1 /**
2 * Constant-time functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 /*
21 * The following functions are implemented without using comparison operators, as those
22 * might be translated to branches by some compilers on some platforms.
23 */
24
25 #include "common.h"
26 #include "constant_time_internal.h"
27 #include "mbedtls/constant_time.h"
28 #include "mbedtls/error.h"
29 #include "mbedtls/platform_util.h"
30
31 #if defined(MBEDTLS_BIGNUM_C)
32 #include "mbedtls/bignum.h"
33 #include "bignum_core.h"
34 #endif
35
36 #if defined(MBEDTLS_SSL_TLS_C)
37 #include "ssl_misc.h"
38 #endif
39
40 #if defined(MBEDTLS_RSA_C)
41 #include "mbedtls/rsa.h"
42 #endif
43
44 #if defined(MBEDTLS_BASE64_C)
45 #include "constant_time_invasive.h"
46 #endif
47
48 #include <string.h>
49 #if defined(MBEDTLS_USE_PSA_CRYPTO)
50 #define PSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \
51 psa_to_ssl_errors, \
52 psa_generic_status_to_mbedtls)
53 #endif
54
55 /*
56 * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
57 * perform fast unaligned access to volatile data.
58 *
59 * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
60 * memory accesses.
61 *
62 * Some of these definitions could be moved into alignment.h but for now they are
63 * only used here.
64 */
65 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && defined(MBEDTLS_HAVE_ASM)
66 #if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) || defined(__aarch64__)
67 #define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
68 #endif
69 #endif
70
71 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char * p)72 static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
73 {
74 /* This is UB, even where it's safe:
75 * return *((volatile uint32_t*)p);
76 * so instead the same thing is expressed in assembly below.
77 */
78 uint32_t r;
79 #if defined(__arm__) || defined(__thumb__) || defined(__thumb2__)
80 __asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
81 #elif defined(__aarch64__)
82 asm volatile ("ldr %w0, [%1]" : "=r" (r) : "r" (p) :);
83 #endif
84 return r;
85 }
86 #endif /* MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS */
87
mbedtls_ct_memcmp(const void * a,const void * b,size_t n)88 int mbedtls_ct_memcmp(const void *a,
89 const void *b,
90 size_t n)
91 {
92 size_t i = 0;
93 /*
94 * `A` and `B` are cast to volatile to ensure that the compiler
95 * generates code that always fully reads both buffers.
96 * Otherwise it could generate a test to exit early if `diff` has all
97 * bits set early in the loop.
98 */
99 volatile const unsigned char *A = (volatile const unsigned char *) a;
100 volatile const unsigned char *B = (volatile const unsigned char *) b;
101 uint32_t diff = 0;
102
103 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
104 for (; (i + 4) <= n; i += 4) {
105 uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
106 uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
107 diff |= x ^ y;
108 }
109 #endif
110
111 for (; i < n; i++) {
112 /* Read volatile data in order before computing diff.
113 * This avoids IAR compiler warning:
114 * 'the order of volatile accesses is undefined ..' */
115 unsigned char x = A[i], y = B[i];
116 diff |= x ^ y;
117 }
118
119 return (int) diff;
120 }
121
mbedtls_ct_uint_mask(unsigned value)122 unsigned mbedtls_ct_uint_mask(unsigned value)
123 {
124 /* MSVC has a warning about unary minus on unsigned, but this is
125 * well-defined and precisely what we want to do here */
126 #if defined(_MSC_VER)
127 #pragma warning( push )
128 #pragma warning( disable : 4146 )
129 #endif
130 return -((value | -value) >> (sizeof(value) * 8 - 1));
131 #if defined(_MSC_VER)
132 #pragma warning( pop )
133 #endif
134 }
135
136 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
137
mbedtls_ct_size_mask(size_t value)138 size_t mbedtls_ct_size_mask(size_t value)
139 {
140 /* MSVC has a warning about unary minus on unsigned integer types,
141 * but this is well-defined and precisely what we want to do here. */
142 #if defined(_MSC_VER)
143 #pragma warning( push )
144 #pragma warning( disable : 4146 )
145 #endif
146 return -((value | -value) >> (sizeof(value) * 8 - 1));
147 #if defined(_MSC_VER)
148 #pragma warning( pop )
149 #endif
150 }
151
152 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
153
154 #if defined(MBEDTLS_BIGNUM_C)
155
mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)156 mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)
157 {
158 /* MSVC has a warning about unary minus on unsigned, but this is
159 * well-defined and precisely what we want to do here */
160 #if defined(_MSC_VER)
161 #pragma warning( push )
162 #pragma warning( disable : 4146 )
163 #endif
164 return -((value | -value) >> (sizeof(value) * 8 - 1));
165 #if defined(_MSC_VER)
166 #pragma warning( pop )
167 #endif
168 }
169
170 #endif /* MBEDTLS_BIGNUM_C */
171
172 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
173
174 /** Constant-flow mask generation for "less than" comparison:
175 * - if \p x < \p y, return all-bits 1, that is (size_t) -1
176 * - otherwise, return all bits 0, that is 0
177 *
178 * This function can be used to write constant-time code by replacing branches
179 * with bit operations using masks.
