1 /**
2  *  Constant-time functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20  /*
21  * The following functions are implemented without using comparison operators, as those
22  * might be translated to branches by some compilers on some platforms.
23  */
24 
25 #include "common.h"
26 #include "constant_time_internal.h"
27 #include "mbedtls/constant_time.h"
28 #include "mbedtls/error.h"
29 #include "mbedtls/platform_util.h"
30 
31 #if defined(MBEDTLS_BIGNUM_C)
32 #include "mbedtls/bignum.h"
33 #include "bignum_core.h"
34 #endif
35 
36 #if defined(MBEDTLS_SSL_TLS_C)
37 #include "ssl_misc.h"
38 #endif
39 
40 #if defined(MBEDTLS_RSA_C)
41 #include "mbedtls/rsa.h"
42 #endif
43 
44 #if defined(MBEDTLS_BASE64_C)
45 #include "constant_time_invasive.h"
46 #endif
47 
48 #include <string.h>
49 
mbedtls_ct_memcmp(const void * a,const void * b,size_t n)50 int mbedtls_ct_memcmp( const void *a,
51                        const void *b,
52                        size_t n )
53 {
54     size_t i;
55     volatile const unsigned char *A = (volatile const unsigned char *) a;
56     volatile const unsigned char *B = (volatile const unsigned char *) b;
57     volatile unsigned char diff = 0;
58 
59     for( i = 0; i < n; i++ )
60     {
61         /* Read volatile data in order before computing diff.
62          * This avoids IAR compiler warning:
63          * 'the order of volatile accesses is undefined ..' */
64         unsigned char x = A[i], y = B[i];
65         diff |= x ^ y;
66     }
67 
68     return( (int)diff );
69 }
70 
mbedtls_ct_uint_mask(unsigned value)71 unsigned mbedtls_ct_uint_mask( unsigned value )
72 {
73     /* MSVC has a warning about unary minus on unsigned, but this is
74      * well-defined and precisely what we want to do here */
75 #if defined(_MSC_VER)
76 #pragma warning( push )
77 #pragma warning( disable : 4146 )
78 #endif
79     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
80 #if defined(_MSC_VER)
81 #pragma warning( pop )
82 #endif
83 }
84 
85 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
86 
mbedtls_ct_size_mask(size_t value)87 size_t mbedtls_ct_size_mask( size_t value )
88 {
89     /* MSVC has a warning about unary minus on unsigned integer types,
90      * but this is well-defined and precisely what we want to do here. */
91 #if defined(_MSC_VER)
92 #pragma warning( push )
93 #pragma warning( disable : 4146 )
94 #endif
95     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
96 #if defined(_MSC_VER)
97 #pragma warning( pop )
98 #endif
99 }
100 
101 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
102 
103 #if defined(MBEDTLS_BIGNUM_C)
104 
mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)105 mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value )
106 {
107     /* MSVC has a warning about unary minus on unsigned, but this is
108      * well-defined and precisely what we want to do here */
109 #if defined(_MSC_VER)
110 #pragma warning( push )
111 #pragma warning( disable : 4146 )
112 #endif
113     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
114 #if defined(_MSC_VER)
115 #pragma warning( pop )
116 #endif
117 }
118 
119 #endif /* MBEDTLS_BIGNUM_C */
120 
121 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
122 
123 /** Constant-flow mask generation for "less than" comparison:
124  * - if \p x < \p y, return all-bits 1, that is (size_t) -1
125  * - otherwise, return all bits 0, that is 0
126  *
127  * This function can be used to write constant-time code by replacing branches
128  * with bit operations using masks.
129  *
130  * \param x     The first value to analyze.
131  * \param y     The second value to analyze.
132  *
133  * \return      All-bits-one if \p x is less than \p y, otherwise zero.
134  */
mbedtls_ct_size_mask_lt(size_t x,size_t y)135 static size_t mbedtls_ct_size_mask_lt( size_t x,
136                                        size_t y )
137 {
138     /* This has the most significant bit set if and only if x < y */
139     const size_t sub = x - y;
140 
141     /* sub1 = (x < y) ? 1 : 0 */
142     const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
143 
144     /* mask = (x < y) ? 0xff... : 0x00... */
145     const size_t mask = mbedtls_ct_size_mask( sub1 );
146 
147     return( mask );
148 }
149 
mbedtls_ct_size_mask_ge(size_t x,size_t y)150 size_t mbedtls_ct_size_mask_ge( size_t x,
151                                 size_t y )
152 {
153     return( ~mbedtls_ct_size_mask_lt( x, y ) );
154 }
155 
156 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
157 
158 #if defined(MBEDTLS_BASE64_C)
159 
160 /* Return 0xff if low <= c <= high, 0 otherwise.
