1 /*
2  *  AES-NI support functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  */
7 
8 /*
9  * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10  * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11  */
12 
13 #include "common.h"
14 
15 #if defined(MBEDTLS_AESNI_C)
16 
17 #include "aesni.h"
18 
19 #include <string.h>
20 
21 #if defined(MBEDTLS_AESNI_HAVE_CODE)
22 
23 #if MBEDTLS_AESNI_HAVE_CODE == 2
24 #if defined(__GNUC__)
25 #include <cpuid.h>
26 #elif defined(_MSC_VER)
27 #include <intrin.h>
28 #else
29 #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
30 #endif
31 #include <immintrin.h>
32 #endif
33 
34 #if defined(MBEDTLS_ARCH_IS_X86)
35 #if defined(MBEDTLS_COMPILER_IS_GCC)
36 #pragma GCC push_options
37 #pragma GCC target ("pclmul,sse2,aes")
38 #define MBEDTLS_POP_TARGET_PRAGMA
39 #elif defined(__clang__) && (__clang_major__ >= 5)
40 #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
41 #define MBEDTLS_POP_TARGET_PRAGMA
42 #endif
43 #endif
44 
45 #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
46 /*
47  * AES-NI support detection routine
48  */
mbedtls_aesni_has_support(unsigned int what)49 int mbedtls_aesni_has_support(unsigned int what)
50 {
51     static int done = 0;
52     static unsigned int c = 0;
53 
54     if (!done) {
55 #if MBEDTLS_AESNI_HAVE_CODE == 2
56         static int info[4] = { 0, 0, 0, 0 };
57 #if defined(_MSC_VER)
58         __cpuid(info, 1);
59 #else
60         __cpuid(1, info[0], info[1], info[2], info[3]);
61 #endif
62         c = info[2];
63 #else /* AESNI using asm */
64         asm ("movl  $1, %%eax   \n\t"
65              "cpuid             \n\t"
66              : "=c" (c)
67              :
68              : "eax", "ebx", "edx");
69 #endif /* MBEDTLS_AESNI_HAVE_CODE */
70         done = 1;
71     }
72 
73     return (c & what) != 0;
74 }
75 #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
76 
77 #if MBEDTLS_AESNI_HAVE_CODE == 2
78 
79 /*
80  * AES-NI AES-ECB block en(de)cryption
81  */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])82 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
83                             int mode,
84                             const unsigned char input[16],
85                             unsigned char output[16])
86 {
87     const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
88     unsigned nr = ctx->nr; // Number of remaining rounds
89 
90     // Load round key 0
91     __m128i state;
92     memcpy(&state, input, 16);
93     state = _mm_xor_si128(state, rk[0]);  // state ^= *rk;
94     ++rk;
95     --nr;
96 
97 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
98     if (mode == MBEDTLS_AES_DECRYPT) {
99         while (nr != 0) {
100             state = _mm_aesdec_si128(state, *rk);
101             ++rk;
102             --nr;
103         }
104         state = _mm_aesdeclast_si128(state, *rk);
105     } else
106 #else
107     (void) mode;
108 #endif
109     {
110         while (nr != 0) {
111             state = _mm_aesenc_si128(state, *rk);
112             ++rk;
113             --nr;
114         }
115         state = _mm_aesenclast_si128(state, *rk);
116     }
117 
118     memcpy(output, &state, 16);
119     return 0;
120 }
121 
122 /*
123  * GCM multiplication: c = a times b in GF(2^128)
124  * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
125  */
126 
gcm_clmul(const __m128i aa,const __m128i bb,__m128i * cc,__m128i * dd)127 static void gcm_clmul(const __m128i aa, const __m128i bb,
128                       __m128i *cc, __m128i *dd)
129 {
130     /*
131      * Caryless multiplication dd:cc = aa * bb
132      * using [CLMUL-WP] algorithm 1 (p. 12).
