1 /*
2 * Copyright (c) 2022 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #ifndef ZEPHYR_DRIVERS_SENSOR_ICM42688_H_
8 #define ZEPHYR_DRIVERS_SENSOR_ICM42688_H_
9
10 #include <zephyr/drivers/gpio.h>
11 #include <zephyr/drivers/sensor.h>
12 #include <zephyr/drivers/spi.h>
13 #include <zephyr/sys/byteorder.h>
14 #include <stdlib.h>
15
16 /**
17 * @brief Accelerometer power modes
18 */
19 enum icm42688_accel_mode {
20 ICM42688_ACCEL_OFF,
21 ICM42688_ACCEL_LP = 2,
22 ICM42688_ACCEL_LN = 3,
23 };
24
25 /**
26 * @brief Gyroscope power modes
27 */
28 enum icm42688_gyro_mode {
29 ICM42688_GYRO_OFF,
30 ICM42688_GYRO_STANDBY,
31 ICM42688_GYRO_LN = 3,
32 };
33
34 /**
35 * @brief Accelerometer scale options
36 */
37 enum icm42688_accel_fs {
38 ICM42688_ACCEL_FS_16G,
39 ICM42688_ACCEL_FS_8G,
40 ICM42688_ACCEL_FS_4G,
41 ICM42688_ACCEL_FS_2G,
42 };
43
icm42688_accel_fs_to_reg(uint8_t g)44 static inline enum icm42688_accel_fs icm42688_accel_fs_to_reg(uint8_t g)
45 {
46 if (g >= 16) {
47 return ICM42688_ACCEL_FS_16G;
48 } else if (g >= 8) {
49 return ICM42688_ACCEL_FS_8G;
50 } else if (g >= 4) {
51 return ICM42688_ACCEL_FS_4G;
52 } else {
53 return ICM42688_ACCEL_FS_2G;
54 }
55 }
56
icm42688_accel_reg_to_fs(enum icm42688_accel_fs fs,struct sensor_value * out)57 static inline void icm42688_accel_reg_to_fs(enum icm42688_accel_fs fs, struct sensor_value *out)
58 {
59 switch (fs) {
60 case ICM42688_ACCEL_FS_16G:
61 sensor_g_to_ms2(16, out);
62 return;
63 case ICM42688_ACCEL_FS_8G:
64 sensor_g_to_ms2(8, out);
65 return;
66 case ICM42688_ACCEL_FS_4G:
67 sensor_g_to_ms2(4, out);
68 return;
69 case ICM42688_ACCEL_FS_2G:
70 sensor_g_to_ms2(2, out);
71 return;
72 }
73 }
74
75 /**
76 * @brief Gyroscope scale options
77 */
78 enum icm42688_gyro_fs {
79 ICM42688_GYRO_FS_2000,
80 ICM42688_GYRO_FS_1000,
81 ICM42688_GYRO_FS_500,
82 ICM42688_GYRO_FS_250,
83 ICM42688_GYRO_FS_125,
84 ICM42688_GYRO_FS_62_5,
85 ICM42688_GYRO_FS_31_25,
86 ICM42688_GYRO_FS_15_625,
87 };
88
icm42688_gyro_fs_to_reg(uint16_t dps)89 static inline enum icm42688_gyro_fs icm42688_gyro_fs_to_reg(uint16_t dps)
90 {
91 if (dps >= 2000) {
92 return ICM42688_GYRO_FS_2000;
93 } else if (dps >= 1000) {
94 return ICM42688_GYRO_FS_1000;
95 } else if (dps >= 500) {
96 return ICM42688_GYRO_FS_500;
97 } else if (dps >= 250) {
98 return ICM42688_GYRO_FS_250;
99 } else if (dps >= 125) {
100 return ICM42688_GYRO_FS_125;
101 } else if (dps >= 62) {
102 return ICM42688_GYRO_FS_62_5;
103 } else if (dps >= 31) {
104 return ICM42688_GYRO_FS_31_25;
105 } else {
106 return ICM42688_GYRO_FS_15_625;
107 }
108 }
109
icm42688_gyro_reg_to_fs(enum icm42688_gyro_fs fs,struct sensor_value * out)110 static inline void icm42688_gyro_reg_to_fs(enum icm42688_gyro_fs fs, struct sensor_value *out)
111 {
112 switch (fs) {
113 case ICM42688_GYRO_FS_2000:
114 sensor_degrees_to_rad(2000, out);