161  *
162  * Constant flow with respect to c.
163  */
164 MBEDTLS_STATIC_TESTABLE
mbedtls_ct_uchar_mask_of_range(unsigned char low,unsigned char high,unsigned char c)165 unsigned char mbedtls_ct_uchar_mask_of_range( unsigned char low,
166                                               unsigned char high,
167                                               unsigned char c )
168 {
169     /* low_mask is: 0 if low <= c, 0x...ff if low > c */
170     unsigned low_mask = ( (unsigned) c - low ) >> 8;
171     /* high_mask is: 0 if c <= high, 0x...ff if c > high */
172     unsigned high_mask = ( (unsigned) high - c ) >> 8;
173     return( ~( low_mask | high_mask ) & 0xff );
174 }
175 
176 #endif /* MBEDTLS_BASE64_C */
177 
mbedtls_ct_size_bool_eq(size_t x,size_t y)178 unsigned mbedtls_ct_size_bool_eq( size_t x,
179                                   size_t y )
180 {
181     /* diff = 0 if x == y, non-zero otherwise */
182     const size_t diff = x ^ y;
183 
184     /* MSVC has a warning about unary minus on unsigned integer types,
185      * but this is well-defined and precisely what we want to do here. */
186 #if defined(_MSC_VER)
187 #pragma warning( push )
188 #pragma warning( disable : 4146 )
189 #endif
190 
191     /* diff_msb's most significant bit is equal to x != y */
192     const size_t diff_msb = ( diff | (size_t) -diff );
193 
194 #if defined(_MSC_VER)
195 #pragma warning( pop )
196 #endif
197 
198     /* diff1 = (x != y) ? 1 : 0 */
199     const unsigned diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
200 
201     return( 1 ^ diff1 );
202 }
203 
204 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
205 
206 /** Constant-flow "greater than" comparison:
207  * return x > y
208  *
209  * This is equivalent to \p x > \p y, but is likely to be compiled
210  * to code using bitwise operation rather than a branch.
211  *
212  * \param x     The first value to analyze.
213  * \param y     The second value to analyze.
214  *
215  * \return      1 if \p x greater than \p y, otherwise 0.
216  */
mbedtls_ct_size_gt(size_t x,size_t y)217 static unsigned mbedtls_ct_size_gt( size_t x,
218                                     size_t y )
219 {
220     /* Return the sign bit (1 for negative) of (y - x). */
221     return( ( y - x ) >> ( sizeof( size_t ) * 8 - 1 ) );
222 }
223 
224 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
225 
226 #if defined(MBEDTLS_BIGNUM_C)
227 
mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,const mbedtls_mpi_uint y)228 unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
229                                  const mbedtls_mpi_uint y )
230 {
231     mbedtls_mpi_uint ret;
232     mbedtls_mpi_uint cond;
233 
234     /*
235      * Check if the most significant bits (MSB) of the operands are different.
236      */
237     cond = ( x ^ y );
238     /*
239      * If the MSB are the same then the difference x-y will be negative (and
240      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
241      */
242     ret = ( x - y ) & ~cond;
243     /*
244      * If the MSB are different, then the operand with the MSB of 1 is the
245      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
246      * the MSB of y is 0.)
247      */
248     ret |= y & cond;
249 
250 
251     ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
252 
253     return (unsigned) ret;
254 }
255 
256 #endif /* MBEDTLS_BIGNUM_C */
257 
mbedtls_ct_uint_if(unsigned condition,unsigned if1,unsigned if0)258 unsigned mbedtls_ct_uint_if( unsigned condition,
259                              unsigned if1,
260                              unsigned if0 )
261 {
262     unsigned mask = mbedtls_ct_uint_mask( condition );
263     return( ( mask & if1 ) | (~mask & if0 ) );
264 }
265 
266 #if defined(MBEDTLS_BIGNUM_C)
267 
268 /** Select between two sign values without branches.
269  *
270  * This is functionally equivalent to `condition ? if1 : if0` but uses only bit
271  * operations in order to avoid branches.
272  *
273  * \note if1 and if0 must be either 1 or -1, otherwise the result
274  *       is undefined.
275  *
276  * \param condition     Condition to test; must be either 0 or 1.
