1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  */
7 
8 /*
9  * References:
10  *
11  * SEC1 https://www.secg.org/sec1-v2.pdf
12  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14  * RFC 4492 for the related TLS structures and constants
15  * - https://www.rfc-editor.org/rfc/rfc4492
16  * RFC 7748 for the Curve448 and Curve25519 curve definitions
17  * - https://www.rfc-editor.org/rfc/rfc7748
18  *
19  * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20  *
21  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
23  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25  *
26  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
28  *     ePrint Archive, 2004, vol. 2004, p. 342.
29  *     <http://eprint.iacr.org/2004/342.pdf>
30  */
31 
32 #include "common.h"
33 
34 /**
35  * \brief Function level alternative implementation.
36  *
37  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38  * replace certain functions in this module. The alternative implementations are
39  * typically hardware accelerators and need to activate the hardware before the
40  * computation starts and deactivate it after it finishes. The
41  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42  * this purpose.
43  *
44  * To preserve the correct functionality the following conditions must hold:
45  *
46  * - The alternative implementation must be activated by
47  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
48  *   called.
49  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50  *   implementation is activated.
51  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52  *   implementation is activated.
53  * - Public functions must not return while the alternative implementation is
54  *   activated.
55  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57  *   \endcode ensures that the alternative implementation supports the current
58  *   group.
59  */
60 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 #endif
62 
63 #if defined(MBEDTLS_ECP_LIGHT)
64 
65 #include "mbedtls/ecp.h"
66 #include "mbedtls/threading.h"
67 #include "mbedtls/platform_util.h"
68 #include "mbedtls/error.h"
69 
70 #include "bn_mul.h"
71 #include "ecp_invasive.h"
72 
73 #include <string.h>
74 
75 #if !defined(MBEDTLS_ECP_ALT)
76 
77 #include "mbedtls/platform.h"
78 
79 #include "ecp_internal_alt.h"
80 
81 #if defined(MBEDTLS_SELF_TEST)
82 /*
83  * Counts of point addition and doubling, and field multiplications.
84  * Used to test resistance of point multiplication to simple timing attacks.
85  */
86 #if defined(MBEDTLS_ECP_C)
87 static unsigned long add_count, dbl_count;
88 #endif /* MBEDTLS_ECP_C */
89 static unsigned long mul_count;
90 #endif
91 
92 #if defined(MBEDTLS_ECP_RESTARTABLE)
93 /*
94  * Maximum number of "basic operations" to be done in a row.
95  *
96  * Default value 0 means that ECC operations will not yield.
97  * Note that regardless of the value of ecp_max_ops, always at
98  * least one step is performed before yielding.
99  *
100  * Setting ecp_max_ops=1 can be suitable for testing purposes
101  * as it will interrupt computation at all possible points.
102  */
103 static unsigned ecp_max_ops = 0;
104 
105 /*
106  * Set ecp_max_ops
107  */
mbedtls_ecp_set_max_ops(unsigned max_ops)108 void mbedtls_ecp_set_max_ops(unsigned max_ops)
109 {
110     ecp_max_ops = max_ops;
111 }
112 
113 /*
114  * Check if restart is enabled
115  */
mbedtls_ecp_restart_is_enabled(void)116 int mbedtls_ecp_restart_is_enabled(void)
117 {
118     return ecp_max_ops != 0;
119 }
120 
121 /*
122  * Restart sub-context for ecp_mul_comb()
123  */
124 struct mbedtls_ecp_restart_mul {
125     mbedtls_ecp_point R;    /* current intermediate result                  */
126     size_t i;               /* current index in various loops, 0 outside    */
127     mbedtls_ecp_point *T;   /* table for precomputed points                 */
128     unsigned char T_size;   /* number of points in table T                  */
129     enum {                  /* what were we doing last time we returned?    */
130         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
131         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
132         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
133         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
134         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
135         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
136         ecp_rsm_final_norm,     /* do the final normalization               */
137     } state;
138 };
139 
140 /*
141  * Init restart_mul sub-context
142  */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)143 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144 {
145     mbedtls_ecp_point_init(&ctx->R);
146     ctx->i = 0;
147     ctx->T = NULL;
148     ctx->T_size = 0;
149     ctx->state = ecp_rsm_init;
150 }
151 
152 /*
153  * Free the components of a restart_mul sub-context
154  */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)155 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156 {
157     unsigned char i;
158 
159     if (ctx == NULL) {
160         return;
161     }
162 
163     mbedtls_ecp_point_free(&ctx->R);
164 
165     if (ctx->T != NULL) {
166         for (i = 0; i < ctx->T_size; i++) {
167             mbedtls_ecp_point_free(ctx->T + i);
168         }
169         mbedtls_free(ctx->T);
170     }
171 
172     ecp_restart_rsm_init(ctx);
173 }
174 
175 /*
176  * Restart context for ecp_muladd()
177  */
178 struct mbedtls_ecp_restart_muladd {
179     mbedtls_ecp_point mP;       /* mP value                             */
180     mbedtls_ecp_point R;        /* R intermediate result                */
181     enum {                      /* what should we do next?              */
182         ecp_rsma_mul1 = 0,      /* first multiplication                 */
183         ecp_rsma_mul2,          /* second multiplication                */
184         ecp_rsma_add,           /* addition                             */
185         ecp_rsma_norm,          /* normalization                        */
186     } state;
187 };
188 
189 /*
190  * Init restart_muladd sub-context
191  */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)192 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193 {
194     mbedtls_ecp_point_init(&ctx->mP);
195     mbedtls_ecp_point_init(&ctx->R);
196     ctx->state = ecp_rsma_mul1;
197 }
198 
199 /*
200  * Free the components of a restart_muladd sub-context
201  */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)202 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203 {
204     if (ctx == NULL) {
205         return;
206     }
207 
208     mbedtls_ecp_point_free(&ctx->mP);
209     mbedtls_ecp_point_free(&ctx->R);
210 
211     ecp_restart_ma_init(ctx);
212 }
213 
214 /*
215  * Initialize a restart context
216  */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)217 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218 {
219     ctx->ops_done = 0;
220     ctx->depth = 0;
221     ctx->rsm = NULL;
222     ctx->ma = NULL;
223 }
224 
225 /*
226  * Free the components of a restart context
227  */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)228 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229 {
230     if (ctx == NULL) {
231         return;
232     }
233 
234     ecp_restart_rsm_free(ctx->rsm);
235     mbedtls_free(ctx->rsm);
236 
237     ecp_restart_ma_free(ctx->ma);
238     mbedtls_free(ctx->ma);
239 
240     mbedtls_ecp_restart_init(ctx);
241 }
242 
243 /*
244  * Check if we can do the next step
245  */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)246 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247                              mbedtls_ecp_restart_ctx *rs_ctx,
248                              unsigned ops)
249 {
250     if (rs_ctx != NULL && ecp_max_ops != 0) {
251         /* scale depending on curve size: the chosen reference is 256-bit,
252          * and multiplication is quadratic. Round to the closest integer. */
253         if (grp->pbits >= 512) {
254             ops *= 4;
255         } else if (grp->pbits >= 384) {
256             ops *= 2;
257         }
258 
259         /* Avoid infinite loops: always allow first step.
260          * Because of that, however, it's not generally true
261          * that ops_done <= ecp_max_ops, so the check
262          * ops_done > ecp_max_ops below is mandatory. */
263         if ((rs_ctx->ops_done != 0) &&
264             (rs_ctx->ops_done > ecp_max_ops ||
265              ops > ecp_max_ops - rs_ctx->ops_done)) {
266             return MBEDTLS_ERR_ECP_IN_PROGRESS;
267         }
268 
269         /* update running count */
270         rs_ctx->ops_done += ops;
271     }
272 
273     return 0;
274 }
275 
276 /* Call this when entering a function that needs its own sub-context */
277 #define ECP_RS_ENTER(SUB)   do {                                      \
278         /* reset ops count for this call if top-level */                    \
279         if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
280         rs_ctx->ops_done = 0;                                           \
281                                                                         \
282         /* set up our own sub-context if needed */                          \
283         if (mbedtls_ecp_restart_is_enabled() &&                             \
284             rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
285         {                                                                   \
286             rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
287             if (rs_ctx->SUB == NULL)                                       \
288             return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
289                                                                       \
290             ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
291         }                                                                   \
292 } while (0)
293 
294 /* Call this when leaving a function that needs its own sub-context */
295 #define ECP_RS_LEAVE(SUB)   do {                                      \
296         /* clear our sub-context when not in progress (done or error) */    \
297         if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
298             ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
299         {                                                                   \
300             ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
301             mbedtls_free(rs_ctx->SUB);                                    \
302             rs_ctx->SUB = NULL;                                             \
303         }                                                                   \
304                                                                         \
305         if (rs_ctx != NULL)                                                \
306         rs_ctx->depth--;                                                \
307 } while (0)
308 
309 #else /* MBEDTLS_ECP_RESTARTABLE */
310 
311 #define ECP_RS_ENTER(sub)     (void) rs_ctx;
312 #define ECP_RS_LEAVE(sub)     (void) rs_ctx;
313 
314 #endif /* MBEDTLS_ECP_RESTARTABLE */
315 
316 #if defined(MBEDTLS_ECP_C)
mpi_init_many(mbedtls_mpi * arr,size_t size)317 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318 {
319     while (size--) {
320         mbedtls_mpi_init(arr++);
321     }
322 }
323 
mpi_free_many(mbedtls_mpi * arr,size_t size)324 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325 {
326     while (size--) {
327         mbedtls_mpi_free(arr++);
328     }
329 }
330 #endif /* MBEDTLS_ECP_C */
331 
332 /*
333  * List of supported curves:
334  *  - internal ID
335  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336  *  - size in bits
337  *  - readable name
338  *
339  * Curves are listed in order: largest curves first, and for a given size,
340  * fastest curves first.
