1 /*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 /*
21 * References:
22 *
23 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
24 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
25 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
26 * RFC 4492 for the related TLS structures and constants
27 * RFC 7748 for the Curve448 and Curve25519 curve definitions
28 *
29 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
30 *
31 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
32 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
33 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
34 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
35 *
36 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
37 * render ECC resistant against Side Channel Attacks. IACR Cryptology
38 * ePrint Archive, 2004, vol. 2004, p. 342.
39 * <http://eprint.iacr.org/2004/342.pdf>
40 */
41
42 #include "common.h"
43
44 /**
45 * \brief Function level alternative implementation.
46 *
47 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
48 * replace certain functions in this module. The alternative implementations are
49 * typically hardware accelerators and need to activate the hardware before the
50 * computation starts and deactivate it after it finishes. The
51 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
52 * this purpose.
53 *
54 * To preserve the correct functionality the following conditions must hold:
55 *
56 * - The alternative implementation must be activated by
57 * mbedtls_internal_ecp_init() before any of the replaceable functions is
58 * called.
59 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
60 * implementation is activated.
61 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
62 * implementation is activated.
63 * - Public functions must not return while the alternative implementation is
64 * activated.
65 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
66 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
67 * \endcode ensures that the alternative implementation supports the current
68 * group.
69 */
70 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
71 #endif
72
73 #if defined(MBEDTLS_ECP_C)
74
75 #include "mbedtls/ecp.h"
76 #include "mbedtls/threading.h"
77 #include "mbedtls/platform_util.h"
78 #include "mbedtls/error.h"
79
80 #include "bn_mul.h"
81 #include "ecp_invasive.h"
82
83 #include <string.h>
84
85 #if !defined(MBEDTLS_ECP_ALT)
86
87 #include "mbedtls/platform.h"
88
89 #include "ecp_internal_alt.h"
90
91 #if defined(MBEDTLS_SELF_TEST)
92 /*
93 * Counts of point addition and doubling, and field multiplications.
94 * Used to test resistance of point multiplication to simple timing attacks.
95 */
96 static unsigned long add_count, dbl_count, mul_count;
97 #endif
98
99 #if defined(MBEDTLS_ECP_RESTARTABLE)
100 /*
101 * Maximum number of "basic operations" to be done in a row.
102 *
103 * Default value 0 means that ECC operations will not yield.
104 * Note that regardless of the value of ecp_max_ops, always at
105 * least one step is performed before yielding.
106 *
107 * Setting ecp_max_ops=1 can be suitable for testing purposes
108 * as it will interrupt computation at all possible points.
109 */
110 static unsigned ecp_max_ops = 0;
111
112 /*
113 * Set ecp_max_ops
114 */
mbedtls_ecp_set_max_ops(unsigned max_ops)115 void mbedtls_ecp_set_max_ops(unsigned max_ops)
116 {
117 ecp_max_ops = max_ops;
118 }
119
120 /*
121 * Check if restart is enabled
122 */
mbedtls_ecp_restart_is_enabled(void)123 int mbedtls_ecp_restart_is_enabled(void)
124 {
125 return ecp_max_ops != 0;
126 }
127
128 /*
129 * Restart sub-context for ecp_mul_comb()
130 */
131 struct mbedtls_ecp_restart_mul {
132 mbedtls_ecp_point R; /* current intermediate result */
133 size_t i; /* current index in various loops, 0 outside */
134 mbedtls_ecp_point *T; /* table for precomputed points */
135 unsigned char T_size; /* number of points in table T */
136 enum { /* what were we doing last time we returned? */
137 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
138 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
139 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
140 ecp_rsm_pre_add, /* precompute remaining points by adding */
141 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
142 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
143 ecp_rsm_final_norm, /* do the final normalization */
144 } state;
145 };
146
147 /*
148 * Init restart_mul sub-context
149 */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)150 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
151 {
152 mbedtls_ecp_point_init(&ctx->R);
153 ctx->i = 0;
154 ctx->T = NULL;
155 ctx->T_size = 0;
156 ctx->state = ecp_rsm_init;
157 }
158
159 /*
160 * Free the components of a restart_mul sub-context
161 */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)162 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
163 {
164 unsigned char i;
165
166 if (ctx == NULL) {
167 return;
168 }
169
170 mbedtls_ecp_point_free(&ctx->R);
171
172 if (ctx->T != NULL) {
173 for (i = 0; i < ctx->T_size; i++) {
174 mbedtls_ecp_point_free(ctx->T + i);
175 }
176 mbedtls_free(ctx->T);
177 }
178
179 ecp_restart_rsm_init(ctx);
180 }
181
182 /*
183 * Restart context for ecp_muladd()
184 */
185 struct mbedtls_ecp_restart_muladd {
186 mbedtls_ecp_point mP; /* mP value */
187 mbedtls_ecp_point R; /* R intermediate result */
188 enum { /* what should we do next? */
189 ecp_rsma_mul1 = 0, /* first multiplication */
190 ecp_rsma_mul2, /* second multiplication */
191 ecp_rsma_add, /* addition */
192 ecp_rsma_norm, /* normalization */
193 } state;
194 };
195
196 /*
197 * Init restart_muladd sub-context
198 */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)199 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
200 {
201 mbedtls_ecp_point_init(&ctx->mP);
202 mbedtls_ecp_point_init(&ctx->R);
203 ctx->state = ecp_rsma_mul1;
204 }
205
206 /*
207 * Free the components of a restart_muladd sub-context
208 */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)209 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
210 {
211 if (ctx == NULL) {
212 return;
213 }
214
215 mbedtls_ecp_point_free(&ctx->mP);
216 mbedtls_ecp_point_free(&ctx->R);
217
218 ecp_restart_ma_init(ctx);
219 }
220
221 /*
222 * Initialize a restart context
223 */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)224 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
225 {
226 ctx->ops_done = 0;
227 ctx->depth = 0;
228 ctx->rsm = NULL;
229 ctx->ma = NULL;
230 }
231
232 /*
233 * Free the components of a restart context
234 */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)235 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
236 {
237 if (ctx == NULL) {
238 return;
239 }
240
241 ecp_restart_rsm_free(ctx->rsm);
242 mbedtls_free(ctx->rsm);
243
244 ecp_restart_ma_free(ctx->ma);
245 mbedtls_free(ctx->ma);
246
247 mbedtls_ecp_restart_init(ctx);
248 }
249
250 /*
251 * Check if we can do the next step
252 */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)253 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
254 mbedtls_ecp_restart_ctx *rs_ctx,
255 unsigned ops)
256 {
257 if (rs_ctx != NULL && ecp_max_ops != 0) {
258 /* scale depending on curve size: the chosen reference is 256-bit,
259 * and multiplication is quadratic. Round to the closest integer. */
260 if (grp->pbits >= 512) {
261 ops *= 4;
262 } else if (grp->pbits >= 384) {
263 ops *= 2;
264 }
265
266 /* Avoid infinite loops: always allow first step.
267 * Because of that, however, it's not generally true
268 * that ops_done <= ecp_max_ops, so the check
269 * ops_done > ecp_max_ops below is mandatory. */
270 if ((rs_ctx->ops_done != 0) &&
271 (rs_ctx->ops_done > ecp_max_ops ||
272 ops > ecp_max_ops - rs_ctx->ops_done)) {
273 return MBEDTLS_ERR_ECP_IN_PROGRESS;
274 }
275
276 /* update running count */
277 rs_ctx->ops_done += ops;
278 }
279
280 return 0;
281 }
282
283 /* Call this when entering a function that needs its own sub-context */
284 #define ECP_RS_ENTER(SUB) do { \
285 /* reset ops count for this call if top-level */ \
286 if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
287 rs_ctx->ops_done = 0; \
288 \
289 /* set up our own sub-context if needed */ \
290 if (mbedtls_ecp_restart_is_enabled() && \
291 rs_ctx != NULL && rs_ctx->SUB == NULL) \
292 { \
293 rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
294 if (rs_ctx->SUB == NULL) \
295 return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
296 \
297 ecp_restart_## SUB ##_init(rs_ctx->SUB); \
298 } \
299 } while (0)
300
301 /* Call this when leaving a function that needs its own sub-context */
302 #define ECP_RS_LEAVE(SUB) do { \
303 /* clear our sub-context when not in progress (done or error) */ \
304 if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
305 ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
306 { \
307 ecp_restart_## SUB ##_free(rs_ctx->SUB); \
308 mbedtls_free(rs_ctx->SUB); \
309 rs_ctx->SUB = NULL; \
310 } \
311 \
312 if (rs_ctx != NULL) \
313 rs_ctx->depth--; \
314 } while (0)
315
316 #else /* MBEDTLS_ECP_RESTARTABLE */
317
318 #define ECP_RS_ENTER(sub) (void) rs_ctx;
319 #define ECP_RS_LEAVE(sub) (void) rs_ctx;
320
321 #endif /* MBEDTLS_ECP_RESTARTABLE */
322
mpi_init_many(mbedtls_mpi * arr,size_t size)323 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
324 {
325 while (size--) {
326 mbedtls_mpi_init(arr++);
327 }
328 }
329
mpi_free_many(mbedtls_mpi * arr,size_t size)330 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
331 {
332 while (size--) {
333 mbedtls_mpi_free(arr++);
334 }
335 }
336
337 /*
338 * List of supported curves:
339 * - internal ID
340 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
341 * - size in bits
342 * - readable name
343 *
344 * Curves are listed in order: largest curves first, and for a given size,
345 * fastest curves first.
