1 /**
2  *  Constant-time functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  * The following functions are implemented without using comparison operators, as those
22  * might be translated to branches by some compilers on some platforms.
23  */
24 
25 #include "common.h"
26 #include "constant_time_internal.h"
27 #include "mbedtls/constant_time.h"
28 #include "mbedtls/error.h"
29 #include "mbedtls/platform_util.h"
30 
31 #if defined(MBEDTLS_BIGNUM_C)
32 #include "mbedtls/bignum.h"
33 #include "bignum_core.h"
34 #endif
35 
36 #if defined(MBEDTLS_SSL_TLS_C)
37 #include "ssl_misc.h"
38 #endif
39 
40 #if defined(MBEDTLS_RSA_C)
41 #include "mbedtls/rsa.h"
42 #endif
43 
44 #if defined(MBEDTLS_BASE64_C)
45 #include "constant_time_invasive.h"
46 #endif
47 
48 #include <string.h>
49 #if defined(MBEDTLS_USE_PSA_CRYPTO)
50 #define PSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status,    \
51                                                            psa_to_ssl_errors,              \
52                                                            psa_generic_status_to_mbedtls)
53 #endif
54 
55 /*
56  * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
57  * perform fast unaligned access to volatile data.
58  *
59  * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
60  * memory accesses.
61  *
62  * Some of these definitions could be moved into alignment.h but for now they are
63  * only used here.
64  */
65 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && defined(MBEDTLS_HAVE_ASM)
66 #if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) || defined(__aarch64__)
67 #define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
68 #endif
69 #endif
70 
71 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char * p)72 static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
73 {
74     /* This is UB, even where it's safe:
75      *    return *((volatile uint32_t*)p);
76      * so instead the same thing is expressed in assembly below.
77      */
78     uint32_t r;
79 #if defined(__arm__) || defined(__thumb__) || defined(__thumb2__)
80     __asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
81 #elif defined(__aarch64__)
82     asm volatile ("ldr %w0, [%1]" : "=r" (r) : "r" (p) :);
83 #endif
84     return r;
85 }
86 #endif /* MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS */
87 
mbedtls_ct_memcmp(const void * a,const void * b,size_t n)88 int mbedtls_ct_memcmp(const void *a,
89                       const void *b,
90                       size_t n)
91 {
92     size_t i = 0;
93     /*
94      * `A` and `B` are cast to volatile to ensure that the compiler
95      * generates code that always fully reads both buffers.
96      * Otherwise it could generate a test to exit early if `diff` has all
97      * bits set early in the loop.
98      */
99     volatile const unsigned char *A = (volatile const unsigned char *) a;
100     volatile const unsigned char *B = (volatile const unsigned char *) b;
101     uint32_t diff = 0;
102 
103 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
104     for (; (i + 4) <= n; i += 4) {
105         uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
106         uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
107         diff |= x ^ y;
108     }
109 #endif
110 
111     for (; i < n; i++) {
112         /* Read volatile data in order before computing diff.
113          * This avoids IAR compiler warning:
114          * 'the order of volatile accesses is undefined ..' */
115         unsigned char x = A[i], y = B[i];
116         diff |= x ^ y;
117     }
118 
119     return (int) diff;
120 }
121 
mbedtls_ct_uint_mask(unsigned value)122 unsigned mbedtls_ct_uint_mask(unsigned value)
123 {
124     /* MSVC has a warning about unary minus on unsigned, but this is
125      * well-defined and precisely what we want to do here */
126 #if defined(_MSC_VER)
127 #pragma warning( push )
128 #pragma warning( disable : 4146 )
129 #endif
130     return -((value | -value) >> (sizeof(value) * 8 - 1));
131 #if defined(_MSC_VER)
132 #pragma warning( pop )
133 #endif
134 }
135 
136 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
137 
mbedtls_ct_size_mask(size_t value)138 size_t mbedtls_ct_size_mask(size_t value)
139 {
140     /* MSVC has a warning about unary minus on unsigned integer types,
141      * but this is well-defined and precisely what we want to do here. */
142 #if defined(_MSC_VER)
143 #pragma warning( push )
144 #pragma warning( disable : 4146 )
145 #endif
146     return -((value | -value) >> (sizeof(value) * 8 - 1));
147 #if defined(_MSC_VER)
148 #pragma warning( pop )
149 #endif
150 }
151 
152 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
153 
154 #if defined(MBEDTLS_BIGNUM_C)
155 
mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)156 mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)
157 {
158     /* MSVC has a warning about unary minus on unsigned, but this is
159      * well-defined and precisely what we want to do here */
160 #if defined(_MSC_VER)
161 #pragma warning( push )
162 #pragma warning( disable : 4146 )
163 #endif
164     return -((value | -value) >> (sizeof(value) * 8 - 1));
165 #if defined(_MSC_VER)
166 #pragma warning( pop )
167 #endif
168 }
169 
170 #endif /* MBEDTLS_BIGNUM_C */
171 
172 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
173 
174 /** Constant-flow mask generation for "less than" comparison:
175  * - if \p x < \p y, return all-bits 1, that is (size_t) -1
176  * - otherwise, return all bits 0, that is 0
177  *
178  * This function can be used to write constant-time code by replacing branches
179  * with bit operations using masks.
