1 /*
2  * Copyright (c) 2019 Intel Corporation.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @defgroup arch-interface Architecture Interface
9  * @brief Internal kernel APIs with public scope
10  *
11  * Any public kernel APIs that are implemented as inline functions and need to
12  * call architecture-specific API so will have the prototypes for the
13  * architecture-specific APIs here. Architecture APIs that aren't used in this
14  * way go in kernel/include/kernel_arch_interface.h.
15  *
16  * The set of architecture-specific APIs used internally by public macros and
17  * inline functions in public headers are also specified and documented.
18  *
19  * For all macros and inline function prototypes described herein, <arch/cpu.h>
20  * must eventually pull in full definitions for all of them (the actual macro
21  * defines and inline function bodies)
22  *
23  * include/kernel.h and other public headers depend on definitions in this
24  * header.
25  */
26 #ifndef ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
27 #define ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
28 
29 #ifndef _ASMLANGUAGE
30 #include <zephyr/toolchain.h>
31 #include <stddef.h>
32 #include <zephyr/types.h>
33 #include <zephyr/arch/cpu.h>
34 #include <zephyr/irq_offload.h>
35 
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39 
40 /* NOTE: We cannot pull in kernel.h here, need some forward declarations  */
41 struct k_thread;
42 struct k_mem_domain;
43 
44 typedef struct z_thread_stack_element k_thread_stack_t;
45 
46 typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
47 
48 /**
49  * @defgroup arch-timing Architecture timing APIs
50  * @ingroup arch-interface
51  * @{
52  */
53 
54 /**
55  * Obtain the current cycle count, in units specified by
56  * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC.  While this is historically
57  * specified as part of the architecture API, in practice virtually
58  * all platforms forward it to the sys_clock_cycle_get_32() API
59  * provided by the timer driver.
60  *
61  * @see k_cycle_get_32()
62  *
63  * @return The current cycle time.  This should count up monotonically
64  * through the full 32 bit space, wrapping at 0xffffffff.  Hardware
65  * with fewer bits of precision in the timer is expected to synthesize
66  * a 32 bit count.
67  */
68 static inline uint32_t arch_k_cycle_get_32(void);
69 
70 /**
71  * As for arch_k_cycle_get_32(), but with a 64 bit return value.  Not
72  * all timer hardware has a 64 bit timer, this needs to be implemented
73  * only if CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER is set.
74  *
75  * @see arch_k_cycle_get_32()
76  *
77  * @return The current cycle time.  This should count up monotonically
78  * through the full 64 bit space, wrapping at 2^64-1.  Hardware with
79  * fewer bits of precision in the timer is generally not expected to
80  * implement this API.
81  */
82 static inline uint64_t arch_k_cycle_get_64(void);
83 
84 /** @} */
85 
86 
87 /**
88  * @addtogroup arch-threads
89  * @{
90  */
91 
92 /**
93  * @def ARCH_THREAD_STACK_RESERVED
94  *
95  * @see K_THREAD_STACK_RESERVED
96  */
97 
98 /**
99  * @def ARCH_STACK_PTR_ALIGN
100  *
101  * Required alignment of the CPU's stack pointer register value, dictated by
102  * hardware constraints and the ABI calling convention.
103  *
104  * @see Z_STACK_PTR_ALIGN
105  */
106 
107 /**
108  * @def ARCH_THREAD_STACK_OBJ_ALIGN(size)
109  *
110  * Required alignment of the lowest address of a stack object.
111  *
112  * Optional definition.
113  *
114  * @see Z_THREAD_STACK_OBJ_ALIGN
115  */
116 
117 /**
118  * @def ARCH_THREAD_STACK_SIZE_ADJUST(size)
119  * @brief Round up a stack buffer size to alignment constraints
120  *
121  * Adjust a requested stack buffer size to the true size of its underlying
122  * buffer, defined as the area usable for thread stack context and thread-
123  * local storage.
124  *
125  * The size value passed here does not include storage reserved for platform
126  * data.
127  *
128  * The returned value is either the same size provided (if already properly
129  * aligned), or rounded up to satisfy alignment constraints.  Calculations
130  * performed here *must* be idempotent.
131  *
132  * Optional definition. If undefined, stack buffer sizes are either:
133  * - Rounded up to the next power of two if user mode is enabled on an arch
134  *   with an MPU that requires such alignment
135  * - Rounded up to ARCH_STACK_PTR_ALIGN
136  *
137  * @see Z_THREAD_STACK_SIZE_ADJUST
138  */
139 
140 /**
141  * @def ARCH_KERNEL_STACK_RESERVED
142  * @brief MPU guard size for kernel-only stacks
143  *
144  * If MPU stack guards are used to catch stack overflows, specify the
145  * amount of space reserved in kernel stack objects. If guard sizes are
146  * context dependent, this should be in the minimum guard size, with
147  * remaining space carved out if needed.
148  *
149  * Optional definition, defaults to 0.
150  *
151  * @see K_KERNEL_STACK_RESERVED
152  */
153 
154 /**
155  * @def ARCH_KERNEL_STACK_OBJ_ALIGN
156  * @brief Required alignment of the lowest address of a kernel-only stack.
157  */
158 
159 /** @} */
160 
161 /**
162  * @addtogroup arch-pm
163  * @{
164  */
165 
166 /**
167  * @brief Power save idle routine
168  *
169  * This function will be called by the kernel idle loop or possibly within
170  * an implementation of z_pm_save_idle in the kernel when the
171  * '_pm_save_flag' variable is non-zero.