277  * \param if1           The first sign; must be either +1 or -1.
278  * \param if0           The second sign; must be either +1 or -1.
279  *
280  * \return  \c if1 if \p condition is nonzero, otherwise \c if0.
281  * */
mbedtls_ct_cond_select_sign(unsigned char condition,int if1,int if0)282 static int mbedtls_ct_cond_select_sign( unsigned char condition,
283                                         int if1,
284                                         int if0 )
285 {
286     /* In order to avoid questions about what we can reasonably assume about
287      * the representations of signed integers, move everything to unsigned
288      * by taking advantage of the fact that if1 and if0 are either +1 or -1. */
289     unsigned uif1 = if1 + 1;
290     unsigned uif0 = if0 + 1;
291 
292     /* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
293     const unsigned mask = condition << 1;
294 
295     /* select uif1 or uif0 */
296     unsigned ur = ( uif0 & ~mask ) | ( uif1 & mask );
297 
298     /* ur is now 0 or 2, convert back to -1 or +1 */
299     return( (int) ur - 1 );
300 }
301 
mbedtls_ct_mpi_uint_cond_assign(size_t n,mbedtls_mpi_uint * dest,const mbedtls_mpi_uint * src,unsigned char condition)302 void mbedtls_ct_mpi_uint_cond_assign( size_t n,
303                                       mbedtls_mpi_uint *dest,
304                                       const mbedtls_mpi_uint *src,
305                                       unsigned char condition )
306 {
307     size_t i;
308 
309     /* MSVC has a warning about unary minus on unsigned integer types,
310      * but this is well-defined and precisely what we want to do here. */
311 #if defined(_MSC_VER)
312 #pragma warning( push )
313 #pragma warning( disable : 4146 )
314 #endif
315 
316     /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
317     const mbedtls_mpi_uint mask = -condition;
318 
319 #if defined(_MSC_VER)
320 #pragma warning( pop )
321 #endif
322 
323     for( i = 0; i < n; i++ )
324         dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
325 }
326 
327 #endif /* MBEDTLS_BIGNUM_C */
328 
329 #if defined(MBEDTLS_BASE64_C)
330 
mbedtls_ct_base64_enc_char(unsigned char value)331 unsigned char mbedtls_ct_base64_enc_char( unsigned char value )
332 {
333     unsigned char digit = 0;
334     /* For each range of values, if value is in that range, mask digit with
335      * the corresponding value. Since value can only be in a single range,
336      * only at most one masking will change digit. */
337     digit |= mbedtls_ct_uchar_mask_of_range(  0, 25, value ) & ( 'A' + value );
338     digit |= mbedtls_ct_uchar_mask_of_range( 26, 51, value ) & ( 'a' + value - 26 );
339     digit |= mbedtls_ct_uchar_mask_of_range( 52, 61, value ) & ( '0' + value - 52 );
340     digit |= mbedtls_ct_uchar_mask_of_range( 62, 62, value ) & '+';
341     digit |= mbedtls_ct_uchar_mask_of_range( 63, 63, value ) & '/';
342     return( digit );
343 }
344 
mbedtls_ct_base64_dec_value(unsigned char c)345 signed char mbedtls_ct_base64_dec_value( unsigned char c )
346 {
347     unsigned char val = 0;
348     /* For each range of digits, if c is in that range, mask val with
349      * the corresponding value. Since c can only be in a single range,
350      * only at most one masking will change val. Set val to one plus
351      * the desired value so that it stays 0 if c is in none of the ranges. */
352     val |= mbedtls_ct_uchar_mask_of_range( 'A', 'Z', c ) & ( c - 'A' +  0 + 1 );
353     val |= mbedtls_ct_uchar_mask_of_range( 'a', 'z', c ) & ( c - 'a' + 26 + 1 );
354     val |= mbedtls_ct_uchar_mask_of_range( '0', '9', c ) & ( c - '0' + 52 + 1 );
355     val |= mbedtls_ct_uchar_mask_of_range( '+', '+', c ) & ( c - '+' + 62 + 1 );
356     val |= mbedtls_ct_uchar_mask_of_range( '/', '/', c ) & ( c - '/' + 63 + 1 );
357     /* At this point, val is 0 if c is an invalid digit and v+1 if c is
358      * a digit with the value v. */
359     return( val - 1 );
360 }
361 
362 #endif /* MBEDTLS_BASE64_C */
363 
364 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
365 
366 /** Shift some data towards the left inside a buffer.
