
1504  *
1505  * Cost: 5M + 4S
1506  */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d)1507 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
1508                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
1509                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1510                                const mbedtls_mpi *d )
1511 {
1512     int ret;
1513     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
1514 
1515     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
1516     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
1517     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
1518 
1519     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );
1520     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
1521     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );
1522     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
1523     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
1524     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );
1525     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );
1526     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
1527     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
1528     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );
1529     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );
1530     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );
1531     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );
1532     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );
1533     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );
1534     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );
1535     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );
1536     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );
1537 
1538 cleanup:
1539     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
1540     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
1541     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
1542 
1543     return( ret );
1544 }
1545 
1546 /*
1547  * Multiplication with Montgomery ladder in x/z coordinates,
1548  * for curves in Montgomery form
1549  */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1550 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1551                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1552                         int (*f_rng)(void *, unsigned char *, size_t),
1553                         void *p_rng )
1554 {
1555     int ret;
1556     size_t i;
1557     unsigned char b;
1558     mbedtls_ecp_point RP;
1559     mbedtls_mpi PX;
1560 
1561     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
1562 
1563     /* Save PX and read from P before writing to R, in case P == R */
1564     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
1565     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
1566 
1567     /* Set R to zero in modified x/z coordinates */
1568     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
1569     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
1570     mbedtls_mpi_free( &R->Y );
1571 
1572     /* RP.X might be sligtly larger than P, so reduce it */
1573     MOD_ADD( RP.X );
1574 
1575     /* Randomize coordinates of the starting point */
1576     if( f_rng != NULL )
1577         MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
1578 
1579     /* Loop invariant: R = result so far, RP = R + P */
1580     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
1581     while( i-- > 0 )
1582     {
1583         b = mbedtls_mpi_get_bit( m, i );
1584         /*
1585          *  if (b) R = 2R + P else R = 2R,
1586          * which is:
1587          *  if (b) double_add( RP, R, RP, R )
1588          *  else   double_add( R, RP, R, RP )
1589          * but using safe conditional swaps to avoid leaks
1590          */
1591         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
1592         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
1593         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
1594         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
1595         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
1596     }
1597 
1598     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
1599 
1600 cleanup:
1601     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
1602 
1603     return( ret );
1604 }
1605 
1606 #endif /* ECP_MONTGOMERY */
1607 
1608 /*
1609  * Multiplication R = m * P
1610  */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1611 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1612              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1613              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1614 {
1615     int ret;
1616 
1617     /* Common sanity checks */
1618     if( mbedtls_mpi_cmp_int( &P->Z, 1 ) != 0 )
1619         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1620 
1621     if( ( ret = mbedtls_ecp_check_privkey( grp, m ) ) != 0 ||
1622         ( ret = mbedtls_ecp_check_pubkey( grp, P ) ) != 0 )
1623         return( ret );
1624 
1625 #if defined(ECP_MONTGOMERY)
1626     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1627         return( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
1628 #endif
1629 #if defined(ECP_SHORTWEIERSTRASS)
1630     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1631         return( ecp_mul_comb( grp, R, m, P, f_rng, p_rng ) );
1632 #endif
1633     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1634 }
1635 
1636 #if defined(ECP_SHORTWEIERSTRASS)
1637 /*
1638  * Check that an affine point is valid as a public key,
1639  * short weierstrass curves (SEC1 3.2.3.1)
1640  */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)1641 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1642 {
1643     int ret;
1644     mbedtls_mpi YY, RHS;
1645 
1646     /* pt coordinates must be normalized for our checks */
1647     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
1648         mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
1649         mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
1650         mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
1651         return( MBEDTLS_ERR_ECP_INVALID_KEY );
1652 
1653     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
1654 
1655     /*
1656      * YY = Y^2
1657      * RHS = X (X^2 + A) + B = X^3 + A X + B
1658      */
1659     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );
1660     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );
1661 
1662     /* Special case for A = -3 */
1663     if( grp->A.p == NULL )
1664     {
1665         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
1666     }
1667     else
1668     {
1669         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );
1670     }
1671 
1672     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );
1673     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );
1674 
1675     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
1676         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
1677 
1678 cleanup:
1679 
1680     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
1681 
1682     return( ret );
1683 }
1684 #endif /* ECP_SHORTWEIERSTRASS */
1685 
1686 /*
1687  * R = m * P with shortcuts for m == 1 and m == -1
1688  * NOT constant-time - ONLY for short Weierstrass!