346 *
347 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
348 */
349 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
350 {
351 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
352 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
353 #endif
354 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
355 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
356 #endif
357 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
358 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
359 #endif
360 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
361 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
362 #endif
363 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
364 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
365 #endif
366 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
367 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
368 #endif
369 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
370 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
371 #endif
372 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
373 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
374 #endif
375 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
376 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
377 #endif
378 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
379 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
380 #endif
381 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
382 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
383 #endif
384 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
385 { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
386 #endif
387 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
388 { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
389 #endif
390 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
391 };
392
393 #define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
394 sizeof(ecp_supported_curves[0])
395
396 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
397
398 /*
399 * List of supported curves and associated info
400 */
mbedtls_ecp_curve_list(void)401 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
402 {
403 return ecp_supported_curves;
404 }
405
406 /*
407 * List of supported curves, group ID only
408 */
mbedtls_ecp_grp_id_list(void)409 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
410 {
411 static int init_done = 0;
412
413 if (!init_done) {
414 size_t i = 0;
415 const mbedtls_ecp_curve_info *curve_info;
416
417 for (curve_info = mbedtls_ecp_curve_list();
418 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
419 curve_info++) {
420 ecp_supported_grp_id[i++] = curve_info->grp_id;
421 }
422 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
423
424 init_done = 1;
425 }
426
427 return ecp_supported_grp_id;
428 }
429
430 /*
431 * Get the curve info for the internal identifier
432 */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)433 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
434 {
435 const mbedtls_ecp_curve_info *curve_info;
436
437 for (curve_info = mbedtls_ecp_curve_list();
438 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
439 curve_info++) {
440 if (curve_info->grp_id == grp_id) {
441 return curve_info;
442 }
443 }
444
445 return NULL;
446 }
447
448 /*
449 * Get the curve info from the TLS identifier
450 */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)451 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
452 {
453 const mbedtls_ecp_curve_info *curve_info;
454
455 for (curve_info = mbedtls_ecp_curve_list();
456 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
457 curve_info++) {
458 if (curve_info->tls_id == tls_id) {
459 return curve_info;
460 }
461 }
462
463 return NULL;
464 }
465
466 /*
467 * Get the curve info from the name
468 */
mbedtls_ecp_curve_info_from_name(const char * name)469 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
470 {
471 const mbedtls_ecp_curve_info *curve_info;
472
473 if (name == NULL) {
474 return NULL;
475 }
476
477 for (curve_info = mbedtls_ecp_curve_list();
478 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
479 curve_info++) {
480 if (strcmp(curve_info->name, name) == 0) {
481 return curve_info;
482 }
483 }
484
485 return NULL;
486 }
487
488 /*
489 * Get the type of a curve
490 */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)491 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
492 {
493 if (grp->G.X.p == NULL) {
494 return MBEDTLS_ECP_TYPE_NONE;
495 }
496
497 if (grp->G.Y.p == NULL) {
498 return MBEDTLS_ECP_TYPE_MONTGOMERY;
499 } else {
500 return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
501 }
502 }
503
504 /*
505 * Initialize (the components of) a point
506 */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)507 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
508 {
509 mbedtls_mpi_init(&pt->X);
510 mbedtls_mpi_init(&pt->Y);
511 mbedtls_mpi_init(&pt->Z);
512 }
513
514 /*
515 * Initialize (the components of) a group
516 */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)517 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
518 {
519 grp->id = MBEDTLS_ECP_DP_NONE;
520 mbedtls_mpi_init(&grp->P);
521 mbedtls_mpi_init(&grp->A);
522 mbedtls_mpi_init(&grp->B);
523 mbedtls_ecp_point_init(&grp->G);
524 mbedtls_mpi_init(&grp->N);
525 grp->pbits = 0;
526 grp->nbits = 0;
527 grp->h = 0;
528 grp->modp = NULL;
529 grp->t_pre = NULL;
530 grp->t_post = NULL;
531 grp->t_data = NULL;
532 grp->T = NULL;
533 grp->T_size = 0;
534 }
535
536 /*
537 * Initialize (the components of) a key pair
538 */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)539 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
540 {
541 mbedtls_ecp_group_init(&key->grp);
542 mbedtls_mpi_init(&key->d);
543 mbedtls_ecp_point_init(&key->Q);
544 }
545
546 /*
547 * Unallocate (the components of) a point
548 */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)549 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
550 {
551 if (pt == NULL) {
552 return;
553 }
554
555 mbedtls_mpi_free(&(pt->X));
556 mbedtls_mpi_free(&(pt->Y));
557 mbedtls_mpi_free(&(pt->Z));
558 }
559
560 /*
561 * Check that the comb table (grp->T) is static initialized.
562 */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)563 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
564 {
565 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
566 return grp->T != NULL && grp->T_size == 0;
567 #else
568 (void) grp;
569 return 0;
570 #endif
571 }
572
573 /*
574 * Unallocate (the components of) a group
575 */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)576 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
577 {
578 size_t i;
579
580 if (grp == NULL) {
581 return;
582 }
583
584 if (grp->h != 1) {
585 mbedtls_mpi_free(&grp->A);
586 mbedtls_mpi_free(&grp->B);
587 mbedtls_ecp_point_free(&grp->G);
588 }
589
590 if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591 for (i = 0; i < grp->T_size; i++) {
592 mbedtls_ecp_point_free(&grp->T[i]);
593 }
594 mbedtls_free(grp->T);
595 }
596
597 mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598 }
599
600 /*
601 * Unallocate (the components of) a key pair
602 */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)603 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604 {
605 if (key == NULL) {
606 return;
607 }
608
609 mbedtls_ecp_group_free(&key->grp);
610 mbedtls_mpi_free(&key->d);
611 mbedtls_ecp_point_free(&key->Q);
612 }
613
614 /*
615 * Copy the contents of a point
616 */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)617 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618 {
619 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623
624 cleanup:
625 return ret;
626 }
627
628 /*
629 * Copy the contents of a group object
630 */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)631 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632 {
633 return mbedtls_ecp_group_load(dst, src->id);
634 }
635
636 /*
637 * Set point to zero
638 */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)639 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640 {
641 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645
646 cleanup:
647 return ret;
648 }
649
650 /*
651 * Tell if a point is zero
652 */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)653 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654 {
655 return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656 }
657
658 /*
659 * Compare two points lazily
660 */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)661 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662 const mbedtls_ecp_point *Q)
663 {
664 if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665 mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666 mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667 return 0;
668 }
669
670 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671 }
672
673 /*
674 * Import a non-zero point from ASCII strings
675 */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)676 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677 const char *x, const char *y)
678 {
679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683
684 cleanup:
685 return ret;
686 }
687
688 /*
689 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690 */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)691 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692 const mbedtls_ecp_point *P,
693 int format, size_t *olen,
694 unsigned char *buf, size_t buflen)
695 {
696 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697 size_t plen;
698 if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699 format != MBEDTLS_ECP_PF_COMPRESSED) {
700 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701 }
702
703 plen = mbedtls_mpi_size(&grp->P);
704
705 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706 (void) format; /* Montgomery curves always use the same point format */
707 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708 *olen = plen;
709 if (buflen < *olen) {
710 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711 }
712
713 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714 }
715 #endif
716 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718 /*
719 * Common case: P == 0
720 */
721 if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722 if (buflen < 1) {
723 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724 }
725
726 buf[0] = 0x00;
727 *olen = 1;
728
729 return 0;
730 }
731
732 if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733 *olen = 2 * plen + 1;
734
735 if (buflen < *olen) {
736 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737 }
738
739 buf[0] = 0x04;
740 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742 } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743 *olen = plen + 1;
744
745 if (buflen < *olen) {
746 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747 }
748
749 buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751 }
752 }
753 #endif
754
755 cleanup:
756 return ret;
757 }
758
759 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761 const mbedtls_mpi *X,
762 mbedtls_mpi *Y,
763 int parity_bit);
764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765
766 /*
767 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768 */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)769 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770 mbedtls_ecp_point *pt,
771 const unsigned char *buf, size_t ilen)
772 {
773 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774 size_t plen;
775 if (ilen < 1) {
776 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777 }
778
779 plen = mbedtls_mpi_size(&grp->P);
780
781 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783 if (plen != ilen) {
784 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785 }
786
787 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788 mbedtls_mpi_free(&pt->Y);
789
790 if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791 /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793 }
794
795 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796 }
797 #endif
798 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800 if (buf[0] == 0x00) {
801 if (ilen == 1) {
802 return mbedtls_ecp_set_zero(pt);
803 } else {
804 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805 }
806 }
807
808 if (ilen < 1 + plen) {
809 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810 }
811
812 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814
815 if (buf[0] == 0x04) {
816 /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817 if (ilen != 1 + plen * 2) {
818 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819 }
820 return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821 } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822 /* format == MBEDTLS_ECP_PF_COMPRESSED */
823 if (ilen != 1 + plen) {
824 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825 }
826 return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827 (buf[0] & 1));
828 } else {
829 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830 }
831 }
832 #endif
833
834 cleanup:
835 return ret;
836 }
837
838 /*
839 * Import a point from a TLS ECPoint record (RFC 4492)
840 * struct {
841 * opaque point <1..2^8-1>;
842 * } ECPoint;
843 */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)844 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845 mbedtls_ecp_point *pt,
846 const unsigned char **buf, size_t buf_len)
847 {
848 unsigned char data_len;
849 const unsigned char *buf_start;
850 /*
851 * We must have at least two bytes (1 for length, at least one for data)
852 */
853 if (buf_len < 2) {
854 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855 }
856
857 data_len = *(*buf)++;
858 if (data_len < 1 || data_len > buf_len - 1) {
859 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860 }
861
862 /*
863 * Save buffer start for read_binary and update buf
864 */
865 buf_start = *buf;
866 *buf += data_len;
867
868 return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869 }
870
871 /*
872 * Export a point as a TLS ECPoint record (RFC 4492)
873 * struct {
874 * opaque point <1..2^8-1>;
875 * } ECPoint;
876 */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)877 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878 int format, size_t *olen,
879 unsigned char *buf, size_t blen)
880 {
881 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882 if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883 format != MBEDTLS_ECP_PF_COMPRESSED) {
884 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885 }
886
887 /*
888 * buffer length must be at least one, for our length byte
889 */
890 if (blen < 1) {
891 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892 }
893
894 if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895 olen, buf + 1, blen - 1)) != 0) {
896 return ret;
897 }
898
899 /*
900 * write length to the first byte and update total length
901 */
902 buf[0] = (unsigned char) *olen;
903 ++*olen;
904
905 return 0;
906 }
907
908 /*
909 * Set a group from an ECParameters record (RFC 4492)
910 */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)911 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912 const unsigned char **buf, size_t len)
913 {
914 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915 mbedtls_ecp_group_id grp_id;
916 if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917 return ret;
918 }
919
920 return mbedtls_ecp_group_load(grp, grp_id);
921 }
922
923 /*
924 * Read a group id from an ECParameters record (RFC 4492) and convert it to
925 * mbedtls_ecp_group_id.
926 */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)927 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928 const unsigned char **buf, size_t len)
929 {
930 uint16_t tls_id;
931 const mbedtls_ecp_curve_info *curve_info;
932 /*
933 * We expect at least three bytes (see below)
934 */
935 if (len < 3) {
936 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937 }
938
939 /*
940 * First byte is curve_type; only named_curve is handled
941 */
942 if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944 }
945
946 /*
947 * Next two bytes are the namedcurve value
948 */
949 tls_id = *(*buf)++;
950 tls_id <<= 8;
951 tls_id |= *(*buf)++;
952
953 if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
954 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
955 }
956
957 *grp = curve_info->grp_id;
958
959 return 0;
960 }
961
962 /*
963 * Write the ECParameters record corresponding to a group (RFC 4492)
964 */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)965 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
966 unsigned char *buf, size_t blen)
967 {
968 const mbedtls_ecp_curve_info *curve_info;
969 if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
970 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
971 }
972
973 /*
974 * We are going to write 3 bytes (see below)
975 */
976 *olen = 3;
977 if (blen < *olen) {
978 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
979 }
980
981 /*
982 * First byte is curve_type, always named_curve
983 */
984 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
985
986 /*
987 * Next two bytes are the namedcurve value
988 */
989 MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
990
991 return 0;
992 }
993
994 /*
995 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
996 * See the documentation of struct mbedtls_ecp_group.
997 *
998 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
999 */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)1000 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1001 {
1002 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1003
1004 if (grp->modp == NULL) {
1005 return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1006 }
1007
1008 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1009 if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1010 mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1011 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1012 }
1013
1014 MBEDTLS_MPI_CHK(grp->modp(N));
1015
1016 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1017 while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1018 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1019 }
1020
1021 while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1022 /* we known P, N and the result are positive */
1023 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1024 }
1025
1026 cleanup:
1027 return ret;
1028 }
1029
1030 /*
1031 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032 *
1033 * In order to guarantee that, we need to ensure that operands of
1034 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035 * bring the result back to this range.
