1 #include "../lv_conf_internal.h"
2 #if LV_MEM_CUSTOM == 0
3
4 #include <limits.h>
5 #include "lv_tlsf.h"
6 #include "lv_mem.h"
7 #include "lv_log.h"
8 #include "lv_assert.h"
9
10 #undef printf
11 #define printf LV_LOG_ERROR
12
13 #define TLSF_MAX_POOL_SIZE LV_MEM_SIZE
14
15 #if !defined(_DEBUG)
16 #define _DEBUG 0
17 #endif
18
19 #if defined(__cplusplus)
20 #define tlsf_decl inline
21 #else
22 #define tlsf_decl static
23 #endif
24
25 /*
26 ** Architecture-specific bit manipulation routines.
27 **
28 ** TLSF achieves O(1) cost for malloc and free operations by limiting
29 ** the search for a free block to a free list of guaranteed size
30 ** adequate to fulfill the request, combined with efficient free list
31 ** queries using bitmasks and architecture-specific bit-manipulation
32 ** routines.
33 **
34 ** Most modern processors provide instructions to count leading zeroes
35 ** in a word, find the lowest and highest set bit, etc. These
36 ** specific implementations will be used when available, falling back
37 ** to a reasonably efficient generic implementation.
38 **
39 ** NOTE: TLSF spec relies on ffs/fls returning value 0..31.
40 ** ffs/fls return 1-32 by default, returning 0 for error.
41 */
42
43 /*
44 ** Detect whether or not we are building for a 32- or 64-bit (LP/LLP)
45 ** architecture. There is no reliable portable method at compile-time.
46 */
47 #if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) \
48 || defined (_WIN64) || defined (__LP64__) || defined (__LLP64__)
49 #define TLSF_64BIT
50 #endif
51
52 /*
53 ** Returns one plus the index of the most significant 1-bit of n,
54 ** or if n is zero, returns zero.
55 */
56 #ifdef TLSF_64BIT
57 #define TLSF_FLS(n) ((n) & 0xffffffff00000000ull ? 32 + TLSF_FLS32((size_t)(n) >> 32) : TLSF_FLS32(n))
58 #else
59 #define TLSF_FLS(n) TLSF_FLS32(n)
60 #endif
61
62 #define TLSF_FLS32(n) ((n) & 0xffff0000 ? 16 + TLSF_FLS16((n) >> 16) : TLSF_FLS16(n))
63 #define TLSF_FLS16(n) ((n) & 0xff00 ? 8 + TLSF_FLS8 ((n) >> 8) : TLSF_FLS8 (n))
64 #define TLSF_FLS8(n) ((n) & 0xf0 ? 4 + TLSF_FLS4 ((n) >> 4) : TLSF_FLS4 (n))
65 #define TLSF_FLS4(n) ((n) & 0xc ? 2 + TLSF_FLS2 ((n) >> 2) : TLSF_FLS2 (n))
66 #define TLSF_FLS2(n) ((n) & 0x2 ? 1 + TLSF_FLS1 ((n) >> 1) : TLSF_FLS1 (n))
67 #define TLSF_FLS1(n) ((n) & 0x1 ? 1 : 0)
68
69 /*
70 ** Returns round up value of log2(n).
71 ** Note: it is used at compile time.
72 */
73 #define TLSF_LOG2_CEIL(n) ((n) & (n - 1) ? TLSF_FLS(n) : TLSF_FLS(n) - 1)
74
75 /*
76 ** gcc 3.4 and above have builtin support, specialized for architecture.
77 ** Some compilers masquerade as gcc; patchlevel test filters them out.
78 */
79 #if defined (__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \
80 && defined (__GNUC_PATCHLEVEL__)
81
82 #if defined (__SNC__)
83 /* SNC for Playstation 3. */
84
tlsf_ffs(unsigned int word)85 tlsf_decl int tlsf_ffs(unsigned int word)
86 {
87 const unsigned int reverse = word & (~word + 1);
88 const int bit = 32 - __builtin_clz(reverse);
89 return bit - 1;
90 }
91
92 #else
93
tlsf_ffs(unsigned int word)94 tlsf_decl int tlsf_ffs(unsigned int word)
95 {
96 return __builtin_ffs(word) - 1;
97 }
98
99 #endif
100
tlsf_fls(unsigned int word)101 tlsf_decl int tlsf_fls(unsigned int word)
102 {
103 const int bit = word ? 32 - __builtin_clz(word) : 0;
104 return bit - 1;
105 }
106
107 #elif defined (_MSC_VER) && (_MSC_VER >= 1400) && (defined (_M_IX86) || defined (_M_X64))
108 /* Microsoft Visual C++ support on x86/X64 architectures. */
109
110 #include <intrin.h>
111
112 #pragma intrinsic(_BitScanReverse)
113 #pragma intrinsic(_BitScanForward)
114
tlsf_fls(unsigned int word)115 tlsf_decl int tlsf_fls(unsigned int word)
116 {
117 unsigned long index;
118 return _BitScanReverse(&index, word) ? index : -1;
119 }
120
tlsf_ffs(unsigned int word)121 tlsf_decl int tlsf_ffs(unsigned int word)
122 {
123 unsigned long index;
124 return _BitScanForward(&index, word) ? index : -1;
125 }
126
127 #elif defined (_MSC_VER) && defined (_M_PPC)
128 /* Microsoft Visual C++ support on PowerPC architectures. */
129
130 #include <ppcintrinsics.h>
131
tlsf_fls(unsigned int word)132 tlsf_decl int tlsf_fls(unsigned int word)
133 {
134 const int bit = 32 - _CountLeadingZeros(word);
135 return bit - 1;
136 }
137
tlsf_ffs(unsigned int word)138 tlsf_decl int tlsf_ffs(unsigned int word)
139 {
140 const unsigned int reverse = word & (~word + 1);
141 const int bit = 32 - _CountLeadingZeros(reverse);
142 return bit - 1;
143 }
144
145 #elif defined (__ARMCC_VERSION)
146 /* RealView Compilation Tools for ARM */
147
tlsf_ffs(unsigned int word)148 tlsf_decl int tlsf_ffs(unsigned int word)
149 {