172  *
173  * Architectures that do not implement power management instructions may
174  * immediately return, otherwise a power-saving instruction should be
175  * issued to wait for an interrupt.
176  *
177  * @note The function is expected to return after the interrupt that has
178  * caused the CPU to exit power-saving mode has been serviced, although
179  * this is not a firm requirement.
180  *
181  * @see k_cpu_idle()
182  */
183 void arch_cpu_idle(void);
184 
185 /**
186  * @brief Atomically re-enable interrupts and enter low power mode
187  *
188  * The requirements for arch_cpu_atomic_idle() are as follows:
189  *
190  * -# Enabling interrupts and entering a low-power mode needs to be
191  *    atomic, i.e. there should be no period of time where interrupts are
192  *    enabled before the processor enters a low-power mode.  See the comments
193  *    in k_lifo_get(), for example, of the race condition that
194  *    occurs if this requirement is not met.
195  *
196  * -# After waking up from the low-power mode, the interrupt lockout state
197  *    must be restored as indicated in the 'key' input parameter.
198  *
199  * @see k_cpu_atomic_idle()
200  *
201  * @param key Lockout key returned by previous invocation of arch_irq_lock()
202  */
203 void arch_cpu_atomic_idle(unsigned int key);
204 
205 /** @} */
206 
207 
208 /**
209  * @addtogroup arch-smp
210  * @{
211  */
212 
213 /**
214  * Per-cpu entry function
215  *
216  * @param data context parameter, implementation specific
217  */
218 typedef FUNC_NORETURN void (*arch_cpustart_t)(void *data);
219 
220 /**
221  * @brief Start a numbered CPU on a MP-capable system
222  *
223  * This starts and initializes a specific CPU.  The main thread on startup is
224  * running on CPU zero, other processors are numbered sequentially.  On return
225  * from this function, the CPU is known to have begun operating and will enter
226  * the provided function.  Its interrupts will be initialized but disabled such
227  * that irq_unlock() with the provided key will work to enable them.
228  *
229  * Normally, in SMP mode this function will be called by the kernel
230  * initialization and should not be used as a user API.  But it is defined here
231  * for special-purpose apps which want Zephyr running on one core and to use
232  * others for design-specific processing.
233  *
234  * @param cpu_num Integer number of the CPU
235  * @param stack Stack memory for the CPU
236  * @param sz Stack buffer size, in bytes
237  * @param fn Function to begin running on the CPU.
238  * @param arg Untyped argument to be passed to "fn"
239  */
240 void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
241 		    arch_cpustart_t fn, void *arg);
242 
243 /**
244  * @brief Return CPU power status
245  *
246  * @param cpu_num Integer number of the CPU
247  */
248 bool arch_cpu_active(int cpu_num);
249 
250 /** @} */
251 
252 
253 /**
254  * @addtogroup arch-irq
255  * @{
256  */
257 
258 /**
259  * Lock interrupts on the current CPU
260  *
261  * @see irq_lock()
262  */
263 static inline unsigned int arch_irq_lock(void);
264 
265 /**
266  * Unlock interrupts on the current CPU
267  *
268  * @see irq_unlock()
269  */
270 static inline void arch_irq_unlock(unsigned int key);
271 
272 /**
273  * Test if calling arch_irq_unlock() with this key would unlock irqs
274  *
275  * @param key value returned by arch_irq_lock()
276  * @return true if interrupts were unlocked prior to the arch_irq_lock()
277  * call that produced the key argument.
278  */
279 static inline bool arch_irq_unlocked(unsigned int key);
280 
281 /**
282  * Disable the specified interrupt line
283  *
284  * @note: The behavior of interrupts that arrive after this call
285  * returns and before the corresponding call to arch_irq_enable() is
286  * undefined.  The hardware is not required to latch and deliver such
287  * an interrupt, though on some architectures that may work.  Other
288  * architectures will simply lose such an interrupt and never deliver
289  * it.  Many drivers and subsystems are not tolerant of such dropped
290  * interrupts and it is the job of the application layer to ensure
291  * that behavior remains correct.
292  *
293  * @see irq_disable()
294  */
295 void arch_irq_disable(unsigned int irq);
296 
297 /**
298  * Enable the specified interrupt line
299  *
300  * @see irq_enable()
301  */
302 void arch_irq_enable(unsigned int irq);
303 
304 /**
305  * Test if an interrupt line is enabled
306  *
307  * @see irq_is_enabled()
308  */
309 int arch_irq_is_enabled(unsigned int irq);
310 
311 /**
312  * Arch-specific hook to install a dynamic interrupt.
