1 /**
2  * @file lv_math.c
3  *
4  */
5 
6 /*********************
7  *      INCLUDES
8  *********************/
9 #include "lv_math.h"
10 
11 /*********************
12  *      DEFINES
13  *********************/
14 
15 /**********************
16  *      TYPEDEFS
17  **********************/
18 
19 /**********************
20  *  STATIC PROTOTYPES
21  **********************/
22 
23 /**********************
24  *  STATIC VARIABLES
25  **********************/
26 static const int16_t sin0_90_table[] = {
27     0,     572,   1144,  1715,  2286,  2856,  3425,  3993,  4560,  5126,  5690,  6252,  6813,  7371,  7927,  8481,
28     9032,  9580,  10126, 10668, 11207, 11743, 12275, 12803, 13328, 13848, 14364, 14876, 15383, 15886, 16383, 16876,
29     17364, 17846, 18323, 18794, 19260, 19720, 20173, 20621, 21062, 21497, 21925, 22347, 22762, 23170, 23571, 23964,
30     24351, 24730, 25101, 25465, 25821, 26169, 26509, 26841, 27165, 27481, 27788, 28087, 28377, 28659, 28932, 29196,
31     29451, 29697, 29934, 30162, 30381, 30591, 30791, 30982, 31163, 31335, 31498, 31650, 31794, 31927, 32051, 32165,
32     32269, 32364, 32448, 32523, 32587, 32642, 32687, 32722, 32747, 32762, 32767
33 };
34 
35 /**********************
36  *      MACROS
37  **********************/
38 
39 /**********************
40  *   GLOBAL FUNCTIONS
41  **********************/
42 
43 /**
44  * Return with sinus of an angle
45  * @param angle
46  * @return sinus of 'angle'. sin(-90) = -32767, sin(90) = 32767
47  */
lv_trigo_sin(int16_t angle)48 int16_t LV_ATTRIBUTE_FAST_MEM lv_trigo_sin(int16_t angle)
49 {
50     int16_t ret = 0;
51     angle       = angle % 360;
52 
53     if(angle < 0) angle = 360 + angle;
54 
55     if(angle < 90) {
56         ret = sin0_90_table[angle];
57     }
58     else if(angle >= 90 && angle < 180) {
59         angle = 180 - angle;
60         ret   = sin0_90_table[angle];
61     }
62     else if(angle >= 180 && angle < 270) {
63         angle = angle - 180;
64         ret   = -sin0_90_table[angle];
65     }
66     else {   /*angle >=270*/
67         angle = 360 - angle;
68         ret   = -sin0_90_table[angle];
69     }
70 
71     return ret;
72 }
73 
74 /**
75  * Calculate a value of a Cubic Bezier function.
76  * @param t time in range of [0..LV_BEZIER_VAL_MAX]
77  * @param u0 start values in range of [0..LV_BEZIER_VAL_MAX]
78  * @param u1 control value 1 values in range of [0..LV_BEZIER_VAL_MAX]
79  * @param u2 control value 2 in range of [0..LV_BEZIER_VAL_MAX]
80  * @param u3 end values in range of [0..LV_BEZIER_VAL_MAX]
81  * @return the value calculated from the given parameters in range of [0..LV_BEZIER_VAL_MAX]
82  */
lv_bezier3(uint32_t t,uint32_t u0,uint32_t u1,uint32_t u2,uint32_t u3)83 uint32_t lv_bezier3(uint32_t t, uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3)
84 {
85     uint32_t t_rem  = 1024 - t;
86     uint32_t t_rem2 = (t_rem * t_rem) >> 10;
87     uint32_t t_rem3 = (t_rem2 * t_rem) >> 10;
88     uint32_t t2     = (t * t) >> 10;
89     uint32_t t3     = (t2 * t) >> 10;
90 
91     uint32_t v1 = (t_rem3 * u0) >> 10;
92     uint32_t v2 = (3 * t_rem2 * t * u1) >> 20;
93     uint32_t v3 = (3 * t_rem * t2 * u2) >> 20;
94     uint32_t v4 = (t3 * u3) >> 10;
95 
96     return v1 + v2 + v3 + v4;
97 }
98 
99 /**
100  * Get the square root of a number
101  * @param x integer which square root should be calculated
102  * @param q store the result here. q->i: integer part, q->f: fractional part in 1/256 unit
103  * @param mask optional to skip some iterations if the magnitude of the root is known.
104  * Set to 0x8000 by default.
105  * If root < 16: mask = 0x80
106  * If root < 256: mask = 0x800
107  * Else: mask = 0x8000
108  */
lv_sqrt(uint32_t x,lv_sqrt_res_t * q,uint32_t mask)109 void LV_ATTRIBUTE_FAST_MEM lv_sqrt(uint32_t x, lv_sqrt_res_t * q, uint32_t mask)
110 {
111     x = x << 8; /*To get 4 bit precision. (sqrt(256) = 16 = 4 bit)*/
112 
113     uint32_t root = 0;
114     uint32_t trial;
115     // http://ww1.microchip.com/...en/AppNotes/91040a.pdf
116     do {
117         trial = root + mask;
118         if(trial * trial <= x) root = trial;
119         mask = mask >> 1;
120     } while(mask);
121 
122     q->i = root >> 4;
123     q->f = (root & 0xf) << 4;
124 }
125 
126 /**
127  * Calculate the atan2 of a vector.