341  *
342  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343  */
344 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345 {
346 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
348 #endif
349 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
351 #endif
352 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
354 #endif
355 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
357 #endif
358 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
360 #endif
361 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
384 #endif
385     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
386 };
387 
388 #define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
389     sizeof(ecp_supported_curves[0])
390 
391 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392 
393 /*
394  * List of supported curves and associated info
395  */
mbedtls_ecp_curve_list(void)396 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397 {
398     return ecp_supported_curves;
399 }
400 
401 /*
402  * List of supported curves, group ID only
403  */
mbedtls_ecp_grp_id_list(void)404 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405 {
406     static int init_done = 0;
407 
408     if (!init_done) {
409         size_t i = 0;
410         const mbedtls_ecp_curve_info *curve_info;
411 
412         for (curve_info = mbedtls_ecp_curve_list();
413              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414              curve_info++) {
415             ecp_supported_grp_id[i++] = curve_info->grp_id;
416         }
417         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418 
419         init_done = 1;
420     }
421 
422     return ecp_supported_grp_id;
423 }
424 
425 /*
426  * Get the curve info for the internal identifier
427  */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)428 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429 {
430     const mbedtls_ecp_curve_info *curve_info;
431 
432     for (curve_info = mbedtls_ecp_curve_list();
433          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434          curve_info++) {
435         if (curve_info->grp_id == grp_id) {
436             return curve_info;
437         }
438     }
439 
440     return NULL;
441 }
442 
443 /*
444  * Get the curve info from the TLS identifier
445  */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)446 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447 {
448     const mbedtls_ecp_curve_info *curve_info;
449 
450     for (curve_info = mbedtls_ecp_curve_list();
451          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452          curve_info++) {
453         if (curve_info->tls_id == tls_id) {
454             return curve_info;
455         }
456     }
457 
458     return NULL;
459 }
460 
461 /*
462  * Get the curve info from the name
463  */
mbedtls_ecp_curve_info_from_name(const char * name)464 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465 {
466     const mbedtls_ecp_curve_info *curve_info;
467 
468     if (name == NULL) {
469         return NULL;
470     }
471 
472     for (curve_info = mbedtls_ecp_curve_list();
473          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474          curve_info++) {
475         if (strcmp(curve_info->name, name) == 0) {
476             return curve_info;
477         }
478     }
479 
480     return NULL;
481 }
482 
483 /*
484  * Get the type of a curve
485  */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)486 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487 {
488     if (grp->G.X.p == NULL) {
489         return MBEDTLS_ECP_TYPE_NONE;
490     }
491 
492     if (grp->G.Y.p == NULL) {
493         return MBEDTLS_ECP_TYPE_MONTGOMERY;
494     } else {
495         return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496     }
497 }
498 
499 /*
500  * Initialize (the components of) a point
501  */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)502 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503 {
504     mbedtls_mpi_init(&pt->X);
505     mbedtls_mpi_init(&pt->Y);
506     mbedtls_mpi_init(&pt->Z);
507 }
508 
509 /*
510  * Initialize (the components of) a group
511  */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)512 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513 {
514     grp->id = MBEDTLS_ECP_DP_NONE;
515     mbedtls_mpi_init(&grp->P);
516     mbedtls_mpi_init(&grp->A);
517     mbedtls_mpi_init(&grp->B);
518     mbedtls_ecp_point_init(&grp->G);
519     mbedtls_mpi_init(&grp->N);
520     grp->pbits = 0;
521     grp->nbits = 0;
522     grp->h = 0;
523     grp->modp = NULL;
524     grp->t_pre = NULL;
525     grp->t_post = NULL;
526     grp->t_data = NULL;
527     grp->T = NULL;
528     grp->T_size = 0;
529 }
530 
531 /*
532  * Initialize (the components of) a key pair
533  */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)534 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535 {
536     mbedtls_ecp_group_init(&key->grp);
537     mbedtls_mpi_init(&key->d);
538     mbedtls_ecp_point_init(&key->Q);
539 }
540 
541 /*
542  * Unallocate (the components of) a point
543  */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)544 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545 {
546     if (pt == NULL) {
547         return;
548     }
549 
550     mbedtls_mpi_free(&(pt->X));
551     mbedtls_mpi_free(&(pt->Y));
552     mbedtls_mpi_free(&(pt->Z));
553 }
554 
555 /*
556  * Check that the comb table (grp->T) is static initialized.
557  */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)558 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559 {
560 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561     return grp->T != NULL && grp->T_size == 0;
562 #else
563     (void) grp;
564     return 0;
565 #endif
566 }
567 
568 /*
569  * Unallocate (the components of) a group
570  */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)571 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572 {
573     size_t i;
574 
575     if (grp == NULL) {
576         return;
577     }
578 
579     if (grp->h != 1) {
580         mbedtls_mpi_free(&grp->A);
581         mbedtls_mpi_free(&grp->B);
582         mbedtls_ecp_point_free(&grp->G);
583 
584 #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585         mbedtls_mpi_free(&grp->N);
586         mbedtls_mpi_free(&grp->P);
587 #endif
588     }
589 
590     if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591         for (i = 0; i < grp->T_size; i++) {
592             mbedtls_ecp_point_free(&grp->T[i]);
593         }
594         mbedtls_free(grp->T);
595     }
596 
597     mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598 }
599 
600 /*
601  * Unallocate (the components of) a key pair
602  */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)603 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604 {
605     if (key == NULL) {
606         return;
607     }
608 
609     mbedtls_ecp_group_free(&key->grp);
610     mbedtls_mpi_free(&key->d);
611     mbedtls_ecp_point_free(&key->Q);
612 }
613 
614 /*
615  * Copy the contents of a point
616  */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)617 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618 {
619     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623 
624 cleanup:
625     return ret;
626 }
627 
628 /*
629  * Copy the contents of a group object
630  */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)631 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632 {
633     return mbedtls_ecp_group_load(dst, src->id);
634 }
635 
636 /*
637  * Set point to zero
638  */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)639 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640 {
641     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645 
646 cleanup:
647     return ret;
648 }
649 
650 /*
651  * Tell if a point is zero
652  */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)653 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654 {
655     return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656 }
657 
658 /*
659  * Compare two points lazily
660  */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)661 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662                           const mbedtls_ecp_point *Q)
663 {
664     if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665         mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666         mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667         return 0;
668     }
669 
670     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671 }
672 
673 /*
674  * Import a non-zero point from ASCII strings
675  */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)676 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677                                   const char *x, const char *y)
678 {
679     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683 
684 cleanup:
685     return ret;
686 }
687 
688 /*
689  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690  */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)691 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692                                    const mbedtls_ecp_point *P,
693                                    int format, size_t *olen,
694                                    unsigned char *buf, size_t buflen)
695 {
696     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697     size_t plen;
698     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699         format != MBEDTLS_ECP_PF_COMPRESSED) {
700         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701     }
702 
703     plen = mbedtls_mpi_size(&grp->P);
704 
705 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706     (void) format; /* Montgomery curves always use the same point format */
707     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708         *olen = plen;
709         if (buflen < *olen) {
710             return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711         }
712 
713         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714     }
715 #endif
716 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718         /*
719          * Common case: P == 0
720          */
721         if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722             if (buflen < 1) {
723                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724             }
725 
726             buf[0] = 0x00;
727             *olen = 1;
728 
729             return 0;
730         }
731 
732         if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733             *olen = 2 * plen + 1;
734 
735             if (buflen < *olen) {
736                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737             }
738 
739             buf[0] = 0x04;
740             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742         } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743             *olen = plen + 1;
744 
745             if (buflen < *olen) {
746                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747             }
748 
749             buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751         }
752     }
753 #endif
754 
755 cleanup:
756     return ret;
757 }
758 
759 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761                                    const mbedtls_mpi *X,
762                                    mbedtls_mpi *Y,
763                                    int parity_bit);
764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765 
766 /*
767  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768  */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)769 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770                                   mbedtls_ecp_point *pt,
771                                   const unsigned char *buf, size_t ilen)
772 {
773     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774     size_t plen;
775     if (ilen < 1) {
776         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777     }
778 
779     plen = mbedtls_mpi_size(&grp->P);
780 
781 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783         if (plen != ilen) {
784             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785         }
786 
787         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788         mbedtls_mpi_free(&pt->Y);
789 
790         if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793         }
794 
795         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796     }
797 #endif
798 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800         if (buf[0] == 0x00) {
801             if (ilen == 1) {
802                 return mbedtls_ecp_set_zero(pt);
803             } else {
804                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805             }
806         }
807 
808         if (ilen < 1 + plen) {
809             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810         }
811 
812         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814 
815         if (buf[0] == 0x04) {
816             /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817             if (ilen != 1 + plen * 2) {
818                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819             }
820             return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821         } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822             /* format == MBEDTLS_ECP_PF_COMPRESSED */
823             if (ilen != 1 + plen) {
824                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825             }
826             return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827                                            (buf[0] & 1));
828         } else {
829             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830         }
831     }
832 #endif
833 
834 cleanup:
835     return ret;
836 }
837 
838 /*
839  * Import a point from a TLS ECPoint record (RFC 4492)
840  *      struct {
841  *          opaque point <1..2^8-1>;
842  *      } ECPoint;
843  */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)844 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845                                mbedtls_ecp_point *pt,
846                                const unsigned char **buf, size_t buf_len)
847 {
848     unsigned char data_len;
849     const unsigned char *buf_start;
850     /*
851      * We must have at least two bytes (1 for length, at least one for data)
852      */
853     if (buf_len < 2) {
854         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855     }
856 
857     data_len = *(*buf)++;
858     if (data_len < 1 || data_len > buf_len - 1) {
859         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860     }
861 
862     /*
863      * Save buffer start for read_binary and update buf
864      */
865     buf_start = *buf;
866     *buf += data_len;
867 
868     return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869 }
870 
871 /*
872  * Export a point as a TLS ECPoint record (RFC 4492)
873  *      struct {
874  *          opaque point <1..2^8-1>;
875  *      } ECPoint;
876  */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)877 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878                                 int format, size_t *olen,
879                                 unsigned char *buf, size_t blen)
880 {
881     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883         format != MBEDTLS_ECP_PF_COMPRESSED) {
884         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885     }
886 
887     /*
888      * buffer length must be at least one, for our length byte
889      */
890     if (blen < 1) {
891         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892     }
893 
894     if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895                                               olen, buf + 1, blen - 1)) != 0) {
896         return ret;
897     }
898 
899     /*
900      * write length to the first byte and update total length
901      */
902     buf[0] = (unsigned char) *olen;
903     ++*olen;
904 
905     return 0;
906 }
907 
908 /*
909  * Set a group from an ECParameters record (RFC 4492)
910  */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)911 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912                                const unsigned char **buf, size_t len)
913 {
914     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915     mbedtls_ecp_group_id grp_id;
916     if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917         return ret;
918     }
919 
920     return mbedtls_ecp_group_load(grp, grp_id);
921 }
922 
923 /*
924  * Read a group id from an ECParameters record (RFC 4492) and convert it to
925  * mbedtls_ecp_group_id.
926  */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)927 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928                                   const unsigned char **buf, size_t len)
929 {
930     uint16_t tls_id;
931     const mbedtls_ecp_curve_info *curve_info;
932     /*
933      * We expect at least three bytes (see below)
934      */
935     if (len < 3) {
936         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937     }
938 
939     /*
940      * First byte is curve_type; only named_curve is handled
941      */
942     if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944     }
945 
946     /*
947      * Next two bytes are the namedcurve value
948      */
949     tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950     *buf += 2;
951 
952     if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954     }
955 
956     *grp = curve_info->grp_id;
957 
958     return 0;
959 }
960 
961 /*
962  * Write the ECParameters record corresponding to a group (RFC 4492)
963  */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)964 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965                                 unsigned char *buf, size_t blen)
966 {
967     const mbedtls_ecp_curve_info *curve_info;
968     if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970     }
971 
972     /*
973      * We are going to write 3 bytes (see below)
974      */
975     *olen = 3;
976     if (blen < *olen) {
977         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978     }
979 
980     /*
981      * First byte is curve_type, always named_curve
982      */
983     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984 
985     /*
986      * Next two bytes are the namedcurve value
987      */
988     MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989 
990     return 0;
991 }
992 
993 /*
994  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995  * See the documentation of struct mbedtls_ecp_group.
996  *
997  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998  */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)999 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000 {
1001     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002 
1003     if (grp->modp == NULL) {
1004         return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005     }
1006 
1007     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1008     if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009         mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011     }
1012 
1013     MBEDTLS_MPI_CHK(grp->modp(N));
1014 
1015     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1016     while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018     }
1019 
1020     while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021         /* we known P, N and the result are positive */
1022         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023     }
1024 
1025 cleanup:
1026     return ret;
1027 }
1028 
1029 /*
1030  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031  *
1032  * In order to guarantee that, we need to ensure that operands of
1033  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034  * bring the result back to this range.
1035  *
1036  * The following macros are shortcuts for doing that.
