1 /*
2 * SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include "esp_efuse_utility.h"
8
9 #include "soc/efuse_periph.h"
10 #include "esp_log.h"
11 #include "esp_rom_sys.h"
12 #include "assert.h"
13 #include "sdkconfig.h"
14 #include <sys/param.h>
15
16 static const char *TAG = "efuse";
17
18 // This counter is used to implement independent read access for efuses.
19 // During the read operation, the counter should be unchanged and even.
20 // If it is not so, we must repeat the read to make sure that the burn operation does not affect the read data.
21 static volatile unsigned s_burn_counter = 0;
22
23 // Array for emulate efuse registers.
24 #ifdef CONFIG_EFUSE_VIRTUAL
25 uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
26
27 #ifndef BOOTLOADER_BUILD
28 #ifndef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
29 /* Call the update function to seed virtual efuses during initialization */
30 void esp_efuse_utility_update_virt_blocks(void);
31 #endif // CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
32 #endif // NOT BOOTLOADER_BUILD
33
34 #endif // CONFIG_EFUSE_VIRTUAL
35
36 extern const esp_efuse_range_addr_t range_read_addr_blocks[];
37 extern const esp_efuse_range_addr_t range_write_addr_blocks[];
38
39 static int get_reg_num(int bit_start, int bit_count, int i_reg);
40 static int get_starting_bit_num_in_reg(int bit_start, int i_reg);
41 static uint32_t get_mask(unsigned int bit_count, unsigned int shift);
42 static int get_count_bits_in_reg(int bit_start, int bit_count, int i_reg);
43 static void write_reg(esp_efuse_block_t blk, unsigned int num_reg, uint32_t value);
44 static uint32_t fill_reg(int bit_start_in_reg, int bit_count_in_reg, uint8_t* blob, int* filled_bits_blob);
45 static uint32_t set_cnt_in_reg(int bit_start_in_reg, int bit_count_used_in_reg, uint32_t reg_masked, size_t* cnt);
46 static bool check_range_of_bits(esp_efuse_block_t blk, int offset_in_bits, int size_bits);
47
48 // This function processes the field by calling the passed function.
esp_efuse_utility_process(const esp_efuse_desc_t * field[],void * ptr,size_t ptr_size_bits,efuse_func_proc_t func_proc)49 esp_err_t esp_efuse_utility_process(const esp_efuse_desc_t* field[], void* ptr, size_t ptr_size_bits, efuse_func_proc_t func_proc)
50 {
51 esp_err_t err = ESP_OK;
52 int bits_counter = 0;
53
54 // get and check size.
55 int field_len = esp_efuse_get_field_size(field);
56 int req_size = (ptr_size_bits == 0) ? field_len : MIN(ptr_size_bits, field_len);
57
58 int i = 0;
59 unsigned count_before = s_burn_counter;
60 while (err == ESP_OK && req_size > bits_counter && field[i] != NULL) {
61 if (check_range_of_bits(field[i]->efuse_block, field[i]->bit_start, field[i]->bit_count) == false) {
62 ESP_EARLY_LOGE(TAG, "Range of data does not match the coding scheme");
63 err = ESP_ERR_CODING;
64 }
65 int i_reg = 0;
66 int num_reg;
67 while (err == ESP_OK && req_size > bits_counter &&
68 (num_reg = get_reg_num(field[i]->bit_start, field[i]->bit_count, i_reg)) != -1) {
69
70 int start_bit = get_starting_bit_num_in_reg(field[i]->bit_start, i_reg);
71 int num_bits = get_count_bits_in_reg(field[i]->bit_start, field[i]->bit_count, i_reg);
72 if ((bits_counter + num_bits) > req_size) { // Limits the length of the field.