180  *
181  * \param x     The first value to analyze.
182  * \param y     The second value to analyze.
183  *
184  * \return      All-bits-one if \p x is less than \p y, otherwise zero.
185  */
mbedtls_ct_size_mask_lt(size_t x,size_t y)186 static size_t mbedtls_ct_size_mask_lt(size_t x,
187                                       size_t y)
188 {
189     /* This has the most significant bit set if and only if x < y */
190     const size_t sub = x - y;
191 
192     /* sub1 = (x < y) ? 1 : 0 */
193     const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);
194 
195     /* mask = (x < y) ? 0xff... : 0x00... */
196     const size_t mask = mbedtls_ct_size_mask(sub1);
197 
198     return mask;
199 }
200 
mbedtls_ct_size_mask_ge(size_t x,size_t y)201 size_t mbedtls_ct_size_mask_ge(size_t x,
202                                size_t y)
203 {
204     return ~mbedtls_ct_size_mask_lt(x, y);
205 }
206 
207 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
208 
209 #if defined(MBEDTLS_BASE64_C)
210 
211 /* Return 0xff if low <= c <= high, 0 otherwise.
212  *
213  * Constant flow with respect to c.
214  */
215 MBEDTLS_STATIC_TESTABLE
mbedtls_ct_uchar_mask_of_range(unsigned char low,unsigned char high,unsigned char c)216 unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,
217                                              unsigned char high,
218                                              unsigned char c)
219 {
220     /* low_mask is: 0 if low <= c, 0x...ff if low > c */
221     unsigned low_mask = ((unsigned) c - low) >> 8;
222     /* high_mask is: 0 if c <= high, 0x...ff if c > high */
223     unsigned high_mask = ((unsigned) high - c) >> 8;
224     return ~(low_mask | high_mask) & 0xff;
225 }
226 
227 #endif /* MBEDTLS_BASE64_C */
228 
mbedtls_ct_size_bool_eq(size_t x,size_t y)229 unsigned mbedtls_ct_size_bool_eq(size_t x,
230                                  size_t y)
231 {
232     /* diff = 0 if x == y, non-zero otherwise */
233     const size_t diff = x ^ y;
234 
235     /* MSVC has a warning about unary minus on unsigned integer types,
236      * but this is well-defined and precisely what we want to do here. */
237 #if defined(_MSC_VER)
238 #pragma warning( push )
239 #pragma warning( disable : 4146 )
240 #endif
241 
242     /* diff_msb's most significant bit is equal to x != y */
243     const size_t diff_msb = (diff | (size_t) -diff);
244 
245 #if defined(_MSC_VER)
246 #pragma warning( pop )
247 #endif
248 
249     /* diff1 = (x != y) ? 1 : 0 */
250     const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);
251 
252     return 1 ^ diff1;
253 }
254 
255 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
256 
257 /** Constant-flow "greater than" comparison:
258  * return x > y
259  *
260  * This is equivalent to \p x > \p y, but is likely to be compiled
261  * to code using bitwise operation rather than a branch.
262  *
263  * \param x     The first value to analyze.
264  * \param y     The second value to analyze.
265  *
266  * \return      1 if \p x greater than \p y, otherwise 0.