133      */
134     *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
135     *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
136     __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
137     __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
138     ff = _mm_xor_si128(ff, ee);                      // e1+f1:e0+f0
139     ee = ff;                                         // e1+f1:e0+f0
140     ff = _mm_srli_si128(ff, 8);                      // 0:e1+f1
141     ee = _mm_slli_si128(ee, 8);                      // e0+f0:0
142     *dd = _mm_xor_si128(*dd, ff);                    // d1:d0+e1+f1
143     *cc = _mm_xor_si128(*cc, ee);                    // c1+e0+f0:c0
144 }
145 
gcm_shift(__m128i * cc,__m128i * dd)146 static void gcm_shift(__m128i *cc, __m128i *dd)
147 {
148     /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
149      * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
150     //                                        // *cc = r1:r0
151     //                                        // *dd = r3:r2
152     __m128i cc_lo = _mm_slli_epi64(*cc, 1);   // r1<<1:r0<<1
153     __m128i dd_lo = _mm_slli_epi64(*dd, 1);   // r3<<1:r2<<1
154     __m128i cc_hi = _mm_srli_epi64(*cc, 63);  // r1>>63:r0>>63
155     __m128i dd_hi = _mm_srli_epi64(*dd, 63);  // r3>>63:r2>>63
156     __m128i xmm5 = _mm_srli_si128(cc_hi, 8);  // 0:r1>>63
157     cc_hi = _mm_slli_si128(cc_hi, 8);         // r0>>63:0
158     dd_hi = _mm_slli_si128(dd_hi, 8);         // 0:r1>>63
159 
160     *cc = _mm_or_si128(cc_lo, cc_hi);         // r1<<1|r0>>63:r0<<1
161     *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
162 }
163 
gcm_reduce(__m128i xx)164 static __m128i gcm_reduce(__m128i xx)
165 {
166     //                                            // xx = x1:x0
167     /* [CLMUL-WP] Algorithm 5 Step 2 */
168     __m128i aa = _mm_slli_epi64(xx, 63);          // x1<<63:x0<<63 = stuff:a
169     __m128i bb = _mm_slli_epi64(xx, 62);          // x1<<62:x0<<62 = stuff:b
170     __m128i cc = _mm_slli_epi64(xx, 57);          // x1<<57:x0<<57 = stuff:c
171     __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
172     return _mm_xor_si128(dd, xx);                 // x1+a+b+c:x0 = d:x0
173 }
174 
gcm_mix(__m128i dx)175 static __m128i gcm_mix(__m128i dx)
176 {
177     /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
178     __m128i ee = _mm_srli_epi64(dx, 1);           // e1:x0>>1 = e1:e0'
179     __m128i ff = _mm_srli_epi64(dx, 2);           // f1:x0>>2 = f1:f0'
180     __m128i gg = _mm_srli_epi64(dx, 7);           // g1:x0>>7 = g1:g0'
181 
182     // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
183     // bits carried from d. Now get those bits back in.
184     __m128i eh = _mm_slli_epi64(dx, 63);          // d<<63:stuff
185     __m128i fh = _mm_slli_epi64(dx, 62);          // d<<62:stuff
186     __m128i gh = _mm_slli_epi64(dx, 57);          // d<<57:stuff
187     __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
188 
189     return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
190 }
191 
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])192 void mbedtls_aesni_gcm_mult(unsigned char c[16],
193                             const unsigned char a[16],
194                             const unsigned char b[16])
195 {
196     __m128i aa = { 0 }, bb = { 0 }, cc, dd;
197 
198     /* The inputs are in big-endian order, so byte-reverse them */
199     for (size_t i = 0; i < 16; i++) {
200         ((uint8_t *) &aa)[i] = a[15 - i];
201         ((uint8_t *) &bb)[i] = b[15 - i];
202     }
203 
204     gcm_clmul(aa, bb, &cc, &dd);
205     gcm_shift(&cc, &dd);
206     /*
207      * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
208      * using [CLMUL-WP] algorithm 5 (p. 18).
