1 /*
2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef _HARDWARE_ADDRESS_MAPPED_H
8 #define _HARDWARE_ADDRESS_MAPPED_H
9 
10 #include "pico.h"
11 #include "hardware/regs/addressmap.h"
12 
13 /** \file address_mapped.h
14  *  \defgroup hardware_base hardware_base
15  *
16  *  Low-level types and (atomic) accessors for memory-mapped hardware registers
17  *
18  *  `hardware_base` defines the low level types and access functions for memory mapped hardware registers. It is included
19  *  by default by all other hardware libraries.
20  *
21  *  The following register access typedefs codify the access type (read/write) and the bus size (8/16/32) of the hardware register.
22  *  The register type names are formed by concatenating one from each of the 3 parts A, B, C
23 
24  *   A    | B | C | Meaning
25  *  ------|---|---|--------
26  *  io_   |   |   | A Memory mapped IO register
27  *   |ro_|   | read-only access
28  *   |rw_|   | read-write access
29  *   |wo_|   | write-only access (can't actually be enforced via C API)
30  *   |   |  8| 8-bit wide access
31  *   |   | 16| 16-bit wide access
32  *   |   | 32| 32-bit wide access
33  *
34  *  When dealing with these types, you will always use a pointer, i.e. `io_rw_32 *some_reg` is a pointer to a read/write
35  *  32 bit register that you can write with `*some_reg = value`, or read with `value = *some_reg`.
36  *
37  *  RP2040 hardware is also aliased to provide atomic setting, clear or flipping of a subset of the bits within
38  *  a hardware register so that concurrent access by two cores is always consistent with one atomic operation
39  *  being performed first, followed by the second.
40  *
41  *  See hw_set_bits(), hw_clear_bits() and hw_xor_bits() provide for atomic access via a pointer to a 32 bit register
42  *
43  *  Additionally given a pointer to a structure representing a piece of hardware (e.g. `dma_hw_t *dma_hw` for the DMA controller), you can
44  *  get an alias to the entire structure such that writing any member (register) within the structure is equivalent
45  *  to an atomic operation via hw_set_alias(), hw_clear_alias() or hw_xor_alias()...
46  *
47  *  For example `hw_set_alias(dma_hw)->inte1 = 0x80;` will set bit 7 of the INTE1 register of the DMA controller,
48  *  leaving the other bits unchanged.
49  */
50 
51 #ifdef __cplusplus
52 extern "C" {
53 #endif
54 
55 #define check_hw_layout(type, member, offset) static_assert(offsetof(type, member) == (offset), "hw offset mismatch")
56 #define check_hw_size(type, size) static_assert(sizeof(type) == (size), "hw size mismatch")
57 
58 // PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_ADDRESS_ALIAS, Enable/disable assertions in memory address aliasing macros, type=bool, default=0, group=hardware_base
59 #ifndef PARAM_ASSERTIONS_ENABLED_ADDRESS_ALIAS
60 #define PARAM_ASSERTIONS_ENABLED_ADDRESS_ALIAS 0
61 #endif
62 
63 typedef volatile uint32_t io_rw_32;
64 typedef const volatile uint32_t io_ro_32;
65 typedef volatile uint32_t io_wo_32;
66 typedef volatile uint16_t io_rw_16;
67 typedef const volatile uint16_t io_ro_16;
68 typedef volatile uint16_t io_wo_16;
69 typedef volatile uint8_t io_rw_8;
70 typedef const volatile uint8_t io_ro_8;
71 typedef volatile uint8_t io_wo_8;
72 
73 typedef volatile uint8_t *const ioptr;
74 typedef ioptr const const_ioptr;
75 
76 // A non-functional (empty) helper macro to help IDEs follow links from the autogenerated
77 // hardware struct headers in hardware/structs/xxx.h to the raw register definitions
78 // in hardware/regs/xxx.h. A preprocessor define such as TIMER_TIMEHW_OFFSET (a timer register offset)
79 // is not generally clickable (in an IDE) if placed in a C comment, so _REG_(TIMER_TIMEHW_OFFSET) is
80 // included outside of a comment instead
81 #define _REG_(x)
82 
83 // Helper method used by hw_alias macros to optionally check input validity
84 #define hw_alias_check_addr(addr) ((uintptr_t)(addr))