1037  */
1038 
1039 /*
1040  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041  */
1042 #if defined(MBEDTLS_SELF_TEST)
1043 #define INC_MUL_COUNT   mul_count++;
1044 #else
1045 #define INC_MUL_COUNT
1046 #endif
1047 
1048 #define MOD_MUL(N)                                                    \
1049     do                                                                  \
1050     {                                                                   \
1051         MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
1052         INC_MUL_COUNT                                                   \
1053     } while (0)
1054 
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1055 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056                                       mbedtls_mpi *X,
1057                                       const mbedtls_mpi *A,
1058                                       const mbedtls_mpi *B)
1059 {
1060     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062     MOD_MUL(*X);
1063 cleanup:
1064     return ret;
1065 }
1066 
1067 /*
1068  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069  * N->s < 0 is a very fast test, which fails only if N is 0
1070  */
1071 #define MOD_SUB(N)                                                          \
1072     do {                                                                      \
1073         while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
1074         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
1075     } while (0)
1076 
1077 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1078 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1079                                       mbedtls_mpi *X,
1080                                       const mbedtls_mpi *A,
1081                                       const mbedtls_mpi *B)
1082 {
1083     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1084     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1085     MOD_SUB(X);
1086 cleanup:
1087     return ret;
1088 }
1089 
1090 /*
1091  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1092  * We known P, N and the result are positive, so sub_abs is correct, and
1093  * a bit faster.
1094  */
1095 #define MOD_ADD(N)                                                   \
1096     while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
1097     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1098 
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1099 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1100                                       mbedtls_mpi *X,
1101                                       const mbedtls_mpi *A,
1102                                       const mbedtls_mpi *B)
1103 {
1104     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1105     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1106     MOD_ADD(X);
1107 cleanup:
1108     return ret;
1109 }
1110 
1111 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1112 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1113                                           mbedtls_mpi *X,
1114                                           const mbedtls_mpi *A,
1115                                           mbedtls_mpi_uint c)
1116 {
1117     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1118 
1119     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1120     MOD_ADD(X);
1121 cleanup:
1122     return ret;
1123 }
1124 
1125 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1126 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1127                                           mbedtls_mpi *X,
1128                                           const mbedtls_mpi *A,
1129                                           mbedtls_mpi_uint c)
1130 {
1131     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132 
1133     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1134     MOD_SUB(X);
1135 cleanup:
1136     return ret;
1137 }
1138 
1139 #define MPI_ECP_SUB_INT(X, A, c)             \
1140     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1141 
1142 MBEDTLS_MAYBE_UNUSED
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1143 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1144                                           mbedtls_mpi *X,
1145                                           size_t count)
1146 {
1147     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1148     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1149     MOD_ADD(X);
1150 cleanup:
1151     return ret;
1152 }
1153 
1154 /*
1155  * Macro wrappers around ECP modular arithmetic
1156  *
1157  * Currently, these wrappers are defined via the bignum module.
1158  */
1159 
1160 #define MPI_ECP_ADD(X, A, B)                                                  \
1161     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1162 
1163 #define MPI_ECP_SUB(X, A, B)                                                  \
1164     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1165 
1166 #define MPI_ECP_MUL(X, A, B)                                                  \
1167     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1168 
1169 #define MPI_ECP_SQR(X, A)                                                     \
1170     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1171 
1172 #define MPI_ECP_MUL_INT(X, A, c)                                              \
1173     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1174 
1175 #define MPI_ECP_INV(dst, src)                                                 \
1176     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1177 
1178 #define MPI_ECP_MOV(X, A)                                                     \
1179     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1180 
1181 #define MPI_ECP_SHIFT_L(X, count)                                             \
1182     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1183 
1184 #define MPI_ECP_LSET(X, c)                                                    \
1185     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1186 
1187 #define MPI_ECP_CMP_INT(X, c)                                                 \
1188     mbedtls_mpi_cmp_int(X, c)
1189 
1190 #define MPI_ECP_CMP(X, Y)                                                     \
1191     mbedtls_mpi_cmp_mpi(X, Y)
1192 
1193 /* Needs f_rng, p_rng to be defined. */
1194 #define MPI_ECP_RAND(X)                                                       \
1195     MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1196 
1197 /* Conditional negation
1198  * Needs grp and a temporary MPI tmp to be defined. */
1199 #define MPI_ECP_COND_NEG(X, cond)                                        \
1200     do                                                                     \
1201     {                                                                      \
1202         unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
1203         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
1204         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
1205                                                      nonzero & cond)); \
1206     } while (0)
1207 
1208 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1209 
1210 #define MPI_ECP_VALID(X)                      \
1211     ((X)->p != NULL)
1212 
1213 #define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
1214     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1215 
1216 #define MPI_ECP_COND_SWAP(X, Y, cond)       \
1217     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1218 
1219 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1220 
1221 /*
1222  * Computes the right-hand side of the Short Weierstrass equation
1223  * RHS = X^3 + A X + B
1224  */
ecp_sw_rhs(const mbedtls_ecp_group * grp,mbedtls_mpi * rhs,const mbedtls_mpi * X)1225 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1226                       mbedtls_mpi *rhs,
1227                       const mbedtls_mpi *X)
1228 {
1229     int ret;
1230 
1231     /* Compute X^3 + A X + B as X (X^2 + A) + B */
1232     MPI_ECP_SQR(rhs, X);
1233 
1234     /* Special case for A = -3 */
1235     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1236         MPI_ECP_SUB_INT(rhs, rhs, 3);
1237     } else {
1238         MPI_ECP_ADD(rhs, rhs, &grp->A);
1239     }
1240 
1241     MPI_ECP_MUL(rhs, rhs, X);
1242     MPI_ECP_ADD(rhs, rhs, &grp->B);
1243 
1244 cleanup:
1245     return ret;
1246 }
1247 
1248 /*
1249  * Derive Y from X and a parity bit
1250  */
mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group * grp,const mbedtls_mpi * X,mbedtls_mpi * Y,int parity_bit)1251 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1252                                    const mbedtls_mpi *X,
1253                                    mbedtls_mpi *Y,
1254                                    int parity_bit)
1255 {
1256     /* w = y^2 = x^3 + ax + b
1257      * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
1258      *
1259      * Note: this method for extracting square root does not validate that w
1260      * was indeed a square so this function will return garbage in Y if X
1261      * does not correspond to a point on the curve.
1262      */
1263 
1264     /* Check prerequisite p = 3 mod 4 */
1265     if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1266         mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1267         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1268     }
1269 
1270     int ret;
1271     mbedtls_mpi exp;
1272     mbedtls_mpi_init(&exp);
1273 
1274     /* use Y to store intermediate result, actually w above */
1275     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1276 
1277     /* w = y^2 */ /* Y contains y^2 intermediate result */
1278     /* exp = ((p+1)/4) */
1279     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1280     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1281     /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
1282     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1283 
1284     /* check parity bit match or else invert Y */
1285     /* This quick inversion implementation is valid because Y != 0 for all
1286      * Short Weierstrass curves supported by mbedtls, as each supported curve
1287      * has an order that is a large prime, so each supported curve does not
1288      * have any point of order 2, and a point with Y == 0 would be of order 2 */
1289     if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1290         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1291     }
1292 
1293 cleanup:
1294 
1295     mbedtls_mpi_free(&exp);
1296     return ret;
1297 }
1298 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1299 
1300 #if defined(MBEDTLS_ECP_C)
1301 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1302 /*
1303  * For curves in short Weierstrass form, we do all the internal operations in
1304  * Jacobian coordinates.
1305  *
1306  * For multiplication, we'll use a comb method with countermeasures against
1307  * SPA, hence timing attacks.
1308  */
1309 
1310 /*
1311  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1312  * Cost: 1N := 1I + 3M + 1S
1313  */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1314 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1315 {
1316     if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1317         return 0;
1318     }
1319 
1320 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1321     if (mbedtls_internal_ecp_grp_capable(grp)) {
1322         return mbedtls_internal_ecp_normalize_jac(grp, pt);
1323     }
1324 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1325 
1326 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1327     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1328 #else
1329     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1330     mbedtls_mpi T;
1331     mbedtls_mpi_init(&T);
1332 
1333     MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
1334     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
1335     MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
1336     MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
1337     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
1338 
1339     MPI_ECP_LSET(&pt->Z, 1);
1340 
1341 cleanup:
1342 
1343     mbedtls_mpi_free(&T);
1344 
1345     return ret;
1346 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1347 }
1348 
1349 /*
1350  * Normalize jacobian coordinates of an array of (pointers to) points,
1351  * using Montgomery's trick to perform only one inversion mod P.
1352  * (See for example Cohen's "A Course in Computational Algebraic Number
1353  * Theory", Algorithm 10.3.4.)
1354  *
1355  * Warning: fails (returning an error) if one of the points is zero!
1356  * This should never happen, see choice of w in ecp_mul_comb().
1357  *
1358  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1359  */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1360 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1361                                   mbedtls_ecp_point *T[], size_t T_size)
1362 {
1363     if (T_size < 2) {
1364         return ecp_normalize_jac(grp, *T);
1365     }
1366 
1367 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1368     if (mbedtls_internal_ecp_grp_capable(grp)) {
1369         return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1370     }
1371 #endif
1372 
1373 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1374     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1375 #else
1376     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1377     size_t i;
1378     mbedtls_mpi *c, t;
1379 
1380     if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1381         return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1382     }
1383 
1384     mbedtls_mpi_init(&t);
1385 
1386     mpi_init_many(c, T_size);
1387     /*
1388      * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
1389      */
1390     MPI_ECP_MOV(&c[0], &T[0]->Z);
1391     for (i = 1; i < T_size; i++) {
1392         MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1393     }
1394 
1395     /*
1396      * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1397      */
1398     MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1399 
1400     for (i = T_size - 1;; i--) {
1401         /* At the start of iteration i (note that i decrements), we have
1402          * - c[j] = Z_0 * .... * Z_j        for j  < i,
1403          * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
1404          *
1405          * This is maintained via
1406          * - c[i-1] <- c[i] * Z_i
1407          *
1408          * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1409          * to do the actual normalization. For i==0, we already have
1410          * c[0] = 1 / Z_0.
1411          */
1412 
1413         if (i > 0) {
1414             /* Compute 1/Z_i and establish invariant for the next iteration. */
1415             MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
1416             MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1417         } else {
1418             MPI_ECP_MOV(&t, &c[0]);
1419         }
1420 
1421         /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1422         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1423         MPI_ECP_SQR(&t,       &t);
1424         MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1425         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1426 
1427         /*
1428          * Post-precessing: reclaim some memory by shrinking coordinates
1429          * - not storing Z (always 1)
1430          * - shrinking other coordinates, but still keeping the same number of
1431          *   limbs as P, as otherwise it will too likely be regrown too fast.