267  */
mbedtls_ct_size_gt(size_t x,size_t y)268 static unsigned mbedtls_ct_size_gt(size_t x,
269                                    size_t y)
270 {
271     /* Return the sign bit (1 for negative) of (y - x). */
272     return (y - x) >> (sizeof(size_t) * 8 - 1);
273 }
274 
275 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
276 
277 #if defined(MBEDTLS_BIGNUM_C)
278 
mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,const mbedtls_mpi_uint y)279 unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,
280                                 const mbedtls_mpi_uint y)
281 {
282     mbedtls_mpi_uint ret;
283     mbedtls_mpi_uint cond;
284 
285     /*
286      * Check if the most significant bits (MSB) of the operands are different.
287      */
288     cond = (x ^ y);
289     /*
290      * If the MSB are the same then the difference x-y will be negative (and
291      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
292      */
293     ret = (x - y) & ~cond;
294     /*
295      * If the MSB are different, then the operand with the MSB of 1 is the
296      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
297      * the MSB of y is 0.)
298      */
299     ret |= y & cond;
300 
301 
302     ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);
303 
304     return (unsigned) ret;
305 }
306 
307 #endif /* MBEDTLS_BIGNUM_C */
308 
mbedtls_ct_uint_if(unsigned condition,unsigned if1,unsigned if0)309 unsigned mbedtls_ct_uint_if(unsigned condition,
310                             unsigned if1,
311                             unsigned if0)
312 {
313     unsigned mask = mbedtls_ct_uint_mask(condition);
314     return (mask & if1) | (~mask & if0);
315 }
316 
317 #if defined(MBEDTLS_BIGNUM_C)
318 
319 /** Select between two sign values without branches.
320  *
321  * This is functionally equivalent to `condition ? if1 : if0` but uses only bit
322  * operations in order to avoid branches.
323  *
324  * \note if1 and if0 must be either 1 or -1, otherwise the result
325  *       is undefined.
326  *
327  * \param condition     Condition to test; must be either 0 or 1.
328  * \param if1           The first sign; must be either +1 or -1.
329  * \param if0           The second sign; must be either +1 or -1.
330  *
331  * \return  \c if1 if \p condition is nonzero, otherwise \c if0.
332  * */
mbedtls_ct_cond_select_sign(unsigned char condition,int if1,int if0)333 static int mbedtls_ct_cond_select_sign(unsigned char condition,
334                                        int if1,
335                                        int if0)
336 {
337     /* In order to avoid questions about what we can reasonably assume about
338      * the representations of signed integers, move everything to unsigned
339      * by taking advantage of the fact that if1 and if0 are either +1 or -1. */
340     unsigned uif1 = if1 + 1;
341     unsigned uif0 = if0 + 1;
342 
343     /* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
344     const unsigned mask = condition << 1;
345 
346     /* select uif1 or uif0 */
347     unsigned ur = (uif0 & ~mask) | (uif1 & mask);
348 
349     /* ur is now 0 or 2, convert back to -1 or +1 */
350     return (int) ur - 1;
351 }
352 
mbedtls_ct_mpi_uint_cond_assign(size_t n,mbedtls_mpi_uint * dest,const mbedtls_mpi_uint * src,unsigned char condition)353 void mbedtls_ct_mpi_uint_cond_assign(size_t n,
354                                      mbedtls_mpi_uint *dest,
355                                      const mbedtls_mpi_uint *src,
356                                      unsigned char condition)
357 {
358     size_t i;
359 
360     /* MSVC has a warning about unary minus on unsigned integer types,
361      * but this is well-defined and precisely what we want to do here. */
362 #if defined(_MSC_VER)
363 #pragma warning( push )
364 #pragma warning( disable : 4146 )
365 #endif
366 
367     /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
368     const mbedtls_mpi_uint mask = -condition;
369 
370 #if defined(_MSC_VER)
371 #pragma warning( pop )
372 #endif
373 
374     for (i = 0; i < n; i++) {
375         dest[i] = (src[i] & mask) | (dest[i] & ~mask);
376     }
377 }
378 
379 #endif /* MBEDTLS_BIGNUM_C */
380 
381 #if defined(MBEDTLS_BASE64_C)
382 
mbedtls_ct_base64_enc_char(unsigned char value)383 unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
384 {
385     unsigned char digit = 0;
386     /* For each range of values, if value is in that range, mask digit with
387      * the corresponding value. Since value can only be in a single range,
388      * only at most one masking will change digit. */
389     digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value);
390     digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26);
391     digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52);
392     digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';
393     digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';
394     return digit;
395 }
396 
mbedtls_ct_base64_dec_value(unsigned char c)397 signed char mbedtls_ct_base64_dec_value(unsigned char c)
398 {
399     unsigned char val = 0;
400     /* For each range of digits, if c is in that range, mask val with
401      * the corresponding value. Since c can only be in a single range,
402      * only at most one masking will change val. Set val to one plus
403      * the desired value so that it stays 0 if c is in none of the ranges. */
404     val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' +  0 + 1);
405     val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1);
406     val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1);
407     val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1);
408     val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1);
409     /* At this point, val is 0 if c is an invalid digit and v+1 if c is
410      * a digit with the value v. */
411     return val - 1;
412 }
413 
414 #endif /* MBEDTLS_BASE64_C */
415 
416 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
417 
418 /** Shift some data towards the left inside a buffer.