150 const unsigned int reverse = word & (~word + 1);
151 const int bit = 32 - __clz(reverse);
152 return bit - 1;
153 }
154
tlsf_fls(unsigned int word)155 tlsf_decl int tlsf_fls(unsigned int word)
156 {
157 const int bit = word ? 32 - __clz(word) : 0;
158 return bit - 1;
159 }
160
161 #elif defined (__ghs__)
162 /* Green Hills support for PowerPC */
163
164 #include <ppc_ghs.h>
165
tlsf_ffs(unsigned int word)166 tlsf_decl int tlsf_ffs(unsigned int word)
167 {
168 const unsigned int reverse = word & (~word + 1);
169 const int bit = 32 - __CLZ32(reverse);
170 return bit - 1;
171 }
172
tlsf_fls(unsigned int word)173 tlsf_decl int tlsf_fls(unsigned int word)
174 {
175 const int bit = word ? 32 - __CLZ32(word) : 0;
176 return bit - 1;
177 }
178
179 #else
180 /* Fall back to generic implementation. */
181
182 /* Implement ffs in terms of fls. */
tlsf_ffs(unsigned int word)183 tlsf_decl int tlsf_ffs(unsigned int word)
184 {
185 const unsigned int reverse = word & (~word + 1);
186 return TLSF_FLS32(reverse) - 1;
187 }
188
tlsf_fls(unsigned int word)189 tlsf_decl int tlsf_fls(unsigned int word)
190 {
191 return TLSF_FLS32(word) - 1;
192 }
193
194 #endif
195
196 /* Possibly 64-bit version of tlsf_fls. */
197 #if defined (TLSF_64BIT)
tlsf_fls_sizet(size_t size)198 tlsf_decl int tlsf_fls_sizet(size_t size)
199 {
200 int high = (int)(size >> 32);
201 int bits = 0;
202 if(high) {
203 bits = 32 + tlsf_fls(high);
204 }
205 else {
206 bits = tlsf_fls((int)size & 0xffffffff);
207
208 }
209 return bits;
210 }
211 #else
212 #define tlsf_fls_sizet tlsf_fls
213 #endif
214
215 #undef tlsf_decl
216
217 /*
218 ** Constants.
219 */
220
221 /* Public constants: may be modified. */
222 enum tlsf_public {
223 /* log2 of number of linear subdivisions of block sizes. Larger
224 ** values require more memory in the control structure. Values of
225 ** 4 or 5 are typical.
226 */
227 SL_INDEX_COUNT_LOG2 = 5,
228 };
229
230 /* Private constants: do not modify. */
231 enum tlsf_private {
232 #if defined (TLSF_64BIT)
233 /* All allocation sizes and addresses are aligned to 8 bytes. */
234 ALIGN_SIZE_LOG2 = 3,
235 #else
236 /* All allocation sizes and addresses are aligned to 4 bytes. */
237 ALIGN_SIZE_LOG2 = 2,
238 #endif
239 ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
240
241 /*
242 ** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
243 ** However, because we linearly subdivide the second-level lists, and
244 ** our minimum size granularity is 4 bytes, it doesn't make sense to
245 ** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
246 ** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
247 ** trying to split size ranges into more slots than we have available.
248 ** Instead, we calculate the minimum threshold size, and place all
249 ** blocks below that size into the 0th first-level list.
250 */
251
252 #if defined (TLSF_MAX_POOL_SIZE)
253 FL_INDEX_MAX = TLSF_LOG2_CEIL(TLSF_MAX_POOL_SIZE),
254 #elif defined (TLSF_64BIT)
255 /*
256 ** TODO: We can increase this to support larger sizes, at the expense
257 ** of more overhead in the TLSF structure.
258 */
259 FL_INDEX_MAX = 32,
260 #else
261 FL_INDEX_MAX = 30,
262 #endif
263 SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
264 FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
265 FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
266
267 SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
268 };
269
270 /*
271 ** Cast and min/max macros.
272 */
273
274 #define tlsf_cast(t, exp) ((t) (exp))
275 #define tlsf_min(a, b) ((a) < (b) ? (a) : (b))
276 #define tlsf_max(a, b) ((a) > (b) ? (a) : (b))
277
278 /*
279 ** Set assert macro, if it has not been provided by the user.
280 */
281 #define tlsf_assert LV_ASSERT
282
283 #if !defined (tlsf_assert)
284 #define tlsf_assert assert
285 #endif
286
287 /*
288 ** Static assertion mechanism.
289 */
290
291 #define _tlsf_glue2(x, y) x ## y
292 #define _tlsf_glue(x, y) _tlsf_glue2(x, y)
293 #define tlsf_static_assert(exp) \
294 typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1]
295
296 /* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
297 tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
298 tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
299 tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
300
301 /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
302 tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
303
304 /* Ensure we've properly tuned our sizes. */
305 tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
306
307 /*
308 ** Data structures and associated constants.
309 */
310
311 /*
312 ** Block header structure.