1432          */
1433         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1434         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1435 
1436         MPI_ECP_LSET(&T[i]->Z, 1);
1437 
1438         if (i == 0) {
1439             break;
1440         }
1441     }
1442 
1443 cleanup:
1444 
1445     mbedtls_mpi_free(&t);
1446     mpi_free_many(c, T_size);
1447     mbedtls_free(c);
1448 
1449     return ret;
1450 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1451 }
1452 
1453 /*
1454  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1455  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1456  */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1457 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1458                                mbedtls_ecp_point *Q,
1459                                unsigned char inv)
1460 {
1461     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1462     mbedtls_mpi tmp;
1463     mbedtls_mpi_init(&tmp);
1464 
1465     MPI_ECP_COND_NEG(&Q->Y, inv);
1466 
1467 cleanup:
1468     mbedtls_mpi_free(&tmp);
1469     return ret;
1470 }
1471 
1472 /*
1473  * Point doubling R = 2 P, Jacobian coordinates
1474  *
1475  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1476  *
1477  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1478  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1479  *
1480  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1481  *
1482  * Cost: 1D := 3M + 4S          (A ==  0)
1483  *             4M + 4S          (A == -3)
1484  *             3M + 6S + 1a     otherwise
1485  */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,mbedtls_mpi tmp[4])1486 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1487                           const mbedtls_ecp_point *P,
1488                           mbedtls_mpi tmp[4])
1489 {
1490 #if defined(MBEDTLS_SELF_TEST)
1491     dbl_count++;
1492 #endif
1493 
1494 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1495     if (mbedtls_internal_ecp_grp_capable(grp)) {
1496         return mbedtls_internal_ecp_double_jac(grp, R, P);
1497     }
1498 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1499 
1500 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1501     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1502 #else
1503     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1504 
1505     /* Special case for A = -3 */
1506     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1507         /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1508         MPI_ECP_SQR(&tmp[1],  &P->Z);
1509         MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
1510         MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
1511         MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
1512         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
1513     } else {
1514         /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1515         MPI_ECP_SQR(&tmp[1],  &P->X);
1516         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
1517 
1518         /* Optimize away for "koblitz" curves with A = 0 */
1519         if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1520             /* M += A.Z^4 */
1521             MPI_ECP_SQR(&tmp[1],  &P->Z);
1522             MPI_ECP_SQR(&tmp[2],  &tmp[1]);
1523             MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
1524             MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
1525         }
1526     }
1527 
1528     /* tmp[1] <- S = 4.X.Y^2 */
1529     MPI_ECP_SQR(&tmp[2],  &P->Y);
1530     MPI_ECP_SHIFT_L(&tmp[2],  1);
1531     MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
1532     MPI_ECP_SHIFT_L(&tmp[1],  1);
1533 
1534     /* tmp[3] <- U = 8.Y^4 */
1535     MPI_ECP_SQR(&tmp[3],  &tmp[2]);
1536     MPI_ECP_SHIFT_L(&tmp[3],  1);
1537 
1538     /* tmp[2] <- T = M^2 - 2.S */
1539     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1540     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1541     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1542 
1543     /* tmp[1] <- S = M(S - T) - U */
1544     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
1545     MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
1546     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
1547 
1548     /* tmp[3] <- U = 2.Y.Z */
1549     MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
1550     MPI_ECP_SHIFT_L(&tmp[3],  1);
1551 
1552     /* Store results */
1553     MPI_ECP_MOV(&R->X, &tmp[2]);
1554     MPI_ECP_MOV(&R->Y, &tmp[1]);
1555     MPI_ECP_MOV(&R->Z, &tmp[3]);
1556 
1557 cleanup:
1558 
1559     return ret;
1560 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1561 }
1562 
1563 /*
1564  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1565  *
1566  * The coordinates of Q must be normalized (= affine),
1567  * but those of P don't need to. R is not normalized.
1568  *
1569  * P,Q,R may alias, but only at the level of EC points: they must be either
1570  * equal as pointers, or disjoint (including the coordinate data buffers).
1571  * Fine-grained aliasing at the level of coordinates is not supported.
1572  *
1573  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1574  * None of these cases can happen as intermediate step in ecp_mul_comb():
1575  * - at each step, P, Q and R are multiples of the base point, the factor
1576  *   being less than its order, so none of them is zero;
1577  * - Q is an odd multiple of the base point, P an even multiple,
1578  *   due to the choice of precomputed points in the modified comb method.
1579  * So branches for these cases do not leak secret information.
1580  *
1581  * Cost: 1A := 8M + 3S
1582  */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,mbedtls_mpi tmp[4])1583 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1584                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1585                          mbedtls_mpi tmp[4])
1586 {
1587 #if defined(MBEDTLS_SELF_TEST)
1588     add_count++;
1589 #endif
1590 
1591 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1592     if (mbedtls_internal_ecp_grp_capable(grp)) {
1593         return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1594     }
1595 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1596 
1597 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1598     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1599 #else
1600     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1601 
1602     /* NOTE: Aliasing between input and output is allowed, so one has to make
1603      *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1604      *       longer read from. */
1605     mbedtls_mpi * const X = &R->X;
1606     mbedtls_mpi * const Y = &R->Y;
1607     mbedtls_mpi * const Z = &R->Z;
1608 
1609     if (!MPI_ECP_VALID(&Q->Z)) {
1610         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1611     }
1612 
1613     /*
1614      * Trivial cases: P == 0 or Q == 0 (case 1)
1615      */
1616     if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1617         return mbedtls_ecp_copy(R, Q);
1618     }
1619 
1620     if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1621         return mbedtls_ecp_copy(R, P);
1622     }
1623 
1624     /*
1625      * Make sure Q coordinates are normalized
1626      */
1627     if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1628         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1629     }
1630 
1631     MPI_ECP_SQR(&tmp[0], &P->Z);
1632     MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1633     MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1634     MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1635     MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1636     MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1637 
1638     /* Special cases (2) and (3) */
1639     if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1640         if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1641             ret = ecp_double_jac(grp, R, P, tmp);
1642             goto cleanup;
1643         } else {
1644             ret = mbedtls_ecp_set_zero(R);
1645             goto cleanup;
1646         }
1647     }
1648 
1649     /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1650     MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
1651     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1652     MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
1653     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
1654 
1655     MPI_ECP_MOV(&tmp[0], &tmp[2]);
1656     MPI_ECP_SHIFT_L(&tmp[0], 1);
1657 
1658     /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1659     MPI_ECP_SQR(X,        &tmp[1]);
1660     MPI_ECP_SUB(X,        X,        &tmp[0]);
1661     MPI_ECP_SUB(X,        X,        &tmp[3]);
1662     MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
1663     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
1664     MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
1665     /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1666     MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
1667 
1668 cleanup:
1669 
1670     return ret;
1671 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1672 }
1673 
1674 /*
1675  * Randomize jacobian coordinates:
1676  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1677  * This is sort of the reverse operation of ecp_normalize_jac().
1678  *
1679  * This countermeasure was first suggested in [2].
1680  */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1681 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1682                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1683 {
1684 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1685     if (mbedtls_internal_ecp_grp_capable(grp)) {
1686         return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1687     }
1688 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1689 
1690 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1691     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1692 #else
1693     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1694     mbedtls_mpi l;
1695 
1696     mbedtls_mpi_init(&l);
1697 
1698     /* Generate l such that 1 < l < p */
1699     MPI_ECP_RAND(&l);
1700 
1701     /* Z' = l * Z */
1702     MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
1703 
1704     /* Y' = l * Y */
1705     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1706 
1707     /* X' = l^2 * X */
1708     MPI_ECP_SQR(&l,       &l);
1709     MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
1710 
1711     /* Y'' = l^2 * Y' = l^3 * Y */
1712     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1713 
1714 cleanup:
1715     mbedtls_mpi_free(&l);
1716 
1717     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1718         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1719     }
1720     return ret;
1721 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1722 }
1723 
1724 /*
1725  * Check and define parameters used by the comb method (see below for details)
1726  */
1727 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1728 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1729 #endif
1730 
1731 /* d = ceil( n / w ) */
1732 #define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
1733 
1734 /* number of precomputed points */
1735 #define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1736 
1737 /*
1738  * Compute the representation of m that will be used with our comb method.
1739  *
1740  * The basic comb method is described in GECC 3.44 for example. We use a
1741  * modified version that provides resistance to SPA by avoiding zero
1742  * digits in the representation as in [3]. We modify the method further by
1743  * requiring that all K_i be odd, which has the small cost that our
1744  * representation uses one more K_i, due to carries, but saves on the size of
1745  * the precomputed table.
1746  *
1747  * Summary of the comb method and its modifications:
1748  *
1749  * - The goal is to compute m*P for some w*d-bit integer m.
1750  *
1751  * - The basic comb method splits m into the w-bit integers
1752  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1753  *   index has residue i modulo d, and computes m * P as
1754  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1755  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1756  *
1757  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1758  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1759  *   thereby successively converting it into a form where all summands
1760  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1761  *
1762  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1763  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1764  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1765  *   Performing and iterating this procedure for those x[i] that are even
1766  *   (keeping track of carry), we can transform the original sum into one of the form
1767  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1768  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1769  *   which is why we are only computing half of it in the first place in
1770  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1771  *
1772  * - For the sake of compactness, only the seven low-order bits of x[i]
1773  *   are used to represent its absolute value (K_i in the paper), and the msb
1774  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1775  *   if s_i == -1;
1776  *
1777  * Calling conventions:
1778  * - x is an array of size d + 1
1779  * - w is the size, ie number of teeth, of the comb, and must be between
1780  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1781  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1782  *   (the result will be incorrect if these assumptions are not satisfied)
1783  */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1784 static void ecp_comb_recode_core(unsigned char x[], size_t d,
1785                                  unsigned char w, const mbedtls_mpi *m)
1786 {
1787     size_t i, j;
1788     unsigned char c, cc, adjust;
1789 
1790     memset(x, 0, d+1);
1791 
1792     /* First get the classical comb values (except for x_d = 0) */
1793     for (i = 0; i < d; i++) {
1794         for (j = 0; j < w; j++) {
1795             x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1796         }
1797     }
1798 
1799     /* Now make sure x_1 .. x_d are odd */
1800     c = 0;
1801     for (i = 1; i <= d; i++) {
1802         /* Add carry and update it */
1803         cc   = x[i] & c;
1804         x[i] = x[i] ^ c;
1805         c = cc;
1806 
1807         /* Adjust if needed, avoiding branches */
1808         adjust = 1 - (x[i] & 0x01);
1809         c   |= x[i] & (x[i-1] * adjust);
1810         x[i] = x[i] ^ (x[i-1] * adjust);
1811         x[i-1] |= adjust << 7;
1812     }
1813 }
1814 
1815 /*
1816  * Precompute points for the adapted comb method
1817  *
1818  * Assumption: T must be able to hold 2^{w - 1} elements.
1819  *
1820  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1821  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1822  *
1823  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1824  *
1825  * Note: Even comb values (those where P would be omitted from the
1826  *       sum defining T[i] above) are not needed in our adaption
1827  *       the comb method. See ecp_comb_recode_core().
1828  *
1829  * This function currently works in four steps:
1830  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1831  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1832  * (3) [add]      Computation of all T[i]
1833  * (4) [norm_add] Normalization of all T[i]
1834  *
1835  * Step 1 can be interrupted but not the others; together with the final
1836  * coordinate normalization they are the largest steps done at once, depending
1837  * on the window size. Here are operation counts for P-256:
1838  *
1839  * step     (2)     (3)     (4)
1840  * w = 5    142     165     208
1841  * w = 4    136      77     160
1842  * w = 3    130      33     136
1843  * w = 2    124      11     124
1844  *
1845  * So if ECC operations are blocking for too long even with a low max_ops
1846  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1847  * to minimize maximum blocking time.
1848  */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1849 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1850                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1851                                unsigned char w, size_t d,
1852                                mbedtls_ecp_restart_ctx *rs_ctx)
1853 {
1854     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1855     unsigned char i;
1856     size_t j = 0;
1857     const unsigned char T_size = 1U << (w - 1);
1858     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1859 
1860     mbedtls_mpi tmp[4];
1861 
1862     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1863 
1864 #if defined(MBEDTLS_ECP_RESTARTABLE)
1865     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1866         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1867             goto dbl;
1868         }
1869         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1870             goto norm_dbl;
1871         }
1872         if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1873             goto add;
1874         }
1875         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1876             goto norm_add;
1877         }
1878     }
1879 #else
1880     (void) rs_ctx;
1881 #endif
1882 
1883 #if defined(MBEDTLS_ECP_RESTARTABLE)
1884     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1885         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1886 
1887         /* initial state for the loop */
1888         rs_ctx->rsm->i = 0;
1889     }
1890 
1891 dbl:
1892 #endif
1893     /*
1894      * Set T[0] = P and
1895      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1896      */
1897     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1898 
1899 #if defined(MBEDTLS_ECP_RESTARTABLE)
1900     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1901         j = rs_ctx->rsm->i;
1902     } else
1903 #endif
1904     j = 0;
1905 
1906     for (; j < d * (w - 1); j++) {
1907         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1908 
1909         i = 1U << (j / d);
1910         cur = T + i;
1911 
1912         if (j % d == 0) {
1913             MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1914         }
1915 
1916         MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1917     }
1918 
1919 #if defined(MBEDTLS_ECP_RESTARTABLE)
1920     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1921         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1922     }
1923 
1924 norm_dbl:
1925 #endif
1926     /*
1927      * Normalize current elements in T to allow them to be used in
1928      * ecp_add_mixed() below, which requires one normalized input.