115 return;
116 case ICM42688_GYRO_FS_1000:
117 sensor_degrees_to_rad(1000, out);
118 return;
119 case ICM42688_GYRO_FS_500:
120 sensor_degrees_to_rad(500, out);
121 return;
122 case ICM42688_GYRO_FS_250:
123 sensor_degrees_to_rad(250, out);
124 return;
125 case ICM42688_GYRO_FS_125:
126 sensor_degrees_to_rad(125, out);
127 return;
128 case ICM42688_GYRO_FS_62_5:
129 sensor_10udegrees_to_rad(6250000, out);
130 return;
131 case ICM42688_GYRO_FS_31_25:
132 sensor_10udegrees_to_rad(3125000, out);
133 return;
134 case ICM42688_GYRO_FS_15_625:
135 sensor_10udegrees_to_rad(1562500, out);
136 return;
137 }
138 }
139
140 /**
141 * @brief Accelerometer data rate options
142 */
143 enum icm42688_accel_odr {
144 ICM42688_ACCEL_ODR_32000 = 1,
145 ICM42688_ACCEL_ODR_16000,
146 ICM42688_ACCEL_ODR_8000,
147 ICM42688_ACCEL_ODR_4000,
148 ICM42688_ACCEL_ODR_2000,
149 ICM42688_ACCEL_ODR_1000,
150 ICM42688_ACCEL_ODR_200,
151 ICM42688_ACCEL_ODR_100,
152 ICM42688_ACCEL_ODR_50,
153 ICM42688_ACCEL_ODR_25,
154 ICM42688_ACCEL_ODR_12_5,
155 ICM42688_ACCEL_ODR_6_25,
156 ICM42688_ACCEL_ODR_3_125,
157 ICM42688_ACCEL_ODR_1_5625,
158 ICM42688_ACCEL_ODR_500,
159 };
160
icm42688_accel_hz_to_reg(uint16_t hz)161 static inline enum icm42688_accel_odr icm42688_accel_hz_to_reg(uint16_t hz)
162 {
163 if (hz >= 32000) {
164 return ICM42688_ACCEL_ODR_32000;
165 } else if (hz >= 16000) {
166 return ICM42688_ACCEL_ODR_16000;
167 } else if (hz >= 8000) {
168 return ICM42688_ACCEL_ODR_8000;
169 } else if (hz >= 4000) {
170 return ICM42688_ACCEL_ODR_4000;
171 } else if (hz >= 2000) {
172 return ICM42688_ACCEL_ODR_2000;
173 } else if (hz >= 1000) {
174 return ICM42688_ACCEL_ODR_1000;
175 } else if (hz >= 500) {
176 return ICM42688_ACCEL_ODR_500;
177 } else if (hz >= 200) {
178 return ICM42688_ACCEL_ODR_200;
179 } else if (hz >= 100) {
180 return ICM42688_ACCEL_ODR_100;
181 } else if (hz >= 50) {
182 return ICM42688_ACCEL_ODR_50;
183 } else if (hz >= 25) {
184 return ICM42688_ACCEL_ODR_25;
185 } else if (hz >= 12) {
186 return ICM42688_ACCEL_ODR_12_5;
187 } else if (hz >= 6) {
188 return ICM42688_ACCEL_ODR_6_25;
189 } else if (hz >= 3) {
190 return ICM42688_ACCEL_ODR_3_125;
191 } else {
192 return ICM42688_ACCEL_ODR_1_5625;
193 }
194 }
195
icm42688_accel_reg_to_hz(enum icm42688_accel_odr odr,struct sensor_value * out)196 static inline void icm42688_accel_reg_to_hz(enum icm42688_accel_odr odr, struct sensor_value *out)
197 {
198 switch (odr) {
199 case ICM42688_ACCEL_ODR_32000:
200 out->val1 = 32000;
201 out->val2 = 0;
202 return;
203 case ICM42688_ACCEL_ODR_16000:
204 out->val1 = 1600;
205 out->val2 = 0;
206 return;
207 case ICM42688_ACCEL_ODR_8000:
208 out->val1 = 8000;
209 out->val2 = 0;
210 return;
211 case ICM42688_ACCEL_ODR_4000:
212 out->val1 = 4000;
213 out->val2 = 0;
214 return;
215 case ICM42688_ACCEL_ODR_2000:
216 out->val1 = 2000;