367  *
368  * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
369  * equivalent to
370  * ```
371  * memmove(start, start + offset, total - offset);
372  * memset(start + offset, 0, total - offset);
373  * ```
374  * but it strives to use a memory access pattern (and thus total timing)
375  * that does not depend on \p offset. This timing independence comes at
376  * the expense of performance.
377  *
378  * \param start     Pointer to the start of the buffer.
379  * \param total     Total size of the buffer.
380  * \param offset    Offset from which to copy \p total - \p offset bytes.
381  */
mbedtls_ct_mem_move_to_left(void * start,size_t total,size_t offset)382 static void mbedtls_ct_mem_move_to_left( void *start,
383                                          size_t total,
384                                          size_t offset )
385 {
386     volatile unsigned char *buf = start;
387     size_t i, n;
388     if( total == 0 )
389         return;
390     for( i = 0; i < total; i++ )
391     {
392         unsigned no_op = mbedtls_ct_size_gt( total - offset, i );
393         /* The first `total - offset` passes are a no-op. The last
394          * `offset` passes shift the data one byte to the left and
395          * zero out the last byte. */
396         for( n = 0; n < total - 1; n++ )
397         {
398             unsigned char current = buf[n];
399             unsigned char next = buf[n+1];
400             buf[n] = mbedtls_ct_uint_if( no_op, current, next );
401         }
402         buf[total-1] = mbedtls_ct_uint_if( no_op, buf[total-1], 0 );
403     }
404 }
405 
406 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
407 
408 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
409 
mbedtls_ct_memcpy_if_eq(unsigned char * dest,const unsigned char * src,size_t len,size_t c1,size_t c2)410 void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
411                               const unsigned char *src,
412                               size_t len,
413                               size_t c1,
414                               size_t c2 )
415 {
416     /* mask = c1 == c2 ? 0xff : 0x00 */
417     const size_t equal = mbedtls_ct_size_bool_eq( c1, c2 );
418     const unsigned char mask = (unsigned char) mbedtls_ct_size_mask( equal );
419 
420     /* dest[i] = c1 == c2 ? src[i] : dest[i] */
421     for( size_t i = 0; i < len; i++ )
422         dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
423 }
424 
mbedtls_ct_memcpy_offset(unsigned char * dest,const unsigned char * src,size_t offset,size_t offset_min,size_t offset_max,size_t len)425 void mbedtls_ct_memcpy_offset( unsigned char *dest,
426                                const unsigned char *src,
427                                size_t offset,
428                                size_t offset_min,
429                                size_t offset_max,
430                                size_t len )
431 {
432     size_t offsetval;
433 
434     for( offsetval = offset_min; offsetval <= offset_max; offsetval++ )
435     {
436         mbedtls_ct_memcpy_if_eq( dest, src + offsetval, len,
437                                  offsetval, offset );
438     }
439 }
440 
441 #if defined(MBEDTLS_USE_PSA_CRYPTO)
442 
443 #if defined(PSA_WANT_ALG_SHA_384)
444 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH( PSA_ALG_SHA_384 )
445 #elif defined(PSA_WANT_ALG_SHA_256)
446 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH( PSA_ALG_SHA_256 )
447 #else /* See check_config.h */
448 #define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH( PSA_ALG_SHA_1 )
449 #endif
450 
mbedtls_ct_hmac(mbedtls_svc_key_id_t key,psa_algorithm_t mac_alg,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)451 int mbedtls_ct_hmac( mbedtls_svc_key_id_t key,
452                      psa_algorithm_t mac_alg,
453                      const unsigned char *add_data,
454                      size_t add_data_len,
455                      const unsigned char *data,
456                      size_t data_len_secret,
457                      size_t min_data_len,
458                      size_t max_data_len,
459                      unsigned char *output )
460 {
461     /*
462      * This function breaks the HMAC abstraction and uses psa_hash_clone()
463      * extension in order to get constant-flow behaviour.
464      *
465      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
466      * concatenation, and okey/ikey are the XOR of the key with some fixed bit
467      * patterns (see RFC 2104, sec. 2).
468      *
469      * We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
470      * hashing up to minlen, then cloning the context, and for each byte up
471      * to maxlen finishing up the hash computation, keeping only the
472      * correct result.
473      *
474      * Then we only need to compute HASH(okey + inner_hash) and we're done.
