1 /*
2 * Armv8-A Cryptographic Extension support functions for Aarch64
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 #if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
9 defined(__clang__) && __clang_major__ >= 4
10 /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
11 *
12 * The intrinsic declaration are guarded by predefined ACLE macros in clang:
13 * these are normally only enabled by the -march option on the command line.
14 * By defining the macros ourselves we gain access to those declarations without
15 * requiring -march on the command line.
16 *
17 * `arm_neon.h` could be included by any header file, so we put these defines
18 * at the top of this file, before any includes.
19 */
20 #define __ARM_FEATURE_CRYPTO 1
21 /* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
22 *
23 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
24 * for older compilers.
25 */
26 #define __ARM_FEATURE_AES 1
27 #define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
28 #endif
29
30 #include <string.h>
31 #include "common.h"
32
33 #if defined(MBEDTLS_AESCE_C)
34
35 #include "aesce.h"
36
37 #if defined(MBEDTLS_ARCH_IS_ARM64)
38
39 /* Compiler version checks. */
40 #if defined(__clang__)
41 # if __clang_major__ < 4
42 # error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0."
43 # endif
44 #elif defined(__GNUC__)
45 # if __GNUC__ < 6
46 # error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
47 # endif
48 #elif defined(_MSC_VER)
49 /* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
50 * please update this and document of `MBEDTLS_AESCE_C` in
51 * `mbedtls_config.h`. */
52 # if _MSC_VER < 1929
53 # error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
54 # endif
55 #endif
56
57 #ifdef __ARM_NEON
58 #include <arm_neon.h>
59 #else
60 #error "Target does not support NEON instructions"
61 #endif
62
63 #if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
64 defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
65 # if defined(__ARMCOMPILER_VERSION)
66 # if __ARMCOMPILER_VERSION <= 6090000
67 # error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
68 # else
69 # pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
70 # define MBEDTLS_POP_TARGET_PRAGMA
71 # endif
72 # elif defined(__clang__)
73 # pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
74 # define MBEDTLS_POP_TARGET_PRAGMA
75 # elif defined(__GNUC__)
76 # pragma GCC push_options
77 # pragma GCC target ("+crypto")
78 # define MBEDTLS_POP_TARGET_PRAGMA
79 # elif defined(_MSC_VER)
80 # error "Required feature(__ARM_FEATURE_AES) is not enabled."
81 # endif
82 #endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
83 MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
84
85 #if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
86
87 #include <asm/hwcap.h>
88 #include <sys/auxv.h>
89
90 signed char mbedtls_aesce_has_support_result = -1;
91
92 #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
93 /*
94 * AES instruction support detection routine
95 */
mbedtls_aesce_has_support_impl(void)96 int mbedtls_aesce_has_support_impl(void)
97 {
98 /* To avoid many calls to getauxval, cache the result. This is
99 * thread-safe, because we store the result in a char so cannot
100 * be vulnerable to non-atomic updates.
101 * It is possible that we could end up setting result more than
102 * once, but that is harmless.
103 */
104 if (mbedtls_aesce_has_support_result == -1) {
105 unsigned long auxval = getauxval(AT_HWCAP);
106 if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
107 (HWCAP_ASIMD | HWCAP_AES)) {
108 mbedtls_aesce_has_support_result = 1;
109 } else {
110 mbedtls_aesce_has_support_result = 0;
111 }
112 }
113 return mbedtls_aesce_has_support_result;
114 }
115 #endif
116
117 #endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
118
119 /* Single round of AESCE encryption */
120 #define AESCE_ENCRYPT_ROUND \
121 block = vaeseq_u8(block, vld1q_u8(keys)); \
122 block = vaesmcq_u8(block); \
123 keys += 16
124 /* Two rounds of AESCE encryption */
125 #define AESCE_ENCRYPT_ROUND_X2 AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
126
127 MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
aesce_encrypt_block(uint8x16_t block,unsigned char * keys,int rounds)128 static uint8x16_t aesce_encrypt_block(uint8x16_t block,
129 unsigned char *keys,
130 int rounds)
131 {
132 /* 10, 12 or 14 rounds. Unroll loop. */
133 if (rounds == 10) {
134 goto rounds_10;
135 }
136 if (rounds == 12) {
137 goto rounds_12;
138 }
139 AESCE_ENCRYPT_ROUND_X2;
140 rounds_12:
141 AESCE_ENCRYPT_ROUND_X2;
142 rounds_10:
143 AESCE_ENCRYPT_ROUND_X2;
144 AESCE_ENCRYPT_ROUND_X2;
145 AESCE_ENCRYPT_ROUND_X2;
146 AESCE_ENCRYPT_ROUND_X2;
147 AESCE_ENCRYPT_ROUND;
148
149 /* AES AddRoundKey for the previous round.