180 *
181 * \param x The first value to analyze.
182 * \param y The second value to analyze.
183 *
184 * \return All-bits-one if \p x is less than \p y, otherwise zero.
185 */
mbedtls_ct_size_mask_lt(size_t x,size_t y)186 static size_t mbedtls_ct_size_mask_lt(size_t x,
187 size_t y)
188 {
189 /* This has the most significant bit set if and only if x < y */
190 const size_t sub = x - y;
191
192 /* sub1 = (x < y) ? 1 : 0 */
193 const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);
194
195 /* mask = (x < y) ? 0xff... : 0x00... */
196 const size_t mask = mbedtls_ct_size_mask(sub1);
197
198 return mask;
199 }
200
mbedtls_ct_size_mask_ge(size_t x,size_t y)201 size_t mbedtls_ct_size_mask_ge(size_t x,
202 size_t y)
203 {
204 return ~mbedtls_ct_size_mask_lt(x, y);
205 }
206
207 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
208
209 #if defined(MBEDTLS_BASE64_C)
210
211 /* Return 0xff if low <= c <= high, 0 otherwise.
212 *
213 * Constant flow with respect to c.
214 */
215 MBEDTLS_STATIC_TESTABLE
mbedtls_ct_uchar_mask_of_range(unsigned char low,unsigned char high,unsigned char c)216 unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,
217 unsigned char high,
218 unsigned char c)
219 {
220 /* low_mask is: 0 if low <= c, 0x...ff if low > c */
221 unsigned low_mask = ((unsigned) c - low) >> 8;
222 /* high_mask is: 0 if c <= high, 0x...ff if c > high */
223 unsigned high_mask = ((unsigned) high - c) >> 8;
224 return ~(low_mask | high_mask) & 0xff;
225 }
226
227 #endif /* MBEDTLS_BASE64_C */
228
mbedtls_ct_size_bool_eq(size_t x,size_t y)229 unsigned mbedtls_ct_size_bool_eq(size_t x,
230 size_t y)
231 {
232 /* diff = 0 if x == y, non-zero otherwise */
233 const size_t diff = x ^ y;
234
235 /* MSVC has a warning about unary minus on unsigned integer types,
236 * but this is well-defined and precisely what we want to do here. */
237 #if defined(_MSC_VER)
238 #pragma warning( push )
239 #pragma warning( disable : 4146 )
240 #endif
241
242 /* diff_msb's most significant bit is equal to x != y */
243 const size_t diff_msb = (diff | (size_t) -diff);
244
245 #if defined(_MSC_VER)
246 #pragma warning( pop )
247 #endif
248
249 /* diff1 = (x != y) ? 1 : 0 */
250 const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);
251
252 return 1 ^ diff1;
253 }
254
255 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
256
257 /** Constant-flow "greater than" comparison:
258 * return x > y
259 *
260 * This is equivalent to \p x > \p y, but is likely to be compiled
261 * to code using bitwise operation rather than a branch.
262 *
263 * \param x The first value to analyze.
264 * \param y The second value to analyze.
265 *
266 * \return 1 if \p x greater than \p y, otherwise 0.