1929      *
1930      * As T has holes, use an auxiliary array of pointers to elements in T.
1931      *
1932      */
1933     j = 0;
1934     for (i = 1; i < T_size; i <<= 1) {
1935         TT[j++] = T + i;
1936     }
1937 
1938     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1939 
1940     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1941 
1942 #if defined(MBEDTLS_ECP_RESTARTABLE)
1943     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1944         rs_ctx->rsm->state = ecp_rsm_pre_add;
1945     }
1946 
1947 add:
1948 #endif
1949     /*
1950      * Compute the remaining ones using the minimal number of additions
1951      * Be careful to update T[2^l] only after using it!
1952      */
1953     MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1954 
1955     for (i = 1; i < T_size; i <<= 1) {
1956         j = i;
1957         while (j--) {
1958             MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1959         }
1960     }
1961 
1962 #if defined(MBEDTLS_ECP_RESTARTABLE)
1963     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1964         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1965     }
1966 
1967 norm_add:
1968 #endif
1969     /*
1970      * Normalize final elements in T. Even though there are no holes now, we
1971      * still need the auxiliary array for homogeneity with the previous
1972      * call. Also, skip T[0] which is already normalised, being a copy of P.
1973      */
1974     for (j = 0; j + 1 < T_size; j++) {
1975         TT[j] = T + j + 1;
1976     }
1977 
1978     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1979 
1980     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1981 
1982     /* Free Z coordinate (=1 after normalization) to save RAM.
1983      * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1984      * since from this point onwards, they are only accessed indirectly
1985      * via the getter function ecp_select_comb() which does set the
1986      * target's Z coordinate to 1. */
1987     for (i = 0; i < T_size; i++) {
1988         mbedtls_mpi_free(&T[i].Z);
1989     }
1990 
1991 cleanup:
1992 
1993     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1994 
1995 #if defined(MBEDTLS_ECP_RESTARTABLE)
1996     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1997         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1998         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1999             rs_ctx->rsm->i = j;
2000         }
2001     }
2002 #endif
2003 
2004     return ret;
2005 }
2006 
2007 /*
2008  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2009  *
2010  * See ecp_comb_recode_core() for background
2011  */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)2012 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2013                            const mbedtls_ecp_point T[], unsigned char T_size,
2014                            unsigned char i)
2015 {
2016     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2017     unsigned char ii, j;
2018 
2019     /* Ignore the "sign" bit and scale down */
2020     ii =  (i & 0x7Fu) >> 1;
2021 
2022     /* Read the whole table to thwart cache-based timing attacks */
2023     for (j = 0; j < T_size; j++) {
2024         MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2025         MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2026     }
2027 
2028     /* Safely invert result if i is "negative" */
2029     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2030 
2031     MPI_ECP_LSET(&R->Z, 1);
2032 
2033 cleanup:
2034     return ret;
2035 }
2036 
2037 /*
2038  * Core multiplication algorithm for the (modified) comb method.
2039  * This part is actually common with the basic comb method (GECC 3.44)
2040  *
2041  * Cost: d A + d D + 1 R
2042  */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2043 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2044                              const mbedtls_ecp_point T[], unsigned char T_size,
2045                              const unsigned char x[], size_t d,
2046                              int (*f_rng)(void *, unsigned char *, size_t),
2047                              void *p_rng,
2048                              mbedtls_ecp_restart_ctx *rs_ctx)
2049 {
2050     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2051     mbedtls_ecp_point Txi;
2052     mbedtls_mpi tmp[4];
2053     size_t i;
2054 
2055     mbedtls_ecp_point_init(&Txi);
2056     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2057 
2058 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2059     (void) rs_ctx;
2060 #endif
2061 
2062 #if defined(MBEDTLS_ECP_RESTARTABLE)
2063     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2064         rs_ctx->rsm->state != ecp_rsm_comb_core) {
2065         rs_ctx->rsm->i = 0;
2066         rs_ctx->rsm->state = ecp_rsm_comb_core;
2067     }
2068 
2069     /* new 'if' instead of nested for the sake of the 'else' branch */
2070     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2071         /* restore current index (R already pointing to rs_ctx->rsm->R) */
2072         i = rs_ctx->rsm->i;
2073     } else
2074 #endif
2075     {
2076         /* Start with a non-zero point and randomize its coordinates */
2077         i = d;
2078         MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2079         if (f_rng != 0) {
2080             MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2081         }
2082     }
2083 
2084     while (i != 0) {
2085         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2086         --i;
2087 
2088         MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2089         MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2090         MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2091     }
2092 
2093 cleanup:
2094 
2095     mbedtls_ecp_point_free(&Txi);
2096     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2097 
2098 #if defined(MBEDTLS_ECP_RESTARTABLE)
2099     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2100         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2101         rs_ctx->rsm->i = i;
2102         /* no need to save R, already pointing to rs_ctx->rsm->R */
2103     }
2104 #endif
2105 
2106     return ret;
2107 }
2108 
2109 /*
2110  * Recode the scalar to get constant-time comb multiplication
2111  *
2112  * As the actual scalar recoding needs an odd scalar as a starting point,
2113  * this wrapper ensures that by replacing m by N - m if necessary, and
2114  * informs the caller that the result of multiplication will be negated.
2115  *
2116  * This works because we only support large prime order for Short Weierstrass
2117  * curves, so N is always odd hence either m or N - m is.
2118  *
2119  * See ecp_comb_recode_core() for background.
2120  */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2121 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2122                                   const mbedtls_mpi *m,
2123                                   unsigned char k[COMB_MAX_D + 1],
2124                                   size_t d,
2125                                   unsigned char w,
2126                                   unsigned char *parity_trick)
2127 {
2128     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2129     mbedtls_mpi M, mm;
2130 
2131     mbedtls_mpi_init(&M);
2132     mbedtls_mpi_init(&mm);
2133 
2134     /* N is always odd (see above), just make extra sure */
2135     if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2136         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2137     }
2138 
2139     /* do we need the parity trick? */
2140     *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2141 
2142     /* execute parity fix in constant time */
2143     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2144     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2145     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2146 
2147     /* actual scalar recoding */
2148     ecp_comb_recode_core(k, d, w, &M);
2149 
2150 cleanup:
2151     mbedtls_mpi_free(&mm);
2152     mbedtls_mpi_free(&M);
2153 
2154     return ret;
2155 }
2156 
2157 /*
2158  * Perform comb multiplication (for short Weierstrass curves)
2159  * once the auxiliary table has been pre-computed.
2160  *
2161  * Scalar recoding may use a parity trick that makes us compute -m * P,
2162  * if that is the case we'll need to recover m * P at the end.
2163  */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2164 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2165                                       mbedtls_ecp_point *R,
2166                                       const mbedtls_mpi *m,
2167                                       const mbedtls_ecp_point *T,
2168                                       unsigned char T_size,
2169                                       unsigned char w,
2170                                       size_t d,
2171                                       int (*f_rng)(void *, unsigned char *, size_t),
2172                                       void *p_rng,
2173                                       mbedtls_ecp_restart_ctx *rs_ctx)
2174 {
2175     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2176     unsigned char parity_trick;
2177     unsigned char k[COMB_MAX_D + 1];
2178     mbedtls_ecp_point *RR = R;
2179 
2180 #if defined(MBEDTLS_ECP_RESTARTABLE)
2181     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2182         RR = &rs_ctx->rsm->R;
2183 
2184         if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2185             goto final_norm;
2186         }
2187     }
2188 #endif
2189 
2190     MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2191                                            &parity_trick));
2192     MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2193                                       f_rng, p_rng, rs_ctx));
2194     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2195 
2196 #if defined(MBEDTLS_ECP_RESTARTABLE)
2197     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2198         rs_ctx->rsm->state = ecp_rsm_final_norm;
2199     }
2200 
2201 final_norm:
2202     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2203 #endif
2204     /*
2205      * Knowledge of the jacobian coordinates may leak the last few bits of the
2206      * scalar [1], and since our MPI implementation isn't constant-flow,
2207      * inversion (used for coordinate normalization) may leak the full value
2208      * of its input via side-channels [2].
2209      *
2210      * [1] https://eprint.iacr.org/2003/191
2211      * [2] https://eprint.iacr.org/2020/055
2212      *
2213      * Avoid the leak by randomizing coordinates before we normalize them.
2214      */
2215     if (f_rng != 0) {
2216         MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2217     }
2218 
2219     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2220 
2221 #if defined(MBEDTLS_ECP_RESTARTABLE)
2222     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2223         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2224     }
2225 #endif
2226 
2227 cleanup:
2228     return ret;
2229 }
2230 
2231 /*
2232  * Pick window size based on curve size and whether we optimize for base point
2233  */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2234 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2235                                           unsigned char p_eq_g)
2236 {
2237     unsigned char w;
2238 
2239     /*
2240      * Minimize the number of multiplications, that is minimize
2241      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2242      * (see costs of the various parts, with 1S = 1M)
2243      */
2244     w = grp->nbits >= 384 ? 5 : 4;
2245 
2246     /*
2247      * If P == G, pre-compute a bit more, since this may be re-used later.
2248      * Just adding one avoids upping the cost of the first mul too much,
2249      * and the memory cost too.
2250      */
2251     if (p_eq_g) {
2252         w++;
2253     }
2254 
2255     /*
2256      * If static comb table may not be used (!p_eq_g) or static comb table does
2257      * not exists, make sure w is within bounds.
2258      * (The last test is useful only for very small curves in the test suite.)
2259      *
2260      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2261      * static comb table, because the size of static comb table is fixed when
2262      * it is generated.
2263      */
2264 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2265     if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2266         w = MBEDTLS_ECP_WINDOW_SIZE;
2267     }
2268 #endif
2269     if (w >= grp->nbits) {
2270         w = 2;
2271     }
2272 
2273     return w;
2274 }
2275 
2276 /*
2277  * Multiplication using the comb method - for curves in short Weierstrass form
2278  *
2279  * This function is mainly responsible for administrative work:
2280  * - managing the restart context if enabled
2281  * - managing the table of precomputed points (passed between the below two
2282  *   functions): allocation, computation, ownership transfer, freeing.
2283  *
2284  * It delegates the actual arithmetic work to:
2285  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2286  *
2287  * See comments on ecp_comb_recode_core() regarding the computation strategy.