313 **
314 ** There are several implementation subtleties involved:
315 ** - The prev_phys_block field is only valid if the previous block is free.
316 ** - The prev_phys_block field is actually stored at the end of the
317 ** previous block. It appears at the beginning of this structure only to
318 ** simplify the implementation.
319 ** - The next_free / prev_free fields are only valid if the block is free.
320 */
321 typedef struct block_header_t {
322 /* Points to the previous physical block. */
323 struct block_header_t * prev_phys_block;
324
325 /* The size of this block, excluding the block header. */
326 size_t size;
327
328 /* Next and previous free blocks. */
329 struct block_header_t * next_free;
330 struct block_header_t * prev_free;
331 } block_header_t;
332
333 /*
334 ** Since block sizes are always at least a multiple of 4, the two least
335 ** significant bits of the size field are used to store the block status:
336 ** - bit 0: whether block is busy or free
337 ** - bit 1: whether previous block is busy or free
338 */
339 static const size_t block_header_free_bit = 1 << 0;
340 static const size_t block_header_prev_free_bit = 1 << 1;
341
342 /*
343 ** The size of the block header exposed to used blocks is the size field.
344 ** The prev_phys_block field is stored *inside* the previous free block.
345 */
346 static const size_t block_header_overhead = sizeof(size_t);
347
348 /* User data starts directly after the size field in a used block. */
349 static const size_t block_start_offset =
350 offsetof(block_header_t, size) + sizeof(size_t);
351
352 /*
353 ** A free block must be large enough to store its header minus the size of
354 ** the prev_phys_block field, and no larger than the number of addressable
355 ** bits for FL_INDEX.
356 */
357 static const size_t block_size_min =
358 sizeof(block_header_t) - sizeof(block_header_t *);
359 static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX;
360
361 /* The TLSF control structure. */
362 typedef struct control_t {
363 /* Empty lists point at this block to indicate they are free. */
364 block_header_t block_null;
365
366 /* Bitmaps for free lists. */
367 unsigned int fl_bitmap;
368 unsigned int sl_bitmap[FL_INDEX_COUNT];
369
370 /* Head of free lists. */
371 block_header_t * blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
372 } control_t;
373
374 /* A type used for casting when doing pointer arithmetic. */
375 typedef ptrdiff_t tlsfptr_t;
376
377 /*
378 ** block_header_t member functions.
379 */
380
block_size(const block_header_t * block)381 static size_t block_size(const block_header_t * block)
382 {
383 return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
384 }
385
block_set_size(block_header_t * block,size_t size)386 static void block_set_size(block_header_t * block, size_t size)
387 {
388 const size_t oldsize = block->size;
389 block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
390 }
391
block_is_last(const block_header_t * block)392 static int block_is_last(const block_header_t * block)
393 {
394 return block_size(block) == 0;
395 }
396
block_is_free(const block_header_t * block)397 static int block_is_free(const block_header_t * block)
398 {
399 return tlsf_cast(int, block->size & block_header_free_bit);
400 }
401
block_set_free(block_header_t * block)402 static void block_set_free(block_header_t * block)
403 {
404 block->size |= block_header_free_bit;
405 }
406
block_set_used(block_header_t * block)407 static void block_set_used(block_header_t * block)
408 {
409 block->size &= ~block_header_free_bit;
410 }
411
block_is_prev_free(const block_header_t * block)412 static int block_is_prev_free(const block_header_t * block)
413 {
414 return tlsf_cast(int, block->size & block_header_prev_free_bit);
415 }
416
block_set_prev_free(block_header_t * block)417 static void block_set_prev_free(block_header_t * block)
418 {
419 block->size |= block_header_prev_free_bit;
420 }
421
block_set_prev_used(block_header_t * block)422 static void block_set_prev_used(block_header_t * block)
423 {
424 block->size &= ~block_header_prev_free_bit;
425 }
426
block_from_ptr(const void * ptr)427 static block_header_t * block_from_ptr(const void * ptr)
428 {
429 return tlsf_cast(block_header_t *,
430 tlsf_cast(unsigned char *, ptr) - block_start_offset);
431 }
432
block_to_ptr(const block_header_t * block)433 static void * block_to_ptr(const block_header_t * block)
434 {
435 return tlsf_cast(void *,
436 tlsf_cast(unsigned char *, block) + block_start_offset);
437 }
438
439 /* Return location of next block after block of given size. */
offset_to_block(const void * ptr,size_t size)440 static block_header_t * offset_to_block(const void * ptr, size_t size)
441 {
442 return tlsf_cast(block_header_t *, tlsf_cast(tlsfptr_t, ptr) + size);
443 }
444
445 /* Return location of previous block. */
block_prev(const block_header_t * block)446 static block_header_t * block_prev(const block_header_t * block)
447 {
448 tlsf_assert(block_is_prev_free(block) && "previous block must be free");
449 return block->prev_phys_block;
450 }
451
452 /* Return location of next existing block. */
block_next(const block_header_t * block)453 static block_header_t * block_next(const block_header_t * block)
454 {
455 block_header_t * next = offset_to_block(block_to_ptr(block),
456 block_size(block) - block_header_overhead);
457 tlsf_assert(!block_is_last(block));
458 return next;
459 }
460
461 /* Link a new block with its physical neighbor, return the neighbor. */
block_link_next(block_header_t * block)462 static block_header_t * block_link_next(block_header_t * block)
463 {
464 block_header_t * next = block_next(block);
465 next->prev_phys_block = block;
466 return next;
467 }
468
block_mark_as_free(block_header_t * block)469 static void block_mark_as_free(block_header_t * block)
470 {
471 /* Link the block to the next block, first. */
472 block_header_t * next = block_link_next(block);
473 block_set_prev_free(next);
474 block_set_free(block);
475 }
476
block_mark_as_used(block_header_t * block)477 static void block_mark_as_used(block_header_t * block)
478 {
479 block_header_t * next = block_next(block);
480 block_set_prev_used(next);
481 block_set_used(block);
482 }
483
align_up(size_t x,size_t align)484 static size_t align_up(size_t x, size_t align)
485 {
486 tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
487 return (x + (align - 1)) & ~(align - 1);
488 }
489
align_down(size_t x,size_t align)490 static size_t align_down(size_t x, size_t align)
491 {
492 tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
493 return x - (x & (align - 1));
494 }
495
align_ptr(const void * ptr,size_t align)496 static void * align_ptr(const void * ptr, size_t align)
497 {
498 const tlsfptr_t aligned =
499 (tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
500 tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
501 return tlsf_cast(void *, aligned);
502 }
503
504 /*
505 ** Adjust an allocation size to be aligned to word size, and no smaller
506 ** than internal minimum.