209      * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
210      */
211     __m128i dx = gcm_reduce(cc);
212     __m128i xh = gcm_mix(dx);
213     cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
214 
215     /* Now byte-reverse the outputs */
216     for (size_t i = 0; i < 16; i++) {
217         c[i] = ((uint8_t *) &cc)[15 - i];
218     }
219 
220     return;
221 }
222 
223 /*
224  * Compute decryption round keys from encryption round keys
225  */
226 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)227 void mbedtls_aesni_inverse_key(unsigned char *invkey,
228                                const unsigned char *fwdkey, int nr)
229 {
230     __m128i *ik = (__m128i *) invkey;
231     const __m128i *fk = (const __m128i *) fwdkey + nr;
232 
233     *ik = *fk;
234     for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
235         *ik = _mm_aesimc_si128(*fk);
236     }
237     *ik = *fk;
238 }
239 #endif
240 
241 /*
242  * Key expansion, 128-bit case
243  */
aesni_set_rk_128(__m128i state,__m128i xword)244 static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
245 {
246     /*
247      * Finish generating the next round key.
248      *
249      * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
250      * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
251      *
252      * On exit, xword is r7:r6:r5:r4
253      * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
254      * and this is returned, to be written to the round key buffer.
255      */
256     xword = _mm_shuffle_epi32(xword, 0xff);   // X:X:X:X
257     xword = _mm_xor_si128(xword, state);      // X+r3:X+r2:X+r1:r4
258     state = _mm_slli_si128(state, 4);         // r2:r1:r0:0
259     xword = _mm_xor_si128(xword, state);      // X+r3+r2:X+r2+r1:r5:r4
260     state = _mm_slli_si128(state, 4);         // r1:r0:0:0
261     xword = _mm_xor_si128(xword, state);      // X+r3+r2+r1:r6:r5:r4
262     state = _mm_slli_si128(state, 4);         // r0:0:0:0
263     state = _mm_xor_si128(xword, state);      // r7:r6:r5:r4
264     return state;
265 }
266 
aesni_setkey_enc_128(unsigned char * rk_bytes,const unsigned char * key)267 static void aesni_setkey_enc_128(unsigned char *rk_bytes,
268                                  const unsigned char *key)
269 {
270     __m128i *rk = (__m128i *) rk_bytes;
271 
272     memcpy(&rk[0], key, 16);
273     rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
274     rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
275     rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
276     rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
277     rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
278     rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
279     rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
280     rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
281     rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
282     rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
283 }
284 
285 /*
286  * Key expansion, 192-bit case
287  */
288 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_set_rk_192(__m128i * state0,__m128i * state1,__m128i xword,unsigned char * rk)289 static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
290                              unsigned char *rk)
291 {
292     /*
293      * Finish generating the next 6 quarter-keys.
294      *
295      * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
296      * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
297      * (obtained with AESKEYGENASSIST).
298      *
299      * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
300      * and those are written to the round key buffer.
301      */
302     xword = _mm_shuffle_epi32(xword, 0x55);   // X:X:X:X
303     xword = _mm_xor_si128(xword, *state0);    // X+r3:X+r2:X+r1:X+r0
304     *state0 = _mm_slli_si128(*state0, 4);     // r2:r1:r0:0
305     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
306     *state0 = _mm_slli_si128(*state0, 4);     // r1:r0:0:0
307     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
308     *state0 = _mm_slli_si128(*state0, 4);     // r0:0:0:0
309     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
310     *state0 = xword;                          // = r9:r8:r7:r6
311 
312     xword = _mm_shuffle_epi32(xword, 0xff);   // r9:r9:r9:r9
313     xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5:r9+r4
314     *state1 = _mm_slli_si128(*state1, 4);     // stuff:stuff:r4:0
315     xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5+r4:r9+r4
316     *state1 = xword;                          // = stuff:stuff:r11:r10
317 
318     /* Store state0 and the low half of state1 into rk, which is conceptually
319      * an array of 24-byte elements. Since 24 is not a multiple of 16,
320      * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
321     memcpy(rk, state0, 16);
322     memcpy(rk + 16, state1, 8);
323 }
324 
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)325 static void aesni_setkey_enc_192(unsigned char *rk,
326                                  const unsigned char *key)
327 {
328     /* First round: use original key */
329     memcpy(rk, key, 24);
330     /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
331     __m128i state0 = ((__m128i *) rk)[0];
332     __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
333 
334     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
335     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
336     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
337     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
338     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
339     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
340     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
341     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
342 }
343 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
344 
345 /*
346  * Key expansion, 256-bit case
347  */
348 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_set_rk_256(__m128i state0,__m128i state1,__m128i xword,__m128i * rk0,__m128i * rk1)349 static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
350                              __m128i *rk0, __m128i *rk1)
351 {
352     /*
353      * Finish generating the next two round keys.