267 */
mbedtls_ct_size_gt(size_t x,size_t y)268 static unsigned mbedtls_ct_size_gt(size_t x,
269 size_t y)
270 {
271 /* Return the sign bit (1 for negative) of (y - x). */
272 return (y - x) >> (sizeof(size_t) * 8 - 1);
273 }
274
275 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
276
277 #if defined(MBEDTLS_BIGNUM_C)
278
mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,const mbedtls_mpi_uint y)279 unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,
280 const mbedtls_mpi_uint y)
281 {
282 mbedtls_mpi_uint ret;
283 mbedtls_mpi_uint cond;
284
285 /*
286 * Check if the most significant bits (MSB) of the operands are different.
287 */
288 cond = (x ^ y);
289 /*
290 * If the MSB are the same then the difference x-y will be negative (and
291 * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
292 */
293 ret = (x - y) & ~cond;
294 /*
295 * If the MSB are different, then the operand with the MSB of 1 is the
296 * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
297 * the MSB of y is 0.)
298 */
299 ret |= y & cond;
300
301
302 ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);
303
304 return (unsigned) ret;
305 }
306
307 #endif /* MBEDTLS_BIGNUM_C */
308
mbedtls_ct_uint_if(unsigned condition,unsigned if1,unsigned if0)309 unsigned mbedtls_ct_uint_if(unsigned condition,
310 unsigned if1,
311 unsigned if0)
312 {
313 unsigned mask = mbedtls_ct_uint_mask(condition);
314 return (mask & if1) | (~mask & if0);
315 }
316
317 #if defined(MBEDTLS_BIGNUM_C)
318
319 /** Select between two sign values without branches.
320 *
321 * This is functionally equivalent to `condition ? if1 : if0` but uses only bit
322 * operations in order to avoid branches.
323 *
324 * \note if1 and if0 must be either 1 or -1, otherwise the result
325 * is undefined.
326 *
327 * \param condition Condition to test; must be either 0 or 1.
328 * \param if1 The first sign; must be either +1 or -1.
329 * \param if0 The second sign; must be either +1 or -1.
330 *
331 * \return \c if1 if \p condition is nonzero, otherwise \c if0.
332 * */
mbedtls_ct_cond_select_sign(unsigned char condition,int if1,int if0)333 static int mbedtls_ct_cond_select_sign(unsigned char condition,
334 int if1,
335 int if0)
336 {
337 /* In order to avoid questions about what we can reasonably assume about
338 * the representations of signed integers, move everything to unsigned
339 * by taking advantage of the fact that if1 and if0 are either +1 or -1. */
340 unsigned uif1 = if1 + 1;
341 unsigned uif0 = if0 + 1;
342
343 /* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
344 const unsigned mask = condition << 1;
345
346 /* select uif1 or uif0 */
347 unsigned ur = (uif0 & ~mask) | (uif1 & mask);
348
349 /* ur is now 0 or 2, convert back to -1 or +1 */
350 return (int) ur - 1;
351 }
352
mbedtls_ct_mpi_uint_cond_assign(size_t n,mbedtls_mpi_uint * dest,const mbedtls_mpi_uint * src,unsigned char condition)353 void mbedtls_ct_mpi_uint_cond_assign(size_t n,
354 mbedtls_mpi_uint *dest,
355 const mbedtls_mpi_uint *src,
356 unsigned char condition)
357 {
358 size_t i;
359
360 /* MSVC has a warning about unary minus on unsigned integer types,
361 * but this is well-defined and precisely what we want to do here. */
362 #if defined(_MSC_VER)
363 #pragma warning( push )
364 #pragma warning( disable : 4146 )
365 #endif
366
367 /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
368 const mbedtls_mpi_uint mask = -condition;
369
370 #if defined(_MSC_VER)
371 #pragma warning( pop )
372 #endif
373
374 for (i = 0; i < n; i++) {
375 dest[i] = (src[i] & mask) | (dest[i] & ~mask);
376 }
377 }
378
379 #endif /* MBEDTLS_BIGNUM_C */
380
381 #if defined(MBEDTLS_BASE64_C)
382
mbedtls_ct_base64_enc_char(unsigned char value)383 unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
384 {
385 unsigned char digit = 0;
386 /* For each range of values, if value is in that range, mask digit with
387 * the corresponding value. Since value can only be in a single range,
388 * only at most one masking will change digit. */
389 digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value);
390 digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26);
391 digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52);
392 digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';
393 digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';
394 return digit;
395 }
396
mbedtls_ct_base64_dec_value(unsigned char c)397 signed char mbedtls_ct_base64_dec_value(unsigned char c)
398 {
399 unsigned char val = 0;
400 /* For each range of digits, if c is in that range, mask val with
401 * the corresponding value. Since c can only be in a single range,
402 * only at most one masking will change val. Set val to one plus
403 * the desired value so that it stays 0 if c is in none of the ranges. */
404 val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' + 0 + 1);
405 val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1);
406 val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1);
407 val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1);
408 val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1);
409 /* At this point, val is 0 if c is an invalid digit and v+1 if c is
410 * a digit with the value v. */
411 return val - 1;
412 }
413
414 #endif /* MBEDTLS_BASE64_C */
415
416 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
417
418 /** Shift some data towards the left inside a buffer.