85 // can't use the following impl as it breaks existing static declarations using hw_alias, so would be a backwards incompatibility
86 //static __force_inline uint32_t hw_alias_check_addr(volatile void *addr) {
87 //    uint32_t rc = (uintptr_t)addr;
88 //    invalid_params_if(ADDRESS_ALIAS, rc < 0x40000000); // catch likely non HW pointer types
89 //    return rc;
90 //}
91 
92 // Helper method used by xip_alias macros to optionally check input validity
xip_alias_check_addr(const void * addr)93 __force_inline static uint32_t xip_alias_check_addr(const void *addr) {
94     uint32_t rc = (uintptr_t)addr;
95     valid_params_if(ADDRESS_ALIAS, rc >= XIP_MAIN_BASE && rc < XIP_NOALLOC_BASE);
96     return rc;
97 }
98 
99 // Untyped conversion alias pointer generation macros
100 #define hw_set_alias_untyped(addr) ((void *)(REG_ALIAS_SET_BITS | hw_alias_check_addr(addr)))
101 #define hw_clear_alias_untyped(addr) ((void *)(REG_ALIAS_CLR_BITS | hw_alias_check_addr(addr)))
102 #define hw_xor_alias_untyped(addr) ((void *)(REG_ALIAS_XOR_BITS | hw_alias_check_addr(addr)))
103 #define xip_noalloc_alias_untyped(addr) ((void *)(XIP_NOALLOC_BASE | xip_alias_check_addr(addr)))
104 #define xip_nocache_alias_untyped(addr) ((void *)(XIP_NOCACHE_BASE | xip_alias_check_addr(addr)))
105 #define xip_nocache_noalloc_alias_untyped(addr) ((void *)(XIP_NOCACHE_NOALLOC_BASE | xip_alias_check_addr(addr)))
106 
107 // Typed conversion alias pointer generation macros
108 #define hw_set_alias(p) ((typeof(p))hw_set_alias_untyped(p))
109 #define hw_clear_alias(p) ((typeof(p))hw_clear_alias_untyped(p))
110 #define hw_xor_alias(p) ((typeof(p))hw_xor_alias_untyped(p))
111 #define xip_noalloc_alias(p) ((typeof(p))xip_noalloc_alias_untyped(p))
112 #define xip_nocache_alias(p) ((typeof(p))xip_nocache_alias_untyped(p))
113 #define xip_nocache_noalloc_alias(p) ((typeof(p))xip_nocache_noalloc_alias_untyped(p))
114 
115 /*! \brief Atomically set the specified bits to 1 in a HW register
116  *  \ingroup hardware_base
117  *
118  * \param addr Address of writable register
119  * \param mask Bit-mask specifying bits to set
120  */
hw_set_bits(io_rw_32 * addr,uint32_t mask)121 __force_inline static void hw_set_bits(io_rw_32 *addr, uint32_t mask) {
122     *(io_rw_32 *) hw_set_alias_untyped((volatile void *) addr) = mask;
123 }
124 
125 /*! \brief Atomically clear the specified bits to 0 in a HW register
126  *  \ingroup hardware_base
127  *
128  * \param addr Address of writable register
129  * \param mask Bit-mask specifying bits to clear
130  */
hw_clear_bits(io_rw_32 * addr,uint32_t mask)131 __force_inline static void hw_clear_bits(io_rw_32 *addr, uint32_t mask) {
132     *(io_rw_32 *) hw_clear_alias_untyped((volatile void *) addr) = mask;
133 }
134 
135 /*! \brief Atomically flip the specified bits in a HW register
136  *  \ingroup hardware_base
137  *
138  * \param addr Address of writable register
139  * \param mask Bit-mask specifying bits to invert
140  */
hw_xor_bits(io_rw_32 * addr,uint32_t mask)141 __force_inline static void hw_xor_bits(io_rw_32 *addr, uint32_t mask) {
142     *(io_rw_32 *) hw_xor_alias_untyped((volatile void *) addr) = mask;
143 }
144 
145 /*! \brief Set new values for a sub-set of the bits in a HW register
146  *  \ingroup hardware_base
147  *
148  * Sets destination bits to values specified in \p values, if and only if corresponding bit in \p write_mask is set
149  *
150  * Note: this method allows safe concurrent modification of *different* bits of
151  * a register, but multiple concurrent access to the same bits is still unsafe.
152  *
153  * \param addr Address of writable register
154  * \param values Bits values
155  * \param write_mask Mask of bits to change
156  */
hw_write_masked(io_rw_32 * addr,uint32_t values,uint32_t write_mask)157 __force_inline static void hw_write_masked(io_rw_32 *addr, uint32_t values, uint32_t write_mask) {
158     hw_xor_bits(addr, (*addr ^ values) & write_mask);
159 }
160 
161 #ifdef __cplusplus
162 }
163 #endif
164 
165 #endif
166