73 num_bits = req_size - bits_counter;
74 }
75 ESP_EARLY_LOGD(TAG, "In EFUSE_BLK%d__DATA%d_REG is used %d bits starting with %d bit",
76 (int)field[i]->efuse_block, num_reg, num_bits, start_bit);
77 err = func_proc(num_reg, field[i]->efuse_block, start_bit, num_bits, ptr, &bits_counter);
78 ++i_reg;
79 }
80 i++;
81 }
82 unsigned count_after = s_burn_counter;
83 if (err == ESP_OK &&
84 (func_proc == esp_efuse_utility_fill_buff || func_proc == esp_efuse_utility_count_once) && // these functions are used for read APIs: read_field_blob and read_field_cnt
85 (count_before != count_after || (count_after & 1) == 1)) {
86 err = ESP_ERR_DAMAGED_READING;
87 }
88 assert(bits_counter <= req_size);
89 return err;
90 }
91
92
93 // Read efuse register and write this value to array.
esp_efuse_utility_fill_buff(unsigned int num_reg,esp_efuse_block_t efuse_block,int bit_start,int bit_count,void * arr_out,int * bits_counter)94 esp_err_t esp_efuse_utility_fill_buff(unsigned int num_reg, esp_efuse_block_t efuse_block, int bit_start, int bit_count, void* arr_out, int* bits_counter)
95 {
96 uint8_t* blob = (uint8_t *) arr_out;
97 uint32_t reg = esp_efuse_utility_read_reg(efuse_block, num_reg);
98 uint64_t reg_of_aligned_bits = (reg >> bit_start) & get_mask(bit_count, 0);
99
100 int shift_bit = (*bits_counter) % 8;
101 if (shift_bit != 0) {
102 blob[(*bits_counter) / 8] |= (uint8_t)(reg_of_aligned_bits << shift_bit);
103 shift_bit = ((8 - shift_bit) < bit_count) ? (8 - shift_bit) : bit_count;
104 (*bits_counter) += shift_bit;
105 bit_count -= shift_bit;
106 }
107
108 int sum_shift = 0;
109 while (bit_count > 0) {
110 sum_shift += shift_bit;
111 blob[(*bits_counter) / 8] |= (uint8_t)(reg_of_aligned_bits >> sum_shift);
112 shift_bit = (bit_count > 8) ? 8 : bit_count;
113 (*bits_counter) += shift_bit;
114 bit_count -= shift_bit;
115 };
116 return ESP_OK;
117 }
118
119 // Count a set bits.
esp_efuse_utility_count_once(unsigned int num_reg,esp_efuse_block_t efuse_block,int bit_start,int bit_count,void * out_cnt,int * bits_counter)120 esp_err_t esp_efuse_utility_count_once(unsigned int num_reg, esp_efuse_block_t efuse_block, int bit_start, int bit_count, void* out_cnt, int* bits_counter)
121 {
122 uint32_t reg = esp_efuse_utility_read_reg(efuse_block, num_reg);
123 *((size_t *)out_cnt) += __builtin_popcount(reg & get_mask(bit_count, bit_start)); // Returns the number of 1-bits in reg.
124 *bits_counter += bit_count;
125 return ESP_OK;
126 }
127
128 // Fill registers from array for writing.
esp_efuse_utility_write_blob(unsigned int num_reg,esp_efuse_block_t efuse_block,int bit_start,int bit_count,void * arr_in,int * bits_counter)129 esp_err_t esp_efuse_utility_write_blob(unsigned int num_reg, esp_efuse_block_t efuse_block, int bit_start, int bit_count, void* arr_in, int* bits_counter)
130 {
131 uint32_t reg_to_write = fill_reg(bit_start, bit_count, (uint8_t *)arr_in, bits_counter);
132 return esp_efuse_utility_write_reg(efuse_block, num_reg, reg_to_write);
133 }
134
135 // fill registers with the required number of bits for writing.
esp_efuse_utility_write_cnt(unsigned int num_reg,esp_efuse_block_t efuse_block,int bit_start,int bit_count,void * cnt,int * bits_counter)136 esp_err_t esp_efuse_utility_write_cnt(unsigned int num_reg, esp_efuse_block_t efuse_block, int bit_start, int bit_count, void* cnt, int* bits_counter)
137 {
138 esp_err_t err = ESP_OK;
139 uint32_t reg = esp_efuse_utility_read_reg(efuse_block, num_reg);
140 size_t* set_bits = (size_t*)cnt;
141 uint32_t mask = get_mask(bit_count, bit_start);
142 uint32_t reg_masked_bits = reg & mask;
143 if ((reg_masked_bits ^ mask) != 0) {// register has free bits to set them to 1?