419  *
420  * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
421  * equivalent to
422  * ```
423  * memmove(start, start + offset, total - offset);
424  * memset(start + offset, 0, total - offset);
425  * ```
426  * but it strives to use a memory access pattern (and thus total timing)
427  * that does not depend on \p offset. This timing independence comes at
428  * the expense of performance.
429  *
430  * \param start     Pointer to the start of the buffer.
431  * \param total     Total size of the buffer.
432  * \param offset    Offset from which to copy \p total - \p offset bytes.
433  */
mbedtls_ct_mem_move_to_left(void * start,size_t total,size_t offset)434 static void mbedtls_ct_mem_move_to_left(void *start,
435                                         size_t total,
436                                         size_t offset)
437 {
438     volatile unsigned char *buf = start;
439     size_t i, n;
440     if (total == 0) {
441         return;
442     }
443     for (i = 0; i < total; i++) {
444         unsigned no_op = mbedtls_ct_size_gt(total - offset, i);
445         /* The first `total - offset` passes are a no-op. The last
446          * `offset` passes shift the data one byte to the left and
447          * zero out the last byte. */
448         for (n = 0; n < total - 1; n++) {
449             unsigned char current = buf[n];
450             unsigned char next = buf[n+1];
451             buf[n] = mbedtls_ct_uint_if(no_op, current, next);
452         }
453         buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);
454     }
455 }
456 
457 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
458 
459 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
460 
mbedtls_ct_memcpy_if_eq(unsigned char * dest,const unsigned char * src,size_t len,size_t c1,size_t c2)461 void mbedtls_ct_memcpy_if_eq(unsigned char *dest,
462                              const unsigned char *src,
463                              size_t len,
464                              size_t c1,
465                              size_t c2)
466 {
467     /* mask = c1 == c2 ? 0xff : 0x00 */
468     const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);
469 
470     /* dest[i] = c1 == c2 ? src[i] : dest[i] */
471     size_t i = 0;
472 #if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
473     const uint32_t mask32 = (uint32_t) mbedtls_ct_size_mask(equal);
474     const unsigned char mask = (unsigned char) mask32 & 0xff;
475 
476     for (; (i + 4) <= len; i += 4) {
477         uint32_t a = mbedtls_get_unaligned_uint32(src  + i) &  mask32;
478         uint32_t b = mbedtls_get_unaligned_uint32(dest + i) & ~mask32;
479         mbedtls_put_unaligned_uint32(dest + i, a | b);
480     }
481 #else
482     const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);
483 #endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
484     for (; i < len; i++) {
485         dest[i] = (src[i] & mask) | (dest[i] & ~mask);
486     }
487 }
488 
mbedtls_ct_memcpy_offset(unsigned char * dest,const unsigned char * src,size_t offset,size_t offset_min,size_t offset_max,size_t len)489 void mbedtls_ct_memcpy_offset(unsigned char *dest,
490                               const unsigned char *src,
491                               size_t offset,
492                               size_t offset_min,
493                               size_t offset_max,
494                               size_t len)
495 {
496     size_t offsetval;
497 
498     for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
499         mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,
500                                 offsetval, offset);
501     }
502 }
503 
504 #if defined(MBEDTLS_USE_PSA_CRYPTO)
505 
506 #if defined(PSA_WANT_ALG_SHA_384)
507 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
508 #elif defined(PSA_WANT_ALG_SHA_256)
509 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
510 #else /* See check_config.h */
511 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
512 #endif
513 
mbedtls_ct_hmac(mbedtls_svc_key_id_t key,psa_algorithm_t mac_alg,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)514 int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
515                     psa_algorithm_t mac_alg,
516                     const unsigned char *add_data,
517                     size_t add_data_len,
518                     const unsigned char *data,
519                     size_t data_len_secret,
520                     size_t min_data_len,
521                     size_t max_data_len,
522                     unsigned char *output)
523 {
524     /*
525      * This function breaks the HMAC abstraction and uses psa_hash_clone()
526      * extension in order to get constant-flow behaviour.