217 out->val2 = 0;
218 return;
219 case ICM42688_ACCEL_ODR_1000:
220 out->val1 = 1000;
221 out->val2 = 0;
222 return;
223 case ICM42688_ACCEL_ODR_500:
224 out->val1 = 500;
225 out->val2 = 0;
226 return;
227 case ICM42688_ACCEL_ODR_200:
228 out->val1 = 200;
229 out->val2 = 0;
230 return;
231 case ICM42688_ACCEL_ODR_100:
232 out->val1 = 100;
233 out->val2 = 0;
234 return;
235 case ICM42688_ACCEL_ODR_50:
236 out->val1 = 50;
237 out->val2 = 0;
238 return;
239 case ICM42688_ACCEL_ODR_25:
240 out->val1 = 25;
241 out->val2 = 0;
242 return;
243 case ICM42688_ACCEL_ODR_12_5:
244 out->val1 = 12;
245 out->val2 = 500000;
246 return;
247 case ICM42688_ACCEL_ODR_6_25:
248 out->val1 = 6;
249 out->val2 = 250000;
250 return;
251 case ICM42688_ACCEL_ODR_3_125:
252 out->val1 = 3;
253 out->val2 = 125000;
254 return;
255 case ICM42688_ACCEL_ODR_1_5625:
256 out->val1 = 1;
257 out->val2 = 562500;
258 return;
259 }
260 }
261
262 /**
263 * @brief Gyroscope data rate options
264 */
265 enum icm42688_gyro_odr {
266 ICM42688_GYRO_ODR_32000 = 1,
267 ICM42688_GYRO_ODR_16000,
268 ICM42688_GYRO_ODR_8000,
269 ICM42688_GYRO_ODR_4000,
270 ICM42688_GYRO_ODR_2000,
271 ICM42688_GYRO_ODR_1000,
272 ICM42688_GYRO_ODR_200,
273 ICM42688_GYRO_ODR_100,
274 ICM42688_GYRO_ODR_50,
275 ICM42688_GYRO_ODR_25,
276 ICM42688_GYRO_ODR_12_5,
277 ICM42688_GYRO_ODR_500 = 0xF
278 };
279
icm42688_gyro_odr_to_reg(uint16_t hz)280 static inline enum icm42688_gyro_odr icm42688_gyro_odr_to_reg(uint16_t hz)
281 {
282 if (hz >= 32000) {
283 return ICM42688_GYRO_ODR_32000;
284 } else if (hz >= 16000) {
285 return ICM42688_GYRO_ODR_16000;
286 } else if (hz >= 8000) {
287 return ICM42688_GYRO_ODR_8000;
288 } else if (hz >= 4000) {
289 return ICM42688_GYRO_ODR_4000;
290 } else if (hz >= 2000) {
291 return ICM42688_GYRO_ODR_2000;
292 } else if (hz >= 1000) {
293 return ICM42688_GYRO_ODR_1000;
294 } else if (hz >= 500) {
295 return ICM42688_GYRO_ODR_500;
296 } else if (hz >= 200) {
297 return ICM42688_GYRO_ODR_200;
298 } else if (hz >= 100) {
299 return ICM42688_GYRO_ODR_100;
300 } else if (hz >= 50) {
301 return ICM42688_GYRO_ODR_50;
302 } else if (hz >= 25) {
303 return ICM42688_GYRO_ODR_25;
304 } else {
305 return ICM42688_GYRO_ODR_12_5;
306 }
307 }
308
icm42688_gyro_reg_to_odr(enum icm42688_gyro_odr odr,struct sensor_value * out)309 static inline void icm42688_gyro_reg_to_odr(enum icm42688_gyro_odr odr, struct sensor_value *out)
310 {
311 switch (odr) {
312 case ICM42688_GYRO_ODR_32000:
313 out->val1 = 32000;
314 out->val2 = 0;
315 return;
316 case ICM42688_GYRO_ODR_16000:
317 out->val1 = 16000;
318 out->val2 = 0;
319 return;
320 case ICM42688_GYRO_ODR_8000:
321 out->val1 = 8000;
322 out->val2 = 0;
323 return;
324 case ICM42688_GYRO_ODR_4000:
325 out->val1 = 4000;
326 out->val2 = 0;
327 return;
328 case ICM42688_GYRO_ODR_2000:
329 out->val1 = 2000;
330 out->val2 = 0;
331 return;