419 *
420 * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
421 * equivalent to
422 * ```
423 * memmove(start, start + offset, total - offset);
424 * memset(start + offset, 0, total - offset);
425 * ```
426 * but it strives to use a memory access pattern (and thus total timing)
427 * that does not depend on \p offset. This timing independence comes at
428 * the expense of performance.
429 *
430 * \param start Pointer to the start of the buffer.
431 * \param total Total size of the buffer.
432 * \param offset Offset from which to copy \p total - \p offset bytes.
433 */
mbedtls_ct_mem_move_to_left(void * start,size_t total,size_t offset)434 static void mbedtls_ct_mem_move_to_left(void *start,
435 size_t total,
436 size_t offset)
437 {
438 volatile unsigned char *buf = start;
439 size_t i, n;
440 if (total == 0) {
441 return;
442 }
443 for (i = 0; i < total; i++) {
444 unsigned no_op = mbedtls_ct_size_gt(total - offset, i);
445 /* The first `total - offset` passes are a no-op. The last
446 * `offset` passes shift the data one byte to the left and
447 * zero out the last byte. */
448 for (n = 0; n < total - 1; n++) {
449 unsigned char current = buf[n];
450 unsigned char next = buf[n+1];
451 buf[n] = mbedtls_ct_uint_if(no_op, current, next);
452 }
453 buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);
454 }
455 }
456
457 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
458
459 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
460
mbedtls_ct_memcpy_if_eq(unsigned char * dest,const unsigned char * src,size_t len,size_t c1,size_t c2)461 void mbedtls_ct_memcpy_if_eq(unsigned char *dest,
462 const unsigned char *src,
463 size_t len,
464 size_t c1,
465 size_t c2)
466 {
467 /* mask = c1 == c2 ? 0xff : 0x00 */
468 const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);
469
470 /* dest[i] = c1 == c2 ? src[i] : dest[i] */
471 size_t i = 0;
472 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
473 const uint32_t mask32 = (uint32_t) mbedtls_ct_size_mask(equal);
474 const unsigned char mask = (unsigned char) mask32 & 0xff;
475
476 for (; (i + 4) <= len; i += 4) {
477 uint32_t a = mbedtls_get_unaligned_uint32(src + i) & mask32;
478 uint32_t b = mbedtls_get_unaligned_uint32(dest + i) & ~mask32;
479 mbedtls_put_unaligned_uint32(dest + i, a | b);
480 }
481 #else
482 const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);
483 #endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
484 for (; i < len; i++) {
485 dest[i] = (src[i] & mask) | (dest[i] & ~mask);
486 }
487 }
488
mbedtls_ct_memcpy_offset(unsigned char * dest,const unsigned char * src,size_t offset,size_t offset_min,size_t offset_max,size_t len)489 void mbedtls_ct_memcpy_offset(unsigned char *dest,
490 const unsigned char *src,
491 size_t offset,
492 size_t offset_min,
493 size_t offset_max,
494 size_t len)
495 {
496 size_t offsetval;
497
498 for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
499 mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,
500 offsetval, offset);
501 }
502 }
503
504 #if defined(MBEDTLS_USE_PSA_CRYPTO)
505
506 #if defined(PSA_WANT_ALG_SHA_384)
507 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
508 #elif defined(PSA_WANT_ALG_SHA_256)
509 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
510 #else /* See check_config.h */
511 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
512 #endif
513
mbedtls_ct_hmac(mbedtls_svc_key_id_t key,psa_algorithm_t mac_alg,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)514 int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
515 psa_algorithm_t mac_alg,
516 const unsigned char *add_data,
517 size_t add_data_len,
518 const unsigned char *data,
519 size_t data_len_secret,
520 size_t min_data_len,
521 size_t max_data_len,
522 unsigned char *output)
523 {
524 /*
525 * This function breaks the HMAC abstraction and uses psa_hash_clone()
526 * extension in order to get constant-flow behaviour.