2288  */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2289 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2290                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2291                         int (*f_rng)(void *, unsigned char *, size_t),
2292                         void *p_rng,
2293                         mbedtls_ecp_restart_ctx *rs_ctx)
2294 {
2295     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2296     unsigned char w, p_eq_g, i;
2297     size_t d;
2298     unsigned char T_size = 0, T_ok = 0;
2299     mbedtls_ecp_point *T = NULL;
2300 
2301     ECP_RS_ENTER(rsm);
2302 
2303     /* Is P the base point ? */
2304 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2305     p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2306               MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2307 #else
2308     p_eq_g = 0;
2309 #endif
2310 
2311     /* Pick window size and deduce related sizes */
2312     w = ecp_pick_window_size(grp, p_eq_g);
2313     T_size = 1U << (w - 1);
2314     d = (grp->nbits + w - 1) / w;
2315 
2316     /* Pre-computed table: do we have it already for the base point? */
2317     if (p_eq_g && grp->T != NULL) {
2318         /* second pointer to the same table, will be deleted on exit */
2319         T = grp->T;
2320         T_ok = 1;
2321     } else
2322 #if defined(MBEDTLS_ECP_RESTARTABLE)
2323     /* Pre-computed table: do we have one in progress? complete? */
2324     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2325         /* transfer ownership of T from rsm to local function */
2326         T = rs_ctx->rsm->T;
2327         rs_ctx->rsm->T = NULL;
2328         rs_ctx->rsm->T_size = 0;
2329 
2330         /* This effectively jumps to the call to mul_comb_after_precomp() */
2331         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2332     } else
2333 #endif
2334     /* Allocate table if we didn't have any */
2335     {
2336         T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2337         if (T == NULL) {
2338             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2339             goto cleanup;
2340         }
2341 
2342         for (i = 0; i < T_size; i++) {
2343             mbedtls_ecp_point_init(&T[i]);
2344         }
2345 
2346         T_ok = 0;
2347     }
2348 
2349     /* Compute table (or finish computing it) if not done already */
2350     if (!T_ok) {
2351         MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2352 
2353         if (p_eq_g) {
2354             /* almost transfer ownership of T to the group, but keep a copy of
2355              * the pointer to use for calling the next function more easily */
2356             grp->T = T;
2357             grp->T_size = T_size;
2358         }
2359     }
2360 
2361     /* Actual comb multiplication using precomputed points */
2362     MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2363                                                T, T_size, w, d,
2364                                                f_rng, p_rng, rs_ctx));
2365 
2366 cleanup:
2367 
2368     /* does T belong to the group? */
2369     if (T == grp->T) {
2370         T = NULL;
2371     }
2372 
2373     /* does T belong to the restart context? */
2374 #if defined(MBEDTLS_ECP_RESTARTABLE)
2375     if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2376         /* transfer ownership of T from local function to rsm */
2377         rs_ctx->rsm->T_size = T_size;
2378         rs_ctx->rsm->T = T;
2379         T = NULL;
2380     }
2381 #endif
2382 
2383     /* did T belong to us? then let's destroy it! */
2384     if (T != NULL) {
2385         for (i = 0; i < T_size; i++) {
2386             mbedtls_ecp_point_free(&T[i]);
2387         }
2388         mbedtls_free(T);
2389     }
2390 
2391     /* prevent caller from using invalid value */
2392     int should_free_R = (ret != 0);
2393 #if defined(MBEDTLS_ECP_RESTARTABLE)
2394     /* don't free R while in progress in case R == P */
2395     if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2396         should_free_R = 0;
2397     }
2398 #endif
2399     if (should_free_R) {
2400         mbedtls_ecp_point_free(R);
2401     }
2402 
2403     ECP_RS_LEAVE(rsm);
2404 
2405     return ret;
2406 }
2407 
2408 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2409 
2410 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2411 /*
2412  * For Montgomery curves, we do all the internal arithmetic in projective
2413  * coordinates. Import/export of points uses only the x coordinates, which is
2414  * internally represented as X / Z.
2415  *
2416  * For scalar multiplication, we'll use a Montgomery ladder.
2417  */
2418 
2419 /*
2420  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2421  * Cost: 1M + 1I
2422  */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2423 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2424 {
2425 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2426     if (mbedtls_internal_ecp_grp_capable(grp)) {
2427         return mbedtls_internal_ecp_normalize_mxz(grp, P);
2428     }
2429 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2430 
2431 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2432     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2433 #else
2434     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2435     MPI_ECP_INV(&P->Z, &P->Z);
2436     MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2437     MPI_ECP_LSET(&P->Z, 1);
2438 
2439 cleanup:
2440     return ret;
2441 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2442 }
2443 
2444 /*
2445  * Randomize projective x/z coordinates:
2446  * (X, Z) -> (l X, l Z) for random l
2447  * This is sort of the reverse operation of ecp_normalize_mxz().
2448  *
2449  * This countermeasure was first suggested in [2].
2450  * Cost: 2M
2451  */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2452 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2453                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2454 {
2455 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2456     if (mbedtls_internal_ecp_grp_capable(grp)) {
2457         return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2458     }
2459 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2460 
2461 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2462     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2463 #else
2464     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2465     mbedtls_mpi l;
2466     mbedtls_mpi_init(&l);
2467 
2468     /* Generate l such that 1 < l < p */
2469     MPI_ECP_RAND(&l);
2470 
2471     MPI_ECP_MUL(&P->X, &P->X, &l);
2472     MPI_ECP_MUL(&P->Z, &P->Z, &l);
2473 
2474 cleanup:
2475     mbedtls_mpi_free(&l);
2476 
2477     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2478         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2479     }
2480     return ret;
2481 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2482 }
2483 
2484 /*
2485  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2486  * for Montgomery curves in x/z coordinates.
2487  *
2488  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2489  * with
2490  * d =  X1
2491  * P = (X2, Z2)
2492  * Q = (X3, Z3)
2493  * R = (X4, Z4)
2494  * S = (X5, Z5)
2495  * and eliminating temporary variables tO, ..., t4.
2496  *
2497  * Cost: 5M + 4S
2498  */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d,mbedtls_mpi T[4])2499 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2500                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2501                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2502                               const mbedtls_mpi *d,
2503                               mbedtls_mpi T[4])
2504 {
2505 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2506     if (mbedtls_internal_ecp_grp_capable(grp)) {
2507         return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2508     }
2509 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2510 
2511 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2512     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2513 #else
2514     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2515 
2516     MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
2517     MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
2518     MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
2519     MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
2520     MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
2521     MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
2522     MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
2523     MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
2524     MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
2525     MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
2526     MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
2527     MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
2528     MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
2529     MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
2530     MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
2531     MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
2532     MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
2533     MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2534 
2535 cleanup:
2536 
2537     return ret;
2538 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2539 }
2540 
2541 /*
2542  * Multiplication with Montgomery ladder in x/z coordinates,
2543  * for curves in Montgomery form
2544  */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2545 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2546                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2547                        int (*f_rng)(void *, unsigned char *, size_t),
2548                        void *p_rng)
2549 {
2550     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2551     size_t i;
2552     unsigned char b;
2553     mbedtls_ecp_point RP;
2554     mbedtls_mpi PX;
2555     mbedtls_mpi tmp[4];
2556     mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2557 
2558     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2559 
2560     if (f_rng == NULL) {
2561         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2562     }
2563 
2564     /* Save PX and read from P before writing to R, in case P == R */
2565     MPI_ECP_MOV(&PX, &P->X);
2566     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2567 
2568     /* Set R to zero in modified x/z coordinates */
2569     MPI_ECP_LSET(&R->X, 1);
2570     MPI_ECP_LSET(&R->Z, 0);
2571     mbedtls_mpi_free(&R->Y);
2572 
2573     /* RP.X might be slightly larger than P, so reduce it */
2574     MOD_ADD(&RP.X);
2575 
2576     /* Randomize coordinates of the starting point */
2577     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2578 
2579     /* Loop invariant: R = result so far, RP = R + P */
2580     i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2581     while (i-- > 0) {
2582         b = mbedtls_mpi_get_bit(m, i);
2583         /*
2584          *  if (b) R = 2R + P else R = 2R,
2585          * which is:
2586          *  if (b) double_add( RP, R, RP, R )
2587          *  else   double_add( R, RP, R, RP )
2588          * but using safe conditional swaps to avoid leaks
2589          */
2590         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2591         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2592         MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2593         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2594         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2595     }
2596 
2597     /*
2598      * Knowledge of the projective coordinates may leak the last few bits of the
2599      * scalar [1], and since our MPI implementation isn't constant-flow,
2600      * inversion (used for coordinate normalization) may leak the full value
2601      * of its input via side-channels [2].
2602      *
2603      * [1] https://eprint.iacr.org/2003/191
2604      * [2] https://eprint.iacr.org/2020/055
2605      *
2606      * Avoid the leak by randomizing coordinates before we normalize them.
2607      */
2608     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2609     MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2610 
2611 cleanup:
2612     mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2613 
2614     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2615     return ret;
2616 }
2617 
2618 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2619 
2620 /*
2621  * Restartable multiplication R = m * P
2622  *
2623  * This internal function can be called without an RNG in case where we know
2624  * the inputs are not sensitive.
2625  */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2626 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2627                                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2628                                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2629                                         mbedtls_ecp_restart_ctx *rs_ctx)
2630 {
2631     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2632 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2633     char is_grp_capable = 0;
2634 #endif
2635 
2636 #if defined(MBEDTLS_ECP_RESTARTABLE)
2637     /* reset ops count for this call if top-level */
2638     if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2639         rs_ctx->ops_done = 0;
2640     }
2641 #else
2642     (void) rs_ctx;
2643 #endif
2644 
2645 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2646     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2647         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2648     }
2649 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2650 
2651     int restarting = 0;
2652 #if defined(MBEDTLS_ECP_RESTARTABLE)
2653     restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2654 #endif
2655     /* skip argument check when restarting */
2656     if (!restarting) {
2657         /* check_privkey is free */
2658         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2659 
2660         /* Common sanity checks */
2661         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2662         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2663     }
2664 
2665     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2666 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2667     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2668         MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2669     }
2670 #endif
2671 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2672     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2673         MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2674     }
2675 #endif
2676 
2677 cleanup:
2678 
2679 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2680     if (is_grp_capable) {
2681         mbedtls_internal_ecp_free(grp);
2682     }
2683 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2684 
2685 #if defined(MBEDTLS_ECP_RESTARTABLE)
2686     if (rs_ctx != NULL) {
2687         rs_ctx->depth--;
2688     }
2689 #endif
2690 
2691     return ret;
2692 }
2693 
2694 /*
2695  * Restartable multiplication R = m * P
2696  */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2697 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2698                                 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2699                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2700                                 mbedtls_ecp_restart_ctx *rs_ctx)
2701 {
2702     if (f_rng == NULL) {
2703         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2704     }
2705 
2706     return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2707 }
2708 
2709 /*
2710  * Multiplication R = m * P
2711  */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2712 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2713                     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2714                     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2715 {
2716     return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2717 }
2718 #endif /* MBEDTLS_ECP_C */
2719 
2720 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2721 /*
2722  * Check that an affine point is valid as a public key,
2723  * short weierstrass curves (SEC1 3.2.3.1)
2724  */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2725 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2726 {
2727     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2728     mbedtls_mpi YY, RHS;
2729 
2730     /* pt coordinates must be normalized for our checks */
2731     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2732         mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2733         mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2734         mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2735         return MBEDTLS_ERR_ECP_INVALID_KEY;
2736     }
2737 
2738     mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2739 
2740     /*
2741      * YY = Y^2
2742      * RHS = X^3 + A X + B
2743      */
2744     MPI_ECP_SQR(&YY,  &pt->Y);
2745     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2746 
2747     if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2748         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2749     }
2750 
2751 cleanup:
2752 
2753     mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2754 
2755     return ret;
2756 }
2757 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2758 
2759 #if defined(MBEDTLS_ECP_C)
2760 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2761 /*
2762  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2763  * NOT constant-time - ONLY for short Weierstrass!