1036 *
1037 * The following macros are shortcuts for doing that.
1038 */
1039
1040 /*
1041 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042 */
1043 #if defined(MBEDTLS_SELF_TEST)
1044 #define INC_MUL_COUNT mul_count++;
1045 #else
1046 #define INC_MUL_COUNT
1047 #endif
1048
1049 #define MOD_MUL(N) \
1050 do \
1051 { \
1052 MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
1053 INC_MUL_COUNT \
1054 } while (0)
1055
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1056 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1057 mbedtls_mpi *X,
1058 const mbedtls_mpi *A,
1059 const mbedtls_mpi *B)
1060 {
1061 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1062 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1063 MOD_MUL(*X);
1064 cleanup:
1065 return ret;
1066 }
1067
1068 /*
1069 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1070 * N->s < 0 is a very fast test, which fails only if N is 0
1071 */
1072 #define MOD_SUB(N) \
1073 do { \
1074 while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
1075 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
1076 } while (0)
1077
1078 #if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1079 !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1080 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1081 defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
1082 (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1083 !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1084 defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1085 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1086 mbedtls_mpi *X,
1087 const mbedtls_mpi *A,
1088 const mbedtls_mpi *B)
1089 {
1090 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1091 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1092 MOD_SUB(X);
1093 cleanup:
1094 return ret;
1095 }
1096 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1097
1098 /*
1099 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1100 * We known P, N and the result are positive, so sub_abs is correct, and
1101 * a bit faster.
1102 */
1103 #define MOD_ADD(N) \
1104 while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
1105 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1106
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1107 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1108 mbedtls_mpi *X,
1109 const mbedtls_mpi *A,
1110 const mbedtls_mpi *B)
1111 {
1112 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1113 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1114 MOD_ADD(X);
1115 cleanup:
1116 return ret;
1117 }
1118
mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1119 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1120 mbedtls_mpi *X,
1121 const mbedtls_mpi *A,
1122 mbedtls_mpi_uint c)
1123 {
1124 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1125
1126 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1127 MOD_ADD(X);
1128 cleanup:
1129 return ret;
1130 }
1131
mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1132 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1133 mbedtls_mpi *X,
1134 const mbedtls_mpi *A,
1135 mbedtls_mpi_uint c)
1136 {
1137 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1138
1139 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1140 MOD_SUB(X);
1141 cleanup:
1142 return ret;
1143 }
1144
1145 #define MPI_ECP_SUB_INT(X, A, c) \
1146 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1147
1148 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1149 !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1150 defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1151 defined(MBEDTLS_ECP_ADD_MIXED_ALT))
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1152 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1153 mbedtls_mpi *X,
1154 size_t count)
1155 {
1156 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1157 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1158 MOD_ADD(X);
1159 cleanup:
1160 return ret;
1161 }
1162 #endif \
1163 /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1164
1165 /*
1166 * Macro wrappers around ECP modular arithmetic
1167 *
1168 * Currently, these wrappers are defined via the bignum module.
1169 */
1170
1171 #define MPI_ECP_ADD(X, A, B) \
1172 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1173
1174 #define MPI_ECP_SUB(X, A, B) \
1175 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1176
1177 #define MPI_ECP_MUL(X, A, B) \
1178 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1179
1180 #define MPI_ECP_SQR(X, A) \
1181 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1182
1183 #define MPI_ECP_MUL_INT(X, A, c) \
1184 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1185
1186 #define MPI_ECP_INV(dst, src) \
1187 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1188
1189 #define MPI_ECP_MOV(X, A) \
1190 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1191
1192 #define MPI_ECP_SHIFT_L(X, count) \
1193 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1194
1195 #define MPI_ECP_LSET(X, c) \
1196 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1197
1198 #define MPI_ECP_CMP_INT(X, c) \
1199 mbedtls_mpi_cmp_int(X, c)
1200
1201 #define MPI_ECP_CMP(X, Y) \
1202 mbedtls_mpi_cmp_mpi(X, Y)
1203
1204 /* Needs f_rng, p_rng to be defined. */
1205 #define MPI_ECP_RAND(X) \
1206 MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1207
1208 /* Conditional negation
1209 * Needs grp and a temporary MPI tmp to be defined. */
1210 #define MPI_ECP_COND_NEG(X, cond) \
1211 do \
1212 { \
1213 unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
1214 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
1215 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
1216 nonzero & cond)); \
1217 } while (0)
1218
1219 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1220
1221 #define MPI_ECP_VALID(X) \
1222 ((X)->p != NULL)
1223
1224 #define MPI_ECP_COND_ASSIGN(X, Y, cond) \
1225 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1226
1227 #define MPI_ECP_COND_SWAP(X, Y, cond) \
1228 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1229
1230 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1231
1232 /*
1233 * Computes the right-hand side of the Short Weierstrass equation
1234 * RHS = X^3 + A X + B
1235 */
ecp_sw_rhs(const mbedtls_ecp_group * grp,mbedtls_mpi * rhs,const mbedtls_mpi * X)1236 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1237 mbedtls_mpi *rhs,
1238 const mbedtls_mpi *X)
1239 {
1240 int ret;
1241
1242 /* Compute X^3 + A X + B as X (X^2 + A) + B */
1243 MPI_ECP_SQR(rhs, X);
1244
1245 /* Special case for A = -3 */
1246 if (grp->A.p == NULL) {
1247 MPI_ECP_SUB_INT(rhs, rhs, 3);
1248 } else {
1249 MPI_ECP_ADD(rhs, rhs, &grp->A);
1250 }
1251
1252 MPI_ECP_MUL(rhs, rhs, X);
1253 MPI_ECP_ADD(rhs, rhs, &grp->B);
1254
1255 cleanup:
1256 return ret;
1257 }
1258
1259 /*
1260 * Derive Y from X and a parity bit
1261 */
mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group * grp,const mbedtls_mpi * X,mbedtls_mpi * Y,int parity_bit)1262 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1263 const mbedtls_mpi *X,
1264 mbedtls_mpi *Y,
1265 int parity_bit)
1266 {
1267 /* w = y^2 = x^3 + ax + b
1268 * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
1269 *
1270 * Note: this method for extracting square root does not validate that w
1271 * was indeed a square so this function will return garbage in Y if X
1272 * does not correspond to a point on the curve.
1273 */
1274
1275 /* Check prerequisite p = 3 mod 4 */
1276 if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1277 mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1278 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1279 }
1280
1281 int ret;
1282 mbedtls_mpi exp;
1283 mbedtls_mpi_init(&exp);
1284
1285 /* use Y to store intermediate result, actually w above */
1286 MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1287
1288 /* w = y^2 */ /* Y contains y^2 intermediate result */
1289 /* exp = ((p+1)/4) */
1290 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1291 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1292 /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
1293 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1294
1295 /* check parity bit match or else invert Y */
1296 /* This quick inversion implementation is valid because Y != 0 for all
1297 * Short Weierstrass curves supported by mbedtls, as each supported curve
1298 * has an order that is a large prime, so each supported curve does not
1299 * have any point of order 2, and a point with Y == 0 would be of order 2 */
1300 if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1301 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1302 }
1303
1304 cleanup:
1305
1306 mbedtls_mpi_free(&exp);
1307 return ret;
1308 }
1309
1310 /*
1311 * For curves in short Weierstrass form, we do all the internal operations in
1312 * Jacobian coordinates.
1313 *
1314 * For multiplication, we'll use a comb method with countermeasures against
1315 * SPA, hence timing attacks.
1316 */
1317
1318 /*
1319 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1320 * Cost: 1N := 1I + 3M + 1S
1321 */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1322 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1323 {
1324 if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1325 return 0;
1326 }
1327
1328 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1329 if (mbedtls_internal_ecp_grp_capable(grp)) {
1330 return mbedtls_internal_ecp_normalize_jac(grp, pt);
1331 }
1332 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1333
1334 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1335 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1336 #else
1337 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1338 mbedtls_mpi T;
1339 mbedtls_mpi_init(&T);
1340
1341 MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
1342 MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
1343 MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
1344 MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
1345 MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
1346
1347 MPI_ECP_LSET(&pt->Z, 1);
1348
1349 cleanup:
1350
1351 mbedtls_mpi_free(&T);
1352
1353 return ret;
1354 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1355 }
1356
1357 /*
1358 * Normalize jacobian coordinates of an array of (pointers to) points,
1359 * using Montgomery's trick to perform only one inversion mod P.
1360 * (See for example Cohen's "A Course in Computational Algebraic Number
1361 * Theory", Algorithm 10.3.4.)
1362 *
1363 * Warning: fails (returning an error) if one of the points is zero!
1364 * This should never happen, see choice of w in ecp_mul_comb().
1365 *
1366 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1367 */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1368 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1369 mbedtls_ecp_point *T[], size_t T_size)
1370 {
1371 if (T_size < 2) {
1372 return ecp_normalize_jac(grp, *T);
1373 }
1374
1375 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1376 if (mbedtls_internal_ecp_grp_capable(grp)) {
1377 return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1378 }
1379 #endif
1380
1381 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1382 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1383 #else
1384 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1385 size_t i;
1386 mbedtls_mpi *c, t;
1387
1388 if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1389 return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1390 }
1391
1392 mbedtls_mpi_init(&t);
1393
1394 mpi_init_many(c, T_size);
1395 /*
1396 * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1397 */
1398 MPI_ECP_MOV(&c[0], &T[0]->Z);
1399 for (i = 1; i < T_size; i++) {
1400 MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1401 }
1402
1403 /*
1404 * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1405 */
1406 MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1407
1408 for (i = T_size - 1;; i--) {
1409 /* At the start of iteration i (note that i decrements), we have
1410 * - c[j] = Z_0 * .... * Z_j for j < i,
1411 * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1412 *
1413 * This is maintained via
1414 * - c[i-1] <- c[i] * Z_i
1415 *
1416 * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1417 * to do the actual normalization. For i==0, we already have
1418 * c[0] = 1 / Z_0.
1419 */
1420
1421 if (i > 0) {
1422 /* Compute 1/Z_i and establish invariant for the next iteration. */
1423 MPI_ECP_MUL(&t, &c[i], &c[i-1]);
1424 MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1425 } else {
1426 MPI_ECP_MOV(&t, &c[0]);
1427 }
1428
1429 /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1430 MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1431 MPI_ECP_SQR(&t, &t);
1432 MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1433 MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1434
1435 /*
1436 * Post-precessing: reclaim some memory by shrinking coordinates
1437 * - not storing Z (always 1)
1438 * - shrinking other coordinates, but still keeping the same number of
1439 * limbs as P, as otherwise it will too likely be regrown too fast.