507 */
adjust_request_size(size_t size,size_t align)508 static size_t adjust_request_size(size_t size, size_t align)
509 {
510 size_t adjust = 0;
511 if(size) {
512 const size_t aligned = align_up(size, align);
513
514 /* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
515 if(aligned < block_size_max) {
516 adjust = tlsf_max(aligned, block_size_min);
517 }
518 }
519 return adjust;
520 }
521
522 /*
523 ** TLSF utility functions. In most cases, these are direct translations of
524 ** the documentation found in the white paper.
525 */
526
mapping_insert(size_t size,int * fli,int * sli)527 static void mapping_insert(size_t size, int * fli, int * sli)
528 {
529 int fl, sl;
530 if(size < SMALL_BLOCK_SIZE) {
531 /* Store small blocks in first list. */
532 fl = 0;
533 sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
534 }
535 else {
536 fl = tlsf_fls_sizet(size);
537 sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
538 fl -= (FL_INDEX_SHIFT - 1);
539 }
540 *fli = fl;
541 *sli = sl;
542 }
543
544 /* This version rounds up to the next block size (for allocations) */
mapping_search(size_t size,int * fli,int * sli)545 static void mapping_search(size_t size, int * fli, int * sli)
546 {
547 if(size >= SMALL_BLOCK_SIZE) {
548 const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1;
549 size += round;
550 }
551 mapping_insert(size, fli, sli);
552 }
553
search_suitable_block(control_t * control,int * fli,int * sli)554 static block_header_t * search_suitable_block(control_t * control, int * fli, int * sli)
555 {
556 int fl = *fli;
557 int sl = *sli;
558
559 /*
560 ** First, search for a block in the list associated with the given
561 ** fl/sl index.
562 */
563 unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
564 if(!sl_map) {
565 /* No block exists. Search in the next largest first-level list. */
566 const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1));
567 if(!fl_map) {
568 /* No free blocks available, memory has been exhausted. */
569 return 0;
570 }
571
572 fl = tlsf_ffs(fl_map);
573 *fli = fl;
574 sl_map = control->sl_bitmap[fl];
575 }
576 tlsf_assert(sl_map && "internal error - second level bitmap is null");
577 sl = tlsf_ffs(sl_map);
578 *sli = sl;
579
580 /* Return the first block in the free list. */
581 return control->blocks[fl][sl];
582 }
583
584 /* Remove a free block from the free list.*/
remove_free_block(control_t * control,block_header_t * block,int fl,int sl)585 static void remove_free_block(control_t * control, block_header_t * block, int fl, int sl)
586 {
587 block_header_t * prev = block->prev_free;
588 block_header_t * next = block->next_free;
589 tlsf_assert(prev && "prev_free field can not be null");
590 tlsf_assert(next && "next_free field can not be null");
591 next->prev_free = prev;
592 prev->next_free = next;
593
594 /* If this block is the head of the free list, set new head. */
595 if(control->blocks[fl][sl] == block) {
596 control->blocks[fl][sl] = next;
597
598 /* If the new head is null, clear the bitmap. */
599 if(next == &control->block_null) {
600 control->sl_bitmap[fl] &= ~(1U << sl);
601
602 /* If the second bitmap is now empty, clear the fl bitmap. */
603 if(!control->sl_bitmap[fl]) {
604 control->fl_bitmap &= ~(1U << fl);
605 }
606 }
607 }
608 }
609
610 /* Insert a free block into the free block list. */
insert_free_block(control_t * control,block_header_t * block,int fl,int sl)611 static void insert_free_block(control_t * control, block_header_t * block, int fl, int sl)
612 {
613 block_header_t * current = control->blocks[fl][sl];
614 tlsf_assert(current && "free list cannot have a null entry");
615 tlsf_assert(block && "cannot insert a null entry into the free list");
616 block->next_free = current;
617 block->prev_free = &control->block_null;
618 current->prev_free = block;
619
620 tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE)
621 && "block not aligned properly");
622 /*
623 ** Insert the new block at the head of the list, and mark the first-
624 ** and second-level bitmaps appropriately.