475      */
476     psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH( mac_alg );
477     const size_t block_size = PSA_HASH_BLOCK_LENGTH( hash_alg );
478     unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
479     const size_t hash_size = PSA_HASH_LENGTH( hash_alg );
480     psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
481     size_t hash_length;
482 
483     unsigned char aux_out[PSA_HASH_MAX_SIZE];
484     psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
485     size_t offset;
486     psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
487 
488     size_t mac_key_length;
489     size_t i;
490 
491 #define PSA_CHK( func_call )        \
492     do {                            \
493         status = (func_call);       \
494         if( status != PSA_SUCCESS ) \
495             goto cleanup;           \
496     } while( 0 )
497 
498     /* Export MAC key
499      * We assume key length is always exactly the output size
500      * which is never more than the block size, thus we use block_size
501      * as the key buffer size.
502      */
503     PSA_CHK( psa_export_key( key, key_buf, block_size, &mac_key_length ) );
504 
505     /* Calculate ikey */
506     for( i = 0; i < mac_key_length; i++ )
507         key_buf[i] = (unsigned char)( key_buf[i] ^ 0x36 );
508     for(; i < block_size; ++i )
509         key_buf[i] = 0x36;
510 
511     PSA_CHK( psa_hash_setup( &operation, hash_alg ) );
512 
513     /* Now compute inner_hash = HASH(ikey + msg) */
514     PSA_CHK( psa_hash_update( &operation, key_buf, block_size ) );
515     PSA_CHK( psa_hash_update( &operation, add_data, add_data_len ) );
516     PSA_CHK( psa_hash_update( &operation, data, min_data_len ) );
517 
518     /* Fill the hash buffer in advance with something that is
519      * not a valid hash (barring an attack on the hash and
520      * deliberately-crafted input), in case the caller doesn't
521      * check the return status properly. */
522     memset( output, '!', hash_size );
523 
524     /* For each possible length, compute the hash up to that point */
525     for( offset = min_data_len; offset <= max_data_len; offset++ )
526     {
527         PSA_CHK( psa_hash_clone( &operation, &aux_operation ) );
528         PSA_CHK( psa_hash_finish( &aux_operation, aux_out,
529                                   PSA_HASH_MAX_SIZE, &hash_length ) );
530         /* Keep only the correct inner_hash in the output buffer */
531         mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
532                                  offset, data_len_secret );
533 
534         if( offset < max_data_len )
535             PSA_CHK( psa_hash_update( &operation, data + offset, 1 ) );
536     }
537 
538     /* Abort current operation to prepare for final operation */
539     PSA_CHK( psa_hash_abort( &operation ) );
540 
541     /* Calculate okey */
542     for( i = 0; i < mac_key_length; i++ )
543         key_buf[i] = (unsigned char)( ( key_buf[i] ^ 0x36 ) ^ 0x5C );
544     for(; i < block_size; ++i )
545         key_buf[i] = 0x5C;
546 
547     /* Now compute HASH(okey + inner_hash) */
548     PSA_CHK( psa_hash_setup( &operation, hash_alg ) );
549     PSA_CHK( psa_hash_update( &operation, key_buf, block_size ) );
550     PSA_CHK( psa_hash_update( &operation, output, hash_size ) );
551     PSA_CHK( psa_hash_finish( &operation, output, hash_size, &hash_length ) );
552 
553 #undef PSA_CHK
554 
555 cleanup:
556     mbedtls_platform_zeroize( key_buf, MAX_HASH_BLOCK_LENGTH );
557     mbedtls_platform_zeroize( aux_out, PSA_HASH_MAX_SIZE );
558 
559     psa_hash_abort( &operation );
560     psa_hash_abort( &aux_operation );
561     return( psa_ssl_status_to_mbedtls( status ) );
562 }
563 
564 #undef MAX_HASH_BLOCK_LENGTH
565 
566 #else
mbedtls_ct_hmac(mbedtls_md_context_t * ctx,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)567 int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
568                      const unsigned char *add_data,
569                      size_t add_data_len,
570                      const unsigned char *data,
571                      size_t data_len_secret,
572                      size_t min_data_len,
573                      size_t max_data_len,
574                      unsigned char *output )
575 {
576     /*
577      * This function breaks the HMAC abstraction and uses the md_clone()
578      * extension to the MD API in order to get constant-flow behaviour.
579      *
580      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
581      * concatenation, and okey/ikey are the XOR of the key with some fixed bit
582      * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
583      *
584      * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
585      * minlen, then cloning the context, and for each byte up to maxlen
586      * finishing up the hash computation, keeping only the correct result.