2764  */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2765 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2766                                      mbedtls_ecp_point *R,
2767                                      const mbedtls_mpi *m,
2768                                      const mbedtls_ecp_point *P,
2769                                      mbedtls_ecp_restart_ctx *rs_ctx)
2770 {
2771     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2772     mbedtls_mpi tmp;
2773     mbedtls_mpi_init(&tmp);
2774 
2775     if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2776         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2777         MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2778     } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2779         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2780         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2781     } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2782         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2784         MPI_ECP_NEG(&R->Y);
2785     } else {
2786         MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2787                                                      NULL, NULL, rs_ctx));
2788     }
2789 
2790 cleanup:
2791     mbedtls_mpi_free(&tmp);
2792 
2793     return ret;
2794 }
2795 
2796 /*
2797  * Restartable linear combination
2798  * NOT constant-time
2799  */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2800 int mbedtls_ecp_muladd_restartable(
2801     mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2802     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2803     const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2804     mbedtls_ecp_restart_ctx *rs_ctx)
2805 {
2806     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2807     mbedtls_ecp_point mP;
2808     mbedtls_ecp_point *pmP = &mP;
2809     mbedtls_ecp_point *pR = R;
2810     mbedtls_mpi tmp[4];
2811 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2812     char is_grp_capable = 0;
2813 #endif
2814     if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2815         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2816     }
2817 
2818     mbedtls_ecp_point_init(&mP);
2819     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2820 
2821     ECP_RS_ENTER(ma);
2822 
2823 #if defined(MBEDTLS_ECP_RESTARTABLE)
2824     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2825         /* redirect intermediate results to restart context */
2826         pmP = &rs_ctx->ma->mP;
2827         pR  = &rs_ctx->ma->R;
2828 
2829         /* jump to next operation */
2830         if (rs_ctx->ma->state == ecp_rsma_mul2) {
2831             goto mul2;
2832         }
2833         if (rs_ctx->ma->state == ecp_rsma_add) {
2834             goto add;
2835         }
2836         if (rs_ctx->ma->state == ecp_rsma_norm) {
2837             goto norm;
2838         }
2839     }
2840 #endif /* MBEDTLS_ECP_RESTARTABLE */
2841 
2842     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2843 #if defined(MBEDTLS_ECP_RESTARTABLE)
2844     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2845         rs_ctx->ma->state = ecp_rsma_mul2;
2846     }
2847 
2848 mul2:
2849 #endif
2850     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
2851 
2852 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2853     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2854         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2855     }
2856 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2857 
2858 #if defined(MBEDTLS_ECP_RESTARTABLE)
2859     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2860         rs_ctx->ma->state = ecp_rsma_add;
2861     }
2862 
2863 add:
2864 #endif
2865     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2866     MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2867 #if defined(MBEDTLS_ECP_RESTARTABLE)
2868     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2869         rs_ctx->ma->state = ecp_rsma_norm;
2870     }
2871 
2872 norm:
2873 #endif
2874     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2875     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2876 
2877 #if defined(MBEDTLS_ECP_RESTARTABLE)
2878     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2880     }
2881 #endif
2882 
2883 cleanup:
2884 
2885     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2886 
2887 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2888     if (is_grp_capable) {
2889         mbedtls_internal_ecp_free(grp);
2890     }
2891 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2892 
2893     mbedtls_ecp_point_free(&mP);
2894 
2895     ECP_RS_LEAVE(ma);
2896 
2897     return ret;
2898 }
2899 
2900 /*
2901  * Linear combination
2902  * NOT constant-time
2903  */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2904 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2905                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2906                        const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2907 {
2908     return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2909 }
2910 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2911 #endif /* MBEDTLS_ECP_C */
2912 
2913 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2914 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2915 #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2916 #define ECP_MPI_INIT_ARRAY(x)   \
2917     ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2918 /*
2919  * Constants for the two points other than 0, 1, -1 (mod p) in
2920  * https://cr.yp.to/ecdh.html#validate
2921  * See ecp_check_pubkey_x25519().
2922  */
2923 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2924     MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2925     MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2926     MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2927     MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2928 };
2929 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2930     MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2931     MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2932     MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2933     MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2934 };
2935 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2936     x25519_bad_point_1);
2937 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2938     x25519_bad_point_2);
2939 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2940 
2941 /*
2942  * Check that the input point is not one of the low-order points.
2943  * This is recommended by the "May the Fourth" paper:
2944  * https://eprint.iacr.org/2017/806.pdf
2945  * Those points are never sent by an honest peer.
2946  */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2947 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2948                                    const mbedtls_ecp_group_id grp_id)
2949 {
2950     int ret;
2951     mbedtls_mpi XmP;
2952 
2953     mbedtls_mpi_init(&XmP);
2954 
2955     /* Reduce X mod P so that we only need to check values less than P.
2956      * We know X < 2^256 so we can proceed by subtraction. */
2957     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2958     while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2959         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2960     }
2961 
2962     /* Check against the known bad values that are less than P. For Curve448
2963      * these are 0, 1 and -1. For Curve25519 we check the values less than P
2964      * from the following list: https://cr.yp.to/ecdh.html#validate */
2965     if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
2966         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2967         goto cleanup;
2968     }
2969 
2970 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2971     if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2972         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2973             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2974             goto cleanup;
2975         }
2976 
2977         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2978             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979             goto cleanup;
2980         }
2981     }
2982 #else
2983     (void) grp_id;
2984 #endif
2985 
2986     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2987     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2988     if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2989         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2990         goto cleanup;
2991     }
2992 
2993     ret = 0;
2994 
2995 cleanup:
2996     mbedtls_mpi_free(&XmP);
2997 
2998     return ret;
2999 }
3000 
3001 /*
3002  * Check validity of a public key for Montgomery curves with x-only schemes
3003  */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3004 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3005 {
3006     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3007     /* Allow any public value, if it's too big then we'll just reduce it mod p
3008      * (RFC 7748 sec. 5 para. 3). */
3009     if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3010         return MBEDTLS_ERR_ECP_INVALID_KEY;
3011     }
3012 
3013     /* Implicit in all standards (as they don't consider negative numbers):
3014      * X must be non-negative. This is normally ensured by the way it's
3015      * encoded for transmission, but let's be extra sure. */
3016     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3017         return MBEDTLS_ERR_ECP_INVALID_KEY;
3018     }
3019 
3020     return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3021 }
3022 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3023 
3024 /*
3025  * Check that a point is valid as a public key
3026  */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3027 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3028                              const mbedtls_ecp_point *pt)
3029 {
3030     /* Must use affine coordinates */
3031     if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3032         return MBEDTLS_ERR_ECP_INVALID_KEY;
3033     }
3034 
3035 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3036     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3037         return ecp_check_pubkey_mx(grp, pt);
3038     }
3039 #endif
3040 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3041     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3042         return ecp_check_pubkey_sw(grp, pt);
3043     }
3044 #endif
3045     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3046 }
3047 
3048 /*
3049  * Check that an mbedtls_mpi is valid as a private key
3050  */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)3051 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3052                               const mbedtls_mpi *d)
3053 {
3054 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3055     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3056         /* see RFC 7748 sec. 5 para. 5 */
3057         if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3058             mbedtls_mpi_get_bit(d, 1) != 0 ||
3059             mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
3060             return MBEDTLS_ERR_ECP_INVALID_KEY;
3061         }
3062 
3063         /* see [Curve25519] page 5 */
3064         if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3065             return MBEDTLS_ERR_ECP_INVALID_KEY;
3066         }
3067 
3068         return 0;
3069     }
3070 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3071 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3072     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3073         /* see SEC1 3.2 */
3074         if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3075             mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3076             return MBEDTLS_ERR_ECP_INVALID_KEY;
3077         } else {
3078             return 0;
3079         }
3080     }
3081 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3082 
3083     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3084 }
3085 
3086 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3087 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3088 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3089                                mbedtls_mpi *d,
3090                                int (*f_rng)(void *, unsigned char *, size_t),
3091                                void *p_rng)
3092 {
3093     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094     size_t n_random_bytes = high_bit / 8 + 1;
3095 
3096     /* [Curve25519] page 5 */
3097     /* Generate a (high_bit+1)-bit random number by generating just enough
3098      * random bytes, then shifting out extra bits from the top (necessary
3099      * when (high_bit+1) is not a multiple of 8). */
3100     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3101                                             f_rng, p_rng));
3102     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3103 
3104     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3105 
3106     /* Make sure the last two bits are unset for Curve448, three bits for
3107        Curve25519 */
3108     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3109     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3110     if (high_bit == 254) {
3111         MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3112     }
3113 
3114 cleanup:
3115     return ret;
3116 }
3117 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3118 
3119 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3120 static int mbedtls_ecp_gen_privkey_sw(
3121     const mbedtls_mpi *N, mbedtls_mpi *d,
3122     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3123 {
3124     int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3125     switch (ret) {
3126         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3127             return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3128         default:
3129             return ret;
3130     }
3131 }
3132 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3133 
3134 /*
3135  * Generate a private key
3136  */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3137 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3138                             mbedtls_mpi *d,
3139                             int (*f_rng)(void *, unsigned char *, size_t),
3140                             void *p_rng)
3141 {
3142 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3143     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3144         return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3145     }
3146 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3147 
3148 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3149     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3150         return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3151     }
3152 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3153 
3154     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3155 }
3156 
3157 #if defined(MBEDTLS_ECP_C)
3158 /*
3159  * Generate a keypair with configurable base point
3160  */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3161 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3162                                  const mbedtls_ecp_point *G,
3163                                  mbedtls_mpi *d, mbedtls_ecp_point *Q,
3164                                  int (*f_rng)(void *, unsigned char *, size_t),
3165                                  void *p_rng)
3166 {
3167     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3168     MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3169     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3170 
3171 cleanup:
3172     return ret;
3173 }
3174 
3175 /*
3176  * Generate key pair, wrapper for conventional base point
3177  */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3178 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3179                             mbedtls_mpi *d, mbedtls_ecp_point *Q,
3180                             int (*f_rng)(void *, unsigned char *, size_t),
3181                             void *p_rng)
3182 {
3183     return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3184 }
3185 
3186 /*
3187  * Generate a keypair, prettier wrapper
3188  */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3189 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3190                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3191 {
3192     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3193     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3194         return ret;
3195     }
3196 
3197     return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3198 }
3199 #endif /* MBEDTLS_ECP_C */
3200 
mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const mbedtls_ecp_point * Q)3201 int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3202                                mbedtls_ecp_keypair *key,
3203                                const mbedtls_ecp_point *Q)
3204 {
3205     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3206 
3207     if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3208         /* Group not set yet */
3209         if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3210             return ret;
3211         }
3212     } else if (key->grp.id != grp_id) {
3213         /* Group mismatch */
3214         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3215     }
3216     return mbedtls_ecp_copy(&key->Q, Q);
3217 }
3218 
3219 
3220 #define ECP_CURVE25519_KEY_SIZE 32
3221 #define ECP_CURVE448_KEY_SIZE   56
3222 /*
3223  * Read a private key.
3224  */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3225 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3226                          const unsigned char *buf, size_t buflen)
3227 {
3228     int ret = 0;
3229 
3230     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3231         return ret;
3232     }
3233 
3234     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3235 
3236 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3237     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3238         /*
3239          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3240          */
3241         if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3242             if (buflen != ECP_CURVE25519_KEY_SIZE) {
3243                 return MBEDTLS_ERR_ECP_INVALID_KEY;
3244             }
3245 
3246             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3247 
3248             /* Set the three least significant bits to 0 */
3249             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3250             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3251             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3252 
3253             /* Set the most significant bit to 0 */
3254             MBEDTLS_MPI_CHK(
3255                 mbedtls_mpi_set_bit(&key->d,
3256                                     ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3257                 );
3258 
3259             /* Set the second most significant bit to 1 */
3260             MBEDTLS_MPI_CHK(
3261                 mbedtls_mpi_set_bit(&key->d,
3262                                     ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3263                 );
3264         } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3265             if (buflen != ECP_CURVE448_KEY_SIZE) {
3266                 return MBEDTLS_ERR_ECP_INVALID_KEY;
3267             }
3268 
3269             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3270 
3271             /* Set the two least significant bits to 0 */
3272             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3273             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3274 
3275             /* Set the most significant bit to 1 */
3276             MBEDTLS_MPI_CHK(
3277                 mbedtls_mpi_set_bit(&key->d,
3278                                     ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3279                 );
3280         }
3281     }
3282 #endif
3283 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3284     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3285         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3286     }
3287 #endif
3288 
3289     if (ret == 0) {
3290         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3291     }
3292 
3293 cleanup:
3294 
3295     if (ret != 0) {
3296         mbedtls_mpi_free(&key->d);
3297     }
3298 
3299     return ret;
3300 }
3301 
3302 /*
3303  * Write a private key.