625 */
626 control->blocks[fl][sl] = block;
627 control->fl_bitmap |= (1U << fl);
628 control->sl_bitmap[fl] |= (1U << sl);
629 }
630
631 /* Remove a given block from the free list. */
block_remove(control_t * control,block_header_t * block)632 static void block_remove(control_t * control, block_header_t * block)
633 {
634 int fl, sl;
635 mapping_insert(block_size(block), &fl, &sl);
636 remove_free_block(control, block, fl, sl);
637 }
638
639 /* Insert a given block into the free list. */
block_insert(control_t * control,block_header_t * block)640 static void block_insert(control_t * control, block_header_t * block)
641 {
642 int fl, sl;
643 mapping_insert(block_size(block), &fl, &sl);
644 insert_free_block(control, block, fl, sl);
645 }
646
block_can_split(block_header_t * block,size_t size)647 static int block_can_split(block_header_t * block, size_t size)
648 {
649 return block_size(block) >= sizeof(block_header_t) + size;
650 }
651
652 /* Split a block into two, the second of which is free. */
block_split(block_header_t * block,size_t size)653 static block_header_t * block_split(block_header_t * block, size_t size)
654 {
655 /* Calculate the amount of space left in the remaining block. */
656 block_header_t * remaining =
657 offset_to_block(block_to_ptr(block), size - block_header_overhead);
658
659 const size_t remain_size = block_size(block) - (size + block_header_overhead);
660
661 tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE)
662 && "remaining block not aligned properly");
663
664 tlsf_assert(block_size(block) == remain_size + size + block_header_overhead);
665 block_set_size(remaining, remain_size);
666 tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size");
667
668 block_set_size(block, size);
669 block_mark_as_free(remaining);
670
671 return remaining;
672 }
673
674 /* Absorb a free block's storage into an adjacent previous free block. */
block_absorb(block_header_t * prev,block_header_t * block)675 static block_header_t * block_absorb(block_header_t * prev, block_header_t * block)
676 {
677 tlsf_assert(!block_is_last(prev) && "previous block can't be last");
678 /* Note: Leaves flags untouched. */
679 prev->size += block_size(block) + block_header_overhead;
680 block_link_next(prev);
681 return prev;
682 }
683
684 /* Merge a just-freed block with an adjacent previous free block. */
block_merge_prev(control_t * control,block_header_t * block)685 static block_header_t * block_merge_prev(control_t * control, block_header_t * block)
686 {
687 if(block_is_prev_free(block)) {
688 block_header_t * prev = block_prev(block);
689 tlsf_assert(prev && "prev physical block can't be null");
690 tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
691 block_remove(control, prev);
692 block = block_absorb(prev, block);
693 }
694
695 return block;
696 }
697
698 /* Merge a just-freed block with an adjacent free block. */
block_merge_next(control_t * control,block_header_t * block)699 static block_header_t * block_merge_next(control_t * control, block_header_t * block)
700 {
701 block_header_t * next = block_next(block);
702 tlsf_assert(next && "next physical block can't be null");
703
704 if(block_is_free(next)) {
705 tlsf_assert(!block_is_last(block) && "previous block can't be last");
706 block_remove(control, next);
707 block = block_absorb(block, next);
708 }
709
710 return block;
711 }
712
713 /* Trim any trailing block space off the end of a block, return to pool. */
block_trim_free(control_t * control,block_header_t * block,size_t size)714 static void block_trim_free(control_t * control, block_header_t * block, size_t size)
715 {
716 tlsf_assert(block_is_free(block) && "block must be free");
717 if(block_can_split(block, size)) {
718 block_header_t * remaining_block = block_split(block, size);
719 block_link_next(block);
720 block_set_prev_free(remaining_block);
721 block_insert(control, remaining_block);
722 }
723 }
724
725 /* Trim any trailing block space off the end of a used block, return to pool. */
block_trim_used(control_t * control,block_header_t * block,size_t size)726 static void block_trim_used(control_t * control, block_header_t * block, size_t size)
727 {
728 tlsf_assert(!block_is_free(block) && "block must be used");
729 if(block_can_split(block, size)) {
730 /* If the next block is free, we must coalesce. */
731 block_header_t * remaining_block = block_split(block, size);
732 block_set_prev_used(remaining_block);
733
734 remaining_block = block_merge_next(control, remaining_block);
735 block_insert(control, remaining_block);
736 }
737 }
738
block_trim_free_leading(control_t * control,block_header_t * block,size_t size)739 static block_header_t * block_trim_free_leading(control_t * control, block_header_t * block, size_t size)
740 {
741 block_header_t * remaining_block = block;
742 if(block_can_split(block, size)) {
743 /* We want the 2nd block. */
744 remaining_block = block_split(block, size - block_header_overhead);
745 block_set_prev_free(remaining_block);
746
747 block_link_next(block);
748 block_insert(control, block);
749 }
750
751 return remaining_block;
752 }
753
block_locate_free(control_t * control,size_t size)754 static block_header_t * block_locate_free(control_t * control, size_t size)
755 {
756 int fl = 0, sl = 0;
757 block_header_t * block = 0;
758
759 if(size) {
760 mapping_search(size, &fl, &sl);
761
762 /*
763 ** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
764 ** with indices that are off the end of the block array.
765 ** So, we protect against that here, since this is the only callsite of mapping_search.