1440 */
1441 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1442 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1443
1444 MPI_ECP_LSET(&T[i]->Z, 1);
1445
1446 if (i == 0) {
1447 break;
1448 }
1449 }
1450
1451 cleanup:
1452
1453 mbedtls_mpi_free(&t);
1454 mpi_free_many(c, T_size);
1455 mbedtls_free(c);
1456
1457 return ret;
1458 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1459 }
1460
1461 /*
1462 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1463 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1464 */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1465 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1466 mbedtls_ecp_point *Q,
1467 unsigned char inv)
1468 {
1469 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1470 mbedtls_mpi tmp;
1471 mbedtls_mpi_init(&tmp);
1472
1473 MPI_ECP_COND_NEG(&Q->Y, inv);
1474
1475 cleanup:
1476 mbedtls_mpi_free(&tmp);
1477 return ret;
1478 }
1479
1480 /*
1481 * Point doubling R = 2 P, Jacobian coordinates
1482 *
1483 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1484 *
1485 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1486 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1487 *
1488 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1489 *
1490 * Cost: 1D := 3M + 4S (A == 0)
1491 * 4M + 4S (A == -3)
1492 * 3M + 6S + 1a otherwise
1493 */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,mbedtls_mpi tmp[4])1494 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1495 const mbedtls_ecp_point *P,
1496 mbedtls_mpi tmp[4])
1497 {
1498 #if defined(MBEDTLS_SELF_TEST)
1499 dbl_count++;
1500 #endif
1501
1502 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1503 if (mbedtls_internal_ecp_grp_capable(grp)) {
1504 return mbedtls_internal_ecp_double_jac(grp, R, P);
1505 }
1506 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1507
1508 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1509 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1510 #else
1511 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1512
1513 /* Special case for A = -3 */
1514 if (grp->A.p == NULL) {
1515 /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1516 MPI_ECP_SQR(&tmp[1], &P->Z);
1517 MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
1518 MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
1519 MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
1520 MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1521 } else {
1522 /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1523 MPI_ECP_SQR(&tmp[1], &P->X);
1524 MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1525
1526 /* Optimize away for "koblitz" curves with A = 0 */
1527 if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1528 /* M += A.Z^4 */
1529 MPI_ECP_SQR(&tmp[1], &P->Z);
1530 MPI_ECP_SQR(&tmp[2], &tmp[1]);
1531 MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
1532 MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
1533 }
1534 }
1535
1536 /* tmp[1] <- S = 4.X.Y^2 */
1537 MPI_ECP_SQR(&tmp[2], &P->Y);
1538 MPI_ECP_SHIFT_L(&tmp[2], 1);
1539 MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
1540 MPI_ECP_SHIFT_L(&tmp[1], 1);
1541
1542 /* tmp[3] <- U = 8.Y^4 */
1543 MPI_ECP_SQR(&tmp[3], &tmp[2]);
1544 MPI_ECP_SHIFT_L(&tmp[3], 1);
1545
1546 /* tmp[2] <- T = M^2 - 2.S */
1547 MPI_ECP_SQR(&tmp[2], &tmp[0]);
1548 MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1549 MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1550
1551 /* tmp[1] <- S = M(S - T) - U */
1552 MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
1553 MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
1554 MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
1555
1556 /* tmp[3] <- U = 2.Y.Z */
1557 MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
1558 MPI_ECP_SHIFT_L(&tmp[3], 1);
1559
1560 /* Store results */
1561 MPI_ECP_MOV(&R->X, &tmp[2]);
1562 MPI_ECP_MOV(&R->Y, &tmp[1]);
1563 MPI_ECP_MOV(&R->Z, &tmp[3]);
1564
1565 cleanup:
1566
1567 return ret;
1568 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1569 }
1570
1571 /*
1572 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1573 *
1574 * The coordinates of Q must be normalized (= affine),
1575 * but those of P don't need to. R is not normalized.
1576 *
1577 * P,Q,R may alias, but only at the level of EC points: they must be either
1578 * equal as pointers, or disjoint (including the coordinate data buffers).
1579 * Fine-grained aliasing at the level of coordinates is not supported.
1580 *
1581 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1582 * None of these cases can happen as intermediate step in ecp_mul_comb():
1583 * - at each step, P, Q and R are multiples of the base point, the factor
1584 * being less than its order, so none of them is zero;
1585 * - Q is an odd multiple of the base point, P an even multiple,
1586 * due to the choice of precomputed points in the modified comb method.
1587 * So branches for these cases do not leak secret information.
1588 *
1589 * Cost: 1A := 8M + 3S
1590 */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,mbedtls_mpi tmp[4])1591 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1592 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1593 mbedtls_mpi tmp[4])
1594 {
1595 #if defined(MBEDTLS_SELF_TEST)
1596 add_count++;
1597 #endif
1598
1599 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1600 if (mbedtls_internal_ecp_grp_capable(grp)) {
1601 return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1602 }
1603 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1604
1605 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1606 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1607 #else
1608 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1609
1610 /* NOTE: Aliasing between input and output is allowed, so one has to make
1611 * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1612 * longer read from. */
1613 mbedtls_mpi * const X = &R->X;
1614 mbedtls_mpi * const Y = &R->Y;
1615 mbedtls_mpi * const Z = &R->Z;
1616
1617 if (!MPI_ECP_VALID(&Q->Z)) {
1618 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1619 }
1620
1621 /*
1622 * Trivial cases: P == 0 or Q == 0 (case 1)
1623 */
1624 if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1625 return mbedtls_ecp_copy(R, Q);
1626 }
1627
1628 if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1629 return mbedtls_ecp_copy(R, P);
1630 }
1631
1632 /*
1633 * Make sure Q coordinates are normalized
1634 */
1635 if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1636 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1637 }
1638
1639 MPI_ECP_SQR(&tmp[0], &P->Z);
1640 MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1641 MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1642 MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1643 MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1644 MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1645
1646 /* Special cases (2) and (3) */
1647 if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1648 if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1649 ret = ecp_double_jac(grp, R, P, tmp);
1650 goto cleanup;
1651 } else {
1652 ret = mbedtls_ecp_set_zero(R);
1653 goto cleanup;
1654 }
1655 }
1656
1657 /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1658 MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
1659 MPI_ECP_SQR(&tmp[2], &tmp[0]);
1660 MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
1661 MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
1662
1663 MPI_ECP_MOV(&tmp[0], &tmp[2]);
1664 MPI_ECP_SHIFT_L(&tmp[0], 1);
1665
1666 /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1667 MPI_ECP_SQR(X, &tmp[1]);
1668 MPI_ECP_SUB(X, X, &tmp[0]);
1669 MPI_ECP_SUB(X, X, &tmp[3]);
1670 MPI_ECP_SUB(&tmp[2], &tmp[2], X);
1671 MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
1672 MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
1673 /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1674 MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
1675
1676 cleanup:
1677
1678 return ret;
1679 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1680 }
1681
1682 /*
1683 * Randomize jacobian coordinates:
1684 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1685 * This is sort of the reverse operation of ecp_normalize_jac().
1686 *
1687 * This countermeasure was first suggested in [2].
1688 */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1689 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1690 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1691 {
1692 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1693 if (mbedtls_internal_ecp_grp_capable(grp)) {
1694 return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1695 }
1696 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1697
1698 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1699 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1700 #else
1701 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1702 mbedtls_mpi l;
1703
1704 mbedtls_mpi_init(&l);
1705
1706 /* Generate l such that 1 < l < p */
1707 MPI_ECP_RAND(&l);
1708
1709 /* Z' = l * Z */
1710 MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
1711
1712 /* Y' = l * Y */
1713 MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1714
1715 /* X' = l^2 * X */
1716 MPI_ECP_SQR(&l, &l);
1717 MPI_ECP_MUL(&pt->X, &pt->X, &l);
1718
1719 /* Y'' = l^2 * Y' = l^3 * Y */
1720 MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1721
1722 cleanup:
1723 mbedtls_mpi_free(&l);
1724
1725 if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1726 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1727 }
1728 return ret;
1729 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1730 }
1731
1732 /*
1733 * Check and define parameters used by the comb method (see below for details)
1734 */
1735 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1736 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1737 #endif
1738
1739 /* d = ceil( n / w ) */
1740 #define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
1741
1742 /* number of precomputed points */
1743 #define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1744
1745 /*
1746 * Compute the representation of m that will be used with our comb method.
1747 *
1748 * The basic comb method is described in GECC 3.44 for example. We use a
1749 * modified version that provides resistance to SPA by avoiding zero
1750 * digits in the representation as in [3]. We modify the method further by
1751 * requiring that all K_i be odd, which has the small cost that our
1752 * representation uses one more K_i, due to carries, but saves on the size of
1753 * the precomputed table.
1754 *
1755 * Summary of the comb method and its modifications:
1756 *
1757 * - The goal is to compute m*P for some w*d-bit integer m.
1758 *
1759 * - The basic comb method splits m into the w-bit integers
1760 * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1761 * index has residue i modulo d, and computes m * P as
1762 * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1763 * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1764 *
1765 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1766 * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1767 * thereby successively converting it into a form where all summands
1768 * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1769 *
1770 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1771 * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1772 * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1773 * Performing and iterating this procedure for those x[i] that are even
1774 * (keeping track of carry), we can transform the original sum into one of the form
1775 * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1776 * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1777 * which is why we are only computing half of it in the first place in
1778 * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1779 *
1780 * - For the sake of compactness, only the seven low-order bits of x[i]
1781 * are used to represent its absolute value (K_i in the paper), and the msb
1782 * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1783 * if s_i == -1;
1784 *
1785 * Calling conventions:
1786 * - x is an array of size d + 1
1787 * - w is the size, ie number of teeth, of the comb, and must be between
1788 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1789 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1790 * (the result will be incorrect if these assumptions are not satisfied)
1791 */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1792 static void ecp_comb_recode_core(unsigned char x[], size_t d,
1793 unsigned char w, const mbedtls_mpi *m)
1794 {
1795 size_t i, j;
1796 unsigned char c, cc, adjust;
1797
1798 memset(x, 0, d+1);
1799
1800 /* First get the classical comb values (except for x_d = 0) */
1801 for (i = 0; i < d; i++) {
1802 for (j = 0; j < w; j++) {
1803 x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1804 }
1805 }
1806
1807 /* Now make sure x_1 .. x_d are odd */
1808 c = 0;
1809 for (i = 1; i <= d; i++) {
1810 /* Add carry and update it */
1811 cc = x[i] & c;
1812 x[i] = x[i] ^ c;
1813 c = cc;
1814
1815 /* Adjust if needed, avoiding branches */
1816 adjust = 1 - (x[i] & 0x01);
1817 c |= x[i] & (x[i-1] * adjust);
1818 x[i] = x[i] ^ (x[i-1] * adjust);
1819 x[i-1] |= adjust << 7;
1820 }
1821 }
1822
1823 /*
1824 * Precompute points for the adapted comb method
1825 *
1826 * Assumption: T must be able to hold 2^{w - 1} elements.
1827 *
1828 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1829 * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1830 *
1831 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1832 *
1833 * Note: Even comb values (those where P would be omitted from the
1834 * sum defining T[i] above) are not needed in our adaption
1835 * the comb method. See ecp_comb_recode_core().