354      *
355      * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
356      * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
357      * (obtained with AESKEYGENASSIST).
358      *
359      * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
360      */
361     xword = _mm_shuffle_epi32(xword, 0xff);
362     xword = _mm_xor_si128(xword, state0);
363     state0 = _mm_slli_si128(state0, 4);
364     xword = _mm_xor_si128(xword, state0);
365     state0 = _mm_slli_si128(state0, 4);
366     xword = _mm_xor_si128(xword, state0);
367     state0 = _mm_slli_si128(state0, 4);
368     state0 = _mm_xor_si128(state0, xword);
369     *rk0 = state0;
370 
371     /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
372      * and proceed to generate next round key from there */
373     xword = _mm_aeskeygenassist_si128(state0, 0x00);
374     xword = _mm_shuffle_epi32(xword, 0xaa);
375     xword = _mm_xor_si128(xword, state1);
376     state1 = _mm_slli_si128(state1, 4);
377     xword = _mm_xor_si128(xword, state1);
378     state1 = _mm_slli_si128(state1, 4);
379     xword = _mm_xor_si128(xword, state1);
380     state1 = _mm_slli_si128(state1, 4);
381     state1 = _mm_xor_si128(state1, xword);
382     *rk1 = state1;
383 }
384 
aesni_setkey_enc_256(unsigned char * rk_bytes,const unsigned char * key)385 static void aesni_setkey_enc_256(unsigned char *rk_bytes,
386                                  const unsigned char *key)
387 {
388     __m128i *rk = (__m128i *) rk_bytes;
389 
390     memcpy(&rk[0], key, 16);
391     memcpy(&rk[1], key + 16, 16);
392 
393     /*
394      * Main "loop" - Generating one more key than necessary,
395      * see definition of mbedtls_aes_context.buf
396      */
397     aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
398     aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
399     aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
400     aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
401     aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
402     aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
403     aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
404 }
405 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
406 
407 #if defined(MBEDTLS_POP_TARGET_PRAGMA)
408 #if defined(__clang__)
409 #pragma clang attribute pop
410 #elif defined(__GNUC__)
411 #pragma GCC pop_options
412 #endif
413 #undef MBEDTLS_POP_TARGET_PRAGMA
414 #endif
415 
416 #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
417 
418 #if defined(__has_feature)
419 #if __has_feature(memory_sanitizer)
420 #warning \
421     "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
422 #endif
423 #endif
424 
425 /*
426  * Binutils needs to be at least 2.19 to support AES-NI instructions.
427  * Unfortunately, a lot of users have a lower version now (2014-04).
428  * Emit bytecode directly in order to support "old" version of gas.
429  *
430  * Opcodes from the Intel architecture reference manual, vol. 3.
431  * We always use registers, so we don't need prefixes for memory operands.
432  * Operand macros are in gas order (src, dst) as opposed to Intel order
433  * (dst, src) in order to blend better into the surrounding assembly code.