766 ** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
767 */
768 if(fl < FL_INDEX_COUNT) {
769 block = search_suitable_block(control, &fl, &sl);
770 }
771 }
772
773 if(block) {
774 tlsf_assert(block_size(block) >= size);
775 remove_free_block(control, block, fl, sl);
776 }
777
778 return block;
779 }
780
block_prepare_used(control_t * control,block_header_t * block,size_t size)781 static void * block_prepare_used(control_t * control, block_header_t * block, size_t size)
782 {
783 void * p = 0;
784 if(block) {
785 tlsf_assert(size && "size must be non-zero");
786 block_trim_free(control, block, size);
787 block_mark_as_used(block);
788 p = block_to_ptr(block);
789 }
790 return p;
791 }
792
793 /* Clear structure and point all empty lists at the null block. */
control_constructor(control_t * control)794 static void control_constructor(control_t * control)
795 {
796 int i, j;
797
798 control->block_null.next_free = &control->block_null;
799 control->block_null.prev_free = &control->block_null;
800
801 control->fl_bitmap = 0;
802 for(i = 0; i < FL_INDEX_COUNT; ++i) {
803 control->sl_bitmap[i] = 0;
804 for(j = 0; j < SL_INDEX_COUNT; ++j) {
805 control->blocks[i][j] = &control->block_null;
806 }
807 }
808 }
809
810 /*
811 ** Debugging utilities.
812 */
813
814 typedef struct integrity_t {
815 int prev_status;
816 int status;
817 } integrity_t;
818
819 #define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }
820
integrity_walker(void * ptr,size_t size,int used,void * user)821 static void integrity_walker(void * ptr, size_t size, int used, void * user)
822 {
823 block_header_t * block = block_from_ptr(ptr);
824 integrity_t * integ = tlsf_cast(integrity_t *, user);
825 const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
826 const int this_status = block_is_free(block) ? 1 : 0;
827 const size_t this_block_size = block_size(block);
828
829 int status = 0;
830 LV_UNUSED(used);
831 tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
832 tlsf_insist(size == this_block_size && "block size incorrect");
833
834 integ->prev_status = this_status;
835 integ->status += status;
836 }
837
lv_tlsf_check(lv_tlsf_t tlsf)838 int lv_tlsf_check(lv_tlsf_t tlsf)
839 {
840 int i, j;
841
842 control_t * control = tlsf_cast(control_t *, tlsf);
843 int status = 0;
844
845 /* Check that the free lists and bitmaps are accurate. */
846 for(i = 0; i < FL_INDEX_COUNT; ++i) {
847 for(j = 0; j < SL_INDEX_COUNT; ++j) {
848 const int fl_map = control->fl_bitmap & (1U << i);
849 const int sl_list = control->sl_bitmap[i];
850 const int sl_map = sl_list & (1U << j);
851 const block_header_t * block = control->blocks[i][j];
852
853 /* Check that first- and second-level lists agree. */
854 if(!fl_map) {
855 tlsf_insist(!sl_map && "second-level map must be null");
856 }
857
858 if(!sl_map) {
859 tlsf_insist(block == &control->block_null && "block list must be null");
860 continue;
861 }
862
863 /* Check that there is at least one free block. */
864 tlsf_insist(sl_list && "no free blocks in second-level map");
865 tlsf_insist(block != &control->block_null && "block should not be null");
866
867 while(block != &control->block_null) {
868 int fli, sli;
869 tlsf_insist(block_is_free(block) && "block should be free");
870 tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
871 tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
872 tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
873 tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
874
875 mapping_insert(block_size(block), &fli, &sli);
876 tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
877 block = block->next_free;
878 }
879 }
880 }
881
882 return status;
883 }
884
885 #undef tlsf_insist
886
default_walker(void * ptr,size_t size,int used,void * user)887 static void default_walker(void * ptr, size_t size, int used, void * user)
888 {
889 LV_UNUSED(user);
890 printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, (void *)block_from_ptr(ptr));
891 }
892
lv_tlsf_walk_pool(lv_pool_t pool,lv_tlsf_walker walker,void * user)893 void lv_tlsf_walk_pool(lv_pool_t pool, lv_tlsf_walker walker, void * user)
894 {
895 lv_tlsf_walker pool_walker = walker ? walker : default_walker;
896 block_header_t * block =
897 offset_to_block(pool, -(int)block_header_overhead);
898
899 while(block && !block_is_last(block)) {
900 pool_walker(
901 block_to_ptr(block),
902 block_size(block),
903 !block_is_free(block),
904 user);
905 block = block_next(block);
906 }
907 }
908
lv_tlsf_block_size(void * ptr)909 size_t lv_tlsf_block_size(void * ptr)
910 {
911 size_t size = 0;
912 if(ptr) {
913 const block_header_t * block = block_from_ptr(ptr);
914 size = block_size(block);
915 }
916 return size;
917 }
918
lv_tlsf_check_pool(lv_pool_t pool)919 int lv_tlsf_check_pool(lv_pool_t pool)
920 {
921 /* Check that the blocks are physically correct. */
922 integrity_t integ = { 0, 0 };
923 lv_tlsf_walk_pool(pool, integrity_walker, &integ);
924
925 return integ.status;
926 }
927
928 /*
929 ** Size of the TLSF structures in a given memory block passed to
930 ** lv_tlsf_create, equal to the size of a control_t
931 */
lv_tlsf_size(void)932 size_t lv_tlsf_size(void)
933 {
934 return sizeof(control_t);
935 }
936
lv_tlsf_align_size(void)937 size_t lv_tlsf_align_size(void)
938 {
939 return ALIGN_SIZE;
940 }
941
lv_tlsf_block_size_min(void)942 size_t lv_tlsf_block_size_min(void)
943 {
944 return block_size_min;
945 }
946
lv_tlsf_block_size_max(void)947 size_t lv_tlsf_block_size_max(void)
948 {
949 return block_size_max;
950 }
951
952 /*
953 ** Overhead of the TLSF structures in a given memory block passed to
954 ** lv_tlsf_add_pool, equal to the overhead of a free block and the
955 ** sentinel block.