313  *
314  * @param irq IRQ line number
315  * @param priority Interrupt priority
316  * @param routine Interrupt service routine
317  * @param parameter ISR parameter
318  * @param flags Arch-specific IRQ configuration flag
319  *
320  * @return The vector assigned to this interrupt
321  */
322 int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
323 			     void (*routine)(const void *parameter),
324 			     const void *parameter, uint32_t flags);
325 
326 /**
327  * @def ARCH_IRQ_CONNECT(irq, pri, isr, arg, flags)
328  *
329  * @see IRQ_CONNECT()
330  */
331 
332 #ifdef CONFIG_PCIE
333 /**
334  * @def ARCH_PCIE_IRQ_CONNECT(bdf, irq, pri, isr, arg, flags)
335  *
336  * @see PCIE_IRQ_CONNECT()
337  */
338 #endif /* CONFIG_PCIE */
339 
340 /**
341  * @def ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)
342  *
343  * @see IRQ_DIRECT_CONNECT()
344  */
345 
346 /**
347  * @def ARCH_ISR_DIRECT_PM()
348  *
349  * @see ISR_DIRECT_PM()
350  */
351 
352 /**
353  * @def ARCH_ISR_DIRECT_HEADER()
354  *
355  * @see ISR_DIRECT_HEADER()
356  */
357 
358 /**
359  * @def ARCH_ISR_DIRECT_FOOTER(swap)
360  *
361  * @see ISR_DIRECT_FOOTER()
362  */
363 
364 /**
365  * @def ARCH_ISR_DIRECT_DECLARE(name)
366  *
367  * @see ISR_DIRECT_DECLARE()
368  */
369 
370 #ifndef CONFIG_PCIE_CONTROLLER
371 /**
372  * @brief Arch-specific hook for allocating IRQs
373  *
374  * Note: disable/enable IRQ relevantly inside the implementation of such
375  * function to avoid concurrency issues. Also, an allocated IRQ is assumed
376  * to be used thus a following @see arch_irq_is_used() should return true.
377  *
378  * @return The newly allocated IRQ or UINT_MAX on error.
379  */
380 unsigned int arch_irq_allocate(void);
381 
382 /**
383  * @brief Arch-specific hook for declaring an IRQ being used
384  *
385  * Note: disable/enable IRQ relevantly inside the implementation of such
386  * function to avoid concurrency issues.
387  *
388  * @param irq the IRQ to declare being used
389  */
390 void arch_irq_set_used(unsigned int irq);
391 
392 /**
393  * @brief Arch-specific hook for checking if an IRQ is being used already
394  *
395  * @param irq the IRQ to check
396  *
397  * @return true if being, false otherwise
398  */
399 bool arch_irq_is_used(unsigned int irq);
400 
401 #endif /* CONFIG_PCIE_CONTROLLER */
402 
403 /**
404  * @def ARCH_EXCEPT(reason_p)
405  *
406  * Generate a software induced fatal error.
407  *
408  * If the caller is running in user mode, only K_ERR_KERNEL_OOPS or
409  * K_ERR_STACK_CHK_FAIL may be induced.
410  *
411  * This should ideally generate a software trap, with exception context
412  * indicating state when this was invoked. General purpose register state at
413  * the time of trap should not be disturbed from the calling context.
414  *
415  * @param reason_p K_ERR_ scoped reason code for the fatal error.
416  */
417 
418 #ifdef CONFIG_IRQ_OFFLOAD
419 /**
420  * Run a function in interrupt context.
421  *
422  * Implementations should invoke an exception such that the kernel goes through
423  * its interrupt handling dispatch path, to include switching to the interrupt
424  * stack, and runs the provided routine and parameter.
425  *
426  * The only intended use-case for this function is for test code to simulate
427  * the correctness of kernel APIs in interrupt handling context. This API
428  * is not intended for real applications.
429  *
430  * @see irq_offload()
431  *
432  * @param routine Function to run in interrupt context
433  * @param parameter Value to pass to the function when invoked
434  */
435 void arch_irq_offload(irq_offload_routine_t routine, const void *parameter);
436 #endif /* CONFIG_IRQ_OFFLOAD */
437 
438 /** @} */
439 
440 
441 /**
442  * @defgroup arch-smp Architecture-specific SMP APIs
443  * @ingroup arch-interface
444  * @{
445  */
446 #ifdef CONFIG_SMP
447 /** Return the CPU struct for the currently executing CPU */
448 static inline struct _cpu *arch_curr_cpu(void);
449 
450 
451 /**
452  * @brief Processor hardware ID
453  *
454  * Most multiprocessor architectures have a low-level unique ID value
455  * associated with the current CPU that can be retrieved rapidly and
456  * efficiently in kernel context.  Note that while the numbering of
457  * the CPUs is guaranteed to be unique, the values are
458  * platform-defined. In particular, they are not guaranteed to match
459  * Zephyr's own sequential CPU IDs (even though on some platforms they
460  * do).
461  *
462  * @note There is an inherent race with this API: the system may
463  * preempt the current thread and migrate it to another CPU before the
464  * value is used.  Safe usage requires knowing the migration is
465  * impossible (e.g. because the code is in interrupt context, holds a
466  * spinlock, or cannot migrate due to k_cpu_mask state).
467  *
468  * @return Unique ID for currently-executing CPU
469  */
470 static inline uint32_t arch_proc_id(void);
471 
472 /**
473  * Broadcast an interrupt to all CPUs
474  *
475  * This will invoke z_sched_ipi() on other CPUs in the system.
476  */
477 void arch_sched_ipi(void);
478 
479 #endif /* CONFIG_SMP */
480 
481 /**
482  * @brief Returns the number of CPUs
483  *
484  * For most systems this will be the same as CONFIG_MP_MAX_NUM_CPUS,
485  * however some systems may determine this at runtime instead.