144 uint32_t reg_to_write = set_cnt_in_reg(bit_start, bit_count, reg_masked_bits, set_bits);
145 write_reg(efuse_block, num_reg, reg_to_write);
146 }
147 *bits_counter += bit_count;
148 if ((*set_bits) == 0) {
149 err = ESP_OK_EFUSE_CNT;
150 }
151 return err;
152 }
153
154 // Reset efuse write registers
esp_efuse_utility_reset(void)155 void esp_efuse_utility_reset(void)
156 {
157 ++s_burn_counter;
158 esp_efuse_utility_clear_program_registers();
159 ++s_burn_counter;
160 for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
161 for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
162 REG_WRITE(addr_wr_block, 0);
163 }
164 }
165 }
166
esp_efuse_utility_debug_dump_pending(void)167 void esp_efuse_utility_debug_dump_pending(void)
168 {
169 for (int num_block = 0; num_block < EFUSE_BLK_MAX; num_block++) {
170 for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
171 if (REG_READ(addr_wr_block) != 0) {
172 esp_efuse_utility_debug_dump_single_block(num_block, false);
173 break;
174 }
175 }
176 }
177 }
178
esp_efuse_utility_burn_efuses(void)179 esp_err_t esp_efuse_utility_burn_efuses(void)
180 {
181 ++s_burn_counter;
182 #ifdef CONFIG_EFUSE_VIRTUAL_LOG_ALL_WRITES
183 ESP_EARLY_LOGW(TAG, "Burn:");
184 esp_efuse_utility_debug_dump_pending();
185 #endif
186 esp_err_t err = esp_efuse_utility_burn_chip();
187 ++s_burn_counter;
188 return err;
189 }
190
191 // Erase the virt_blocks array.
esp_efuse_utility_erase_virt_blocks(void)192 void esp_efuse_utility_erase_virt_blocks(void)
193 {
194 #ifdef CONFIG_EFUSE_VIRTUAL
195 memset(virt_blocks, 0, sizeof(virt_blocks));
196 #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
197 esp_efuse_utility_write_efuses_to_flash();
198 #endif
199 #endif // CONFIG_EFUSE_VIRTUAL
200 }
201
202 // Fills the virt_blocks array by values from efuse_Rdata.
esp_efuse_utility_update_virt_blocks(void)203 void esp_efuse_utility_update_virt_blocks(void)
204 {
205 #ifdef CONFIG_EFUSE_VIRTUAL
206 #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
207 if (!esp_efuse_utility_load_efuses_from_flash()) {
208 #else
209 if (1) {
210 #endif
211 ESP_EARLY_LOGW(TAG, "[Virtual] Loading virtual efuse blocks from real efuses");
212 for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
213 int subblock = 0;
214 for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4) {
215 virt_blocks[num_block][subblock++] = REG_READ(addr_rd_block);
216 }
217 ESP_EARLY_LOGD(TAG, "[Virtual] virt_blocks[%d] is filled by EFUSE_BLOCK%d", num_block, num_block);
218 }
219 #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
220 esp_efuse_utility_write_efuses_to_flash();
221 #endif
222 }
223 #else
224 ESP_EARLY_LOGI(TAG, "Emulate efuse is disabled");
225 #endif
226 }
227
228 // Prints efuse values for a single block
229 void esp_efuse_utility_debug_dump_single_block(int num_block, bool from_read)
230 {
231 esp_rom_printf("%d) ", num_block);
232 int num_reg = 0;
233 if (from_read) {
234 for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, num_reg++) {
235 #ifdef CONFIG_EFUSE_VIRTUAL
236 esp_rom_printf("0x%08x ", virt_blocks[num_block][num_reg]);
237 #else
238 esp_rom_printf("0x%08x ", REG_READ(addr_rd_block));
239 (void) num_reg;
240 #endif
241 }
242 } else {
243 for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, num_reg++) {
244 esp_rom_printf("0x%08x ", REG_READ(addr_wr_block));
245 }
246 }
247 esp_rom_printf("\n");
248 }
249
250 // Prints efuse values for all registers.