3304  */
3305 #if !defined MBEDTLS_DEPRECATED_REMOVED
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3306 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3307                           unsigned char *buf, size_t buflen)
3308 {
3309     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3310 
3311 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3312     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3313         if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3314             if (buflen < ECP_CURVE25519_KEY_SIZE) {
3315                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3316             }
3317 
3318         } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3319             if (buflen < ECP_CURVE448_KEY_SIZE) {
3320                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3321             }
3322         }
3323         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3324     }
3325 #endif
3326 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3327     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3328         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3329     }
3330 
3331 #endif
3332 cleanup:
3333 
3334     return ret;
3335 }
3336 #endif /* MBEDTLS_DEPRECATED_REMOVED */
3337 
mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair * key,size_t * olen,unsigned char * buf,size_t buflen)3338 int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3339                               size_t *olen, unsigned char *buf, size_t buflen)
3340 {
3341     size_t len = (key->grp.nbits + 7) / 8;
3342     if (len > buflen) {
3343         /* For robustness, ensure *olen <= buflen even on error. */
3344         *olen = 0;
3345         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3346     }
3347     *olen = len;
3348 
3349     /* Private key not set */
3350     if (key->d.n == 0) {
3351         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3352     }
3353 
3354 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3355     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3356         return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3357     }
3358 #endif
3359 
3360 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3361     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3362         return mbedtls_mpi_write_binary(&key->d, buf, len);
3363     }
3364 #endif
3365 
3366     /* Private key set but no recognized curve type? This shouldn't happen. */
3367     return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368 }
3369 
3370 /*
3371  * Write a public key.
3372  */
mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair * key,int format,size_t * olen,unsigned char * buf,size_t buflen)3373 int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3374                                  int format, size_t *olen,
3375                                  unsigned char *buf, size_t buflen)
3376 {
3377     return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3378                                           format, olen, buf, buflen);
3379 }
3380 
3381 
3382 #if defined(MBEDTLS_ECP_C)
3383 /*
3384  * Check a public-private key pair
3385  */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3386 int mbedtls_ecp_check_pub_priv(
3387     const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3388     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3389 {
3390     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3391     mbedtls_ecp_point Q;
3392     mbedtls_ecp_group grp;
3393     if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3394         pub->grp.id != prv->grp.id ||
3395         mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3396         mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3397         mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3398         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3399     }
3400 
3401     mbedtls_ecp_point_init(&Q);
3402     mbedtls_ecp_group_init(&grp);
3403 
3404     /* mbedtls_ecp_mul() needs a non-const group... */
3405     mbedtls_ecp_group_copy(&grp, &prv->grp);
3406 
3407     /* Also checks d is valid */
3408     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3409 
3410     if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3411         mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3412         mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3413         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3414         goto cleanup;
3415     }
3416 
3417 cleanup:
3418     mbedtls_ecp_point_free(&Q);
3419     mbedtls_ecp_group_free(&grp);
3420 
3421     return ret;
3422 }
3423 
mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3424 int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3425                                     int (*f_rng)(void *, unsigned char *, size_t),
3426                                     void *p_rng)
3427 {
3428     return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3429                            f_rng, p_rng);
3430 }
3431 #endif /* MBEDTLS_ECP_C */
3432 
mbedtls_ecp_keypair_get_group_id(const mbedtls_ecp_keypair * key)3433 mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3434     const mbedtls_ecp_keypair *key)
3435 {
3436     return key->grp.id;
3437 }
3438 
3439 /*
3440  * Export generic key-pair parameters.
3441  */
mbedtls_ecp_export(const mbedtls_ecp_keypair * key,mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q)3442 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3443                        mbedtls_mpi *d, mbedtls_ecp_point *Q)
3444 {
3445     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3446 
3447     if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3448         return ret;
3449     }
3450 
3451     if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3452         return ret;
3453     }
3454 
3455     if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3456         return ret;
3457     }
3458 
3459     return 0;
3460 }
3461 
3462 #if defined(MBEDTLS_SELF_TEST)
3463 
3464 #if defined(MBEDTLS_ECP_C)
3465 /*
3466  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3467  *
3468  * This is the linear congruential generator from numerical recipes,
3469  * except we only use the low byte as the output. See
3470  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3471  */
self_test_rng(void * ctx,unsigned char * out,size_t len)3472 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3473 {
3474     static uint32_t state = 42;
3475 
3476     (void) ctx;
3477 
3478     for (size_t i = 0; i < len; i++) {
3479         state = state * 1664525u + 1013904223u;
3480         out[i] = (unsigned char) state;
3481     }
3482 
3483     return 0;
3484 }
3485 
3486 /* Adjust the exponent to be a valid private point for the specified curve.
3487  * This is sometimes necessary because we use a single set of exponents
3488  * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3489 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3490                                      mbedtls_mpi *m)
3491 {
3492     int ret = 0;
3493     switch (grp->id) {
3494     /* If Curve25519 is available, then that's what we use for the
3495      * Montgomery test, so we don't need the adjustment code. */
3496 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3497 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3498         case MBEDTLS_ECP_DP_CURVE448:
3499             /* Move highest bit from 254 to N-1. Setting bit N-1 is
3500              * necessary to enforce the highest-bit-set constraint. */
3501             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3502             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3503             /* Copy second-highest bit from 253 to N-2. This is not
3504              * necessary but improves the test variety a bit. */
3505             MBEDTLS_MPI_CHK(
3506                 mbedtls_mpi_set_bit(m, grp->nbits - 1,
3507                                     mbedtls_mpi_get_bit(m, 253)));
3508             break;
3509 #endif
3510 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3511         default:
3512             /* Non-Montgomery curves and Curve25519 need no adjustment. */
3513             (void) grp;
3514             (void) m;
3515             goto cleanup;
3516     }
3517 cleanup:
3518     return ret;
3519 }
3520 
3521 /* Calculate R = m.P for each m in exponents. Check that the number of
3522  * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3523 static int self_test_point(int verbose,
3524                            mbedtls_ecp_group *grp,
3525                            mbedtls_ecp_point *R,
3526                            mbedtls_mpi *m,
3527                            const mbedtls_ecp_point *P,
3528                            const char *const *exponents,
3529                            size_t n_exponents)
3530 {
3531     int ret = 0;
3532     size_t i = 0;
3533     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3534     add_count = 0;
3535     dbl_count = 0;
3536     mul_count = 0;
3537 
3538     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3539     MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3540     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3541 
3542     for (i = 1; i < n_exponents; i++) {
3543         add_c_prev = add_count;
3544         dbl_c_prev = dbl_count;
3545         mul_c_prev = mul_count;
3546         add_count = 0;
3547         dbl_count = 0;
3548         mul_count = 0;
3549 
3550         MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3551         MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3552         MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3553 
3554         if (add_count != add_c_prev ||
3555             dbl_count != dbl_c_prev ||
3556             mul_count != mul_c_prev) {
3557             ret = 1;
3558             break;
3559         }
3560     }
3561 
3562 cleanup:
3563     if (verbose != 0) {
3564         if (ret != 0) {
3565             mbedtls_printf("failed (%u)\n", (unsigned int) i);
3566         } else {
3567             mbedtls_printf("passed\n");
3568         }
3569     }
3570     return ret;
3571 }
3572 #endif /* MBEDTLS_ECP_C */
3573 
3574 /*
3575  * Checkup routine
3576  */
mbedtls_ecp_self_test(int verbose)3577 int mbedtls_ecp_self_test(int verbose)
3578 {
3579 #if defined(MBEDTLS_ECP_C)
3580     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3581     mbedtls_ecp_group grp;
3582     mbedtls_ecp_point R, P;
3583     mbedtls_mpi m;
3584 
3585 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3586     /* Exponents especially adapted for secp192k1, which has the lowest
3587      * order n of all supported curves (secp192r1 is in a slightly larger
3588      * field but the order of its base point is slightly smaller). */
3589     const char *sw_exponents[] =
3590     {
3591         "000000000000000000000000000000000000000000000001", /* one */
3592         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3593         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3594         "400000000000000000000000000000000000000000000000", /* one and zeros */
3595         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3596         "555555555555555555555555555555555555555555555555", /* 101010... */
3597     };
3598 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3599 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3600     const char *m_exponents[] =
3601     {
3602         /* Valid private values for Curve25519. In a build with Curve448
3603          * but not Curve25519, they will be adjusted in
3604          * self_test_adjust_exponent(). */
3605         "4000000000000000000000000000000000000000000000000000000000000000",
3606         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3607         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3608         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3609         "5555555555555555555555555555555555555555555555555555555555555550",
3610         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3611     };
3612 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3613 
3614     mbedtls_ecp_group_init(&grp);
3615     mbedtls_ecp_point_init(&R);
3616     mbedtls_ecp_point_init(&P);
3617     mbedtls_mpi_init(&m);
3618 
3619 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3620     /* Use secp192r1 if available, or any available curve */
3621 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3622     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3623 #else
3624     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3625 #endif
3626 
3627     if (verbose != 0) {
3628         mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
3629     }
3630     /* Do a dummy multiplication first to trigger precomputation */
3631     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3632     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3633     ret = self_test_point(verbose,
3634                           &grp, &R, &m, &grp.G,
3635                           sw_exponents,
3636                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3637     if (ret != 0) {
3638         goto cleanup;
3639     }
3640 
3641     if (verbose != 0) {
3642         mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
3643     }
3644     /* We computed P = 2G last time, use it */
3645     ret = self_test_point(verbose,
3646                           &grp, &R, &m, &P,
3647                           sw_exponents,
3648                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3649     if (ret != 0) {
3650         goto cleanup;
3651     }
3652 
3653     mbedtls_ecp_group_free(&grp);
3654     mbedtls_ecp_point_free(&R);
3655 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3656 
3657 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3658     if (verbose != 0) {
3659         mbedtls_printf("  ECP Montgomery test (constant op_count): ");
3660     }
3661 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3662     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3663 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3664     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3665 #else
3666 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3667 #endif
3668     ret = self_test_point(verbose,
3669                           &grp, &R, &m, &grp.G,
3670                           m_exponents,
3671                           sizeof(m_exponents) / sizeof(m_exponents[0]));
3672     if (ret != 0) {
3673         goto cleanup;
3674     }
3675 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3676 
3677 cleanup:
3678 
3679     if (ret < 0 && verbose != 0) {
3680         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3681     }
3682 
3683     mbedtls_ecp_group_free(&grp);
3684     mbedtls_ecp_point_free(&R);
3685     mbedtls_ecp_point_free(&P);
3686     mbedtls_mpi_free(&m);
3687 
3688     if (verbose != 0) {
3689         mbedtls_printf("\n");
3690     }
3691 
3692     return ret;
3693 #else /* MBEDTLS_ECP_C */
3694     (void) verbose;
3695     return 0;
3696 #endif /* MBEDTLS_ECP_C */
3697 }
3698 
3699 #endif /* MBEDTLS_SELF_TEST */
3700 
3701 #endif /* !MBEDTLS_ECP_ALT */
3702 
3703 #endif /* MBEDTLS_ECP_LIGHT */
3704