486  *
487  * @return the number of CPUs
488  */
489 static inline unsigned int arch_num_cpus(void);
490 
491 /** @} */
492 
493 
494 /**
495  * @defgroup arch-userspace Architecture-specific userspace APIs
496  * @ingroup arch-interface
497  * @{
498  */
499 
500 #ifdef CONFIG_USERSPACE
501 /**
502  * Invoke a system call with 0 arguments.
503  *
504  * No general-purpose register state other than return value may be preserved
505  * when transitioning from supervisor mode back down to user mode for
506  * security reasons.
507  *
508  * It is required that all arguments be stored in registers when elevating
509  * privileges from user to supervisor mode.
510  *
511  * Processing of the syscall takes place on a separate kernel stack. Interrupts
512  * should be enabled when invoking the system call marshallers from the
513  * dispatch table. Thread preemption may occur when handling system calls.
514  *
515  * Call ids are untrusted and must be bounds-checked, as the value is used to
516  * index the system call dispatch table, containing function pointers to the
517  * specific system call code.
518  *
519  * @param call_id System call ID
520  * @return Return value of the system call. Void system calls return 0 here.
521  */
522 static inline uintptr_t arch_syscall_invoke0(uintptr_t call_id);
523 
524 /**
525  * Invoke a system call with 1 argument.
526  *
527  * @see arch_syscall_invoke0()
528  *
529  * @param arg1 First argument to the system call.
530  * @param call_id System call ID, will be bounds-checked and used to reference
531  *	          kernel-side dispatch table
532  * @return Return value of the system call. Void system calls return 0 here.
533  */
534 static inline uintptr_t arch_syscall_invoke1(uintptr_t arg1,
535 					     uintptr_t call_id);
536 
537 /**
538  * Invoke a system call with 2 arguments.
539  *
540  * @see arch_syscall_invoke0()
541  *
542  * @param arg1 First argument to the system call.
543  * @param arg2 Second argument to the system call.
544  * @param call_id System call ID, will be bounds-checked and used to reference
545  *	          kernel-side dispatch table
546  * @return Return value of the system call. Void system calls return 0 here.
547  */
548 static inline uintptr_t arch_syscall_invoke2(uintptr_t arg1, uintptr_t arg2,
549 					     uintptr_t call_id);
550 
551 /**
552  * Invoke a system call with 3 arguments.
553  *
554  * @see arch_syscall_invoke0()
555  *
556  * @param arg1 First argument to the system call.
557  * @param arg2 Second argument to the system call.
558  * @param arg3 Third argument to the system call.
559  * @param call_id System call ID, will be bounds-checked and used to reference
560  *	          kernel-side dispatch table
561  * @return Return value of the system call. Void system calls return 0 here.
562  */
563 static inline uintptr_t arch_syscall_invoke3(uintptr_t arg1, uintptr_t arg2,
564 					     uintptr_t arg3,
565 					     uintptr_t call_id);
566 
567 /**
568  * Invoke a system call with 4 arguments.
569  *
570  * @see arch_syscall_invoke0()
571  *
572  * @param arg1 First argument to the system call.
573  * @param arg2 Second argument to the system call.
574  * @param arg3 Third argument to the system call.
575  * @param arg4 Fourth argument to the system call.
576  * @param call_id System call ID, will be bounds-checked and used to reference
577  *	          kernel-side dispatch table
578  * @return Return value of the system call. Void system calls return 0 here.
579  */
580 static inline uintptr_t arch_syscall_invoke4(uintptr_t arg1, uintptr_t arg2,
581 					     uintptr_t arg3, uintptr_t arg4,
582 					     uintptr_t call_id);
583 
584 /**
585  * Invoke a system call with 5 arguments.
586  *
587  * @see arch_syscall_invoke0()
588  *
589  * @param arg1 First argument to the system call.
590  * @param arg2 Second argument to the system call.
591  * @param arg3 Third argument to the system call.
592  * @param arg4 Fourth argument to the system call.
593  * @param arg5 Fifth argument to the system call.
594  * @param call_id System call ID, will be bounds-checked and used to reference
595  *	          kernel-side dispatch table
596  * @return Return value of the system call. Void system calls return 0 here.
597  */
598 static inline uintptr_t arch_syscall_invoke5(uintptr_t arg1, uintptr_t arg2,
599 					     uintptr_t arg3, uintptr_t arg4,
600 					     uintptr_t arg5,
601 					     uintptr_t call_id);
602 
603 /**
604  * Invoke a system call with 6 arguments.
605  *
606  * @see arch_syscall_invoke0()
607  *
608  * @param arg1 First argument to the system call.
609  * @param arg2 Second argument to the system call.
610  * @param arg3 Third argument to the system call.
611  * @param arg4 Fourth argument to the system call.
612  * @param arg5 Fifth argument to the system call.
613  * @param arg6 Sixth argument to the system call.
614  * @param call_id System call ID, will be bounds-checked and used to reference
615  *	          kernel-side dispatch table
616  * @return Return value of the system call. Void system calls return 0 here.
