1 /**
2  * @file lv_math.c
3  *
4  */
5 
6 /*********************
7  *      INCLUDES
8  *********************/
9 #include "lv_math.h"
10 #include <stdbool.h>
11 #include <stdlib.h>
12 #include <string.h>
13 
14 /*********************
15  *      DEFINES
16  *********************/
17 
18 /**********************
19  *      TYPEDEFS
20  **********************/
21 
22 /**********************
23  *  STATIC PROTOTYPES
24  **********************/
25 
26 /**********************
27  *  STATIC VARIABLES
28  **********************/
29 static const int16_t sin0_90_table[] = {
30     0,     572,   1144,  1715,  2286,  2856,  3425,  3993,  4560,  5126,  5690,  6252,  6813,  7371,  7927,  8481,
31     9032,  9580,  10126, 10668, 11207, 11743, 12275, 12803, 13328, 13848, 14364, 14876, 15383, 15886, 16383, 16876,
32     17364, 17846, 18323, 18794, 19260, 19720, 20173, 20621, 21062, 21497, 21925, 22347, 22762, 23170, 23571, 23964,
33     24351, 24730, 25101, 25465, 25821, 26169, 26509, 26841, 27165, 27481, 27788, 28087, 28377, 28659, 28932, 29196,
34     29451, 29697, 29934, 30162, 30381, 30591, 30791, 30982, 31163, 31335, 31498, 31650, 31794, 31927, 32051, 32165,
35     32269, 32364, 32448, 32523, 32587, 32642, 32687, 32722, 32747, 32762, 32767
36 };
37 
38 
39 
40 /**********************
41  *      MACROS
42  **********************/
43 
44 /**********************
45  *   GLOBAL FUNCTIONS
46  **********************/
47 
48 /**
49  * Return with sinus of an angle
50  * @param angle
51  * @return sinus of 'angle'. sin(-90) = -32767, sin(90) = 32767
52  */
_lv_trigo_sin(int16_t angle)53 LV_ATTRIBUTE_FAST_MEM int16_t _lv_trigo_sin(int16_t angle)
54 {
55     int16_t ret = 0;
56     angle       = angle % 360;
57 
58     if(angle < 0) angle = 360 + angle;
59 
60     if(angle < 90) {
61         ret = sin0_90_table[angle];
62     }
63     else if(angle >= 90 && angle < 180) {
64         angle = 180 - angle;
65         ret   = sin0_90_table[angle];
66     }
67     else if(angle >= 180 && angle < 270) {
68         angle = angle - 180;
69         ret   = -sin0_90_table[angle];
70     }
71     else {   /*angle >=270*/
72         angle = 360 - angle;
73         ret   = -sin0_90_table[angle];
74     }
75 
76     return ret;
77 }
78 
79 /**
80  * Calculate a value of a Cubic Bezier function.
81  * @param t time in range of [0..LV_BEZIER_VAL_MAX]
82  * @param u0 start values in range of [0..LV_BEZIER_VAL_MAX]
83  * @param u1 control value 1 values in range of [0..LV_BEZIER_VAL_MAX]
84  * @param u2 control value 2 in range of [0..LV_BEZIER_VAL_MAX]
85  * @param u3 end values in range of [0..LV_BEZIER_VAL_MAX]
86  * @return the value calculated from the given parameters in range of [0..LV_BEZIER_VAL_MAX]
87  */
_lv_bezier3(uint32_t t,int32_t u0,int32_t u1,int32_t u2,int32_t u3)88 int32_t _lv_bezier3(uint32_t t, int32_t u0, int32_t u1, int32_t u2, int32_t u3)
89 {
90     uint32_t t_rem  = 1024 - t;
91     uint32_t t_rem2 = (t_rem * t_rem) >> 10;
92     uint32_t t_rem3 = (t_rem2 * t_rem) >> 10;
93     uint32_t t2     = (t * t) >> 10;
94     uint32_t t3     = (t2 * t) >> 10;
95 
96     uint32_t v1 = ((uint32_t)t_rem3 * u0) >> 10;
97     uint32_t v2 = ((uint32_t)3 * t_rem2 * t * u1) >> 20;
98     uint32_t v3 = ((uint32_t)3 * t_rem * t2 * u2) >> 20;
99     uint32_t v4 = ((uint32_t)t3 * u3) >> 10;
100 
101     return v1 + v2 + v3 + v4;
102 }
103 
104 /**
105  * Get the square root of a number
106  * @param x integer which square root should be calculated
107  * @param q store the result here. q->i: integer part, q->f: fractional part in 1/256 unit
108  * @param mask: optional to skip some iterations if the magnitude of the root is known.
109  * Set to 0x8000 by default.
110  * If root < 16: mask = 0x80
111  * If root < 256: mask = 0x800
112  * Else: mask = 0x8000
113  */
_lv_sqrt(uint32_t x,lv_sqrt_res_t * q,uint32_t mask)114 LV_ATTRIBUTE_FAST_MEM void _lv_sqrt(uint32_t x, lv_sqrt_res_t * q, uint32_t mask)
115 {
116     x = x << 8; /*To get 4 bit precision. (sqrt(256) = 16 = 4 bit)*/
117 
118     uint32_t root = 0;
119     uint32_t trial;
120     // http://ww1.microchip.com/...en/AppNotes/91040a.pdf
121     do {
122         trial = root + mask;
123         if((uint32_t)trial * trial <= x) root = trial;
124         mask = mask >> 1;
125     } while(mask);
126 
127     q->i = (uint32_t) root >> 4;
128     q->f = (uint32_t)(root & 0xf) << 4;
129 }
130 
131 /**
132  * Calculate the atan2 of a vector.