251 void esp_efuse_utility_debug_dump_blocks(void)
252 {
253 esp_rom_printf("EFUSE_BLKx:\n");
254 for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
255 esp_efuse_utility_debug_dump_single_block(num_block, true);
256 }
257 esp_rom_printf("\n");
258 }
259
260 // returns the number of array elements for placing these bits in an array with the length of each element equal to size_of_base.
261 int esp_efuse_utility_get_number_of_items(int bits, int size_of_base)
262 {
263 return bits / size_of_base + (bits % size_of_base > 0 ? 1 : 0);
264 }
265
266 // Writing efuse register with checking of repeated programming of programmed bits.
267 esp_err_t esp_efuse_utility_write_reg(esp_efuse_block_t efuse_block, unsigned int num_reg, uint32_t reg_to_write)
268 {
269 esp_err_t err = ESP_OK;
270 uint32_t reg = esp_efuse_utility_read_reg(efuse_block, num_reg);
271 if (reg & reg_to_write) {
272 ESP_EARLY_LOGE(TAG, "Repeated programming of programmed bits is strictly forbidden 0x%08x", reg & reg_to_write);
273 err = ESP_ERR_EFUSE_REPEATED_PROG;
274 } else {
275 write_reg(efuse_block, num_reg, reg_to_write);
276 }
277 return err;
278 }
279
280 // Reading efuse register.
281 uint32_t esp_efuse_utility_read_reg(esp_efuse_block_t blk, unsigned int num_reg)
282 {
283 assert(blk >= 0 && blk < EFUSE_BLK_MAX);
284 assert(num_reg <= (range_read_addr_blocks[blk].end - range_read_addr_blocks[blk].start) / sizeof(uint32_t));
285 uint32_t value;
286 #ifdef CONFIG_EFUSE_VIRTUAL
287 value = virt_blocks[blk][num_reg];
288 #else
289 value = REG_READ(range_read_addr_blocks[blk].start + num_reg * 4);
290 #endif
291 return value;
292 }
293
294 // Private functions
295
296 // writing efuse register.
297 static void write_reg(esp_efuse_block_t blk, unsigned int num_reg, uint32_t value)
298 {
299 assert(blk >= 0 && blk < EFUSE_BLK_MAX);
300 assert(num_reg <= (range_read_addr_blocks[blk].end - range_read_addr_blocks[blk].start) / sizeof(uint32_t));
301
302 uint32_t addr_wr_reg = range_write_addr_blocks[blk].start + num_reg * 4;
303 uint32_t reg_to_write = REG_READ(addr_wr_reg) | value;
304 // The register can be written in parts so we combine the new value with the one already available.
305 REG_WRITE(addr_wr_reg, reg_to_write);
306 }
307
308 // return mask with required the number of ones with shift.
309 static uint32_t get_mask(unsigned int bit_count, unsigned int shift)
310 {
311 uint32_t mask;
312 if (bit_count != 32) {
313 mask = (1 << bit_count) - 1;
314 } else {
315 mask = 0xFFFFFFFF;
316 }
317 return mask << shift;
318 }
319
320 // return the register number in the array. return -1 if all registers for field was selected.
321 static int get_reg_num(int bit_start, int bit_count, int i_reg)
322 {
323 int num_reg = i_reg + bit_start / 32;
324
325 if (num_reg > (bit_start + bit_count - 1) / 32) {
326 return -1;
327 }
328
329 return num_reg;
330 }
331
332 // returns the starting bit number in the register.
333 static int get_starting_bit_num_in_reg(int bit_start, int i_reg)
334 {
335 return (i_reg == 0) ? bit_start % 32 : 0;
336 }
337
338 // Returns the number of bits in the register.
339 static int get_count_bits_in_reg(int bit_start, int bit_count, int i_reg)
340 {
341 int ret_count = 0;
342 int num_reg = 0;
343 int last_used_bit = (bit_start + bit_count - 1);
344 for (int num_bit = bit_start; num_bit <= last_used_bit; ++num_bit) {
345 ++ret_count;
346 if ((((num_bit + 1) % 32) == 0) || (num_bit == last_used_bit)) {
347 if (i_reg == num_reg++) {
348 return ret_count;
349 }
350 ret_count = 0;
351 }
352 }
353 return 0;
354 }
355
356 // fill efuse register from array.