617  */
618 static inline uintptr_t arch_syscall_invoke6(uintptr_t arg1, uintptr_t arg2,
619 					     uintptr_t arg3, uintptr_t arg4,
620 					     uintptr_t arg5, uintptr_t arg6,
621 					     uintptr_t call_id);
622 
623 /**
624  * Indicate whether we are currently running in user mode
625  *
626  * @return true if the CPU is currently running with user permissions
627  */
628 static inline bool arch_is_user_context(void);
629 
630 /**
631  * @brief Get the maximum number of partitions for a memory domain
632  *
633  * @return Max number of partitions, or -1 if there is no limit
634  */
635 int arch_mem_domain_max_partitions_get(void);
636 
637 #ifdef CONFIG_ARCH_MEM_DOMAIN_DATA
638 /**
639  *
640  * @brief Architecture-specific hook for memory domain initialization
641  *
642  * Perform any tasks needed to initialize architecture-specific data within
643  * the memory domain, such as reserving memory for page tables. All members
644  * of the provided memory domain aside from `arch` will be initialized when
645  * this is called, but no threads will be a assigned yet.
646  *
647  * This function may fail if initializing the memory domain requires allocation,
648  * such as for page tables.
649  *
650  * The associated function k_mem_domain_init() documents that making
651  * multiple init calls to the same memory domain is undefined behavior,
652  * but has no assertions in place to check this. If this matters, it may be
653  * desirable to add checks for this in the implementation of this function.
654  *
655  * @param domain The memory domain to initialize
656  * @retval 0 Success
657  * @retval -ENOMEM Insufficient memory
658  */
659 int arch_mem_domain_init(struct k_mem_domain *domain);
660 #endif /* CONFIG_ARCH_MEM_DOMAIN_DATA */
661 
662 #ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
663 /**
664  * @brief Add a thread to a memory domain (arch-specific)
665  *
666  * Architecture-specific hook to manage internal data structures or hardware
667  * state when the provided thread has been added to a memory domain.
668  *
669  * The thread->mem_domain_info.mem_domain pointer will be set to the domain to
670  * be added to before this is called. Implementations may assume that the
671  * thread is not already a member of this domain.
672  *
673  * @param thread Thread which needs to be configured.
674  *
675  * @retval 0 if successful
676  * @retval -EINVAL if invalid parameters supplied
677  * @retval -ENOSPC if running out of space in internal structures
678  *                    (e.g. translation tables)
679  */
680 int arch_mem_domain_thread_add(struct k_thread *thread);
681 
682 /**
683  * @brief Remove a thread from a memory domain (arch-specific)
684  *
685  * Architecture-specific hook to manage internal data structures or hardware
686  * state when the provided thread has been removed from a memory domain.
687  *
688  * The thread's memory domain pointer will be the domain that the thread
689  * is being removed from.
690  *
691  * @param thread Thread being removed from its memory domain
692  *
693  * @retval 0 if successful
694  * @retval -EINVAL if invalid parameters supplied
695  */
696 int arch_mem_domain_thread_remove(struct k_thread *thread);
697 
698 /**
699  * @brief Remove a partition from the memory domain (arch-specific)
700  *
701  * Architecture-specific hook to manage internal data structures or hardware
702  * state when a memory domain has had a partition removed.
703  *
704  * The partition index data, and the number of partitions configured, are not
705  * respectively cleared and decremented in the domain until after this function
706  * runs.
707  *
708  * @param domain The memory domain structure
709  * @param partition_id The partition index that needs to be deleted
710  *
711  * @retval 0 if successful
712  * @retval -EINVAL if invalid parameters supplied
713  * @retval -ENOENT if no matching partition found
714  */
715 int arch_mem_domain_partition_remove(struct k_mem_domain *domain,
716 				     uint32_t partition_id);
717 
718 /**
719  * @brief Add a partition to the memory domain
720  *
721  * Architecture-specific hook to manage internal data structures or hardware
722  * state when a memory domain has a partition added.
723  *
724  * @param domain The memory domain structure
725  * @param partition_id The partition that needs to be added
726  *
727  * @retval 0 if successful
728  * @retval -EINVAL if invalid parameters supplied
729  */
730 int arch_mem_domain_partition_add(struct k_mem_domain *domain,
731 				  uint32_t partition_id);
732 #endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */
733 
734 /**
735  * @brief Check memory region permissions
736  *
737  * Given a memory region, return whether the current memory management hardware
738  * configuration would allow a user thread to read/write that region. Used by
739  * system calls to validate buffers coming in from userspace.
740  *
741  * Notes:
742  * The function is guaranteed to never return validation success, if the entire
743  * buffer area is not user accessible.
744  *
745  * The function is guaranteed to correctly validate the permissions of the
746  * supplied buffer, if the user access permissions of the entire buffer are
747  * enforced by a single, enabled memory management region.
748  *
749  * In some architectures the validation will always return failure
750  * if the supplied memory buffer spans multiple enabled memory management
751  * regions (even if all such regions permit user access).
752  *
753  * @warning 0 size buffer has undefined behavior.
754  *
755  * @param addr start address of the buffer
756  * @param size the size of the buffer
757  * @param write If nonzero, additionally check if the area is writable.
758  *	  Otherwise, just check if the memory can be read.
759  *
760  * @return nonzero if the permissions don't match.
761  */
762 int arch_buffer_validate(void *addr, size_t size, int write);
763 
764 /**
765  * Get the optimal virtual region alignment to optimize the MMU table layout
766  *
767  * Some MMU HW requires some region to be aligned to some of the intermediate
768  * block alignment in order to reduce table usage.
769  * This call returns the optimal virtual address alignment in order to permit
770  * such optimization in the following MMU mapping call.