527 *
528 * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
529 * concatenation, and okey/ikey are the XOR of the key with some fixed bit
530 * patterns (see RFC 2104, sec. 2).
531 *
532 * We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
533 * hashing up to minlen, then cloning the context, and for each byte up
534 * to maxlen finishing up the hash computation, keeping only the
535 * correct result.
536 *
537 * Then we only need to compute HASH(okey + inner_hash) and we're done.
538 */
539 psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
540 const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
541 unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
542 const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
543 psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
544 size_t hash_length;
545
546 unsigned char aux_out[PSA_HASH_MAX_SIZE];
547 psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
548 size_t offset;
549 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
550
551 size_t mac_key_length;
552 size_t i;
553
554 #define PSA_CHK(func_call) \
555 do { \
556 status = (func_call); \
557 if (status != PSA_SUCCESS) \
558 goto cleanup; \
559 } while (0)
560
561 /* Export MAC key
562 * We assume key length is always exactly the output size
563 * which is never more than the block size, thus we use block_size
564 * as the key buffer size.
565 */
566 PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
567
568 /* Calculate ikey */
569 for (i = 0; i < mac_key_length; i++) {
570 key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
571 }
572 for (; i < block_size; ++i) {
573 key_buf[i] = 0x36;
574 }
575
576 PSA_CHK(psa_hash_setup(&operation, hash_alg));
577
578 /* Now compute inner_hash = HASH(ikey + msg) */
579 PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
580 PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
581 PSA_CHK(psa_hash_update(&operation, data, min_data_len));
582
583 /* Fill the hash buffer in advance with something that is
584 * not a valid hash (barring an attack on the hash and
585 * deliberately-crafted input), in case the caller doesn't
586 * check the return status properly. */
587 memset(output, '!', hash_size);
588
589 /* For each possible length, compute the hash up to that point */
590 for (offset = min_data_len; offset <= max_data_len; offset++) {
591 PSA_CHK(psa_hash_clone(&operation, &aux_operation));
592 PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
593 PSA_HASH_MAX_SIZE, &hash_length));
594 /* Keep only the correct inner_hash in the output buffer */
595 mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
596 offset, data_len_secret);
597
598 if (offset < max_data_len) {
599 PSA_CHK(psa_hash_update(&operation, data + offset, 1));
600 }
601 }
602
603 /* Abort current operation to prepare for final operation */
604 PSA_CHK(psa_hash_abort(&operation));
605
606 /* Calculate okey */
607 for (i = 0; i < mac_key_length; i++) {
608 key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
609 }
610 for (; i < block_size; ++i) {
611 key_buf[i] = 0x5C;
612 }
613
614 /* Now compute HASH(okey + inner_hash) */
615 PSA_CHK(psa_hash_setup(&operation, hash_alg));
616 PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
617 PSA_CHK(psa_hash_update(&operation, output, hash_size));
618 PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
619
620 #undef PSA_CHK
621
622 cleanup:
623 mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
624 mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
625
626 psa_hash_abort(&operation);
627 psa_hash_abort(&aux_operation);
628 return PSA_TO_MBEDTLS_ERR(status);
629 }
630
631 #undef MAX_HASH_BLOCK_LENGTH
632
633 #else
mbedtls_ct_hmac(mbedtls_md_context_t * ctx,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)634 int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
635 const unsigned char *add_data,
636 size_t add_data_len,
637 const unsigned char *data,
638 size_t data_len_secret,
639 size_t min_data_len,
640 size_t max_data_len,
641 unsigned char *output)
642 {
643 /*
644 * This function breaks the HMAC abstraction and uses the md_clone()
645 * extension to the MD API in order to get constant-flow behaviour.
646 *
647 * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
648 * concatenation, and okey/ikey are the XOR of the key with some fixed bit
649 * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
650 *
651 * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
652 * minlen, then cloning the context, and for each byte up to maxlen
653 * finishing up the hash computation, keeping only the correct result.