128  * @param x
129  * @param y
130  * @return the angle in degree calculated from the given parameters in range of [0..360]
131  */
lv_atan2(int x,int y)132 uint16_t lv_atan2(int x, int y)
133 {
134     // Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com
135     // Converts any XY values including 0 to a degree value that should be
136     // within +/- 1 degree of the accurate value without needing
137     // large slow trig functions like ArcTan() or ArcCos().
138     // NOTE! at least one of the X or Y values must be non-zero!
139     // This is the full version, for all 4 quadrants and will generate
140     // the angle in integer degrees from 0-360.
141     // Any values of X and Y are usable including negative values provided
142     // they are between -1456 and 1456 so the 16bit multiply does not overflow.
143 
144     unsigned char negflag;
145     unsigned char tempdegree;
146     unsigned char comp;
147     unsigned int degree;     // this will hold the result
148     unsigned int ux;
149     unsigned int uy;
150 
151     // Save the sign flags then remove signs and get XY as unsigned ints
152     negflag = 0;
153     if(x < 0) {
154         negflag += 0x01;    // x flag bit
155         x = (0 - x);        // is now +
156     }
157     ux = x;                // copy to unsigned var before multiply
158     if(y < 0) {
159         negflag += 0x02;    // y flag bit
160         y = (0 - y);        // is now +
161     }
162     uy = y;                // copy to unsigned var before multiply
163 
164     // 1. Calc the scaled "degrees"
165     if(ux > uy) {
166         degree = (uy * 45) / ux;   // degree result will be 0-45 range
167         negflag += 0x10;    // octant flag bit
168     }
169     else {
170         degree = (ux * 45) / uy;   // degree result will be 0-45 range
171     }
172 
173     // 2. Compensate for the 4 degree error curve
174     comp = 0;
175     tempdegree = degree;    // use an unsigned char for speed!
176     if(tempdegree > 22) {    // if top half of range
177         if(tempdegree <= 44) comp++;
178         if(tempdegree <= 41) comp++;
179         if(tempdegree <= 37) comp++;
180         if(tempdegree <= 32) comp++;  // max is 4 degrees compensated
181     }
182     else {   // else is lower half of range
183         if(tempdegree >= 2) comp++;
184         if(tempdegree >= 6) comp++;
185         if(tempdegree >= 10) comp++;
186         if(tempdegree >= 15) comp++;  // max is 4 degrees compensated
187     }
188     degree += comp;   // degree is now accurate to +/- 1 degree!
189 
190     // Invert degree if it was X>Y octant, makes 0-45 into 90-45
191     if(negflag & 0x10) degree = (90 - degree);
192 
193     // 3. Degree is now 0-90 range for this quadrant,
194     // need to invert it for whichever quadrant it was in
195     if(negflag & 0x02) { // if -Y
196         if(negflag & 0x01)   // if -Y -X
197             degree = (180 + degree);
198         else        // else is -Y +X
199             degree = (180 - degree);
200     }
201     else {   // else is +Y
202         if(negflag & 0x01)   // if +Y -X
203             degree = (360 - degree);
204     }
205     return degree;
206 }
207 
208 /**
209  * Calculate the integer exponents.
210  * @param base
211  * @param power
212  * @return base raised to the power exponent
213  */
lv_pow(int64_t base,int8_t exp)214 int64_t lv_pow(int64_t base, int8_t exp)
215 {
216     int64_t result = 1;
217     while(exp) {
218         if(exp & 1)
219             result *= base;
220         exp >>= 1;
221         base *= base;
222     }
223 
224     return result;
225 }
226 
227 /**
228  * Get the mapped of a number given an input and output range
229  * @param x integer which mapped value should be calculated
230  * @param min_in min input range
231  * @param max_in max input range
232  * @param min_out max output range
233  * @param max_out max output range
234  * @return the mapped number
235  */
lv_map(int32_t x,int32_t min_in,int32_t max_in,int32_t min_out,int32_t max_out)236 int32_t lv_map(int32_t x, int32_t min_in, int32_t max_in, int32_t min_out, int32_t max_out)
237 {
238     if(max_in >= min_in && x >= max_in) return max_out;
239     if(max_in >= min_in && x <= min_in) return min_out;
240 
241     if(max_in <= min_in && x <= max_in) return max_out;
242     if(max_in <= min_in && x >= min_in) return min_out;
243 
244     /**
245      * The equation should be:
246      *   ((x - min_in) * delta_out) / delta in) + min_out
247      * To avoid rounding error reorder the operations:
248      *   (x - min_in) * (delta_out / delta_min) + min_out
249      */
250 
251     int32_t delta_in = max_in - min_in;
252     int32_t delta_out = max_out - min_out;
253 
254     return ((x - min_in) * delta_out) / delta_in + min_out;
255 }
256 
lv_rand(uint32_t min,uint32_t max)257 uint32_t lv_rand(uint32_t min, uint32_t max)
258 {
259     static uint32_t a = 0x1234ABCD; /*Seed*/
260 
261     /*Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"*/
262     uint32_t x = a;
263     x ^= x << 13;
264     x ^= x >> 17;
265     x ^= x << 5;
266     a = x;
267 
268     return (a % (max - min + 1)) + min;
269 }
270 
271 /**********************
272  *   STATIC FUNCTIONS
273  **********************/
274