771  *
772  * @param[in] phys Physical address of region to be mapped, aligned to MMU_PAGE_SIZE
773  * @param[in] size Size of region to be mapped, aligned to MMU_PAGE_SIZE
774  *
775  * @retval alignment to apply on the virtual address of this region
776  */
777 size_t arch_virt_region_align(uintptr_t phys, size_t size);
778 
779 /**
780  * Perform a one-way transition from supervisor to kernel mode.
781  *
782  * Implementations of this function must do the following:
783  *
784  * - Reset the thread's stack pointer to a suitable initial value. We do not
785  *   need any prior context since this is a one-way operation.
786  * - Set up any kernel stack region for the CPU to use during privilege
787  *   elevation
788  * - Put the CPU in whatever its equivalent of user mode is
789  * - Transfer execution to arch_new_thread() passing along all the supplied
790  *   arguments, in user mode.
791  *
792  * @param user_entry Entry point to start executing as a user thread
793  * @param p1 1st parameter to user thread
794  * @param p2 2nd parameter to user thread
795  * @param p3 3rd parameter to user thread
796  */
797 FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
798 					void *p1, void *p2, void *p3);
799 
800 /**
801  * @brief Induce a kernel oops that appears to come from a specific location
802  *
803  * Normally, k_oops() generates an exception that appears to come from the
804  * call site of the k_oops() itself.
805  *
806  * However, when validating arguments to a system call, if there are problems
807  * we want the oops to appear to come from where the system call was invoked
808  * and not inside the validation function.
809  *
810  * @param ssf System call stack frame pointer. This gets passed as an argument
811  *            to _k_syscall_handler_t functions and its contents are completely
812  *            architecture specific.
813  */
814 FUNC_NORETURN void arch_syscall_oops(void *ssf);
815 
816 /**
817  * @brief Safely take the length of a potentially bad string
818  *
819  * This must not fault, instead the err parameter must have -1 written to it.
820  * This function otherwise should work exactly like libc strnlen(). On success
821  * *err should be set to 0.
822  *
823  * @param s String to measure
824  * @param maxsize Max length of the string
825  * @param err Error value to write
826  * @return Length of the string, not counting NULL byte, up to maxsize
827  */
828 size_t arch_user_string_nlen(const char *s, size_t maxsize, int *err);
829 #endif /* CONFIG_USERSPACE */
830 
831 /**
832  * @brief Detect memory coherence type
833  *
834  * Required when ARCH_HAS_COHERENCE is true.  This function returns
835  * true if the byte pointed to lies within an architecture-defined
836  * "coherence region" (typically implemented with uncached memory) and
837  * can safely be used in multiprocessor code without explicit flush or
838  * invalidate operations.
839  *
840  * @note The result is for only the single byte at the specified
841  * address, this API is not required to check region boundaries or to
842  * expect aligned pointers.  The expectation is that the code above
843  * will have queried the appropriate address(es).
844  */
845 #ifndef CONFIG_ARCH_HAS_COHERENCE
arch_mem_coherent(void * ptr)846 static inline bool arch_mem_coherent(void *ptr)
847 {
848 	ARG_UNUSED(ptr);
849 	return true;
850 }
851 #endif
852 
853 /**
854  * @brief Ensure cache coherence prior to context switch
855  *
856  * Required when ARCH_HAS_COHERENCE is true.  On cache-incoherent
857  * multiprocessor architectures, thread stacks are cached by default
858  * for performance reasons.  They must therefore be flushed
859  * appropriately on context switch.  The rules are:
860  *
861  * 1. The region containing live data in the old stack (generally the
862  *    bytes between the current stack pointer and the top of the stack
863  *    memory) must be flushed to underlying storage so a new CPU that
864  *    runs the same thread sees the correct data.  This must happen
865  *    before the assignment of the switch_handle field in the thread
866  *    struct which signals the completion of context switch.
867  *
868  * 2. Any data areas to be read from the new stack (generally the same
869  *    as the live region when it was saved) should be invalidated (and
870  *    NOT flushed!) in the data cache.  This is because another CPU
871  *    may have run or re-initialized the thread since this CPU
872  *    suspended it, and any data present in cache will be stale.
873  *
874  * @note The kernel will call this function during interrupt exit when
875  * a new thread has been chosen to run, and also immediately before
876  * entering arch_switch() to effect a code-driven context switch.  In
877  * the latter case, it is very likely that more data will be written
878  * to the old_thread stack region after this function returns but
879  * before the completion of the switch.  Simply flushing naively here
880  * is not sufficient on many architectures and coordination with the
881  * arch_switch() implementation is likely required.
882  *
883  * @arg old_thread The old thread to be flushed before being allowed
884  *                 to run on other CPUs.
885  * @arg old_switch_handle The switch handle to be stored into
886  *                        old_thread (it will not be valid until the
887  *                        cache is flushed so is not present yet).
888  *                        This will be NULL if inside z_swap()
889  *                        (because the arch_switch() has not saved it
890  *                        yet).
891  * @arg new_thread The new thread to be invalidated before it runs locally.