956 */
lv_tlsf_pool_overhead(void)957 size_t lv_tlsf_pool_overhead(void)
958 {
959 return 2 * block_header_overhead;
960 }
961
lv_tlsf_alloc_overhead(void)962 size_t lv_tlsf_alloc_overhead(void)
963 {
964 return block_header_overhead;
965 }
966
lv_tlsf_add_pool(lv_tlsf_t tlsf,void * mem,size_t bytes)967 lv_pool_t lv_tlsf_add_pool(lv_tlsf_t tlsf, void * mem, size_t bytes)
968 {
969 block_header_t * block;
970 block_header_t * next;
971
972 const size_t pool_overhead = lv_tlsf_pool_overhead();
973 const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);
974
975 if(((ptrdiff_t)mem % ALIGN_SIZE) != 0) {
976 printf("lv_tlsf_add_pool: Memory must be aligned by %u bytes.\n",
977 (unsigned int)ALIGN_SIZE);
978 return 0;
979 }
980
981 if(pool_bytes < block_size_min || pool_bytes > block_size_max) {
982 #if defined (TLSF_64BIT)
983 printf("lv_tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
984 (unsigned int)(pool_overhead + block_size_min),
985 (unsigned int)((pool_overhead + block_size_max) / 256));
986 #else
987 printf("lv_tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
988 (unsigned int)(pool_overhead + block_size_min),
989 (unsigned int)(pool_overhead + block_size_max));
990 #endif
991 return 0;
992 }
993
994 /*
995 ** Create the main free block. Offset the start of the block slightly
996 ** so that the prev_phys_block field falls outside of the pool -
997 ** it will never be used.
998 */
999 block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
1000 block_set_size(block, pool_bytes);
1001 block_set_free(block);
1002 block_set_prev_used(block);
1003 block_insert(tlsf_cast(control_t *, tlsf), block);
1004
1005 /* Split the block to create a zero-size sentinel block. */
1006 next = block_link_next(block);
1007 block_set_size(next, 0);
1008 block_set_used(next);
1009 block_set_prev_free(next);
1010
1011 return mem;
1012 }
1013
lv_tlsf_remove_pool(lv_tlsf_t tlsf,lv_pool_t pool)1014 void lv_tlsf_remove_pool(lv_tlsf_t tlsf, lv_pool_t pool)
1015 {
1016 control_t * control = tlsf_cast(control_t *, tlsf);
1017 block_header_t * block = offset_to_block(pool, -(int)block_header_overhead);
1018
1019 int fl = 0, sl = 0;
1020
1021 tlsf_assert(block_is_free(block) && "block should be free");
1022 tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
1023 tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
1024
1025 mapping_insert(block_size(block), &fl, &sl);
1026 remove_free_block(control, block, fl, sl);
1027 }
1028
1029 /*
1030 ** TLSF main interface.
1031 */
1032
1033 #if _DEBUG
test_ffs_fls()1034 int test_ffs_fls()
1035 {
1036 /* Verify ffs/fls work properly. */
1037 int rv = 0;
1038 rv += (tlsf_ffs(0) == -1) ? 0 : 0x1;
1039 rv += (tlsf_fls(0) == -1) ? 0 : 0x2;
1040 rv += (tlsf_ffs(1) == 0) ? 0 : 0x4;
1041 rv += (tlsf_fls(1) == 0) ? 0 : 0x8;
1042 rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10;
1043 rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20;
1044 rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40;
1045 rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80;
1046
1047 #if defined (TLSF_64BIT)
1048 rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100;
1049 rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200;
1050 rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400;
1051 #endif
1052
1053 if(rv) {
1054 printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv);
1055 }
1056 return rv;
1057 }
1058 #endif
1059
lv_tlsf_create(void * mem)1060 lv_tlsf_t lv_tlsf_create(void * mem)
1061 {
1062 #if _DEBUG
1063 if(test_ffs_fls()) {
1064 return 0;
1065 }
1066 #endif
1067
1068 if(((tlsfptr_t)mem % ALIGN_SIZE) != 0) {
1069 printf("lv_tlsf_create: Memory must be aligned to %u bytes.\n",
1070 (unsigned int)ALIGN_SIZE);
1071 return 0;
1072 }
1073
1074 control_constructor(tlsf_cast(control_t *, mem));
1075
1076 return tlsf_cast(lv_tlsf_t, mem);
1077 }
1078
lv_tlsf_create_with_pool(void * mem,size_t bytes)1079 lv_tlsf_t lv_tlsf_create_with_pool(void * mem, size_t bytes)
1080 {
1081 lv_tlsf_t tlsf = lv_tlsf_create(mem);
1082 lv_tlsf_add_pool(tlsf, (char *)mem + lv_tlsf_size(), bytes - lv_tlsf_size());
1083 return tlsf;
1084 }
1085
lv_tlsf_destroy(lv_tlsf_t tlsf)1086 void lv_tlsf_destroy(lv_tlsf_t tlsf)
1087 {
1088 /* Nothing to do. */
1089 LV_UNUSED(tlsf);
1090 }
1091
lv_tlsf_get_pool(lv_tlsf_t tlsf)1092 lv_pool_t lv_tlsf_get_pool(lv_tlsf_t tlsf)
1093 {
1094 return tlsf_cast(lv_pool_t, (char *)tlsf + lv_tlsf_size());
1095 }
1096
lv_tlsf_malloc(lv_tlsf_t tlsf,size_t size)1097 void * lv_tlsf_malloc(lv_tlsf_t tlsf, size_t size)
1098 {
1099 control_t * control = tlsf_cast(control_t *, tlsf);
1100 const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
1101 block_header_t * block = block_locate_free(control, adjust);
1102 return block_prepare_used(control, block, adjust);
1103 }
1104
lv_tlsf_memalign(lv_tlsf_t tlsf,size_t align,size_t size)1105 void * lv_tlsf_memalign(lv_tlsf_t tlsf, size_t align, size_t size)
1106 {
1107 control_t * control = tlsf_cast(control_t *, tlsf);
1108 const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
1109
1110 /*
1111 ** We must allocate an additional minimum block size bytes so that if
1112 ** our free block will leave an alignment gap which is smaller, we can
1113 ** trim a leading free block and release it back to the pool. We must
1114 ** do this because the previous physical block is in use, therefore
1115 ** the prev_phys_block field is not valid, and we can't simply adjust
1116 ** the size of that block.