1689  */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P)1690 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
1691                                       mbedtls_ecp_point *R,
1692                                       const mbedtls_mpi *m,
1693                                       const mbedtls_ecp_point *P )
1694 {
1695     int ret;
1696 
1697     if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
1698     {
1699         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
1700     }
1701     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
1702     {
1703         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
1704         if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
1705             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
1706     }
1707     else
1708     {
1709         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );
1710     }
1711 
1712 cleanup:
1713     return( ret );
1714 }
1715 
1716 /*
1717  * Linear combination
1718  * NOT constant-time
1719  */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)1720 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1721              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1722              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
1723 {
1724     int ret;
1725     mbedtls_ecp_point mP;
1726 
1727     if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
1728         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1729 
1730     mbedtls_ecp_point_init( &mP );
1731 
1732     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, &mP, m, P ) );
1733     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, R,   n, Q ) );
1734 
1735     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) );
1736     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
1737 
1738 cleanup:
1739     mbedtls_ecp_point_free( &mP );
1740 
1741     return( ret );
1742 }
1743 
1744 
1745 #if defined(ECP_MONTGOMERY)
1746 /*
1747  * Check validity of a public key for Montgomery curves with x-only schemes
1748  */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)1749 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1750 {
1751     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
1752     if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
1753         return( MBEDTLS_ERR_ECP_INVALID_KEY );
1754 
1755     return( 0 );
1756 }
1757 #endif /* ECP_MONTGOMERY */
1758 
1759 /*
1760  * Check that a point is valid as a public key
1761  */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)1762 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1763 {
1764     /* Must use affine coordinates */
1765     if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
1766         return( MBEDTLS_ERR_ECP_INVALID_KEY );
1767 
1768 #if defined(ECP_MONTGOMERY)
1769     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1770         return( ecp_check_pubkey_mx( grp, pt ) );
1771 #endif
1772 #if defined(ECP_SHORTWEIERSTRASS)
1773     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1774         return( ecp_check_pubkey_sw( grp, pt ) );
1775 #endif
1776     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1777 }
1778 
1779 /*
1780  * Check that an mbedtls_mpi is valid as a private key
1781  */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)1782 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *d )
1783 {
1784 #if defined(ECP_MONTGOMERY)
1785     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1786     {
1787         /* see [Curve25519] page 5 */
1788         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
1789             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
1790             mbedtls_mpi_get_bit( d, 2 ) != 0 ||
1791             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
1792             return( MBEDTLS_ERR_ECP_INVALID_KEY );
1793         else
1794             return( 0 );
1795     }
1796 #endif /* ECP_MONTGOMERY */
1797 #if defined(ECP_SHORTWEIERSTRASS)
1798     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1799     {
1800         /* see SEC1 3.2 */
1801         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
1802             mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
1803             return( MBEDTLS_ERR_ECP_INVALID_KEY );
1804         else
1805             return( 0 );
1806     }
1807 #endif /* ECP_SHORTWEIERSTRASS */
1808 
1809     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1810 }
1811 
1812 /*
1813  * Generate a keypair with configurable base point
1814  */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1815 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
1816                      const mbedtls_ecp_point *G,
1817                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
1818                      int (*f_rng)(void *, unsigned char *, size_t),
1819                      void *p_rng )
1820 {
1821     int ret;
1822     size_t n_size = ( grp->nbits + 7 ) / 8;
1823 
1824 #if defined(ECP_MONTGOMERY)
1825     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1826     {
1827         /* [M225] page 5 */
1828         size_t b;
1829 
1830         do {
1831             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
1832         } while( mbedtls_mpi_bitlen( d ) == 0);
1833 
1834         /* Make sure the most significant bit is nbits */
1835         b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
1836         if( b > grp->nbits )
1837             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
1838         else
1839             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
1840 
1841         /* Make sure the last three bits are unset */
1842         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
1843         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
1844         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
1845     }
1846     else
1847 #endif /* ECP_MONTGOMERY */
1848 #if defined(ECP_SHORTWEIERSTRASS)
1849     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1850     {
1851         /* SEC1 3.2.1: Generate d such that 1 <= n < N */
1852         int count = 0;
1853         unsigned char rnd[MBEDTLS_ECP_MAX_BYTES];
1854 
1855         /*
1856          * Match the procedure given in RFC 6979 (deterministic ECDSA):
1857          * - use the same byte ordering;
1858          * - keep the leftmost nbits bits of the generated octet string;
1859          * - try until result is in the desired range.
1860          * This also avoids any biais, which is especially important for ECDSA.
1861          */
1862         do
1863         {
1864             MBEDTLS_MPI_CHK( f_rng( p_rng, rnd, n_size ) );
1865             MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( d, rnd, n_size ) );
1866             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
1867 
1868             /*
1869              * Each try has at worst a probability 1/2 of failing (the msb has
1870              * a probability 1/2 of being 0, and then the result will be < N),
1871              * so after 30 tries failure probability is a most 2**(-30).
1872              *
1873              * For most curves, 1 try is enough with overwhelming probability,
1874              * since N starts with a lot of 1s in binary, but some curves
1875              * such as secp224k1 are actually very close to the worst case.