434  */
435 #define AESDEC(regs)      ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
436 #define AESDECLAST(regs)  ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
437 #define AESENC(regs)      ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
438 #define AESENCLAST(regs)  ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
439 #define AESIMC(regs)      ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
440 #define AESKEYGENA(regs, imm)  ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
441 #define PCLMULQDQ(regs, imm)   ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
442 
443 #define xmm0_xmm0   "0xC0"
444 #define xmm0_xmm1   "0xC8"
445 #define xmm0_xmm2   "0xD0"
446 #define xmm0_xmm3   "0xD8"
447 #define xmm0_xmm4   "0xE0"
448 #define xmm1_xmm0   "0xC1"
449 #define xmm1_xmm2   "0xD1"
450 
451 /*
452  * AES-NI AES-ECB block en(de)cryption
453  */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])454 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
455                             int mode,
456                             const unsigned char input[16],
457                             unsigned char output[16])
458 {
459     asm ("movdqu    (%3), %%xmm0    \n\t" // load input
460          "movdqu    (%1), %%xmm1    \n\t" // load round key 0
461          "pxor      %%xmm1, %%xmm0  \n\t" // round 0
462          "add       $16, %1         \n\t" // point to next round key
463          "subl      $1, %0          \n\t" // normal rounds = nr - 1
464          "test      %2, %2          \n\t" // mode?
465          "jz        2f              \n\t" // 0 = decrypt
466 
467          "1:                        \n\t" // encryption loop
468          "movdqu    (%1), %%xmm1    \n\t" // load round key
469          AESENC(xmm1_xmm0)                // do round
470          "add       $16, %1         \n\t" // point to next round key
471          "subl      $1, %0          \n\t" // loop
472          "jnz       1b              \n\t"
473          "movdqu    (%1), %%xmm1    \n\t" // load round key
474          AESENCLAST(xmm1_xmm0)            // last round
475 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
476          "jmp       3f              \n\t"
477 
478          "2:                        \n\t" // decryption loop
479          "movdqu    (%1), %%xmm1    \n\t"
480          AESDEC(xmm1_xmm0)                // do round
481          "add       $16, %1         \n\t"
482          "subl      $1, %0          \n\t"
483          "jnz       2b              \n\t"
484          "movdqu    (%1), %%xmm1    \n\t" // load round key
485          AESDECLAST(xmm1_xmm0)            // last round
486 #endif
487 
488          "3:                        \n\t"
489          "movdqu    %%xmm0, (%4)    \n\t" // export output
490          :
491          : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
492          : "memory", "cc", "xmm0", "xmm1");
493 
494 
495     return 0;
496 }
497 
498 /*
499  * GCM multiplication: c = a times b in GF(2^128)
500  * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
501  */
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])502 void mbedtls_aesni_gcm_mult(unsigned char c[16],
503                             const unsigned char a[16],
504                             const unsigned char b[16])
505 {
506     unsigned char aa[16], bb[16], cc[16];
507     size_t i;
508 
509     /* The inputs are in big-endian order, so byte-reverse them */
510     for (i = 0; i < 16; i++) {
511         aa[i] = a[15 - i];
512         bb[i] = b[15 - i];
513     }
514 
515     asm ("movdqu (%0), %%xmm0               \n\t" // a1:a0
516          "movdqu (%1), %%xmm1               \n\t" // b1:b0
517 
518          /*
519           * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
520           * using [CLMUL-WP] algorithm 1 (p. 12).
521           */
522          "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0
523          "movdqa %%xmm1, %%xmm3             \n\t" // same
524          "movdqa %%xmm1, %%xmm4             \n\t" // same
525          PCLMULQDQ(xmm0_xmm1, "0x00")             // a0*b0 = c1:c0
526          PCLMULQDQ(xmm0_xmm2, "0x11")             // a1*b1 = d1:d0
527          PCLMULQDQ(xmm0_xmm3, "0x10")             // a0*b1 = e1:e0
528          PCLMULQDQ(xmm0_xmm4, "0x01")             // a1*b0 = f1:f0
529          "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0
530          "movdqa %%xmm4, %%xmm3             \n\t" // same
531          "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1
532          "pslldq $8, %%xmm3                 \n\t" // e0+f0:0
533          "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1
534          "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0
535 
536          /*
537           * Now shift the result one bit to the left,
538           * taking advantage of [CLMUL-WP] eq 27 (p. 18)
539           */
540          "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0
541          "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2
542          "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1
543          "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1
544          "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63
545          "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63
546          "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63
547          "pslldq $8, %%xmm3                 \n\t" // r0>>63:0
548          "pslldq $8, %%xmm4                 \n\t" // r2>>63:0
549          "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63
550          "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1
551          "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1
552          "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
553 
554          /*
555           * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
556           * using [CLMUL-WP] algorithm 5 (p. 18).