892  */
893 #ifndef CONFIG_KERNEL_COHERENCE
arch_cohere_stacks(struct k_thread * old_thread,void * old_switch_handle,struct k_thread * new_thread)894 static inline void arch_cohere_stacks(struct k_thread *old_thread,
895 				      void *old_switch_handle,
896 				      struct k_thread *new_thread)
897 {
898 	ARG_UNUSED(old_thread);
899 	ARG_UNUSED(old_switch_handle);
900 	ARG_UNUSED(new_thread);
901 }
902 #endif
903 
904 /** @} */
905 
906 /**
907  * @defgroup arch-gdbstub Architecture-specific gdbstub APIs
908  * @ingroup arch-interface
909  * @{
910  */
911 
912 #ifdef CONFIG_GDBSTUB
913 struct gdb_ctx;
914 
915 /**
916  * @brief Architecture layer debug start
917  *
918  * This function is called by @c gdb_init()
919  */
920 void arch_gdb_init(void);
921 
922 /**
923  * @brief Continue running program
924  *
925  * Continue software execution.
926  */
927 void arch_gdb_continue(void);
928 
929 /**
930  * @brief Continue with one step
931  *
932  * Continue software execution until reaches the next statement.
933  */
934 void arch_gdb_step(void);
935 
936 /**
937  * @brief Read all registers, and outputs as hexadecimal string.
938  *
939  * This reads all CPU registers and outputs as hexadecimal string.
940  * The output string must be parsable by GDB.
941  *
942  * @param ctx    GDB context
943  * @param buf    Buffer to output hexadecimal string.
944  * @param buflen Length of buffer.
945  *
946  * @return Length of hexadecimal string written.
947  *         Return 0 if error or not supported.
948  */
949 size_t arch_gdb_reg_readall(struct gdb_ctx *ctx, uint8_t *buf, size_t buflen);
950 
951 /**
952  * @brief Take a hexadecimal string and update all registers.
953  *
954  * This takes in a hexadecimal string as presented from GDB,
955  * and updates all CPU registers with new values.
956  *
957  * @param ctx    GDB context
958  * @param hex    Input hexadecimal string.
959  * @param hexlen Length of hexadecimal string.
960  *
961  * @return Length of hexadecimal string parsed.
962  *         Return 0 if error or not supported.
963  */
964 size_t arch_gdb_reg_writeall(struct gdb_ctx *ctx, uint8_t *hex, size_t hexlen);
965 
966 /**
967  * @brief Read one register, and outputs as hexadecimal string.
968  *
969  * This reads one CPU register and outputs as hexadecimal string.
970  * The output string must be parsable by GDB.
971  *
972  * @param ctx    GDB context
973  * @param buf    Buffer to output hexadecimal string.
974  * @param buflen Length of buffer.
975  * @param regno  Register number
976  *
977  * @return Length of hexadecimal string written.
978  *         Return 0 if error or not supported.
979  */
980 size_t arch_gdb_reg_readone(struct gdb_ctx *ctx, uint8_t *buf, size_t buflen,
981 			    uint32_t regno);
982 
983 /**
984  * @brief Take a hexadecimal string and update one register.
985  *
986  * This takes in a hexadecimal string as presented from GDB,
987  * and updates one CPU registers with new value.
988  *
989  * @param ctx    GDB context
990  * @param hex    Input hexadecimal string.
991  * @param hexlen Length of hexadecimal string.
992  * @param regno  Register number
993  *
994  * @return Length of hexadecimal string parsed.
995  *         Return 0 if error or not supported.
996  */
997 size_t arch_gdb_reg_writeone(struct gdb_ctx *ctx, uint8_t *hex, size_t hexlen,
998 			     uint32_t regno);
999 
1000 /**
1001  * @brief Add breakpoint or watchpoint.
1002  *
1003  * @param ctx GDB context
1004  * @param type Breakpoint or watchpoint type
1005  * @param addr Address of breakpoint or watchpoint
1006  * @param kind Size of breakpoint/watchpoint in bytes
1007  *
1008  * @retval 0  Operation successful
1009  * @retval -1 Error encountered
1010  * @retval -2 Not supported
1011  */
1012 int arch_gdb_add_breakpoint(struct gdb_ctx *ctx, uint8_t type,
1013 			    uintptr_t addr, uint32_t kind);
1014 
1015 /**
1016  * @brief Remove breakpoint or watchpoint.
1017  *
1018  * @param ctx GDB context
1019  * @param type Breakpoint or watchpoint type
1020  * @param addr Address of breakpoint or watchpoint
1021  * @param kind Size of breakpoint/watchpoint in bytes
1022  *
1023  * @retval 0  Operation successful
1024  * @retval -1 Error encountered
1025  * @retval -2 Not supported
1026  */
1027 int arch_gdb_remove_breakpoint(struct gdb_ctx *ctx, uint8_t type,
1028 			       uintptr_t addr, uint32_t kind);
1029 
1030 #endif
1031 /** @} */
1032 
1033 #ifdef CONFIG_TIMING_FUNCTIONS
1034 #include <zephyr/timing/types.h>
1035 
1036 /**
1037  * @ingroup arch-timing
1038  * @{
1039  */
1040 
1041 /**
1042  * @brief Initialize the timing subsystem.
1043  *
1044  * Perform the necessary steps to initialize the timing subsystem.
1045  *
1046  * @see timing_init()
1047  */
1048 void arch_timing_init(void);
1049 
1050 /**
1051  * @brief Signal the start of the timing information gathering.
1052  *
1053  * Signal to the timing subsystem that timing information
1054  * will be gathered from this point forward.
1055  *
1056  * @note Any call to arch_timing_counter_get() must be done between
1057  * calls to arch_timing_start() and arch_timing_stop(), and on the
1058  * same CPU core.