1836 *
1837 * This function currently works in four steps:
1838 * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1839 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1840 * (3) [add] Computation of all T[i]
1841 * (4) [norm_add] Normalization of all T[i]
1842 *
1843 * Step 1 can be interrupted but not the others; together with the final
1844 * coordinate normalization they are the largest steps done at once, depending
1845 * on the window size. Here are operation counts for P-256:
1846 *
1847 * step (2) (3) (4)
1848 * w = 5 142 165 208
1849 * w = 4 136 77 160
1850 * w = 3 130 33 136
1851 * w = 2 124 11 124
1852 *
1853 * So if ECC operations are blocking for too long even with a low max_ops
1854 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1855 * to minimize maximum blocking time.
1856 */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1857 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1858 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1859 unsigned char w, size_t d,
1860 mbedtls_ecp_restart_ctx *rs_ctx)
1861 {
1862 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1863 unsigned char i;
1864 size_t j = 0;
1865 const unsigned char T_size = 1U << (w - 1);
1866 mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1867
1868 mbedtls_mpi tmp[4];
1869
1870 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1871
1872 #if defined(MBEDTLS_ECP_RESTARTABLE)
1873 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1874 if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1875 goto dbl;
1876 }
1877 if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1878 goto norm_dbl;
1879 }
1880 if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1881 goto add;
1882 }
1883 if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1884 goto norm_add;
1885 }
1886 }
1887 #else
1888 (void) rs_ctx;
1889 #endif
1890
1891 #if defined(MBEDTLS_ECP_RESTARTABLE)
1892 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1893 rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1894
1895 /* initial state for the loop */
1896 rs_ctx->rsm->i = 0;
1897 }
1898
1899 dbl:
1900 #endif
1901 /*
1902 * Set T[0] = P and
1903 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1904 */
1905 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1906
1907 #if defined(MBEDTLS_ECP_RESTARTABLE)
1908 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1909 j = rs_ctx->rsm->i;
1910 } else
1911 #endif
1912 j = 0;
1913
1914 for (; j < d * (w - 1); j++) {
1915 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1916
1917 i = 1U << (j / d);
1918 cur = T + i;
1919
1920 if (j % d == 0) {
1921 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1922 }
1923
1924 MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1925 }
1926
1927 #if defined(MBEDTLS_ECP_RESTARTABLE)
1928 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1929 rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1930 }
1931
1932 norm_dbl:
1933 #endif
1934 /*
1935 * Normalize current elements in T to allow them to be used in
1936 * ecp_add_mixed() below, which requires one normalized input.
1937 *
1938 * As T has holes, use an auxiliary array of pointers to elements in T.
1939 *
1940 */
1941 j = 0;
1942 for (i = 1; i < T_size; i <<= 1) {
1943 TT[j++] = T + i;
1944 }
1945
1946 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1947
1948 MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1949
1950 #if defined(MBEDTLS_ECP_RESTARTABLE)
1951 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1952 rs_ctx->rsm->state = ecp_rsm_pre_add;
1953 }
1954
1955 add:
1956 #endif
1957 /*
1958 * Compute the remaining ones using the minimal number of additions
1959 * Be careful to update T[2^l] only after using it!
1960 */
1961 MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1962
1963 for (i = 1; i < T_size; i <<= 1) {
1964 j = i;
1965 while (j--) {
1966 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1967 }
1968 }
1969
1970 #if defined(MBEDTLS_ECP_RESTARTABLE)
1971 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1972 rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1973 }
1974
1975 norm_add:
1976 #endif
1977 /*
1978 * Normalize final elements in T. Even though there are no holes now, we
1979 * still need the auxiliary array for homogeneity with the previous
1980 * call. Also, skip T[0] which is already normalised, being a copy of P.
1981 */
1982 for (j = 0; j + 1 < T_size; j++) {
1983 TT[j] = T + j + 1;
1984 }
1985
1986 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1987
1988 MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1989
1990 /* Free Z coordinate (=1 after normalization) to save RAM.
1991 * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1992 * since from this point onwards, they are only accessed indirectly
1993 * via the getter function ecp_select_comb() which does set the
1994 * target's Z coordinate to 1. */
1995 for (i = 0; i < T_size; i++) {
1996 mbedtls_mpi_free(&T[i].Z);
1997 }
1998
1999 cleanup:
2000
2001 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2002
2003 #if defined(MBEDTLS_ECP_RESTARTABLE)
2004 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2005 ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2006 if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2007 rs_ctx->rsm->i = j;
2008 }
2009 }
2010 #endif
2011
2012 return ret;
2013 }
2014
2015 /*
2016 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2017 *
2018 * See ecp_comb_recode_core() for background
2019 */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)2020 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2021 const mbedtls_ecp_point T[], unsigned char T_size,
2022 unsigned char i)
2023 {
2024 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2025 unsigned char ii, j;
2026
2027 /* Ignore the "sign" bit and scale down */
2028 ii = (i & 0x7Fu) >> 1;
2029
2030 /* Read the whole table to thwart cache-based timing attacks */
2031 for (j = 0; j < T_size; j++) {
2032 MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2033 MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2034 }
2035
2036 /* Safely invert result if i is "negative" */
2037 MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2038
2039 MPI_ECP_LSET(&R->Z, 1);
2040
2041 cleanup:
2042 return ret;
2043 }
2044
2045 /*
2046 * Core multiplication algorithm for the (modified) comb method.
2047 * This part is actually common with the basic comb method (GECC 3.44)
2048 *
2049 * Cost: d A + d D + 1 R
2050 */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2051 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2052 const mbedtls_ecp_point T[], unsigned char T_size,
2053 const unsigned char x[], size_t d,
2054 int (*f_rng)(void *, unsigned char *, size_t),
2055 void *p_rng,
2056 mbedtls_ecp_restart_ctx *rs_ctx)
2057 {
2058 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2059 mbedtls_ecp_point Txi;
2060 mbedtls_mpi tmp[4];
2061 size_t i;
2062
2063 mbedtls_ecp_point_init(&Txi);
2064 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2065
2066 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2067 (void) rs_ctx;
2068 #endif
2069
2070 #if defined(MBEDTLS_ECP_RESTARTABLE)
2071 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2072 rs_ctx->rsm->state != ecp_rsm_comb_core) {
2073 rs_ctx->rsm->i = 0;
2074 rs_ctx->rsm->state = ecp_rsm_comb_core;
2075 }
2076
2077 /* new 'if' instead of nested for the sake of the 'else' branch */
2078 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2079 /* restore current index (R already pointing to rs_ctx->rsm->R) */
2080 i = rs_ctx->rsm->i;
2081 } else
2082 #endif
2083 {
2084 /* Start with a non-zero point and randomize its coordinates */
2085 i = d;
2086 MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2087 if (f_rng != 0) {
2088 MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2089 }
2090 }
2091
2092 while (i != 0) {
2093 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2094 --i;
2095
2096 MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2097 MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2098 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2099 }
2100
2101 cleanup:
2102
2103 mbedtls_ecp_point_free(&Txi);
2104 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2105
2106 #if defined(MBEDTLS_ECP_RESTARTABLE)
2107 if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2108 ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2109 rs_ctx->rsm->i = i;
2110 /* no need to save R, already pointing to rs_ctx->rsm->R */
2111 }
2112 #endif
2113
2114 return ret;
2115 }
2116
2117 /*
2118 * Recode the scalar to get constant-time comb multiplication
2119 *
2120 * As the actual scalar recoding needs an odd scalar as a starting point,
2121 * this wrapper ensures that by replacing m by N - m if necessary, and
2122 * informs the caller that the result of multiplication will be negated.
2123 *
2124 * This works because we only support large prime order for Short Weierstrass
2125 * curves, so N is always odd hence either m or N - m is.
2126 *
2127 * See ecp_comb_recode_core() for background.
2128 */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2129 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2130 const mbedtls_mpi *m,
2131 unsigned char k[COMB_MAX_D + 1],
2132 size_t d,
2133 unsigned char w,
2134 unsigned char *parity_trick)
2135 {
2136 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2137 mbedtls_mpi M, mm;
2138
2139 mbedtls_mpi_init(&M);
2140 mbedtls_mpi_init(&mm);
2141
2142 /* N is always odd (see above), just make extra sure */
2143 if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2144 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2145 }
2146
2147 /* do we need the parity trick? */
2148 *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2149
2150 /* execute parity fix in constant time */
2151 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2152 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2153 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2154
2155 /* actual scalar recoding */
2156 ecp_comb_recode_core(k, d, w, &M);
2157
2158 cleanup:
2159 mbedtls_mpi_free(&mm);
2160 mbedtls_mpi_free(&M);
2161
2162 return ret;
2163 }
2164
2165 /*
2166 * Perform comb multiplication (for short Weierstrass curves)
2167 * once the auxiliary table has been pre-computed.
2168 *
2169 * Scalar recoding may use a parity trick that makes us compute -m * P,
2170 * if that is the case we'll need to recover m * P at the end.
2171 */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2172 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2173 mbedtls_ecp_point *R,
2174 const mbedtls_mpi *m,
2175 const mbedtls_ecp_point *T,
2176 unsigned char T_size,
2177 unsigned char w,
2178 size_t d,
2179 int (*f_rng)(void *, unsigned char *, size_t),
2180 void *p_rng,
2181 mbedtls_ecp_restart_ctx *rs_ctx)
2182 {
2183 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2184 unsigned char parity_trick;
2185 unsigned char k[COMB_MAX_D + 1];
2186 mbedtls_ecp_point *RR = R;
2187
2188 #if defined(MBEDTLS_ECP_RESTARTABLE)
2189 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2190 RR = &rs_ctx->rsm->R;
2191
2192 if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2193 goto final_norm;
2194 }
2195 }
2196 #endif
2197
2198 MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2199 &parity_trick));
2200 MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2201 f_rng, p_rng, rs_ctx));
2202 MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2203
2204 #if defined(MBEDTLS_ECP_RESTARTABLE)
2205 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2206 rs_ctx->rsm->state = ecp_rsm_final_norm;
2207 }
2208
2209 final_norm:
2210 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2211 #endif
2212 /*
2213 * Knowledge of the jacobian coordinates may leak the last few bits of the
2214 * scalar [1], and since our MPI implementation isn't constant-flow,
2215 * inversion (used for coordinate normalization) may leak the full value
2216 * of its input via side-channels [2].
2217 *
2218 * [1] https://eprint.iacr.org/2003/191
2219 * [2] https://eprint.iacr.org/2020/055
2220 *
2221 * Avoid the leak by randomizing coordinates before we normalize them.
2222 */
2223 if (f_rng != 0) {
2224 MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2225 }
2226
2227 MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2228
2229 #if defined(MBEDTLS_ECP_RESTARTABLE)
2230 if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2231 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2232 }
2233 #endif
2234
2235 cleanup:
2236 return ret;
2237 }
2238
2239 /*
2240 * Pick window size based on curve size and whether we optimize for base point
2241 */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2242 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2243 unsigned char p_eq_g)
2244 {
2245 unsigned char w;
2246
2247 /*
2248 * Minimize the number of multiplications, that is minimize
2249 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2250 * (see costs of the various parts, with 1S = 1M)
2251 */
2252 w = grp->nbits >= 384 ? 5 : 4;
2253
2254 /*
2255 * If P == G, pre-compute a bit more, since this may be re-used later.