557           * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
558           */
559          /* Step 2 (1) */
560          "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0
561          "movdqa %%xmm1, %%xmm4             \n\t" // same
562          "movdqa %%xmm1, %%xmm5             \n\t" // same
563          "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a
564          "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b
565          "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c
566 
567          /* Step 2 (2) */
568          "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b
569          "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c
570          "pslldq $8, %%xmm3                 \n\t" // a+b+c:0
571          "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0
572 
573          /* Steps 3 and 4 */
574          "movdqa %%xmm1,%%xmm0              \n\t" // d:x0
575          "movdqa %%xmm1,%%xmm4              \n\t" // same
576          "movdqa %%xmm1,%%xmm5              \n\t" // same
577          "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0'
578          "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0'
579          "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0'
580          "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0'
581          "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0'
582          // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
583          // bits carried from d. Now get those\t bits back in.
584          "movdqa %%xmm1,%%xmm3              \n\t" // d:x0
585          "movdqa %%xmm1,%%xmm4              \n\t" // same
586          "movdqa %%xmm1,%%xmm5              \n\t" // same
587          "psllq $63, %%xmm3                 \n\t" // d<<63:stuff
588          "psllq $62, %%xmm4                 \n\t" // d<<62:stuff
589          "psllq $57, %%xmm5                 \n\t" // d<<57:stuff
590          "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff
591          "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff
592          "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d
593          "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0
594          "pxor %%xmm1, %%xmm0               \n\t" // h1:h0
595          "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0
596 
597          "movdqu %%xmm0, (%2)               \n\t" // done
598          :
599          : "r" (aa), "r" (bb), "r" (cc)
600          : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
601 
602     /* Now byte-reverse the outputs */
603     for (i = 0; i < 16; i++) {
604         c[i] = cc[15 - i];
605     }
606 
607     return;
608 }
609 
610 /*
611  * Compute decryption round keys from encryption round keys
612  */
613 #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)614 void mbedtls_aesni_inverse_key(unsigned char *invkey,
615                                const unsigned char *fwdkey, int nr)
616 {
617     unsigned char *ik = invkey;
618     const unsigned char *fk = fwdkey + 16 * nr;
619 
620     memcpy(ik, fk, 16);
621 
622     for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
623         asm ("movdqu (%0), %%xmm0       \n\t"
624              AESIMC(xmm0_xmm0)
625              "movdqu %%xmm0, (%1)       \n\t"
626              :
627              : "r" (fk), "r" (ik)
628              : "memory", "xmm0");
629     }
630 
631     memcpy(ik, fk, 16);
632 }
633 #endif
634 
635 /*
636  * Key expansion, 128-bit case
637  */
aesni_setkey_enc_128(unsigned char * rk,const unsigned char * key)638 static void aesni_setkey_enc_128(unsigned char *rk,
639                                  const unsigned char *key)
640 {
641     asm ("movdqu (%1), %%xmm0               \n\t" // copy the original key
642          "movdqu %%xmm0, (%0)               \n\t" // as round key 0
643          "jmp 2f                            \n\t" // skip auxiliary routine
644 
645          /*
646           * Finish generating the next round key.
647           *
648           * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
649           * with X = rot( sub( r3 ) ) ^ RCON.
650           *
651           * On exit, xmm0 is r7:r6:r5:r4
652           * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
653           * and those are written to the round key buffer.