357 static uint32_t fill_reg(int bit_start_in_reg, int bit_count_in_reg, uint8_t* blob, int* filled_bits_blob)
358 {
359 uint32_t reg_to_write = 0;
360 uint32_t temp_blob_32;
361 int shift_bit = (*filled_bits_blob) % 8;
362 if (shift_bit != 0) {
363 temp_blob_32 = blob[(*filled_bits_blob) / 8] >> shift_bit;
364 shift_bit = ((8 - shift_bit) < bit_count_in_reg) ? (8 - shift_bit) : bit_count_in_reg;
365 reg_to_write = temp_blob_32 & get_mask(shift_bit, 0);
366 (*filled_bits_blob) += shift_bit;
367 bit_count_in_reg -= shift_bit;
368 }
369
370 int shift_reg = shift_bit;
371 while (bit_count_in_reg > 0) {
372 temp_blob_32 = blob[(*filled_bits_blob) / 8];
373 shift_bit = (bit_count_in_reg > 8) ? 8 : bit_count_in_reg;
374 reg_to_write |= (temp_blob_32 & get_mask(shift_bit, 0)) << shift_reg;
375 (*filled_bits_blob) += shift_bit;
376 bit_count_in_reg -= shift_bit;
377 shift_reg += 8;
378 };
379 return reg_to_write << bit_start_in_reg;
380 }
381
382 // sets a required count of bits as "1".
383 static uint32_t set_cnt_in_reg(int bit_start_in_reg, int bit_count_used_in_reg, uint32_t reg_masked, size_t* cnt)
384 {
385 assert((bit_start_in_reg + bit_count_used_in_reg) <= 32);
386 uint32_t reg_to_write = 0;
387 for (int i = bit_start_in_reg; i < bit_start_in_reg + bit_count_used_in_reg; ++i) {
388 if ((reg_masked & (1 << i)) == 0) {
389 reg_to_write |= (1 << i);
390 if (--(*cnt) == 0) {
391 break;
392 }
393 }
394 }
395 return reg_to_write;
396 }
397
398 // check range of bits for any coding scheme.
399 static bool check_range_of_bits(esp_efuse_block_t blk, int offset_in_bits, int size_bits)
400 {
401 int max_num_bit = offset_in_bits + size_bits;
402 if (max_num_bit > 256) {
403 return false;
404 } else {
405 ESP_EFUSE_FIELD_CORRESPONDS_CODING_SCHEME(blk, max_num_bit);
406 }
407 return true;
408 }
409
410 uint32_t esp_efuse_utility_get_read_register_address(esp_efuse_block_t block)
411 {
412 assert(block < EFUSE_BLK_MAX);
413 #ifdef CONFIG_EFUSE_VIRTUAL
414 return (uint32_t)&virt_blocks[block][0];
415 #else
416 return range_read_addr_blocks[block].start;
417 #endif
418
419 }
420
421 #if defined(BOOTLOADER_BUILD) && defined(CONFIG_EFUSE_VIRTUAL) && !defined(CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH)
422 void esp_efuse_init_virtual_mode_in_ram(void)
423 {
424 esp_efuse_utility_update_virt_blocks();
425 }
426 #endif
427
428 #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
429
430 #include "../bootloader_flash/include/bootloader_flash_priv.h"
431
432 static uint32_t esp_efuse_flash_offset = 0;
433 static uint32_t esp_efuse_flash_size = 0;
434
435 void esp_efuse_init_virtual_mode_in_flash(uint32_t offset, uint32_t size)
436 {
437 esp_efuse_flash_offset = offset;
438 esp_efuse_flash_size = size;
439 esp_efuse_utility_update_virt_blocks();
440 esp_efuse_utility_debug_dump_blocks();
441 }
442
443 void esp_efuse_utility_erase_efuses_in_flash(void)
444 {
445 ESP_EARLY_LOGW(TAG, "[Virtual] Erasing eFuses in flash");
446
447 if (esp_efuse_flash_offset == 0) {