150 * SubBytes, ShiftRows for the final round. */
151 block = vaeseq_u8(block, vld1q_u8(keys));
152 keys += 16;
153
154 /* Final round: no MixColumns */
155
156 /* Final AddRoundKey */
157 block = veorq_u8(block, vld1q_u8(keys));
158
159 return block;
160 }
161
162 /* Single round of AESCE decryption
163 *
164 * AES AddRoundKey, SubBytes, ShiftRows
165 *
166 * block = vaesdq_u8(block, vld1q_u8(keys));
167 *
168 * AES inverse MixColumns for the next round.
169 *
170 * This means that we switch the order of the inverse AddRoundKey and
171 * inverse MixColumns operations. We have to do this as AddRoundKey is
172 * done in an atomic instruction together with the inverses of SubBytes
173 * and ShiftRows.
174 *
175 * It works because MixColumns is a linear operation over GF(2^8) and
176 * AddRoundKey is an exclusive or, which is equivalent to addition over
177 * GF(2^8). (The inverse of MixColumns needs to be applied to the
178 * affected round keys separately which has been done when the
179 * decryption round keys were calculated.)
180 *
181 * block = vaesimcq_u8(block);
182 */
183 #define AESCE_DECRYPT_ROUND \
184 block = vaesdq_u8(block, vld1q_u8(keys)); \
185 block = vaesimcq_u8(block); \
186 keys += 16
187 /* Two rounds of AESCE decryption */
188 #define AESCE_DECRYPT_ROUND_X2 AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
189
aesce_decrypt_block(uint8x16_t block,unsigned char * keys,int rounds)190 static uint8x16_t aesce_decrypt_block(uint8x16_t block,
191 unsigned char *keys,
192 int rounds)
193 {
194 /* 10, 12 or 14 rounds. Unroll loop. */
195 if (rounds == 10) {
196 goto rounds_10;
197 }
198 if (rounds == 12) {
199 goto rounds_12;
200 }
201 AESCE_DECRYPT_ROUND_X2;
202 rounds_12:
203 AESCE_DECRYPT_ROUND_X2;
204 rounds_10:
205 AESCE_DECRYPT_ROUND_X2;
206 AESCE_DECRYPT_ROUND_X2;
207 AESCE_DECRYPT_ROUND_X2;
208 AESCE_DECRYPT_ROUND_X2;
209 AESCE_DECRYPT_ROUND;
210
211 /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
212 * last full round. */
213 block = vaesdq_u8(block, vld1q_u8(keys));
214 keys += 16;
215
216 /* Inverse AddRoundKey for inverting the initial round key addition. */
217 block = veorq_u8(block, vld1q_u8(keys));
218
219 return block;
220 }
221
222 /*
223 * AES-ECB block en(de)cryption
224 */
mbedtls_aesce_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])225 int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
226 int mode,
227 const unsigned char input[16],
228 unsigned char output[16])
229 {
230 uint8x16_t block = vld1q_u8(&input[0]);
231 unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
232
233 if (mode == MBEDTLS_AES_ENCRYPT) {
234 block = aesce_encrypt_block(block, keys, ctx->nr);
235 } else {
236 block = aesce_decrypt_block(block, keys, ctx->nr);
237 }
238 vst1q_u8(&output[0], block);
239
240 return 0;
241 }
242
243 /*
244 * Compute decryption round keys from encryption round keys
245 */
mbedtls_aesce_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)246 void mbedtls_aesce_inverse_key(unsigned char *invkey,
247 const unsigned char *fwdkey,
248 int nr)
249 {
250 int i, j;
251 j = nr;
252 vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
253 for (i = 1, j--; j > 0; i++, j--) {
254 vst1q_u8(invkey + i * 16,
255 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
256 }
257 vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
258
259 }
260
aes_rot_word(uint32_t word)261 static inline uint32_t aes_rot_word(uint32_t word)
262 {
263 return (word << (32 - 8)) | (word >> 8);