133  * @param x
134  * @param y
135  * @return the angle in degree calculated from the given parameters in range of [0..360]
136  */
_lv_atan2(int x,int y)137 uint16_t _lv_atan2(int x, int y)
138 {
139     // Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com
140     // Converts any XY values including 0 to a degree value that should be
141     // within +/- 1 degree of the accurate value without needing
142     // large slow trig functions like ArcTan() or ArcCos().
143     // NOTE! at least one of the X or Y values must be non-zero!
144     // This is the full version, for all 4 quadrants and will generate
145     // the angle in integer degrees from 0-360.
146     // Any values of X and Y are usable including negative values provided
147     // they are between -1456 and 1456 so the 16bit multiply does not overflow.
148 
149     unsigned char negflag;
150     unsigned char tempdegree;
151     unsigned char comp;
152     unsigned int degree;     // this will hold the result
153     //signed int x;            // these hold the XY vector at the start
154     //signed int y;            // (and they will be destroyed)
155     unsigned int ux;
156     unsigned int uy;
157 
158     // Save the sign flags then remove signs and get XY as unsigned ints
159     negflag = 0;
160     if(x < 0) {
161         negflag += 0x01;    // x flag bit
162         x = (0 - x);        // is now +
163     }
164     ux = x;                // copy to unsigned var before multiply
165     if(y < 0) {
166         negflag += 0x02;    // y flag bit
167         y = (0 - y);        // is now +
168     }
169     uy = y;                // copy to unsigned var before multiply
170 
171     // 1. Calc the scaled "degrees"
172     if(ux > uy) {
173         degree = (uy * 45) / ux;   // degree result will be 0-45 range
174         negflag += 0x10;    // octant flag bit
175     }
176     else {
177         degree = (ux * 45) / uy;   // degree result will be 0-45 range
178     }
179 
180     // 2. Compensate for the 4 degree error curve
181     comp = 0;
182     tempdegree = degree;    // use an unsigned char for speed!
183     if(tempdegree > 22) {    // if top half of range
184         if(tempdegree <= 44) comp++;
185         if(tempdegree <= 41) comp++;
186         if(tempdegree <= 37) comp++;
187         if(tempdegree <= 32) comp++;  // max is 4 degrees compensated
188     }
189     else {   // else is lower half of range
190         if(tempdegree >= 2) comp++;
191         if(tempdegree >= 6) comp++;
192         if(tempdegree >= 10) comp++;
193         if(tempdegree >= 15) comp++;  // max is 4 degrees compensated
194     }
195     degree += comp;   // degree is now accurate to +/- 1 degree!
196 
197     // Invert degree if it was X>Y octant, makes 0-45 into 90-45
198     if(negflag & 0x10) degree = (90 - degree);
199 
200     // 3. Degree is now 0-90 range for this quadrant,
201     // need to invert it for whichever quadrant it was in
202     if(negflag & 0x02) { // if -Y
203         if(negflag & 0x01)   // if -Y -X
204             degree = (180 + degree);
205         else        // else is -Y +X
206             degree = (180 - degree);
207     }
208     else {   // else is +Y
209         if(negflag & 0x01)   // if +Y -X
210             degree = (360 - degree);
211     }
212     return degree;
213 }
214 
215 /**
216  * Calculate the integer exponents.
217  * @param base
218  * @param power
219  * @return base raised to the power exponent
220  */
_lv_pow(int64_t base,int8_t exp)221 int64_t _lv_pow(int64_t base, int8_t exp)
222 {
223     int64_t result = 1;
224     while(exp) {
225         if(exp & 1)
226             result *= base;
227         exp >>= 1;
228         base *= base;
229     }
230 
231     return result;
232 }
233 
234 /**
235  * Get the mapped of a number given an input and output range
236  * @param x integer which mapped value should be calculated
237  * @param min_in min input range
238  * @param max_in max input range
239  * @param min_out max output range
240  * @param max_out max output range
241  * @return the mapped number
242  */
_lv_map(int32_t x,int32_t min_in,int32_t max_in,int32_t min_out,int32_t max_out)243 int16_t _lv_map(int32_t x, int32_t min_in, int32_t max_in, int32_t min_out, int32_t max_out)
244 {
245     if(x <= min_in) return min_out;
246     if(x >= max_in) return max_out;
247 
248     /* The equation should be:
249      *   ((x - min_in) / delta in) * delta_out + min_out
250      * To avoid rounding error reorder the operations:
251      *   (((x - min_in) * delta_out) / delta in) + min_out
252      */
253 
254     int32_t delta_in = max_in - min_in;
255     int32_t delta_out = max_out - min_out;
256 
257     return ((x - min_in) * delta_out) / delta_in + min_out;
258 }
259 
260 /**********************
261  *   STATIC FUNCTIONS
262  **********************/
263