2256 * Just adding one avoids upping the cost of the first mul too much,
2257 * and the memory cost too.
2258 */
2259 if (p_eq_g) {
2260 w++;
2261 }
2262
2263 /*
2264 * If static comb table may not be used (!p_eq_g) or static comb table does
2265 * not exists, make sure w is within bounds.
2266 * (The last test is useful only for very small curves in the test suite.)
2267 *
2268 * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2269 * static comb table, because the size of static comb table is fixed when
2270 * it is generated.
2271 */
2272 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2273 if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2274 w = MBEDTLS_ECP_WINDOW_SIZE;
2275 }
2276 #endif
2277 if (w >= grp->nbits) {
2278 w = 2;
2279 }
2280
2281 return w;
2282 }
2283
2284 /*
2285 * Multiplication using the comb method - for curves in short Weierstrass form
2286 *
2287 * This function is mainly responsible for administrative work:
2288 * - managing the restart context if enabled
2289 * - managing the table of precomputed points (passed between the below two
2290 * functions): allocation, computation, ownership transfer, freeing.
2291 *
2292 * It delegates the actual arithmetic work to:
2293 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2294 *
2295 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2296 */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2297 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2298 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2299 int (*f_rng)(void *, unsigned char *, size_t),
2300 void *p_rng,
2301 mbedtls_ecp_restart_ctx *rs_ctx)
2302 {
2303 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2304 unsigned char w, p_eq_g, i;
2305 size_t d;
2306 unsigned char T_size = 0, T_ok = 0;
2307 mbedtls_ecp_point *T = NULL;
2308
2309 ECP_RS_ENTER(rsm);
2310
2311 /* Is P the base point ? */
2312 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2313 p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2314 MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2315 #else
2316 p_eq_g = 0;
2317 #endif
2318
2319 /* Pick window size and deduce related sizes */
2320 w = ecp_pick_window_size(grp, p_eq_g);
2321 T_size = 1U << (w - 1);
2322 d = (grp->nbits + w - 1) / w;
2323
2324 /* Pre-computed table: do we have it already for the base point? */
2325 if (p_eq_g && grp->T != NULL) {
2326 /* second pointer to the same table, will be deleted on exit */
2327 T = grp->T;
2328 T_ok = 1;
2329 } else
2330 #if defined(MBEDTLS_ECP_RESTARTABLE)
2331 /* Pre-computed table: do we have one in progress? complete? */
2332 if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2333 /* transfer ownership of T from rsm to local function */
2334 T = rs_ctx->rsm->T;
2335 rs_ctx->rsm->T = NULL;
2336 rs_ctx->rsm->T_size = 0;
2337
2338 /* This effectively jumps to the call to mul_comb_after_precomp() */
2339 T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2340 } else
2341 #endif
2342 /* Allocate table if we didn't have any */
2343 {
2344 T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2345 if (T == NULL) {
2346 ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2347 goto cleanup;
2348 }
2349
2350 for (i = 0; i < T_size; i++) {
2351 mbedtls_ecp_point_init(&T[i]);
2352 }
2353
2354 T_ok = 0;
2355 }
2356
2357 /* Compute table (or finish computing it) if not done already */
2358 if (!T_ok) {
2359 MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2360
2361 if (p_eq_g) {
2362 /* almost transfer ownership of T to the group, but keep a copy of
2363 * the pointer to use for calling the next function more easily */
2364 grp->T = T;
2365 grp->T_size = T_size;
2366 }
2367 }
2368
2369 /* Actual comb multiplication using precomputed points */
2370 MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2371 T, T_size, w, d,
2372 f_rng, p_rng, rs_ctx));
2373
2374 cleanup:
2375
2376 /* does T belong to the group? */
2377 if (T == grp->T) {
2378 T = NULL;
2379 }
2380
2381 /* does T belong to the restart context? */
2382 #if defined(MBEDTLS_ECP_RESTARTABLE)
2383 if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2384 /* transfer ownership of T from local function to rsm */
2385 rs_ctx->rsm->T_size = T_size;
2386 rs_ctx->rsm->T = T;
2387 T = NULL;
2388 }
2389 #endif
2390
2391 /* did T belong to us? then let's destroy it! */
2392 if (T != NULL) {
2393 for (i = 0; i < T_size; i++) {
2394 mbedtls_ecp_point_free(&T[i]);
2395 }
2396 mbedtls_free(T);
2397 }
2398
2399 /* prevent caller from using invalid value */
2400 int should_free_R = (ret != 0);
2401 #if defined(MBEDTLS_ECP_RESTARTABLE)
2402 /* don't free R while in progress in case R == P */
2403 if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2404 should_free_R = 0;
2405 }
2406 #endif
2407 if (should_free_R) {
2408 mbedtls_ecp_point_free(R);
2409 }
2410
2411 ECP_RS_LEAVE(rsm);
2412
2413 return ret;
2414 }
2415
2416 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2417
2418 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2419 /*
2420 * For Montgomery curves, we do all the internal arithmetic in projective
2421 * coordinates. Import/export of points uses only the x coordinates, which is
2422 * internally represented as X / Z.
2423 *
2424 * For scalar multiplication, we'll use a Montgomery ladder.
2425 */
2426
2427 /*
2428 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2429 * Cost: 1M + 1I
2430 */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2431 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2432 {
2433 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2434 if (mbedtls_internal_ecp_grp_capable(grp)) {
2435 return mbedtls_internal_ecp_normalize_mxz(grp, P);
2436 }
2437 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2438
2439 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2440 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2441 #else
2442 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2443 MPI_ECP_INV(&P->Z, &P->Z);
2444 MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2445 MPI_ECP_LSET(&P->Z, 1);
2446
2447 cleanup:
2448 return ret;
2449 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2450 }
2451
2452 /*
2453 * Randomize projective x/z coordinates:
2454 * (X, Z) -> (l X, l Z) for random l
2455 * This is sort of the reverse operation of ecp_normalize_mxz().
2456 *
2457 * This countermeasure was first suggested in [2].
2458 * Cost: 2M
2459 */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2460 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2461 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2462 {
2463 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2464 if (mbedtls_internal_ecp_grp_capable(grp)) {
2465 return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2466 }
2467 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2468
2469 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2470 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2471 #else
2472 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2473 mbedtls_mpi l;
2474 mbedtls_mpi_init(&l);
2475
2476 /* Generate l such that 1 < l < p */
2477 MPI_ECP_RAND(&l);
2478
2479 MPI_ECP_MUL(&P->X, &P->X, &l);
2480 MPI_ECP_MUL(&P->Z, &P->Z, &l);
2481
2482 cleanup:
2483 mbedtls_mpi_free(&l);
2484
2485 if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2486 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2487 }
2488 return ret;
2489 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2490 }
2491
2492 /*
2493 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2494 * for Montgomery curves in x/z coordinates.
2495 *
2496 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2497 * with
2498 * d = X1
2499 * P = (X2, Z2)
2500 * Q = (X3, Z3)
2501 * R = (X4, Z4)
2502 * S = (X5, Z5)
2503 * and eliminating temporary variables tO, ..., t4.
2504 *
2505 * Cost: 5M + 4S
2506 */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d,mbedtls_mpi T[4])2507 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2508 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2509 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2510 const mbedtls_mpi *d,
2511 mbedtls_mpi T[4])
2512 {
2513 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2514 if (mbedtls_internal_ecp_grp_capable(grp)) {
2515 return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2516 }
2517 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2518
2519 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2520 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2521 #else
2522 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2523
2524 MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
2525 MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
2526 MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
2527 MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
2528 MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
2529 MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
2530 MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
2531 MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
2532 MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
2533 MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
2534 MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
2535 MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2536 MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
2537 MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
2538 MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
2539 MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
2540 MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
2541 MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2542
2543 cleanup:
2544
2545 return ret;
2546 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2547 }
2548
2549 /*
2550 * Multiplication with Montgomery ladder in x/z coordinates,
2551 * for curves in Montgomery form
2552 */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2553 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2554 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2555 int (*f_rng)(void *, unsigned char *, size_t),
2556 void *p_rng)
2557 {
2558 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2559 size_t i;
2560 unsigned char b;
2561 mbedtls_ecp_point RP;
2562 mbedtls_mpi PX;
2563 mbedtls_mpi tmp[4];
2564 mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2565
2566 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2567
2568 if (f_rng == NULL) {
2569 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2570 }
2571
2572 /* Save PX and read from P before writing to R, in case P == R */
2573 MPI_ECP_MOV(&PX, &P->X);
2574 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2575
2576 /* Set R to zero in modified x/z coordinates */
2577 MPI_ECP_LSET(&R->X, 1);
2578 MPI_ECP_LSET(&R->Z, 0);
2579 mbedtls_mpi_free(&R->Y);
2580
2581 /* RP.X might be slightly larger than P, so reduce it */
2582 MOD_ADD(&RP.X);
2583
2584 /* Randomize coordinates of the starting point */
2585 MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2586
2587 /* Loop invariant: R = result so far, RP = R + P */
2588 i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2589 while (i-- > 0) {
2590 b = mbedtls_mpi_get_bit(m, i);
2591 /*
2592 * if (b) R = 2R + P else R = 2R,
2593 * which is:
2594 * if (b) double_add( RP, R, RP, R )
2595 * else double_add( R, RP, R, RP )
2596 * but using safe conditional swaps to avoid leaks
2597 */
2598 MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2599 MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2600 MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2601 MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2602 MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2603 }
2604
2605 /*
2606 * Knowledge of the projective coordinates may leak the last few bits of the
2607 * scalar [1], and since our MPI implementation isn't constant-flow,
2608 * inversion (used for coordinate normalization) may leak the full value
2609 * of its input via side-channels [2].
2610 *
2611 * [1] https://eprint.iacr.org/2003/191
2612 * [2] https://eprint.iacr.org/2020/055
2613 *
2614 * Avoid the leak by randomizing coordinates before we normalize them.
2615 */
2616 MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2617 MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2618
2619 cleanup:
2620 mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2621
2622 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2623 return ret;
2624 }
2625
2626 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2627
2628 /*
2629 * Restartable multiplication R = m * P
2630 *
2631 * This internal function can be called without an RNG in case where we know
2632 * the inputs are not sensitive.