654 *
655 * Then we only need to compute HASH(okey + inner_hash) and we're done.
656 */
657 const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
658 /* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
659 * all of which have the same block size except SHA-384. */
660 const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
661 const unsigned char * const ikey = ctx->hmac_ctx;
662 const unsigned char * const okey = ikey + block_size;
663 const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
664
665 unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
666 mbedtls_md_context_t aux;
667 size_t offset;
668 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
669
670 mbedtls_md_init(&aux);
671
672 #define MD_CHK(func_call) \
673 do { \
674 ret = (func_call); \
675 if (ret != 0) \
676 goto cleanup; \
677 } while (0)
678
679 MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
680
681 /* After hmac_start() of hmac_reset(), ikey has already been hashed,
682 * so we can start directly with the message */
683 MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
684 MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
685
686 /* Fill the hash buffer in advance with something that is
687 * not a valid hash (barring an attack on the hash and
688 * deliberately-crafted input), in case the caller doesn't
689 * check the return status properly. */
690 memset(output, '!', hash_size);
691
692 /* For each possible length, compute the hash up to that point */
693 for (offset = min_data_len; offset <= max_data_len; offset++) {
694 MD_CHK(mbedtls_md_clone(&aux, ctx));
695 MD_CHK(mbedtls_md_finish(&aux, aux_out));
696 /* Keep only the correct inner_hash in the output buffer */
697 mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
698 offset, data_len_secret);
699
700 if (offset < max_data_len) {
701 MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
702 }
703 }
704
705 /* The context needs to finish() before it starts() again */
706 MD_CHK(mbedtls_md_finish(ctx, aux_out));
707
708 /* Now compute HASH(okey + inner_hash) */
709 MD_CHK(mbedtls_md_starts(ctx));
710 MD_CHK(mbedtls_md_update(ctx, okey, block_size));
711 MD_CHK(mbedtls_md_update(ctx, output, hash_size));
712 MD_CHK(mbedtls_md_finish(ctx, output));
713
714 /* Done, get ready for next time */
715 MD_CHK(mbedtls_md_hmac_reset(ctx));
716
717 #undef MD_CHK
718
719 cleanup:
720 mbedtls_md_free(&aux);
721 return ret;
722 }
723 #endif /* MBEDTLS_USE_PSA_CRYPTO */
724
725 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
726
727 #if defined(MBEDTLS_BIGNUM_C)
728
729 #define MPI_VALIDATE_RET(cond) \
730 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
731
732 /*
733 * Conditionally assign X = Y, without leaking information
734 * about whether the assignment was made or not.
735 * (Leaking information about the respective sizes of X and Y is ok however.)
736 */
737 #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)
738 /*
739 * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
740 * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
741 */
742 __declspec(noinline)
743 #endif
mbedtls_mpi_safe_cond_assign(mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned char assign)744 int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
745 const mbedtls_mpi *Y,
746 unsigned char assign)
747 {
748 int ret = 0;
749 MPI_VALIDATE_RET(X != NULL);
750 MPI_VALIDATE_RET(Y != NULL);
751
752 /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
753 mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(assign);
754
755 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
756
757 X->s = mbedtls_ct_cond_select_sign(assign, Y->s, X->s);
758
759 mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, assign);
760
761 for (size_t i = Y->n; i < X->n; i++) {
762 X->p[i] &= ~limb_mask;
763 }
764
765 cleanup:
766 return ret;
767 }
768
769 /*
770 * Conditionally swap X and Y, without leaking information
771 * about whether the swap was made or not.
772 * Here it is not ok to simply swap the pointers, which would lead to
773 * different memory access patterns when X and Y are used afterwards.