1117 */
1118 const size_t gap_minimum = sizeof(block_header_t);
1119 const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align);
1120
1121 /*
1122 ** If alignment is less than or equals base alignment, we're done.
1123 ** If we requested 0 bytes, return null, as lv_tlsf_malloc(0) does.
1124 */
1125 const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
1126
1127 block_header_t * block = block_locate_free(control, aligned_size);
1128
1129 /* This can't be a static assert. */
1130 tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
1131
1132 if(block) {
1133 void * ptr = block_to_ptr(block);
1134 void * aligned = align_ptr(ptr, align);
1135 size_t gap = tlsf_cast(size_t,
1136 tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
1137
1138 /* If gap size is too small, offset to next aligned boundary. */
1139 if(gap && gap < gap_minimum) {
1140 const size_t gap_remain = gap_minimum - gap;
1141 const size_t offset = tlsf_max(gap_remain, align);
1142 const void * next_aligned = tlsf_cast(void *,
1143 tlsf_cast(tlsfptr_t, aligned) + offset);
1144
1145 aligned = align_ptr(next_aligned, align);
1146 gap = tlsf_cast(size_t,
1147 tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
1148 }
1149
1150 if(gap) {
1151 tlsf_assert(gap >= gap_minimum && "gap size too small");
1152 block = block_trim_free_leading(control, block, gap);
1153 }
1154 }
1155
1156 return block_prepare_used(control, block, adjust);
1157 }
1158
lv_tlsf_free(lv_tlsf_t tlsf,const void * ptr)1159 size_t lv_tlsf_free(lv_tlsf_t tlsf, const void * ptr)
1160 {
1161 size_t size = 0;
1162 /* Don't attempt to free a NULL pointer. */
1163 if(ptr) {
1164 control_t * control = tlsf_cast(control_t *, tlsf);
1165 block_header_t * block = block_from_ptr(ptr);
1166 tlsf_assert(!block_is_free(block) && "block already marked as free");
1167 size = block->size;
1168 block_mark_as_free(block);
1169 block = block_merge_prev(control, block);
1170 block = block_merge_next(control, block);
1171 block_insert(control, block);
1172 }
1173
1174 return size;
1175 }
1176
1177 /*
1178 ** The TLSF block information provides us with enough information to
1179 ** provide a reasonably intelligent implementation of realloc, growing or
1180 ** shrinking the currently allocated block as required.
1181 **
1182 ** This routine handles the somewhat esoteric edge cases of realloc:
1183 ** - a non-zero size with a null pointer will behave like malloc
1184 ** - a zero size with a non-null pointer will behave like free
1185 ** - a request that cannot be satisfied will leave the original buffer
1186 ** untouched
1187 ** - an extended buffer size will leave the newly-allocated area with
1188 ** contents undefined
1189 */
lv_tlsf_realloc(lv_tlsf_t tlsf,void * ptr,size_t size)1190 void * lv_tlsf_realloc(lv_tlsf_t tlsf, void * ptr, size_t size)
1191 {
1192 control_t * control = tlsf_cast(control_t *, tlsf);
1193 void * p = 0;
1194
1195 /* Zero-size requests are treated as free. */
1196 if(ptr && size == 0) {
1197 lv_tlsf_free(tlsf, ptr);
1198 }
1199 /* Requests with NULL pointers are treated as malloc. */
1200 else if(!ptr) {
1201 p = lv_tlsf_malloc(tlsf, size);
1202 }
1203 else {
1204 block_header_t * block = block_from_ptr(ptr);
1205 block_header_t * next = block_next(block);
1206
1207 const size_t cursize = block_size(block);
1208 const size_t combined = cursize + block_size(next) + block_header_overhead;
1209 const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
1210 if(size > cursize && adjust == 0) {
1211 /* The request is probably too large, fail */
1212 return NULL;
1213 }
1214
1215 tlsf_assert(!block_is_free(block) && "block already marked as free");
1216
1217 /*
1218 ** If the next block is used, or when combined with the current
1219 ** block, does not offer enough space, we must reallocate and copy.
1220 */
1221 if(adjust > cursize && (!block_is_free(next) || adjust > combined)) {
1222 p = lv_tlsf_malloc(tlsf, size);
1223 if(p) {
1224 const size_t minsize = tlsf_min(cursize, size);
1225 lv_memcpy(p, ptr, minsize);
1226 lv_tlsf_free(tlsf, ptr);
1227 }
1228 }
1229 else {
1230 /* Do we need to expand to the next block? */
1231 if(adjust > cursize) {
1232 block_merge_next(control, block);
1233 block_mark_as_used(block);
1234 }
1235
1236 /* Trim the resulting block and return the original pointer. */
1237 block_trim_used(control, block, adjust);
1238 p = ptr;
1239 }
1240 }
1241
1242 return p;
1243 }
1244
1245 #endif /* LV_MEM_CUSTOM == 0 */
1246