264 }
265
aes_sub_word(uint32_t in)266 static inline uint32_t aes_sub_word(uint32_t in)
267 {
268 uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
269 uint8x16_t zero = vdupq_n_u8(0);
270
271 /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
272 * the correct result as ShiftRows doesn't change the first row. */
273 v = vaeseq_u8(zero, v);
274 return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
275 }
276
277 /*
278 * Key expansion function
279 */
aesce_setkey_enc(unsigned char * rk,const unsigned char * key,const size_t key_bit_length)280 static void aesce_setkey_enc(unsigned char *rk,
281 const unsigned char *key,
282 const size_t key_bit_length)
283 {
284 static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
285 0x20, 0x40, 0x80, 0x1b, 0x36 };
286 /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
287 * - Section 5, Nr = Nk + 6
288 * - Section 5.2, the length of round keys is Nb*(Nr+1)
289 */
290 const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
291 const size_t round_key_len_in_words = 4; /* Nb */
292 const size_t rounds_needed = key_len_in_words + 6; /* Nr */
293 const size_t round_keys_len_in_words =
294 round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
295 const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
296
297 memcpy(rk, key, key_len_in_words * 4);
298
299 for (uint32_t *rki = (uint32_t *) rk;
300 rki + key_len_in_words < rko_end;
301 rki += key_len_in_words) {
302
303 size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
304 uint32_t *rko;
305 rko = rki + key_len_in_words;
306 rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
307 rko[0] ^= rcon[iteration] ^ rki[0];
308 rko[1] = rko[0] ^ rki[1];
309 rko[2] = rko[1] ^ rki[2];
310 rko[3] = rko[2] ^ rki[3];
311 if (rko + key_len_in_words > rko_end) {
312 /* Do not write overflow words.*/
313 continue;
314 }
315 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
316 switch (key_bit_length) {
317 case 128:
318 break;
319 case 192:
320 rko[4] = rko[3] ^ rki[4];
321 rko[5] = rko[4] ^ rki[5];
322 break;
323 case 256:
324 rko[4] = aes_sub_word(rko[3]) ^ rki[4];
325 rko[5] = rko[4] ^ rki[5];
326 rko[6] = rko[5] ^ rki[6];
327 rko[7] = rko[6] ^ rki[7];
328 break;
329 }
330 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
331 }
332 }
333
334 /*
335 * Key expansion, wrapper
336 */
mbedtls_aesce_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)337 int mbedtls_aesce_setkey_enc(unsigned char *rk,
338 const unsigned char *key,
339 size_t bits)
340 {
341 switch (bits) {
342 case 128:
343 case 192:
344 case 256:
345 aesce_setkey_enc(rk, key, bits);
346 break;
347 default:
348 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
349 }
350
351 return 0;
352 }
353
354 #if defined(MBEDTLS_GCM_C)
355
356 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
357 /* Some intrinsics are not available for GCC 5.X. */
358 #define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
359 #define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
vget_low_p64(poly64x2_t __a)360 static inline poly64_t vget_low_p64(poly64x2_t __a)
361 {
362 uint64x2_t tmp = (uint64x2_t) (__a);
363 uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
364 return (poly64_t) (lo);
365 }
366 #endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
367
368 /* vmull_p64/vmull_high_p64 wrappers.
369 *
370 * Older compilers miss some intrinsic functions for `poly*_t`. We use
371 * uint8x16_t and uint8x16x3_t as input/output parameters.