774 */
mbedtls_mpi_safe_cond_swap(mbedtls_mpi * X,mbedtls_mpi * Y,unsigned char swap)775 int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
776 mbedtls_mpi *Y,
777 unsigned char swap)
778 {
779 int ret = 0;
780 int s;
781 MPI_VALIDATE_RET(X != NULL);
782 MPI_VALIDATE_RET(Y != NULL);
783
784 if (X == Y) {
785 return 0;
786 }
787
788 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
789 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
790
791 s = X->s;
792 X->s = mbedtls_ct_cond_select_sign(swap, Y->s, X->s);
793 Y->s = mbedtls_ct_cond_select_sign(swap, s, Y->s);
794
795 mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, swap);
796
797 cleanup:
798 return ret;
799 }
800
801 /*
802 * Compare unsigned values in constant time
803 */
mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * B,size_t limbs)804 unsigned mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
805 const mbedtls_mpi_uint *B,
806 size_t limbs)
807 {
808 unsigned ret, cond, done;
809
810 /* The value of any of these variables is either 0 or 1 for the rest of
811 * their scope. */
812 ret = cond = done = 0;
813
814 for (size_t i = limbs; i > 0; i--) {
815 /*
816 * If B[i - 1] < A[i - 1] then A < B is false and the result must
817 * remain 0.
818 *
819 * Again even if we can make a decision, we just mark the result and
820 * the fact that we are done and continue looping.
821 */
822 cond = mbedtls_ct_mpi_uint_lt(B[i - 1], A[i - 1]);
823 done |= cond;
824
825 /*
826 * If A[i - 1] < B[i - 1] then A < B is true.
827 *
828 * Again even if we can make a decision, we just mark the result and
829 * the fact that we are done and continue looping.
830 */
831 cond = mbedtls_ct_mpi_uint_lt(A[i - 1], B[i - 1]);
832 ret |= cond & (1 - done);
833 done |= cond;
834 }
835
836 /*
837 * If all the limbs were equal, then the numbers are equal, A < B is false
838 * and leaving the result 0 is correct.
839 */
840
841 return ret;
842 }
843
844 /*
845 * Compare signed values in constant time
846 */
mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned * ret)847 int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
848 const mbedtls_mpi *Y,
849 unsigned *ret)
850 {
851 size_t i;
852 /* The value of any of these variables is either 0 or 1 at all times. */
853 unsigned cond, done, X_is_negative, Y_is_negative;
854
855 MPI_VALIDATE_RET(X != NULL);
856 MPI_VALIDATE_RET(Y != NULL);
857 MPI_VALIDATE_RET(ret != NULL);
858
859 if (X->n != Y->n) {
860 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
861 }
862
863 /*
864 * Set sign_N to 1 if N >= 0, 0 if N < 0.
865 * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
866 */
867 X_is_negative = (X->s & 2) >> 1;
868 Y_is_negative = (Y->s & 2) >> 1;
869
870 /*
871 * If the signs are different, then the positive operand is the bigger.
872 * That is if X is negative (X_is_negative == 1), then X < Y is true and it
873 * is false if X is positive (X_is_negative == 0).
874 */
875 cond = (X_is_negative ^ Y_is_negative);
876 *ret = cond & X_is_negative;
877
878 /*
879 * This is a constant-time function. We might have the result, but we still
880 * need to go through the loop. Record if we have the result already.
881 */
882 done = cond;
883
884 for (i = X->n; i > 0; i--) {
885 /*
886 * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
887 * X and Y are negative.
888 *
889 * Again even if we can make a decision, we just mark the result and
890 * the fact that we are done and continue looping.
891 */
892 cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);
893 *ret |= cond & (1 - done) & X_is_negative;
894 done |= cond;
895
896 /*
897 * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
898 * X and Y are positive.
899 *
900 * Again even if we can make a decision, we just mark the result and
901 * the fact that we are done and continue looping.