527      *
528      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
529      * concatenation, and okey/ikey are the XOR of the key with some fixed bit
530      * patterns (see RFC 2104, sec. 2).
531      *
532      * We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
533      * hashing up to minlen, then cloning the context, and for each byte up
534      * to maxlen finishing up the hash computation, keeping only the
535      * correct result.
536      *
537      * Then we only need to compute HASH(okey + inner_hash) and we're done.
538      */
539     psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
540     const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
541     unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
542     const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
543     psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
544     size_t hash_length;
545 
546     unsigned char aux_out[PSA_HASH_MAX_SIZE];
547     psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
548     size_t offset;
549     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
550 
551     size_t mac_key_length;
552     size_t i;
553 
554 #define PSA_CHK(func_call)        \
555     do {                            \
556         status = (func_call);       \
557         if (status != PSA_SUCCESS) \
558         goto cleanup;           \
559     } while (0)
560 
561     /* Export MAC key
562      * We assume key length is always exactly the output size
563      * which is never more than the block size, thus we use block_size
564      * as the key buffer size.
565      */
566     PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
567 
568     /* Calculate ikey */
569     for (i = 0; i < mac_key_length; i++) {
570         key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
571     }
572     for (; i < block_size; ++i) {
573         key_buf[i] = 0x36;
574     }
575 
576     PSA_CHK(psa_hash_setup(&operation, hash_alg));
577 
578     /* Now compute inner_hash = HASH(ikey + msg) */
579     PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
580     PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
581     PSA_CHK(psa_hash_update(&operation, data, min_data_len));
582 
583     /* Fill the hash buffer in advance with something that is
584      * not a valid hash (barring an attack on the hash and
585      * deliberately-crafted input), in case the caller doesn't
586      * check the return status properly. */
587     memset(output, '!', hash_size);
588 
589     /* For each possible length, compute the hash up to that point */
590     for (offset = min_data_len; offset <= max_data_len; offset++) {
591         PSA_CHK(psa_hash_clone(&operation, &aux_operation));
592         PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
593                                 PSA_HASH_MAX_SIZE, &hash_length));
594         /* Keep only the correct inner_hash in the output buffer */
595         mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
596                                 offset, data_len_secret);
597 
598         if (offset < max_data_len) {
599             PSA_CHK(psa_hash_update(&operation, data + offset, 1));
600         }
601     }
602 
603     /* Abort current operation to prepare for final operation */
604     PSA_CHK(psa_hash_abort(&operation));
605 
606     /* Calculate okey */
607     for (i = 0; i < mac_key_length; i++) {
608         key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
609     }
610     for (; i < block_size; ++i) {
611         key_buf[i] = 0x5C;
612     }
613 
614     /* Now compute HASH(okey + inner_hash) */
615     PSA_CHK(psa_hash_setup(&operation, hash_alg));
616     PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
617     PSA_CHK(psa_hash_update(&operation, output, hash_size));
618     PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
619 
620 #undef PSA_CHK
621 
622 cleanup:
623     mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
624     mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
625 
626     psa_hash_abort(&operation);
627     psa_hash_abort(&aux_operation);
628     return PSA_TO_MBEDTLS_ERR(status);
629 }
630 
631 #undef MAX_HASH_BLOCK_LENGTH
632 
633 #else
mbedtls_ct_hmac(mbedtls_md_context_t * ctx,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)634 int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
635                     const unsigned char *add_data,
636                     size_t add_data_len,
637                     const unsigned char *data,
638                     size_t data_len_secret,
639                     size_t min_data_len,
640                     size_t max_data_len,
641                     unsigned char *output)
642 {
643     /*
644      * This function breaks the HMAC abstraction and uses the md_clone()
645      * extension to the MD API in order to get constant-flow behaviour.
646      *
647      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
648      * concatenation, and okey/ikey are the XOR of the key with some fixed bit
649      * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
650      *
651      * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
652      * minlen, then cloning the context, and for each byte up to maxlen
653      * finishing up the hash computation, keeping only the correct result.