654           */
655          "1:                                \n\t"
656          "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X
657          "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4
658          "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0
659          "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4
660          "pslldq $4, %%xmm0                 \n\t" // etc
661          "pxor %%xmm0, %%xmm1               \n\t"
662          "pslldq $4, %%xmm0                 \n\t"
663          "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time!
664          "add $16, %0                       \n\t" // point to next round key
665          "movdqu %%xmm0, (%0)               \n\t" // write it
666          "ret                               \n\t"
667 
668          /* Main "loop" */
669          "2:                                \n\t"
670          AESKEYGENA(xmm0_xmm1, "0x01")      "call 1b \n\t"
671          AESKEYGENA(xmm0_xmm1, "0x02")      "call 1b \n\t"
672          AESKEYGENA(xmm0_xmm1, "0x04")      "call 1b \n\t"
673          AESKEYGENA(xmm0_xmm1, "0x08")      "call 1b \n\t"
674          AESKEYGENA(xmm0_xmm1, "0x10")      "call 1b \n\t"
675          AESKEYGENA(xmm0_xmm1, "0x20")      "call 1b \n\t"
676          AESKEYGENA(xmm0_xmm1, "0x40")      "call 1b \n\t"
677          AESKEYGENA(xmm0_xmm1, "0x80")      "call 1b \n\t"
678          AESKEYGENA(xmm0_xmm1, "0x1B")      "call 1b \n\t"
679          AESKEYGENA(xmm0_xmm1, "0x36")      "call 1b \n\t"
680          :
681          : "r" (rk), "r" (key)
682          : "memory", "cc", "0");
683 }
684 
685 /*
686  * Key expansion, 192-bit case
687  */
688 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)689 static void aesni_setkey_enc_192(unsigned char *rk,
690                                  const unsigned char *key)
691 {
692     asm ("movdqu (%1), %%xmm0   \n\t" // copy original round key
693          "movdqu %%xmm0, (%0)   \n\t"
694          "add $16, %0           \n\t"
695          "movq 16(%1), %%xmm1   \n\t"
696          "movq %%xmm1, (%0)     \n\t"
697          "add $8, %0            \n\t"
698          "jmp 2f                \n\t" // skip auxiliary routine
699 
700          /*
701           * Finish generating the next 6 quarter-keys.
702           *
703           * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
704           * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
705           *
706           * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
707           * and those are written to the round key buffer.
708           */
709          "1:                            \n\t"
710          "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X
711          "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4
712          "pslldq $4, %%xmm0             \n\t" // etc
713          "pxor %%xmm0, %%xmm2           \n\t"
714          "pslldq $4, %%xmm0             \n\t"
715          "pxor %%xmm0, %%xmm2           \n\t"
716          "pslldq $4, %%xmm0             \n\t"
717          "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6
718          "movdqu %%xmm0, (%0)           \n\t"
719          "add $16, %0                   \n\t"
720          "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9
721          "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10
722          "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0
723          "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10
724          "movq %%xmm1, (%0)             \n\t"
725          "add $8, %0                    \n\t"
726          "ret                           \n\t"
727 
728          "2:                            \n\t"
729          AESKEYGENA(xmm1_xmm2, "0x01")  "call 1b \n\t"
730          AESKEYGENA(xmm1_xmm2, "0x02")  "call 1b \n\t"
731          AESKEYGENA(xmm1_xmm2, "0x04")  "call 1b \n\t"
732          AESKEYGENA(xmm1_xmm2, "0x08")  "call 1b \n\t"
733          AESKEYGENA(xmm1_xmm2, "0x10")  "call 1b \n\t"
734          AESKEYGENA(xmm1_xmm2, "0x20")  "call 1b \n\t"
735          AESKEYGENA(xmm1_xmm2, "0x40")  "call 1b \n\t"
736          AESKEYGENA(xmm1_xmm2, "0x80")  "call 1b \n\t"
737 
738          :
739          : "r" (rk), "r" (key)
740          : "memory", "cc", "0");
741 }
742 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
743 
744 /*
745  * Key expansion, 256-bit case
746  */
747 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_setkey_enc_256(unsigned char * rk,const unsigned char * key)748 static void aesni_setkey_enc_256(unsigned char *rk,
749                                  const unsigned char *key)
750 {
751     asm ("movdqu (%1), %%xmm0           \n\t"
752          "movdqu %%xmm0, (%0)           \n\t"
753          "add $16, %0                   \n\t"
754          "movdqu 16(%1), %%xmm1         \n\t"
755          "movdqu %%xmm1, (%0)           \n\t"
756          "jmp 2f                        \n\t" // skip auxiliary routine
757 
758          /*
759           * Finish generating the next two round keys.