902 */
903 cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);
904 *ret |= cond & (1 - done) & (1 - X_is_negative);
905 done |= cond;
906 }
907
908 return 0;
909 }
910
911 #endif /* MBEDTLS_BIGNUM_C */
912
913 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
914
mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)915 int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
916 size_t ilen,
917 unsigned char *output,
918 size_t output_max_len,
919 size_t *olen)
920 {
921 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
922 size_t i, plaintext_max_size;
923
924 /* The following variables take sensitive values: their value must
925 * not leak into the observable behavior of the function other than
926 * the designated outputs (output, olen, return value). Otherwise
927 * this would open the execution of the function to
928 * side-channel-based variants of the Bleichenbacher padding oracle
929 * attack. Potential side channels include overall timing, memory
930 * access patterns (especially visible to an adversary who has access
931 * to a shared memory cache), and branches (especially visible to
932 * an adversary who has access to a shared code cache or to a shared
933 * branch predictor). */
934 size_t pad_count = 0;
935 unsigned bad = 0;
936 unsigned char pad_done = 0;
937 size_t plaintext_size = 0;
938 unsigned output_too_large;
939
940 plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
941 : output_max_len;
942
943 /* Check and get padding length in constant time and constant
944 * memory trace. The first byte must be 0. */
945 bad |= input[0];
946
947
948 /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
949 * where PS must be at least 8 nonzero bytes. */
950 bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
951
952 /* Read the whole buffer. Set pad_done to nonzero if we find
953 * the 0x00 byte and remember the padding length in pad_count. */
954 for (i = 2; i < ilen; i++) {
955 pad_done |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;
956 pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
957 }
958
959
960 /* If pad_done is still zero, there's no data, only unfinished padding. */
961 bad |= mbedtls_ct_uint_if(pad_done, 0, 1);
962
963 /* There must be at least 8 bytes of padding. */
964 bad |= mbedtls_ct_size_gt(8, pad_count);
965
966 /* If the padding is valid, set plaintext_size to the number of
967 * remaining bytes after stripping the padding. If the padding
968 * is invalid, avoid leaking this fact through the size of the
969 * output: use the maximum message size that fits in the output
970 * buffer. Do it without branches to avoid leaking the padding
971 * validity through timing. RSA keys are small enough that all the
972 * size_t values involved fit in unsigned int. */
973 plaintext_size = mbedtls_ct_uint_if(
974 bad, (unsigned) plaintext_max_size,
975 (unsigned) (ilen - pad_count - 3));
976
977 /* Set output_too_large to 0 if the plaintext fits in the output
978 * buffer and to 1 otherwise. */
979 output_too_large = mbedtls_ct_size_gt(plaintext_size,
980 plaintext_max_size);
981
982 /* Set ret without branches to avoid timing attacks. Return:
983 * - INVALID_PADDING if the padding is bad (bad != 0).
984 * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
985 * plaintext does not fit in the output buffer.
986 * - 0 if the padding is correct. */
987 ret = -(int) mbedtls_ct_uint_if(
988 bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,
989 mbedtls_ct_uint_if(output_too_large,
990 -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
991 0));
992
993 /* If the padding is bad or the plaintext is too large, zero the
994 * data that we're about to copy to the output buffer.
995 * We need to copy the same amount of data
996 * from the same buffer whether the padding is good or not to
997 * avoid leaking the padding validity through overall timing or
998 * through memory or cache access patterns. */
999 bad = mbedtls_ct_uint_mask(bad | output_too_large);
1000 for (i = 11; i < ilen; i++) {
1001 input[i] &= ~bad;
1002 }
1003
1004 /* If the plaintext is too large, truncate it to the buffer size.
1005 * Copy anyway to avoid revealing the length through timing, because
1006 * revealing the length is as bad as revealing the padding validity
1007 * for a Bleichenbacher attack. */
1008 plaintext_size = mbedtls_ct_uint_if(output_too_large,
1009 (unsigned) plaintext_max_size,
1010 (unsigned) plaintext_size);
1011
1012 /* Move the plaintext to the leftmost position where it can start in
1013 * the working buffer, i.e. make it start plaintext_max_size from
1014 * the end of the buffer. Do this with a memory access trace that
1015 * does not depend on the plaintext size. After this move, the
1016 * starting location of the plaintext is no longer sensitive
1017 * information. */
1018 mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,
1019 plaintext_max_size,
1020 plaintext_max_size - plaintext_size);
1021
1022 /* Finally copy the decrypted plaintext plus trailing zeros into the output
1023 * buffer. If output_max_len is 0, then output may be an invalid pointer
1024 * and the result of memcpy() would be undefined; prevent undefined
1025 * behavior making sure to depend only on output_max_len (the size of the
1026 * user-provided output buffer), which is independent from plaintext
1027 * length, validity of padding, success of the decryption, and other
1028 * secrets. */
1029 if (output_max_len != 0) {
1030 memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
1031 }
1032
1033 /* Report the amount of data we copied to the output buffer. In case
1034 * of errors (bad padding or output too large), the value of *olen
1035 * when this function returns is not specified. Making it equivalent
1036 * to the good case limits the risks of leaking the padding validity. */
1037 *olen = plaintext_size;
1038
1039 return ret;
1040 }
1041
1042 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
1043