654      *
655      * Then we only need to compute HASH(okey + inner_hash) and we're done.
656      */
657     const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
658     /* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
659      * all of which have the same block size except SHA-384. */
660     const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
661     const unsigned char * const ikey = ctx->hmac_ctx;
662     const unsigned char * const okey = ikey + block_size;
663     const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
664 
665     unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
666     mbedtls_md_context_t aux;
667     size_t offset;
668     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
669 
670     mbedtls_md_init(&aux);
671 
672 #define MD_CHK(func_call) \
673     do {                    \
674         ret = (func_call);  \
675         if (ret != 0)      \
676         goto cleanup;   \
677     } while (0)
678 
679     MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
680 
681     /* After hmac_start() of hmac_reset(), ikey has already been hashed,
682      * so we can start directly with the message */
683     MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
684     MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
685 
686     /* Fill the hash buffer in advance with something that is
687      * not a valid hash (barring an attack on the hash and
688      * deliberately-crafted input), in case the caller doesn't
689      * check the return status properly. */
690     memset(output, '!', hash_size);
691 
692     /* For each possible length, compute the hash up to that point */
693     for (offset = min_data_len; offset <= max_data_len; offset++) {
694         MD_CHK(mbedtls_md_clone(&aux, ctx));
695         MD_CHK(mbedtls_md_finish(&aux, aux_out));
696         /* Keep only the correct inner_hash in the output buffer */
697         mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
698                                 offset, data_len_secret);
699 
700         if (offset < max_data_len) {
701             MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
702         }
703     }
704 
705     /* The context needs to finish() before it starts() again */
706     MD_CHK(mbedtls_md_finish(ctx, aux_out));
707 
708     /* Now compute HASH(okey + inner_hash) */
709     MD_CHK(mbedtls_md_starts(ctx));
710     MD_CHK(mbedtls_md_update(ctx, okey, block_size));
711     MD_CHK(mbedtls_md_update(ctx, output, hash_size));
712     MD_CHK(mbedtls_md_finish(ctx, output));
713 
714     /* Done, get ready for next time */
715     MD_CHK(mbedtls_md_hmac_reset(ctx));
716 
717 #undef MD_CHK
718 
719 cleanup:
720     mbedtls_md_free(&aux);
721     return ret;
722 }
723 #endif /* MBEDTLS_USE_PSA_CRYPTO */
724 
725 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
726 
727 #if defined(MBEDTLS_BIGNUM_C)
728 
729 #define MPI_VALIDATE_RET(cond)                                       \
730     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
731 
732 /*
733  * Conditionally assign X = Y, without leaking information
734  * about whether the assignment was made or not.
735  * (Leaking information about the respective sizes of X and Y is ok however.)
736  */
737 #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)
738 /*
739  * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
740  * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
741  */
742 __declspec(noinline)
743 #endif
mbedtls_mpi_safe_cond_assign(mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned char assign)744 int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
745                                  const mbedtls_mpi *Y,
746                                  unsigned char assign)
747 {
748     int ret = 0;
749     MPI_VALIDATE_RET(X != NULL);
750     MPI_VALIDATE_RET(Y != NULL);
751 
752     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
753     mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(assign);
754 
755     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
756 
757     X->s = mbedtls_ct_cond_select_sign(assign, Y->s, X->s);
758 
759     mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, assign);
760 
761     for (size_t i = Y->n; i < X->n; i++) {
762         X->p[i] &= ~limb_mask;
763     }
764 
765 cleanup:
766     return ret;
767 }
768 
769 /*
770  * Conditionally swap X and Y, without leaking information
771  * about whether the swap was made or not.
772  * Here it is not ok to simply swap the pointers, which would lead to
773  * different memory access patterns when X and Y are used afterwards.