332 case ICM42688_GYRO_ODR_1000:
333 out->val1 = 1000;
334 out->val2 = 0;
335 return;
336 case ICM42688_GYRO_ODR_500:
337 out->val1 = 500;
338 out->val2 = 0;
339 return;
340 case ICM42688_GYRO_ODR_200:
341 out->val1 = 200;
342 out->val2 = 0;
343 return;
344 case ICM42688_GYRO_ODR_100:
345 out->val1 = 100;
346 out->val2 = 0;
347 return;
348 case ICM42688_GYRO_ODR_50:
349 out->val1 = 50;
350 out->val2 = 0;
351 return;
352 case ICM42688_GYRO_ODR_25:
353 out->val1 = 25;
354 out->val2 = 0;
355 return;
356 case ICM42688_GYRO_ODR_12_5:
357 out->val1 = 12;
358 out->val2 = 500000;
359 return;
360 }
361 }
362
363 /**
364 * @brief All sensor configuration options
365 */
366 struct icm42688_cfg {
367 enum icm42688_accel_mode accel_mode;
368 enum icm42688_accel_fs accel_fs;
369 enum icm42688_accel_odr accel_odr;
370 /* TODO accel signal processing options */
371
372 enum icm42688_gyro_mode gyro_mode;
373 enum icm42688_gyro_fs gyro_fs;
374 enum icm42688_gyro_odr gyro_odr;
375 /* TODO gyro signal processing options */
376
377 bool temp_dis;
378 /* TODO temp signal processing options */
379
380 /* TODO timestamp options */
381
382 bool fifo_en;
383 int32_t batch_ticks;
384 bool fifo_hires;
385 /* TODO additional FIFO options */
386
387 /* TODO interrupt options */
388 bool interrupt1_drdy;
389 bool interrupt1_fifo_ths;
390 bool interrupt1_fifo_full;
391 };
392
393 struct icm42688_trigger_entry {
394 struct sensor_trigger trigger;
395 sensor_trigger_handler_t handler;
396 };
397
398 /**
399 * @brief Device data (struct device)
400 */
401 struct icm42688_dev_data {
402 struct icm42688_cfg cfg;
403 #ifdef CONFIG_ICM42688_TRIGGER
404 #if defined(CONFIG_ICM42688_TRIGGER_OWN_THREAD)
405 K_KERNEL_STACK_MEMBER(thread_stack, CONFIG_ICM42688_THREAD_STACK_SIZE);
406 struct k_thread thread;
407 struct k_sem gpio_sem;
408 #elif defined(CONFIG_ICM42688_TRIGGER_GLOBAL_THREAD)
409 struct k_work work;
410 #endif
411 #ifdef CONFIG_ICM42688_STREAM
412 struct rtio_iodev_sqe *streaming_sqe;
413 struct rtio *r;
414 struct rtio_iodev *spi_iodev;
415 uint8_t int_status;
416 uint16_t fifo_count;
417 uint64_t timestamp;
418 atomic_t reading_fifo;
419 #endif /* CONFIG_ICM42688_STREAM */
420 const struct device *dev;
421 struct gpio_callback gpio_cb;
422 sensor_trigger_handler_t data_ready_handler;
423 const struct sensor_trigger *data_ready_trigger;
424 struct k_mutex mutex;
425 #endif /* CONFIG_ICM42688_TRIGGER */
426
427 int16_t readings[7];
428 };
429
430 /**
431 * @brief Device config (struct device)
432 */
433 struct icm42688_dev_cfg {
434 struct spi_dt_spec spi;
435 struct gpio_dt_spec gpio_int1;
436 struct gpio_dt_spec gpio_int2;
437 };
438
439 /**
440 * @brief Reset the sensor
441 *
442 * @param dev icm42688 device pointer
443 *
444 * @retval 0 success
445 * @retval -EINVAL Reset status or whoami register returned unexpected value.