372 */
373 #if defined(__GNUC__) && !defined(__clang__)
374 /* GCC reports incompatible type error without cast. GCC think poly64_t and
375 * poly64x1_t are different, that is different with MSVC and Clang. */
376 #define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
377 #else
378 /* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
379 * error with/without cast. And I think poly64_t and poly64x1_t are same, no
380 * cast for clang also. */
381 #define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
382 #endif
pmull_low(uint8x16_t a,uint8x16_t b)383 static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
384 {
385
386 return vreinterpretq_u8_p128(
387 MBEDTLS_VMULL_P64(
388 vget_low_p64(vreinterpretq_p64_u8(a)),
389 vget_low_p64(vreinterpretq_p64_u8(b))
390 ));
391 }
392
pmull_high(uint8x16_t a,uint8x16_t b)393 static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
394 {
395 return vreinterpretq_u8_p128(
396 vmull_high_p64(vreinterpretq_p64_u8(a),
397 vreinterpretq_p64_u8(b)));
398 }
399
400 /* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
401 * `x^128 + x^7 + x^2 + x + 1`.
402 *
403 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
404 * multiplies to generate a 128b.
405 *
406 * `poly_mult_128` executes polynomial multiplication and outputs 256b that
407 * represented by 3 128b due to code size optimization.
408 *
409 * Output layout:
410 * | | | |
411 * |------------|-------------|-------------|
412 * | ret.val[0] | h3:h2:00:00 | high 128b |
413 * | ret.val[1] | :m2:m1:00 | middle 128b |
414 * | ret.val[2] | : :l1:l0 | low 128b |
415 */
poly_mult_128(uint8x16_t a,uint8x16_t b)416 static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
417 {
418 uint8x16x3_t ret;
419 uint8x16_t h, m, l; /* retval high/middle/low */
420 uint8x16_t c, d, e;
421
422 h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
423 l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
424 c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
425 d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
426 e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
427 m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
428
429 ret.val[0] = h;
430 ret.val[1] = m;
431 ret.val[2] = l;
432 return ret;
433 }
434
435 /*
436 * Modulo reduction.
437 *
438 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
439 *
440 * Section 4.3
441 *
442 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
443 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
444 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
445 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
446 * simply multiply the higher part of the operand by r(z) and add it to l(z). If
447 * the result is still larger than 128 bits, we reduce again.
448 */
poly_mult_reduce(uint8x16x3_t input)449 static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
450 {
451 uint8x16_t const ZERO = vdupq_n_u8(0);
452
453 uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
454 #if defined(__GNUC__)
455 /* use 'asm' as an optimisation barrier to prevent loading MODULO from
456 * memory. It is for GNUC compatible compilers.
457 */
458 asm ("" : "+w" (r));
459 #endif
460 uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
461 uint8x16_t h, m, l; /* input high/middle/low 128b */
462 uint8x16_t c, d, e, f, g, n, o;
463 h = input.val[0]; /* h3:h2:00:00 */
464 m = input.val[1]; /* :m2:m1:00 */
465 l = input.val[2]; /* : :l1:l0 */
466 c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
467 d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
468 e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
469 f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
470 g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
471 n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
472 o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
473 return veorq_u8(o, g); /* = o1:o0 + g1:00 */
474 }
475
476 /*
477 * GCM multiplication: c = a times b in GF(2^128)
478 */
mbedtls_aesce_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])479 void mbedtls_aesce_gcm_mult(unsigned char c[16],
480 const unsigned char a[16],
481 const unsigned char b[16])
482 {
483 uint8x16_t va, vb, vc;
484 va = vrbitq_u8(vld1q_u8(&a[0]));
485 vb = vrbitq_u8(vld1q_u8(&b[0]));
486 vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
487 vst1q_u8(&c[0], vc);
488 }
489
490 #endif /* MBEDTLS_GCM_C */
491
492 #if defined(MBEDTLS_POP_TARGET_PRAGMA)
493 #if defined(__clang__)
494 #pragma clang attribute pop
495 #elif defined(__GNUC__)
496 #pragma GCC pop_options
497 #endif
498 #undef MBEDTLS_POP_TARGET_PRAGMA
499 #endif
500
501 #endif /* MBEDTLS_ARCH_IS_ARM64 */
502
503 #endif /* MBEDTLS_AESCE_C */
504