774  */
mbedtls_mpi_safe_cond_swap(mbedtls_mpi * X,mbedtls_mpi * Y,unsigned char swap)775 int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
776                                mbedtls_mpi *Y,
777                                unsigned char swap)
778 {
779     int ret = 0;
780     int s;
781     MPI_VALIDATE_RET(X != NULL);
782     MPI_VALIDATE_RET(Y != NULL);
783 
784     if (X == Y) {
785         return 0;
786     }
787 
788     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
789     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
790 
791     s = X->s;
792     X->s = mbedtls_ct_cond_select_sign(swap, Y->s, X->s);
793     Y->s = mbedtls_ct_cond_select_sign(swap, s, Y->s);
794 
795     mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, swap);
796 
797 cleanup:
798     return ret;
799 }
800 
801 /*
802  * Compare unsigned values in constant time
803  */
mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * B,size_t limbs)804 unsigned mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
805                                 const mbedtls_mpi_uint *B,
806                                 size_t limbs)
807 {
808     unsigned ret, cond, done;
809 
810     /* The value of any of these variables is either 0 or 1 for the rest of
811      * their scope. */
812     ret = cond = done = 0;
813 
814     for (size_t i = limbs; i > 0; i--) {
815         /*
816          * If B[i - 1] < A[i - 1] then A < B is false and the result must
817          * remain 0.
818          *
819          * Again even if we can make a decision, we just mark the result and
820          * the fact that we are done and continue looping.
821          */
822         cond = mbedtls_ct_mpi_uint_lt(B[i - 1], A[i - 1]);
823         done |= cond;
824 
825         /*
826          * If A[i - 1] < B[i - 1] then A < B is true.
827          *
828          * Again even if we can make a decision, we just mark the result and
829          * the fact that we are done and continue looping.
830          */
831         cond = mbedtls_ct_mpi_uint_lt(A[i - 1], B[i - 1]);
832         ret |= cond & (1 - done);
833         done |= cond;
834     }
835 
836     /*
837      * If all the limbs were equal, then the numbers are equal, A < B is false
838      * and leaving the result 0 is correct.
839      */
840 
841     return ret;
842 }
843 
844 /*
845  * Compare signed values in constant time
846  */
mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned * ret)847 int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
848                           const mbedtls_mpi *Y,
849                           unsigned *ret)
850 {
851     size_t i;
852     /* The value of any of these variables is either 0 or 1 at all times. */
853     unsigned cond, done, X_is_negative, Y_is_negative;
854 
855     MPI_VALIDATE_RET(X != NULL);
856     MPI_VALIDATE_RET(Y != NULL);
857     MPI_VALIDATE_RET(ret != NULL);
858 
859     if (X->n != Y->n) {
860         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
861     }
862 
863     /*
864      * Set sign_N to 1 if N >= 0, 0 if N < 0.
865      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
866      */
867     X_is_negative = (X->s & 2) >> 1;
868     Y_is_negative = (Y->s & 2) >> 1;
869 
870     /*
871      * If the signs are different, then the positive operand is the bigger.
872      * That is if X is negative (X_is_negative == 1), then X < Y is true and it
873      * is false if X is positive (X_is_negative == 0).
874      */
875     cond = (X_is_negative ^ Y_is_negative);
876     *ret = cond & X_is_negative;
877 
878     /*
879      * This is a constant-time function. We might have the result, but we still
880      * need to go through the loop. Record if we have the result already.
881      */
882     done = cond;
883 
884     for (i = X->n; i > 0; i--) {
885         /*
886          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
887          * X and Y are negative.
888          *
889          * Again even if we can make a decision, we just mark the result and
890          * the fact that we are done and continue looping.
891          */
892         cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);
893         *ret |= cond & (1 - done) & X_is_negative;
894         done |= cond;
895 
896         /*
897          * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
898          * X and Y are positive.
899          *
900          * Again even if we can make a decision, we just mark the result and
901          * the fact that we are done and continue looping.