446 */
447 int icm42688_reset(const struct device *dev);
448
449 /**
450 * @brief (Re)Configure the sensor with the given configuration
451 *
452 * @param dev icm42688 device pointer
453 * @param cfg icm42688_cfg pointer
454 *
455 * @retval 0 success
456 * @retval -errno Error
457 */
458 int icm42688_configure(const struct device *dev, struct icm42688_cfg *cfg);
459
460
461 /**
462 * @brief Safely (re)Configure the sensor with the given configuration
463 *
464 * Will rollback to prior configuration if new configuration is invalid
465 *
466 * @param dev icm42688 device pointer
467 * @param cfg icm42688_cfg pointer
468 *
469 * @retval 0 success
470 * @retval -errno Error
471 */
472 int icm42688_safely_configure(const struct device *dev, struct icm42688_cfg *cfg);
473
474 /**
475 * @brief Reads all channels
476 *
477 * Regardless of what is enabled/disabled this reads all data registers
478 * as the time to read the 14 bytes at 1MHz is going to be 112 us which
479 * is less time than a SPI transaction takes to setup typically.
480 *
481 * @param dev icm42688 device pointer
482 * @param buf 14 byte buffer to store data values (7 channels, 2 bytes each)
483 *
484 * @retval 0 success
485 * @retval -errno Error
486 */
487 int icm42688_read_all(const struct device *dev, uint8_t data[14]);
488
489 /**
490 * @brief Convert icm42688 accelerometer value to useful g values
491 *
492 * @param cfg icm42688_cfg current device configuration
493 * @param in raw data value in int32_t format
494 * @param out_g whole G's output in int32_t
495 * @param out_ug micro (1/1000000) of a G output as uint32_t
496 */
icm42688_accel_g(struct icm42688_cfg * cfg,int32_t in,int32_t * out_g,uint32_t * out_ug)497 static inline void icm42688_accel_g(struct icm42688_cfg *cfg, int32_t in, int32_t *out_g,
498 uint32_t *out_ug)
499 {
500 int32_t sensitivity = 0; /* value equivalent for 1g */
501
502 switch (cfg->accel_fs) {
503 case ICM42688_ACCEL_FS_2G:
504 sensitivity = 16384;
505 break;
506 case ICM42688_ACCEL_FS_4G:
507 sensitivity = 8192;
508 break;
509 case ICM42688_ACCEL_FS_8G:
510 sensitivity = 4096;
511 break;
512 case ICM42688_ACCEL_FS_16G:
513 sensitivity = 2048;
514 break;
515 }
516
517 /* Whole g's */
518 *out_g = in / sensitivity;
519
520 /* Micro g's */
521 *out_ug = ((abs(in) - (abs((*out_g)) * sensitivity)) * 1000000) / sensitivity;
522 }
523
524 /**
525 * @brief Convert icm42688 gyroscope value to useful deg/s values
526 *
527 * @param cfg icm42688_cfg current device configuration
528 * @param in raw data value in int32_t format
529 * @param out_dps whole deg/s output in int32_t
530 * @param out_udps micro (1/1000000) deg/s as uint32_t
531 */
icm42688_gyro_dps(const struct icm42688_cfg * cfg,int32_t in,int32_t * out_dps,uint32_t * out_udps)532 static inline void icm42688_gyro_dps(const struct icm42688_cfg *cfg, int32_t in, int32_t *out_dps,
533 uint32_t *out_udps)
534 {
535 int64_t sensitivity = 0; /* value equivalent for 10x gyro reading deg/s */
536
537 switch (cfg->gyro_fs) {
538 case ICM42688_GYRO_FS_2000:
539 sensitivity = 164;
540 break;
541 case ICM42688_GYRO_FS_1000:
542 sensitivity = 328;
543 break;
544 case ICM42688_GYRO_FS_500:
545 sensitivity = 655;
546 break;
547 case ICM42688_GYRO_FS_250:
548 sensitivity = 1310;
549 break;
550 case ICM42688_GYRO_FS_125:
551 sensitivity = 2620;
552 break;
553 case ICM42688_GYRO_FS_62_5:
554 sensitivity = 5243;
555 break;
556 case ICM42688_GYRO_FS_31_25:
557 sensitivity = 10486;
558 break;
559 case ICM42688_GYRO_FS_15_625:
560 sensitivity = 20972;
561 break;
562 }
563
564 int32_t in10 = in * 10;
565
566 /* Whole deg/s */
567 *out_dps = in10 / sensitivity;
568