448 ESP_EARLY_LOGE(TAG, "[Virtual] no efuse partition in partition_table? (Flash is not updated)");
449 abort();
450 }
451 esp_err_t err = bootloader_flash_erase_range(esp_efuse_flash_offset, esp_efuse_flash_size);
452 if (err != ESP_OK) {
453 ESP_EARLY_LOGE(TAG, "[Virtual] Failed to erase flash. err = 0x%x", err);
454 abort();
455 }
456
457 ESP_EARLY_LOGW(TAG, "[Virtual] Erase complete");
458 }
459
460 bool esp_efuse_utility_load_efuses_from_flash(void)
461 {
462 ESP_EARLY_LOGW(TAG, "[Virtual] try loading efuses from flash: 0x%x (offset)", esp_efuse_flash_offset);
463
464 if (esp_efuse_flash_offset == 0) {
465 ESP_EARLY_LOGE(TAG, "[Virtual] no efuse partition in partition_table? (Flash is not updated)");
466 abort();
467 }
468 uint32_t efuses_in_flash[sizeof(virt_blocks)];
469
470 esp_err_t err = bootloader_flash_read(esp_efuse_flash_offset, &efuses_in_flash, sizeof(efuses_in_flash), false);
471 if (err != ESP_OK) {
472 ESP_EARLY_LOGE(TAG, "[Virtual] Can not read eFuse partition from flash (err=0x%x)", err);
473 abort();
474 }
475
476 for (unsigned i = 0; i < sizeof(virt_blocks); ++i) {
477 if (efuses_in_flash[i] != 0xFFFFFFFF) {
478 ESP_EARLY_LOGW(TAG, "[Virtual] Loading virtual efuse blocks from flash");
479 memcpy(virt_blocks, efuses_in_flash, sizeof(virt_blocks));
480 return true;
481 }
482 }
483
484 ESP_EARLY_LOGW(TAG, "[Virtual] no efuses found in flash");
485
486 return false;
487 }
488
489 void esp_efuse_utility_write_efuses_to_flash(void)
490 {
491 if (esp_efuse_flash_offset == 0) {
492 ESP_EARLY_LOGE(TAG, "[Virtual] no efuse partition in partition_table? (Flash is not updated)");
493 abort();
494 }
495
496 esp_err_t err = bootloader_flash_erase_range(esp_efuse_flash_offset, esp_efuse_flash_size);
497 if (err != ESP_OK) {
498 ESP_EARLY_LOGE(TAG, "[Virtual] Failed to erase flash. err = 0x%x", err);
499 abort();
500 }
501
502 err = bootloader_flash_write(esp_efuse_flash_offset, &virt_blocks, sizeof(virt_blocks), false);
503 if (err != ESP_OK) {
504 ESP_EARLY_LOGE(TAG, "[Virtual] Failed to write eFuses to flash. err = 0x%x", err);
505 abort();
506 }
507 }
508 #endif // CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
509
510 bool esp_efuse_utility_is_correct_written_data(esp_efuse_block_t block, unsigned r_data_len)
511 {
512 uint32_t* w_data = (uint32_t*)range_write_addr_blocks[block].start;
513 uint32_t* r_data = (uint32_t*)range_read_addr_blocks[block].start;
514
515 bool correct_written_data = memcmp(w_data, r_data, r_data_len) == 0;
516 if (correct_written_data) {
517 ESP_LOGI(TAG, "BURN BLOCK%d - OK (write block == read block)", block);
518 return true;
519 }
520
521 correct_written_data = true;
522 for (unsigned i = 0; i < r_data_len / 4; i++) {
523 if ((*(r_data + i) & *(w_data + i)) != *(w_data + i)) {
524 correct_written_data = false;
525 break;
526 }
527 }
528 if (correct_written_data) {
529 ESP_LOGI(TAG, "BURN BLOCK%d - OK (all write block bits are set)", block);
530 } else {
531 ESP_LOGE(TAG, "BURN BLOCK%d - ERROR (written bits != read bits)", block);
532 }
533 return correct_written_data;
534 }
535