587      *
588      * Then we only need to compute HASH(okey + inner_hash) and we're done.
589      */
590     const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
591     /* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
592      * all of which have the same block size except SHA-384. */
593     const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
594     const unsigned char * const ikey = ctx->hmac_ctx;
595     const unsigned char * const okey = ikey + block_size;
596     const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
597 
598     unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
599     mbedtls_md_context_t aux;
600     size_t offset;
601     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
602 
603     mbedtls_md_init( &aux );
604 
605 #define MD_CHK( func_call ) \
606     do {                    \
607         ret = (func_call);  \
608         if( ret != 0 )      \
609             goto cleanup;   \
610     } while( 0 )
611 
612     MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
613 
614     /* After hmac_start() of hmac_reset(), ikey has already been hashed,
615      * so we can start directly with the message */
616     MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
617     MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
618 
619     /* Fill the hash buffer in advance with something that is
620      * not a valid hash (barring an attack on the hash and
621      * deliberately-crafted input), in case the caller doesn't
622      * check the return status properly. */
623     memset( output, '!', hash_size );
624 
625     /* For each possible length, compute the hash up to that point */
626     for( offset = min_data_len; offset <= max_data_len; offset++ )
627     {
628         MD_CHK( mbedtls_md_clone( &aux, ctx ) );
629         MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
630         /* Keep only the correct inner_hash in the output buffer */
631         mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
632                                  offset, data_len_secret );
633 
634         if( offset < max_data_len )
635             MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
636     }
637 
638     /* The context needs to finish() before it starts() again */
639     MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
640 
641     /* Now compute HASH(okey + inner_hash) */
642     MD_CHK( mbedtls_md_starts( ctx ) );
643     MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
644     MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
645     MD_CHK( mbedtls_md_finish( ctx, output ) );
646 
647     /* Done, get ready for next time */
648     MD_CHK( mbedtls_md_hmac_reset( ctx ) );
649 
650 #undef MD_CHK
651 
652 cleanup:
653     mbedtls_md_free( &aux );
654     return( ret );
655 }
656 #endif /* MBEDTLS_USE_PSA_CRYPTO */
657 
658 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
659 
660 #if defined(MBEDTLS_BIGNUM_C)
661 
662 #define MPI_VALIDATE_RET( cond )                                       \
663     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
664 
665 /*
666  * Conditionally assign X = Y, without leaking information
667  * about whether the assignment was made or not.
668  * (Leaking information about the respective sizes of X and Y is ok however.)
669  */
670 #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)
671 /*
672  * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
673  * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
674  */
675 __declspec(noinline)
676 #endif
mbedtls_mpi_safe_cond_assign(mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned char assign)677 int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
678                                   const mbedtls_mpi *Y,
679                                   unsigned char assign )
680 {
681     int ret = 0;
682     MPI_VALIDATE_RET( X != NULL );
683     MPI_VALIDATE_RET( Y != NULL );
684 
685     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
686     mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask( assign );
687 
688     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
689 
690     X->s = mbedtls_ct_cond_select_sign( assign, Y->s, X->s );
691 
692     mbedtls_mpi_core_cond_assign( X->p, Y->p, Y->n, assign );
693 
694     for( size_t i = Y->n; i < X->n; i++ )
695         X->p[i] &= ~limb_mask;
696 
697 cleanup:
698     return( ret );
699 }
700 
701 /*
702  * Conditionally swap X and Y, without leaking information
703  * about whether the swap was made or not.
704  * Here it is not ok to simply swap the pointers, which would lead to
705  * different memory access patterns when X and Y are used afterwards.
706  */
mbedtls_mpi_safe_cond_swap(mbedtls_mpi * X,mbedtls_mpi * Y,unsigned char swap)707 int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
708                                 mbedtls_mpi *Y,
709                                 unsigned char swap )
710 {
711     int ret = 0;
712     int s;
713     MPI_VALIDATE_RET( X != NULL );
714     MPI_VALIDATE_RET( Y != NULL );
715 
716     if( X == Y )
717         return( 0 );
718 
719     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
720     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
721 
722     s = X->s;
723     X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
724     Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
725 
726     mbedtls_mpi_core_cond_swap( X->p, Y->p, X->n, swap );
727 
728 cleanup:
729     return( ret );
730 }
731 
732 /*
733  * Compare unsigned values in constant time
734  */
mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint * A,const mbedtls_mpi_uint * B,size_t limbs)735 unsigned mbedtls_mpi_core_lt_ct( const mbedtls_mpi_uint *A,
736                                  const mbedtls_mpi_uint *B,
737                                  size_t limbs )
738 {
739     unsigned ret, cond, done;
740 
741     /* The value of any of these variables is either 0 or 1 for the rest of
742      * their scope. */
743     ret = cond = done = 0;
744 
745     for( size_t i = limbs; i > 0; i-- )
746     {
747         /*
748          * If B[i - 1] < A[i - 1] then A < B is false and the result must
749          * remain 0.