569 /* Micro deg/s */
570 *out_udps = ((int64_t)(llabs(in10) - (llabs((*out_dps)) * sensitivity)) * 1000000LL) /
571 sensitivity;
572 }
573
574 /**
575 * @brief Convert icm42688 accelerometer value to useful m/s^2 values
576 *
577 * @param cfg icm42688_cfg current device configuration
578 * @param in raw data value in int32_t format
579 * @param out_ms meters/s^2 (whole) output in int32_t
580 * @param out_ums micrometers/s^2 output as uint32_t
581 */
icm42688_accel_ms(const struct icm42688_cfg * cfg,int32_t in,int32_t * out_ms,int32_t * out_ums)582 static inline void icm42688_accel_ms(const struct icm42688_cfg *cfg, int32_t in, int32_t *out_ms,
583 int32_t *out_ums)
584 {
585 int64_t sensitivity = 0; /* value equivalent for 1g */
586
587 switch (cfg->accel_fs) {
588 case ICM42688_ACCEL_FS_2G:
589 sensitivity = 16384;
590 break;
591 case ICM42688_ACCEL_FS_4G:
592 sensitivity = 8192;
593 break;
594 case ICM42688_ACCEL_FS_8G:
595 sensitivity = 4096;
596 break;
597 case ICM42688_ACCEL_FS_16G:
598 sensitivity = 2048;
599 break;
600 }
601
602 /* Convert to micrometers/s^2 */
603 int64_t in_ms = in * SENSOR_G;
604
605 /* meters/s^2 whole values */
606 *out_ms = in_ms / (sensitivity * 1000000LL);
607
608 /* micrometers/s^2 */
609 *out_ums = (in_ms - (*out_ms * sensitivity * 1000000LL)) / sensitivity;
610 }
611
612 /**
613 * @brief Convert icm42688 gyroscope value to useful rad/s values
614 *
615 * @param cfg icm42688_cfg current device configuration
616 * @param in raw data value in int32_t format
617 * @param out_rads whole rad/s output in int32_t
618 * @param out_urads microrad/s as uint32_t
619 */
icm42688_gyro_rads(const struct icm42688_cfg * cfg,int32_t in,int32_t * out_rads,int32_t * out_urads)620 static inline void icm42688_gyro_rads(const struct icm42688_cfg *cfg, int32_t in, int32_t *out_rads,
621 int32_t *out_urads)
622 {
623 int64_t sensitivity = 0; /* value equivalent for 10x gyro reading deg/s */
624
625 switch (cfg->gyro_fs) {
626 case ICM42688_GYRO_FS_2000:
627 sensitivity = 164;
628 break;
629 case ICM42688_GYRO_FS_1000:
630 sensitivity = 328;
631 break;
632 case ICM42688_GYRO_FS_500:
633 sensitivity = 655;
634 break;
635 case ICM42688_GYRO_FS_250:
636 sensitivity = 1310;
637 break;
638 case ICM42688_GYRO_FS_125:
639 sensitivity = 2620;
640 break;
641 case ICM42688_GYRO_FS_62_5:
642 sensitivity = 5243;
643 break;
644 case ICM42688_GYRO_FS_31_25:
645 sensitivity = 10486;
646 break;
647 case ICM42688_GYRO_FS_15_625:
648 sensitivity = 20972;
649 break;
650 }
651
652 int64_t in10_rads = (int64_t)in * SENSOR_PI * 10LL;
653
654 /* Whole rad/s */
655 *out_rads = in10_rads / (sensitivity * 180LL * 1000000LL);
656
657 /* microrad/s */
658 *out_urads =
659 (in10_rads - (*out_rads * sensitivity * 180LL * 1000000LL)) / (sensitivity * 180LL);
660 }
661
662 /**
663 * @brief Convert icm42688 temp value to useful celsius values
664 *
665 * @param cfg icm42688_cfg current device configuration
666 * @param in raw data value in int32_t format
667 * @param out_c whole celsius output in int32_t
668 * @param out_uc micro (1/1000000) celsius as uint32_t
669 */
icm42688_temp_c(int32_t in,int32_t * out_c,uint32_t * out_uc)670 static inline void icm42688_temp_c(int32_t in, int32_t *out_c, uint32_t *out_uc)
671 {
672 int64_t sensitivity = 13248; /* value equivalent for x100 1c */
673
674 /* Offset by 25 degrees Celsius */
675 int64_t in100 = (in * 100) + (25 * sensitivity);
676
677 /* Whole celsius */
678 *out_c = in100 / sensitivity;
679
680 /* Micro celsius */
681 *out_uc = ((in100 - (*out_c) * sensitivity) * INT64_C(1000000)) / sensitivity;
682 }
683
684 #endif /* ZEPHYR_DRIVERS_SENSOR_ICM42688_H_ */
685