2633 */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2634 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2635 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2636 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2637 mbedtls_ecp_restart_ctx *rs_ctx)
2638 {
2639 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2640 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2641 char is_grp_capable = 0;
2642 #endif
2643
2644 #if defined(MBEDTLS_ECP_RESTARTABLE)
2645 /* reset ops count for this call if top-level */
2646 if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2647 rs_ctx->ops_done = 0;
2648 }
2649 #else
2650 (void) rs_ctx;
2651 #endif
2652
2653 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2654 if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2655 MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2656 }
2657 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2658
2659 int restarting = 0;
2660 #if defined(MBEDTLS_ECP_RESTARTABLE)
2661 restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2662 #endif
2663 /* skip argument check when restarting */
2664 if (!restarting) {
2665 /* check_privkey is free */
2666 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2667
2668 /* Common sanity checks */
2669 MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2670 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2671 }
2672
2673 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2674 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2675 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2676 MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2677 }
2678 #endif
2679 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2680 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2681 MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2682 }
2683 #endif
2684
2685 cleanup:
2686
2687 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2688 if (is_grp_capable) {
2689 mbedtls_internal_ecp_free(grp);
2690 }
2691 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2692
2693 #if defined(MBEDTLS_ECP_RESTARTABLE)
2694 if (rs_ctx != NULL) {
2695 rs_ctx->depth--;
2696 }
2697 #endif
2698
2699 return ret;
2700 }
2701
2702 /*
2703 * Restartable multiplication R = m * P
2704 */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2705 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2706 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2707 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2708 mbedtls_ecp_restart_ctx *rs_ctx)
2709 {
2710 if (f_rng == NULL) {
2711 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2712 }
2713
2714 return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2715 }
2716
2717 /*
2718 * Multiplication R = m * P
2719 */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2720 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2721 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2722 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2723 {
2724 return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2725 }
2726
2727 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2728 /*
2729 * Check that an affine point is valid as a public key,
2730 * short weierstrass curves (SEC1 3.2.3.1)
2731 */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2732 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2733 {
2734 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2735 mbedtls_mpi YY, RHS;
2736
2737 /* pt coordinates must be normalized for our checks */
2738 if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2739 mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2740 mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2741 mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2742 return MBEDTLS_ERR_ECP_INVALID_KEY;
2743 }
2744
2745 mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2746
2747 /*
2748 * YY = Y^2
2749 * RHS = X^3 + A X + B
2750 */
2751 MPI_ECP_SQR(&YY, &pt->Y);
2752 MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2753
2754 if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2755 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2756 }
2757
2758 cleanup:
2759
2760 mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2761
2762 return ret;
2763 }
2764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2765
2766 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2767 /*
2768 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2769 * NOT constant-time - ONLY for short Weierstrass!
2770 */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2771 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2772 mbedtls_ecp_point *R,
2773 const mbedtls_mpi *m,
2774 const mbedtls_ecp_point *P,
2775 mbedtls_ecp_restart_ctx *rs_ctx)
2776 {
2777 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2778 mbedtls_mpi tmp;
2779 mbedtls_mpi_init(&tmp);
2780
2781 if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2782 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783 MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2784 } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2785 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2786 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2787 } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2788 MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2789 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2790 MPI_ECP_NEG(&R->Y);
2791 } else {
2792 MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2793 NULL, NULL, rs_ctx));
2794 }
2795
2796 cleanup:
2797 mbedtls_mpi_free(&tmp);
2798
2799 return ret;
2800 }
2801
2802 /*
2803 * Restartable linear combination
2804 * NOT constant-time
2805 */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2806 int mbedtls_ecp_muladd_restartable(
2807 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2808 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2809 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2810 mbedtls_ecp_restart_ctx *rs_ctx)
2811 {
2812 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2813 mbedtls_ecp_point mP;
2814 mbedtls_ecp_point *pmP = &mP;
2815 mbedtls_ecp_point *pR = R;
2816 mbedtls_mpi tmp[4];
2817 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2818 char is_grp_capable = 0;
2819 #endif
2820 if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2821 return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2822 }
2823
2824 mbedtls_ecp_point_init(&mP);
2825 mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2826
2827 ECP_RS_ENTER(ma);
2828
2829 #if defined(MBEDTLS_ECP_RESTARTABLE)
2830 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2831 /* redirect intermediate results to restart context */
2832 pmP = &rs_ctx->ma->mP;
2833 pR = &rs_ctx->ma->R;
2834
2835 /* jump to next operation */
2836 if (rs_ctx->ma->state == ecp_rsma_mul2) {
2837 goto mul2;
2838 }
2839 if (rs_ctx->ma->state == ecp_rsma_add) {
2840 goto add;
2841 }
2842 if (rs_ctx->ma->state == ecp_rsma_norm) {
2843 goto norm;
2844 }
2845 }
2846 #endif /* MBEDTLS_ECP_RESTARTABLE */
2847
2848 MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2849 #if defined(MBEDTLS_ECP_RESTARTABLE)
2850 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2851 rs_ctx->ma->state = ecp_rsma_mul2;
2852 }
2853
2854 mul2:
2855 #endif
2856 MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
2857
2858 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2859 if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2860 MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2861 }
2862 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2863
2864 #if defined(MBEDTLS_ECP_RESTARTABLE)
2865 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2866 rs_ctx->ma->state = ecp_rsma_add;
2867 }
2868
2869 add:
2870 #endif
2871 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2872 MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2873 #if defined(MBEDTLS_ECP_RESTARTABLE)
2874 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2875 rs_ctx->ma->state = ecp_rsma_norm;
2876 }
2877
2878 norm:
2879 #endif
2880 MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2881 MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2882
2883 #if defined(MBEDTLS_ECP_RESTARTABLE)
2884 if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2885 MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2886 }
2887 #endif
2888
2889 cleanup:
2890
2891 mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2892
2893 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2894 if (is_grp_capable) {
2895 mbedtls_internal_ecp_free(grp);
2896 }
2897 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2898
2899 mbedtls_ecp_point_free(&mP);
2900
2901 ECP_RS_LEAVE(ma);
2902
2903 return ret;
2904 }
2905
2906 /*
2907 * Linear combination
2908 * NOT constant-time
2909 */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2910 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2911 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2912 const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2913 {
2914 return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2915 }
2916 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2917
2918 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2919 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2920 #define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
2921 #define ECP_MPI_INIT_ARRAY(x) \
2922 ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
2923 /*
2924 * Constants for the two points other than 0, 1, -1 (mod p) in
2925 * https://cr.yp.to/ecdh.html#validate
2926 * See ecp_check_pubkey_x25519().
2927 */
2928 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2929 MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2930 MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2931 MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2932 MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2933 };
2934 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2935 MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2936 MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2937 MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2938 MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2939 };
2940 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2941 x25519_bad_point_1);
2942 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2943 x25519_bad_point_2);
2944 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2945
2946 /*
2947 * Check that the input point is not one of the low-order points.
2948 * This is recommended by the "May the Fourth" paper:
2949 * https://eprint.iacr.org/2017/806.pdf
2950 * Those points are never sent by an honest peer.
2951 */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2952 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2953 const mbedtls_ecp_group_id grp_id)
2954 {
2955 int ret;
2956 mbedtls_mpi XmP;
2957
2958 mbedtls_mpi_init(&XmP);
2959
2960 /* Reduce X mod P so that we only need to check values less than P.
2961 * We know X < 2^256 so we can proceed by subtraction. */
2962 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2963 while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2964 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2965 }
2966
2967 /* Check against the known bad values that are less than P. For Curve448
2968 * these are 0, 1 and -1. For Curve25519 we check the values less than P
2969 * from the following list: https://cr.yp.to/ecdh.html#validate */
2970 if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
2971 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2972 goto cleanup;
2973 }
2974
2975 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2976 if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2977 if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2978 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979 goto cleanup;
2980 }
2981
2982 if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2983 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2984 goto cleanup;
2985 }
2986 }
2987 #else
2988 (void) grp_id;
2989 #endif
2990
2991 /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2992 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2993 if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2994 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2995 goto cleanup;
2996 }
2997
2998 ret = 0;
2999
3000 cleanup:
3001 mbedtls_mpi_free(&XmP);
3002
3003 return ret;
3004 }
3005
3006 /*
3007 * Check validity of a public key for Montgomery curves with x-only schemes
3008 */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3009 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3010 {
3011 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3012 /* Allow any public value, if it's too big then we'll just reduce it mod p
3013 * (RFC 7748 sec. 5 para. 3). */
3014 if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3015 return MBEDTLS_ERR_ECP_INVALID_KEY;
3016 }
3017
3018 /* Implicit in all standards (as they don't consider negative numbers):
3019 * X must be non-negative. This is normally ensured by the way it's
3020 * encoded for transmission, but let's be extra sure. */
3021 if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3022 return MBEDTLS_ERR_ECP_INVALID_KEY;
3023 }
3024
3025 return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3026 }
3027 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3028
3029 /*
3030 * Check that a point is valid as a public key
3031 */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3032 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3033 const mbedtls_ecp_point *pt)
3034 {
3035 /* Must use affine coordinates */
3036 if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3037 return MBEDTLS_ERR_ECP_INVALID_KEY;
3038 }
3039
3040 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3041 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3042 return ecp_check_pubkey_mx(grp, pt);
3043 }
3044 #endif
3045 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3046 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3047 return ecp_check_pubkey_sw(grp, pt);
3048 }
3049 #endif
3050 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3051 }
3052
3053 /*
3054 * Check that an mbedtls_mpi is valid as a private key
3055 */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)3056 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3057 const mbedtls_mpi *d)
3058 {
3059 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3060 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3061 /* see RFC 7748 sec. 5 para. 5 */
3062 if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3063 mbedtls_mpi_get_bit(d, 1) != 0 ||
3064 mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */
3065 return MBEDTLS_ERR_ECP_INVALID_KEY;
3066 }
3067
3068 /* see [Curve25519] page 5 */
3069 if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3070 return MBEDTLS_ERR_ECP_INVALID_KEY;
3071 }
3072
3073 return 0;
3074 }
3075 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3076 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3077 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3078 /* see SEC1 3.2 */
3079 if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3080 mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3081 return MBEDTLS_ERR_ECP_INVALID_KEY;
3082 } else {
3083 return 0;
3084 }
3085 }
3086 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3087
3088 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3089 }
3090
3091 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3092 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3093 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3094 mbedtls_mpi *d,
3095 int (*f_rng)(void *, unsigned char *, size_t),
3096 void *p_rng)
3097 {
3098 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3099 size_t n_random_bytes = high_bit / 8 + 1;
3100
3101 /* [Curve25519] page 5 */
3102 /* Generate a (high_bit+1)-bit random number by generating just enough
3103 * random bytes, then shifting out extra bits from the top (necessary
3104 * when (high_bit+1) is not a multiple of 8). */
3105 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3106 f_rng, p_rng));
3107 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3108
3109 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3110
3111 /* Make sure the last two bits are unset for Curve448, three bits for
3112 Curve25519 */
3113 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3114 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3115 if (high_bit == 254) {
3116 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3117 }
3118
3119 cleanup:
3120 return ret;
3121 }
3122 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3123
3124 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3125 static int mbedtls_ecp_gen_privkey_sw(
3126 const mbedtls_mpi *N, mbedtls_mpi *d,
3127 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3128 {
3129 int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3130 switch (ret) {
3131 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3132 return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3133 default:
3134 return ret;
3135 }
3136 }
3137 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3138
3139 /*
3140 * Generate a private key
3141 */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3142 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3143 mbedtls_mpi *d,
3144 int (*f_rng)(void *, unsigned char *, size_t),
3145 void *p_rng)
3146 {
3147 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3148 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3149 return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3150 }
3151 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3152
3153 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3154 if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3155 return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3156 }
3157 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3158
3159 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3160 }
3161
3162 /*
3163 * Generate a keypair with configurable base point
3164 */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3165 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3166 const mbedtls_ecp_point *G,
3167 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3168 int (*f_rng)(void *, unsigned char *, size_t),
3169 void *p_rng)
3170 {
3171 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3172 MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3173 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3174
3175 cleanup:
3176 return ret;
3177 }
3178
3179 /*
3180 * Generate key pair, wrapper for conventional base point
3181 */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3182 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3183 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3184 int (*f_rng)(void *, unsigned char *, size_t),
3185 void *p_rng)
3186 {
3187 return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3188 }
3189
3190 /*
3191 * Generate a keypair, prettier wrapper
3192 */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3193 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3194 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3195 {
3196 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3197 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3198 return ret;
3199 }
3200
3201 return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3202 }
3203
3204 #define ECP_CURVE25519_KEY_SIZE 32
3205 #define ECP_CURVE448_KEY_SIZE 56
3206 /*
3207 * Read a private key.