750          *
751          * Again even if we can make a decision, we just mark the result and
752          * the fact that we are done and continue looping.
753          */
754         cond = mbedtls_ct_mpi_uint_lt( B[i - 1], A[i - 1] );
755         done |= cond;
756 
757         /*
758          * If A[i - 1] < B[i - 1] then A < B is true.
759          *
760          * Again even if we can make a decision, we just mark the result and
761          * the fact that we are done and continue looping.
762          */
763         cond = mbedtls_ct_mpi_uint_lt( A[i - 1], B[i - 1] );
764         ret |= cond & ( 1 - done );
765         done |= cond;
766     }
767 
768     /*
769      * If all the limbs were equal, then the numbers are equal, A < B is false
770      * and leaving the result 0 is correct.
771      */
772 
773     return( ret );
774 }
775 
776 /*
777  * Compare signed values in constant time
778  */
mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned * ret)779 int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
780                            const mbedtls_mpi *Y,
781                            unsigned *ret )
782 {
783     size_t i;
784     /* The value of any of these variables is either 0 or 1 at all times. */
785     unsigned cond, done, X_is_negative, Y_is_negative;
786 
787     MPI_VALIDATE_RET( X != NULL );
788     MPI_VALIDATE_RET( Y != NULL );
789     MPI_VALIDATE_RET( ret != NULL );
790 
791     if( X->n != Y->n )
792         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
793 
794     /*
795      * Set sign_N to 1 if N >= 0, 0 if N < 0.
796      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
797      */
798     X_is_negative = ( X->s & 2 ) >> 1;
799     Y_is_negative = ( Y->s & 2 ) >> 1;
800 
801     /*
802      * If the signs are different, then the positive operand is the bigger.
803      * That is if X is negative (X_is_negative == 1), then X < Y is true and it
804      * is false if X is positive (X_is_negative == 0).
805      */
806     cond = ( X_is_negative ^ Y_is_negative );
807     *ret = cond & X_is_negative;
808 
809     /*
810      * This is a constant-time function. We might have the result, but we still
811      * need to go through the loop. Record if we have the result already.
812      */
813     done = cond;
814 
815     for( i = X->n; i > 0; i-- )
816     {
817         /*
818          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
819          * X and Y are negative.
820          *
821          * Again even if we can make a decision, we just mark the result and
822          * the fact that we are done and continue looping.
823          */
824         cond = mbedtls_ct_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
825         *ret |= cond & ( 1 - done ) & X_is_negative;
826         done |= cond;
827 
828         /*
829          * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
830          * X and Y are positive.
831          *
832          * Again even if we can make a decision, we just mark the result and
833          * the fact that we are done and continue looping.