902          */
903         cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);
904         *ret |= cond & (1 - done) & (1 - X_is_negative);
905         done |= cond;
906     }
907 
908     return 0;
909 }
910 
911 #endif /* MBEDTLS_BIGNUM_C */
912 
913 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
914 
mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)915 int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
916                                          size_t ilen,
917                                          unsigned char *output,
918                                          size_t output_max_len,
919                                          size_t *olen)
920 {
921     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
922     size_t i, plaintext_max_size;
923 
924     /* The following variables take sensitive values: their value must
925      * not leak into the observable behavior of the function other than
926      * the designated outputs (output, olen, return value). Otherwise
927      * this would open the execution of the function to
928      * side-channel-based variants of the Bleichenbacher padding oracle
929      * attack. Potential side channels include overall timing, memory
930      * access patterns (especially visible to an adversary who has access
931      * to a shared memory cache), and branches (especially visible to
932      * an adversary who has access to a shared code cache or to a shared
933      * branch predictor). */
934     size_t pad_count = 0;
935     unsigned bad = 0;
936     unsigned char pad_done = 0;
937     size_t plaintext_size = 0;
938     unsigned output_too_large;
939 
940     plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
941                                                         : output_max_len;
942 
943     /* Check and get padding length in constant time and constant
944      * memory trace. The first byte must be 0. */
945     bad |= input[0];
946 
947 
948     /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
949      * where PS must be at least 8 nonzero bytes. */
950     bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
951 
952     /* Read the whole buffer. Set pad_done to nonzero if we find
953      * the 0x00 byte and remember the padding length in pad_count. */
954     for (i = 2; i < ilen; i++) {
955         pad_done  |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;
956         pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
957     }
958 
959 
960     /* If pad_done is still zero, there's no data, only unfinished padding. */
961     bad |= mbedtls_ct_uint_if(pad_done, 0, 1);
962 
963     /* There must be at least 8 bytes of padding. */
964     bad |= mbedtls_ct_size_gt(8, pad_count);
965 
966     /* If the padding is valid, set plaintext_size to the number of
967      * remaining bytes after stripping the padding. If the padding
968      * is invalid, avoid leaking this fact through the size of the
969      * output: use the maximum message size that fits in the output
970      * buffer. Do it without branches to avoid leaking the padding
971      * validity through timing. RSA keys are small enough that all the
972      * size_t values involved fit in unsigned int. */
973     plaintext_size = mbedtls_ct_uint_if(
974         bad, (unsigned) plaintext_max_size,
975         (unsigned) (ilen - pad_count - 3));
976 
977     /* Set output_too_large to 0 if the plaintext fits in the output
978      * buffer and to 1 otherwise. */
979     output_too_large = mbedtls_ct_size_gt(plaintext_size,
980                                           plaintext_max_size);
981 
982     /* Set ret without branches to avoid timing attacks. Return:
983      * - INVALID_PADDING if the padding is bad (bad != 0).
984      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
985      *   plaintext does not fit in the output buffer.
986      * - 0 if the padding is correct. */
987     ret = -(int) mbedtls_ct_uint_if(
988         bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,
989         mbedtls_ct_uint_if(output_too_large,
990                            -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
991                            0));
992 
993     /* If the padding is bad or the plaintext is too large, zero the
994      * data that we're about to copy to the output buffer.
995      * We need to copy the same amount of data
996      * from the same buffer whether the padding is good or not to
997      * avoid leaking the padding validity through overall timing or
998      * through memory or cache access patterns. */
999     bad = mbedtls_ct_uint_mask(bad | output_too_large);
1000     for (i = 11; i < ilen; i++) {
1001         input[i] &= ~bad;
1002     }
1003 
1004     /* If the plaintext is too large, truncate it to the buffer size.
1005      * Copy anyway to avoid revealing the length through timing, because
1006      * revealing the length is as bad as revealing the padding validity
1007      * for a Bleichenbacher attack. */
1008     plaintext_size = mbedtls_ct_uint_if(output_too_large,
1009                                         (unsigned) plaintext_max_size,
1010                                         (unsigned) plaintext_size);
1011 
1012     /* Move the plaintext to the leftmost position where it can start in
1013      * the working buffer, i.e. make it start plaintext_max_size from
1014      * the end of the buffer. Do this with a memory access trace that
1015      * does not depend on the plaintext size. After this move, the
1016      * starting location of the plaintext is no longer sensitive
1017      * information. */
1018     mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,
1019                                 plaintext_max_size,
1020                                 plaintext_max_size - plaintext_size);
1021 
1022     /* Finally copy the decrypted plaintext plus trailing zeros into the output
1023      * buffer. If output_max_len is 0, then output may be an invalid pointer
1024      * and the result of memcpy() would be undefined; prevent undefined
1025      * behavior making sure to depend only on output_max_len (the size of the
1026      * user-provided output buffer), which is independent from plaintext
1027      * length, validity of padding, success of the decryption, and other
1028      * secrets. */
1029     if (output_max_len != 0) {
1030         memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
1031     }
1032 
1033     /* Report the amount of data we copied to the output buffer. In case
1034      * of errors (bad padding or output too large), the value of *olen
1035      * when this function returns is not specified. Making it equivalent
1036      * to the good case limits the risks of leaking the padding validity. */
1037     *olen = plaintext_size;
1038 
1039     return ret;
1040 }
1041 
1042 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
1043