1059  *
1060  * @see timing_start()
1061  */
1062 void arch_timing_start(void);
1063 
1064 /**
1065  * @brief Signal the end of the timing information gathering.
1066  *
1067  * Signal to the timing subsystem that timing information
1068  * is no longer being gathered from this point forward.
1069  *
1070  * @note Any call to arch_timing_counter_get() must be done between
1071  * calls to arch_timing_start() and arch_timing_stop(), and on the
1072  * same CPU core.
1073  *
1074  * @see timing_stop()
1075  */
1076 void arch_timing_stop(void);
1077 
1078 /**
1079  * @brief Return timing counter.
1080  *
1081  * @note Any call to arch_timing_counter_get() must be done between
1082  * calls to arch_timing_start() and arch_timing_stop(), and on the
1083  * same CPU core.
1084  *
1085  * @note Not all platforms have a timing counter with 64 bit precision.  It
1086  * is possible to see this value "go backwards" due to internal
1087  * rollover.  Timing code must be prepared to address the rollover
1088  * (with platform-dependent code, e.g. by casting to a uint32_t before
1089  * subtraction) or by using arch_timing_cycles_get() which is required
1090  * to understand the distinction.
1091  *
1092  * @return Timing counter.
1093  *
1094  * @see timing_counter_get()
1095  */
1096 timing_t arch_timing_counter_get(void);
1097 
1098 /**
1099  * @brief Get number of cycles between @p start and @p end.
1100  *
1101  * For some architectures or SoCs, the raw numbers from counter need
1102  * to be scaled to obtain actual number of cycles, or may roll over
1103  * internally.  This function computes a positive-definite interval
1104  * between two returned cycle values.
1105  *
1106  * @param start Pointer to counter at start of a measured execution.
1107  * @param end Pointer to counter at stop of a measured execution.
1108  * @return Number of cycles between start and end.
1109  *
1110  * @see timing_cycles_get()
1111  */
1112 uint64_t arch_timing_cycles_get(volatile timing_t *const start,
1113 				volatile timing_t *const end);
1114 
1115 /**
1116  * @brief Get frequency of counter used (in Hz).
1117  *
1118  * @return Frequency of counter used for timing in Hz.
1119  *
1120  * @see timing_freq_get()
1121  */
1122 uint64_t arch_timing_freq_get(void);
1123 
1124 /**
1125  * @brief Convert number of @p cycles into nanoseconds.
1126  *
1127  * @param cycles Number of cycles
1128  * @return Converted time value
1129  *
1130  * @see timing_cycles_to_ns()
1131  */
1132 uint64_t arch_timing_cycles_to_ns(uint64_t cycles);
1133 
1134 /**
1135  * @brief Convert number of @p cycles into nanoseconds with averaging.
1136  *
1137  * @param cycles Number of cycles
1138  * @param count Times of accumulated cycles to average over
1139  * @return Converted time value
1140  *
1141  * @see timing_cycles_to_ns_avg()
1142  */
1143 uint64_t arch_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count);
1144 
1145 /**
1146  * @brief Get frequency of counter used (in MHz).
1147  *
1148  * @return Frequency of counter used for timing in MHz.
1149  *
1150  * @see timing_freq_get_mhz()
1151  */
1152 uint32_t arch_timing_freq_get_mhz(void);
1153 
1154 /** @} */
1155 
1156 #endif /* CONFIG_TIMING_FUNCTIONS */
1157 
1158 #ifdef CONFIG_PCIE_MSI_MULTI_VECTOR
1159 
1160 struct msi_vector;
1161 typedef struct msi_vector msi_vector_t;
1162 
1163 /**
1164  * @brief Allocate vector(s) for the endpoint MSI message(s).
1165  *
1166  * @param priority the MSI vectors base interrupt priority
1167  * @param vectors an array to fill with allocated MSI vectors
1168  * @param n_vector the size of MSI vectors array
1169  *
1170  * @return The number of allocated MSI vectors
1171  */
1172 uint8_t arch_pcie_msi_vectors_allocate(unsigned int priority,
1173 				       msi_vector_t *vectors,
1174 				       uint8_t n_vector);
1175 
1176 /**
1177  * @brief Connect an MSI vector to the given routine
1178  *
1179  * @param vector The MSI vector to connect to
1180  * @param routine Interrupt service routine
1181  * @param parameter ISR parameter
1182  * @param flags Arch-specific IRQ configuration flag
1183  *
1184  * @return True on success, false otherwise
1185  */
1186 bool arch_pcie_msi_vector_connect(msi_vector_t *vector,
1187 				  void (*routine)(const void *parameter),
1188 				  const void *parameter,
1189 				  uint32_t flags);
1190 
1191 #endif /* CONFIG_PCIE_MSI_MULTI_VECTOR */
1192 
1193 /**
1194  * @brief Perform architecture specific processing within spin loops
1195  *
1196  * This is invoked from busy loops with IRQs disabled such as the contended
1197  * spinlock loop. The default implementation is a weak function that calls
1198  * arch_nop(). Architectures may implement this function to perform extra
1199  * checks or power management tricks if needed.
1200  */
1201 void arch_spin_relax(void);
1202 
1203 #ifdef __cplusplus
1204 }
1205 #endif /* __cplusplus */
1206 
1207 #include <zephyr/arch/arch_inlines.h>
1208 
1209 #endif /* _ASMLANGUAGE */
1210 
1211 #endif /* ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_ */
1212