834          */
835         cond = mbedtls_ct_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
836         *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
837         done |= cond;
838     }
839 
840     return( 0 );
841 }
842 
843 #endif /* MBEDTLS_BIGNUM_C */
844 
845 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
846 
mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)847 int mbedtls_ct_rsaes_pkcs1_v15_unpadding( unsigned char *input,
848                                           size_t ilen,
849                                           unsigned char *output,
850                                           size_t output_max_len,
851                                           size_t *olen )
852 {
853     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
854     size_t i, plaintext_max_size;
855 
856     /* The following variables take sensitive values: their value must
857      * not leak into the observable behavior of the function other than
858      * the designated outputs (output, olen, return value). Otherwise
859      * this would open the execution of the function to
860      * side-channel-based variants of the Bleichenbacher padding oracle
861      * attack. Potential side channels include overall timing, memory
862      * access patterns (especially visible to an adversary who has access
863      * to a shared memory cache), and branches (especially visible to
864      * an adversary who has access to a shared code cache or to a shared
865      * branch predictor). */
866     size_t pad_count = 0;
867     unsigned bad = 0;
868     unsigned char pad_done = 0;
869     size_t plaintext_size = 0;
870     unsigned output_too_large;
871 
872     plaintext_max_size = ( output_max_len > ilen - 11 ) ? ilen - 11
873                                                         : output_max_len;
874 
875     /* Check and get padding length in constant time and constant
876      * memory trace. The first byte must be 0. */
877     bad |= input[0];
878 
879 
880     /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
881      * where PS must be at least 8 nonzero bytes. */
882     bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
883 
884     /* Read the whole buffer. Set pad_done to nonzero if we find
885      * the 0x00 byte and remember the padding length in pad_count. */
886     for( i = 2; i < ilen; i++ )
887     {
888         pad_done  |= ((input[i] | (unsigned char)-input[i]) >> 7) ^ 1;
889         pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
890     }
891 
892 
893     /* If pad_done is still zero, there's no data, only unfinished padding. */
894     bad |= mbedtls_ct_uint_if( pad_done, 0, 1 );
895 
896     /* There must be at least 8 bytes of padding. */
897     bad |= mbedtls_ct_size_gt( 8, pad_count );
898 
899     /* If the padding is valid, set plaintext_size to the number of
900      * remaining bytes after stripping the padding. If the padding
901      * is invalid, avoid leaking this fact through the size of the
902      * output: use the maximum message size that fits in the output
903      * buffer. Do it without branches to avoid leaking the padding
904      * validity through timing. RSA keys are small enough that all the
905      * size_t values involved fit in unsigned int. */
906     plaintext_size = mbedtls_ct_uint_if(
907                         bad, (unsigned) plaintext_max_size,
908                         (unsigned) ( ilen - pad_count - 3 ) );
909 
910     /* Set output_too_large to 0 if the plaintext fits in the output
911      * buffer and to 1 otherwise. */
912     output_too_large = mbedtls_ct_size_gt( plaintext_size,
913                                            plaintext_max_size );
914 
915     /* Set ret without branches to avoid timing attacks. Return:
916      * - INVALID_PADDING if the padding is bad (bad != 0).
917      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
918      *   plaintext does not fit in the output buffer.
919      * - 0 if the padding is correct. */
920     ret = - (int) mbedtls_ct_uint_if(
921                     bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
922                     mbedtls_ct_uint_if( output_too_large,
923                                         - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
924                                         0 ) );
925 
926     /* If the padding is bad or the plaintext is too large, zero the
927      * data that we're about to copy to the output buffer.
928      * We need to copy the same amount of data
929      * from the same buffer whether the padding is good or not to
930      * avoid leaking the padding validity through overall timing or
931      * through memory or cache access patterns. */
932     bad = mbedtls_ct_uint_mask( bad | output_too_large );
933     for( i = 11; i < ilen; i++ )
934         input[i] &= ~bad;
935 
936     /* If the plaintext is too large, truncate it to the buffer size.
937      * Copy anyway to avoid revealing the length through timing, because
938      * revealing the length is as bad as revealing the padding validity
939      * for a Bleichenbacher attack. */
940     plaintext_size = mbedtls_ct_uint_if( output_too_large,
941                                          (unsigned) plaintext_max_size,
942                                          (unsigned) plaintext_size );
943 
944     /* Move the plaintext to the leftmost position where it can start in
945      * the working buffer, i.e. make it start plaintext_max_size from
946      * the end of the buffer. Do this with a memory access trace that
947      * does not depend on the plaintext size. After this move, the
948      * starting location of the plaintext is no longer sensitive
949      * information. */
950     mbedtls_ct_mem_move_to_left( input + ilen - plaintext_max_size,
951                                  plaintext_max_size,
952                                  plaintext_max_size - plaintext_size );
953 
954     /* Finally copy the decrypted plaintext plus trailing zeros into the output
955      * buffer. If output_max_len is 0, then output may be an invalid pointer
956      * and the result of memcpy() would be undefined; prevent undefined
957      * behavior making sure to depend only on output_max_len (the size of the
958      * user-provided output buffer), which is independent from plaintext
959      * length, validity of padding, success of the decryption, and other
960      * secrets. */
961     if( output_max_len != 0 )
962         memcpy( output, input + ilen - plaintext_max_size, plaintext_max_size );
963 
964     /* Report the amount of data we copied to the output buffer. In case
965      * of errors (bad padding or output too large), the value of *olen
966      * when this function returns is not specified. Making it equivalent
967      * to the good case limits the risks of leaking the padding validity. */
968     *olen = plaintext_size;
969 
970     return( ret );
971 }
972 
973 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
974