1876              */
1877             if( ++count > 30 )
1878                 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1879         }
1880         while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
1881                mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
1882     }
1883     else
1884 #endif /* ECP_SHORTWEIERSTRASS */
1885         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1886 
1887 cleanup:
1888     if( ret != 0 )
1889         return( ret );
1890 
1891     return( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
1892 }
1893 
1894 /*
1895  * Generate key pair, wrapper for conventional base point
1896  */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1897 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
1898                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
1899                              int (*f_rng)(void *, unsigned char *, size_t),
1900                              void *p_rng )
1901 {
1902     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
1903 }
1904 
1905 /*
1906  * Generate a keypair, prettier wrapper
1907  */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1908 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
1909                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1910 {
1911     int ret;
1912 
1913     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
1914         return( ret );
1915 
1916     return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
1917 }
1918 
1919 /*
1920  * Check a public-private key pair
1921  */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv)1922 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
1923 {
1924     int ret;
1925     mbedtls_ecp_point Q;
1926     mbedtls_ecp_group grp;
1927 
1928     if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
1929         pub->grp.id != prv->grp.id ||
1930         mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
1931         mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
1932         mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
1933     {
1934         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1935     }
1936 
1937     mbedtls_ecp_point_init( &Q );
1938     mbedtls_ecp_group_init( &grp );
1939 
1940     /* mbedtls_ecp_mul() needs a non-const group... */
1941     mbedtls_ecp_group_copy( &grp, &prv->grp );
1942 
1943     /* Also checks d is valid */
1944     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
1945 
1946     if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
1947         mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
1948         mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
1949     {
1950         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1951         goto cleanup;
1952     }
1953 
1954 cleanup:
1955     mbedtls_ecp_point_free( &Q );
1956     mbedtls_ecp_group_free( &grp );
1957 
1958     return( ret );
1959 }
1960 
1961 #if defined(MBEDTLS_SELF_TEST)
1962 
1963 /*
1964  * Checkup routine
1965  */
mbedtls_ecp_self_test(int verbose)1966 int mbedtls_ecp_self_test( int verbose )
1967 {
1968     int ret;
1969     size_t i;
1970     mbedtls_ecp_group grp;
1971     mbedtls_ecp_point R, P;
1972     mbedtls_mpi m;
1973     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
1974     /* exponents especially adapted for secp192r1 */
1975     const char *exponents[] =
1976     {
1977         "000000000000000000000000000000000000000000000001", /* one */
1978         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
1979         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
1980         "400000000000000000000000000000000000000000000000", /* one and zeros */
1981         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
1982         "555555555555555555555555555555555555555555555555", /* 101010... */
1983     };
1984 
1985     mbedtls_ecp_group_init( &grp );
1986     mbedtls_ecp_point_init( &R );
1987     mbedtls_ecp_point_init( &P );
1988     mbedtls_mpi_init( &m );
1989 
1990     /* Use secp192r1 if available, or any available curve */
1991 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
1992     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
1993 #else
1994     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
1995 #endif
1996 
1997     if( verbose != 0 )
1998         mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );
1999 
2000     /* Do a dummy multiplication first to trigger precomputation */
2001     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
2002     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2003 
2004     add_count = 0;
2005     dbl_count = 0;
2006     mul_count = 0;
2007     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2008     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2009 
2010     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2011     {
2012         add_c_prev = add_count;
2013         dbl_c_prev = dbl_count;
2014         mul_c_prev = mul_count;
2015         add_count = 0;
2016         dbl_count = 0;
2017         mul_count = 0;
2018 
2019         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2020         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2021 
2022         if( add_count != add_c_prev ||
2023             dbl_count != dbl_c_prev ||
2024             mul_count != mul_c_prev )
2025         {
2026             if( verbose != 0 )
2027                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2028 
2029             ret = 1;
2030             goto cleanup;
2031         }
2032     }
2033 
2034     if( verbose != 0 )
2035         mbedtls_printf( "passed\n" );
2036 
2037     if( verbose != 0 )
2038         mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );
2039     /* We computed P = 2G last time, use it */
2040 
2041     add_count = 0;
2042     dbl_count = 0;
2043     mul_count = 0;
2044     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2045     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2046 
2047     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2048     {
2049         add_c_prev = add_count;
2050         dbl_c_prev = dbl_count;
2051         mul_c_prev = mul_count;
2052         add_count = 0;
2053         dbl_count = 0;
2054         mul_count = 0;
2055 
2056         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2057         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2058 
2059         if( add_count != add_c_prev ||
2060             dbl_count != dbl_c_prev ||
2061             mul_count != mul_c_prev )
2062         {
2063             if( verbose != 0 )
2064                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2065 
2066             ret = 1;
2067             goto cleanup;
2068         }
2069     }
2070 
2071     if( verbose != 0 )
2072         mbedtls_printf( "passed\n" );
2073 
2074 cleanup:
2075 
2076     if( ret < 0 && verbose != 0 )
2077         mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
2078 
2079     mbedtls_ecp_group_free( &grp );
2080     mbedtls_ecp_point_free( &R );
2081     mbedtls_ecp_point_free( &P );
2082     mbedtls_mpi_free( &m );
2083 
2084     if( verbose != 0 )
2085         mbedtls_printf( "\n" );
2086 
2087     return( ret );
2088 }
2089 
2090 #endif /* MBEDTLS_SELF_TEST */
2091 
2092 #endif /* MBEDTLS_ECP_C */
2093