760           *
761           * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
762           * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
763           *
764           * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
765           * and those have been written to the output buffer.
766           */
767          "1:                                \n\t"
768          "pshufd $0xff, %%xmm2, %%xmm2      \n\t"
769          "pxor %%xmm0, %%xmm2               \n\t"
770          "pslldq $4, %%xmm0                 \n\t"
771          "pxor %%xmm0, %%xmm2               \n\t"
772          "pslldq $4, %%xmm0                 \n\t"
773          "pxor %%xmm0, %%xmm2               \n\t"
774          "pslldq $4, %%xmm0                 \n\t"
775          "pxor %%xmm2, %%xmm0               \n\t"
776          "add $16, %0                       \n\t"
777          "movdqu %%xmm0, (%0)               \n\t"
778 
779          /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
780           * and proceed to generate next round key from there */
781          AESKEYGENA(xmm0_xmm2, "0x00")
782          "pshufd $0xaa, %%xmm2, %%xmm2      \n\t"
783          "pxor %%xmm1, %%xmm2               \n\t"
784          "pslldq $4, %%xmm1                 \n\t"
785          "pxor %%xmm1, %%xmm2               \n\t"
786          "pslldq $4, %%xmm1                 \n\t"
787          "pxor %%xmm1, %%xmm2               \n\t"
788          "pslldq $4, %%xmm1                 \n\t"
789          "pxor %%xmm2, %%xmm1               \n\t"
790          "add $16, %0                       \n\t"
791          "movdqu %%xmm1, (%0)               \n\t"
792          "ret                               \n\t"
793 
794          /*
795           * Main "loop" - Generating one more key than necessary,
796           * see definition of mbedtls_aes_context.buf
797           */
798          "2:                                \n\t"
799          AESKEYGENA(xmm1_xmm2, "0x01")      "call 1b \n\t"
800          AESKEYGENA(xmm1_xmm2, "0x02")      "call 1b \n\t"
801          AESKEYGENA(xmm1_xmm2, "0x04")      "call 1b \n\t"
802          AESKEYGENA(xmm1_xmm2, "0x08")      "call 1b \n\t"
803          AESKEYGENA(xmm1_xmm2, "0x10")      "call 1b \n\t"
804          AESKEYGENA(xmm1_xmm2, "0x20")      "call 1b \n\t"
805          AESKEYGENA(xmm1_xmm2, "0x40")      "call 1b \n\t"
806          :
807          : "r" (rk), "r" (key)
808          : "memory", "cc", "0");
809 }
810 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
811 
812 #endif  /* MBEDTLS_AESNI_HAVE_CODE */
813 
814 /*
815  * Key expansion, wrapper
816  */
mbedtls_aesni_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)817 int mbedtls_aesni_setkey_enc(unsigned char *rk,
818                              const unsigned char *key,
819                              size_t bits)
820 {
821     switch (bits) {
822         case 128: aesni_setkey_enc_128(rk, key); break;
823 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
824         case 192: aesni_setkey_enc_192(rk, key); break;
825         case 256: aesni_setkey_enc_256(rk, key); break;
826 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
827         default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
828     }
829 
830     return 0;
831 }
832 
833 #endif /* MBEDTLS_AESNI_HAVE_CODE */
834 
835 #endif /* MBEDTLS_AESNI_C */
836