3208 */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3209 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3210 const unsigned char *buf, size_t buflen)
3211 {
3212 int ret = 0;
3213
3214 if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3215 return ret;
3216 }
3217
3218 ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3219
3220 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3221 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3222 /*
3223 * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3224 */
3225 if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3226 if (buflen != ECP_CURVE25519_KEY_SIZE) {
3227 return MBEDTLS_ERR_ECP_INVALID_KEY;
3228 }
3229
3230 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3231
3232 /* Set the three least significant bits to 0 */
3233 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3234 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3235 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3236
3237 /* Set the most significant bit to 0 */
3238 MBEDTLS_MPI_CHK(
3239 mbedtls_mpi_set_bit(&key->d,
3240 ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3241 );
3242
3243 /* Set the second most significant bit to 1 */
3244 MBEDTLS_MPI_CHK(
3245 mbedtls_mpi_set_bit(&key->d,
3246 ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3247 );
3248 } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3249 if (buflen != ECP_CURVE448_KEY_SIZE) {
3250 return MBEDTLS_ERR_ECP_INVALID_KEY;
3251 }
3252
3253 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3254
3255 /* Set the two least significant bits to 0 */
3256 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3257 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3258
3259 /* Set the most significant bit to 1 */
3260 MBEDTLS_MPI_CHK(
3261 mbedtls_mpi_set_bit(&key->d,
3262 ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3263 );
3264 }
3265 }
3266
3267 #endif
3268 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3269 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3270 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3271
3272 MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3273 }
3274
3275 #endif
3276 cleanup:
3277
3278 if (ret != 0) {
3279 mbedtls_mpi_free(&key->d);
3280 }
3281
3282 return ret;
3283 }
3284
3285 /*
3286 * Write a private key.
3287 */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3288 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3289 unsigned char *buf, size_t buflen)
3290 {
3291 int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3292
3293 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3294 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3295 if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3296 if (buflen < ECP_CURVE25519_KEY_SIZE) {
3297 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3298 }
3299
3300 } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3301 if (buflen < ECP_CURVE448_KEY_SIZE) {
3302 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3303 }
3304 }
3305 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3306 }
3307 #endif
3308 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3309 if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3310 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3311 }
3312
3313 #endif
3314 cleanup:
3315
3316 return ret;
3317 }
3318
3319
3320 /*
3321 * Check a public-private key pair
3322 */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3323 int mbedtls_ecp_check_pub_priv(
3324 const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3325 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3326 {
3327 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3328 mbedtls_ecp_point Q;
3329 mbedtls_ecp_group grp;
3330 if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3331 pub->grp.id != prv->grp.id ||
3332 mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3333 mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3334 mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3335 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3336 }
3337
3338 mbedtls_ecp_point_init(&Q);
3339 mbedtls_ecp_group_init(&grp);
3340
3341 /* mbedtls_ecp_mul() needs a non-const group... */
3342 mbedtls_ecp_group_copy(&grp, &prv->grp);
3343
3344 /* Also checks d is valid */
3345 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3346
3347 if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3348 mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3349 mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3350 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3351 goto cleanup;
3352 }
3353
3354 cleanup:
3355 mbedtls_ecp_point_free(&Q);
3356 mbedtls_ecp_group_free(&grp);
3357
3358 return ret;
3359 }
3360
3361 /*
3362 * Export generic key-pair parameters.
3363 */
mbedtls_ecp_export(const mbedtls_ecp_keypair * key,mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q)3364 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3365 mbedtls_mpi *d, mbedtls_ecp_point *Q)
3366 {
3367 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368
3369 if ((ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3370 return ret;
3371 }
3372
3373 if ((ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3374 return ret;
3375 }
3376
3377 if ((ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3378 return ret;
3379 }
3380
3381 return 0;
3382 }
3383
3384 #if defined(MBEDTLS_SELF_TEST)
3385
3386 /*
3387 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3388 *
3389 * This is the linear congruential generator from numerical recipes,
3390 * except we only use the low byte as the output. See
3391 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3392 */
self_test_rng(void * ctx,unsigned char * out,size_t len)3393 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3394 {
3395 static uint32_t state = 42;
3396
3397 (void) ctx;
3398
3399 for (size_t i = 0; i < len; i++) {
3400 state = state * 1664525u + 1013904223u;
3401 out[i] = (unsigned char) state;
3402 }
3403
3404 return 0;
3405 }
3406
3407 /* Adjust the exponent to be a valid private point for the specified curve.
3408 * This is sometimes necessary because we use a single set of exponents
3409 * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3410 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3411 mbedtls_mpi *m)
3412 {
3413 int ret = 0;
3414 switch (grp->id) {
3415 /* If Curve25519 is available, then that's what we use for the
3416 * Montgomery test, so we don't need the adjustment code. */
3417 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3418 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3419 case MBEDTLS_ECP_DP_CURVE448:
3420 /* Move highest bit from 254 to N-1. Setting bit N-1 is
3421 * necessary to enforce the highest-bit-set constraint. */
3422 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3423 MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3424 /* Copy second-highest bit from 253 to N-2. This is not
3425 * necessary but improves the test variety a bit. */
3426 MBEDTLS_MPI_CHK(
3427 mbedtls_mpi_set_bit(m, grp->nbits - 1,
3428 mbedtls_mpi_get_bit(m, 253)));
3429 break;
3430 #endif
3431 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3432 default:
3433 /* Non-Montgomery curves and Curve25519 need no adjustment. */
3434 (void) grp;
3435 (void) m;
3436 goto cleanup;
3437 }
3438 cleanup:
3439 return ret;
3440 }
3441
3442 /* Calculate R = m.P for each m in exponents. Check that the number of
3443 * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3444 static int self_test_point(int verbose,
3445 mbedtls_ecp_group *grp,
3446 mbedtls_ecp_point *R,
3447 mbedtls_mpi *m,
3448 const mbedtls_ecp_point *P,
3449 const char *const *exponents,
3450 size_t n_exponents)
3451 {
3452 int ret = 0;
3453 size_t i = 0;
3454 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3455 add_count = 0;
3456 dbl_count = 0;
3457 mul_count = 0;
3458
3459 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3460 MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3461 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3462
3463 for (i = 1; i < n_exponents; i++) {
3464 add_c_prev = add_count;
3465 dbl_c_prev = dbl_count;
3466 mul_c_prev = mul_count;
3467 add_count = 0;
3468 dbl_count = 0;
3469 mul_count = 0;
3470
3471 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3472 MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3473 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3474
3475 if (add_count != add_c_prev ||
3476 dbl_count != dbl_c_prev ||
3477 mul_count != mul_c_prev) {
3478 ret = 1;
3479 break;
3480 }
3481 }
3482
3483 cleanup:
3484 if (verbose != 0) {
3485 if (ret != 0) {
3486 mbedtls_printf("failed (%u)\n", (unsigned int) i);
3487 } else {
3488 mbedtls_printf("passed\n");
3489 }
3490 }
3491 return ret;
3492 }
3493
3494 /*
3495 * Checkup routine
3496 */
mbedtls_ecp_self_test(int verbose)3497 int mbedtls_ecp_self_test(int verbose)
3498 {
3499 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3500 mbedtls_ecp_group grp;
3501 mbedtls_ecp_point R, P;
3502 mbedtls_mpi m;
3503
3504 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3505 /* Exponents especially adapted for secp192k1, which has the lowest
3506 * order n of all supported curves (secp192r1 is in a slightly larger
3507 * field but the order of its base point is slightly smaller). */
3508 const char *sw_exponents[] =
3509 {
3510 "000000000000000000000000000000000000000000000001", /* one */
3511 "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3512 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3513 "400000000000000000000000000000000000000000000000", /* one and zeros */
3514 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3515 "555555555555555555555555555555555555555555555555", /* 101010... */
3516 };
3517 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3518 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3519 const char *m_exponents[] =
3520 {
3521 /* Valid private values for Curve25519. In a build with Curve448
3522 * but not Curve25519, they will be adjusted in
3523 * self_test_adjust_exponent(). */
3524 "4000000000000000000000000000000000000000000000000000000000000000",
3525 "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3526 "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3527 "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3528 "5555555555555555555555555555555555555555555555555555555555555550",
3529 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3530 };
3531 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3532
3533 mbedtls_ecp_group_init(&grp);
3534 mbedtls_ecp_point_init(&R);
3535 mbedtls_ecp_point_init(&P);
3536 mbedtls_mpi_init(&m);
3537
3538 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3539 /* Use secp192r1 if available, or any available curve */
3540 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3541 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3542 #else
3543 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3544 #endif
3545
3546 if (verbose != 0) {
3547 mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
3548 }
3549 /* Do a dummy multiplication first to trigger precomputation */
3550 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3551 MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3552 ret = self_test_point(verbose,
3553 &grp, &R, &m, &grp.G,
3554 sw_exponents,
3555 sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3556 if (ret != 0) {
3557 goto cleanup;
3558 }
3559
3560 if (verbose != 0) {
3561 mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
3562 }
3563 /* We computed P = 2G last time, use it */
3564 ret = self_test_point(verbose,
3565 &grp, &R, &m, &P,
3566 sw_exponents,
3567 sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3568 if (ret != 0) {
3569 goto cleanup;
3570 }
3571
3572 mbedtls_ecp_group_free(&grp);
3573 mbedtls_ecp_point_free(&R);
3574 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3575
3576 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3577 if (verbose != 0) {
3578 mbedtls_printf(" ECP Montgomery test (constant op_count): ");
3579 }
3580 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3581 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3582 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3583 MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3584 #else
3585 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3586 #endif
3587 ret = self_test_point(verbose,
3588 &grp, &R, &m, &grp.G,
3589 m_exponents,
3590 sizeof(m_exponents) / sizeof(m_exponents[0]));
3591 if (ret != 0) {
3592 goto cleanup;
3593 }
3594 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3595
3596 cleanup:
3597
3598 if (ret < 0 && verbose != 0) {
3599 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3600 }
3601
3602 mbedtls_ecp_group_free(&grp);
3603 mbedtls_ecp_point_free(&R);
3604 mbedtls_ecp_point_free(&P);
3605 mbedtls_mpi_free(&m);
3606
3607 if (verbose != 0) {
3608 mbedtls_printf("\n");
3609 }
3610
3611 return ret;
3612 }
3613
3614 #endif /* MBEDTLS_SELF_TEST */
3615
3616 #endif /* !MBEDTLS_ECP_ALT */
3617
3618 #endif /* MBEDTLS_ECP_C */
3619